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It is well-known that forcing over a model of material set theory corre-
sponds to taking sheaves over a small site (a poset, a complete Boolean
algebra, and so on). One phenomenon that occurs is that given a small
site, all new subsets created are smaller than a fixed bound depending
on the size of the site. There is a more general notion of forcing in-
vented by Easton to create new subsets of arbitrarily large sets, namely
class forcing, where one starts with a partially ordered class. The exist-
ing theory of class forcing is entirely classical, with no corresponding
intuitionist theory as in ordinary forcing. Our understanding of its
relation to topos theory is in its infancy, [[ but it is clear that class forc-
ing is about taking small sheaves on a large site, or rather, considering
colimits of large diagrams of sheaf toposes and their inverse image
functors. ]]2 That these do not automatically form a topos means that 2 Added April 2017: this is incorrect!

Jensen forcing gives new sets(=sheaves)
which aren’t set-generic(=small). My
thanks to Joel David Hamkins for
patiently explaining this to me.

the theory has interesting twists and turns. This talk will outline the
theory of class forcing from a category/topos point of view, give ex-
amples and constructions, and finally a list of open questions – not
least being whether an intuitionistic version of Easton’s theorem on the
continuum function holds.

Terminology and disclaimers

Disclaimers In what follows, we need to refer to categories of vari-
ous sizes. To forestall any size issues we can assume two Grothendieck
universes, U ∈ V. Elements of U will be small, elements of V will be
moderate. Anything not an element of U will be said to be large, and
anything not an element of V will be very large. This is more of a con-
venience than a strictly necessary device, as the potentially very large
categories we will come across could be treated as being models of
the first-order theory of elementary toposes instead.

A second point is that all elementary toposes in these notes will
be (small) cocomplete, relative to a base topos of sets, and so have a
natural number object.

Terminology In dealing with set theory through the lens of topos the-
ory, it is convenient to have words to distinguish the different sorts of
sets or set theories. The following do not have formal definitions, but
we can give examples of each.

http://creativecommons.org/publicdomain/zero/1.0/
https://www.youtube.com/watch?v=4AaSySq8-GQ
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1. Material sets — these are sets where elements have independent
existence from sets that contain them. Primordial examples are
ZF(C), BZ(C). The latter set theory is Bounded Zermelo (with
Choice), which is well-known to be equiconsistent with ETCS (see
below).

2. Structural sets — these are sets where everything is invariant un-
der isomorphism, and where elements do not have independent
existence. Sometimes set theories of this sort have been referred to
as categorical set theories, but this is not strictly necessary. Exam-
ples include Lawvere’s ETCS (elementary theory of the category
of sets) and Shulman’s SEAR (sets, elements and relations). The
latter is not axiomatised as a category with certain properties, but
as a three-sorted theory using the eponymous sorts.3 Structural set 3 See the nLab page http://ncatlab.

org/nlab/show/SEAR for details of
SEAR.

theories can be augmented with axiom schemas that make them
equiconsistent with ZFC, if desired.

The continuum function from an ahistorical viewpoint

In this section we consider purely classical logic and assume sets
satisfy the axiom of choice, as is usually considered in traditional set
theory. Take material or structural sets as desired.

If we let Setinj to be the category of sets and injections, then we
denote by Card≤ to be the partial order reflection. This latter partial
order is the category of cardinals. There is a canonical functor

Setinj // Card≤

sending a set to its cardinal. Using well-orderings of sets we can get
a section of this functor, sending a cardinal to the least ordinal in
bijection with it,4 but this is not particularly needed for what follows. 4 If we do not have the axiom of choice,

but still have a Von Neumann-style
cumulative hierarchy, we can use the
so-called Scott’s trick to identify a set
representing each cardinality.

Notice that the covariant powerset functor P : Set → Set (sending
a function f to ∃ f ) restricts to a functor P : Setinj → Setinj; by the
universal property of partial order reflection one gets a commutative
square

Setinj //

P
��

Card≤

2(−)

��
Setinj // Card≤

The functor here denoted 2(−) is the continuum function.5 Cantor’s 5 In a more general setting, one might
write Ω(−) instead.continuum hypothesis asks about the behaviour of the continuum

function at N, considered as a cardinal:

∃?A such that N < A < 2N

http://ncatlab.org/nlab/show/SEAR
http://ncatlab.org/nlab/show/SEAR
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Famously, Gödel produced a model of ZFC (the constructible uni-
verse L) in which for any cardinality κ, any A such that κ ≤ A ≤ 2κ

must be either κ or 2κ (so the Generalised Continuum Hypothesis is
true in that model). Likewise, Cohen gave a model of ZFC in which
there is an A such that N < A < 2N, and his method, forcing, can be
used to construct variants along these lines, subject to an important
limitation to be described below.

More generally, one can wonder what the global behaviour of the
continuum function is: does it skip values? which ones can it skip?
which values can it take? There are two cases:

• Regular cardinals: this case has been ‘solved’, by Easton, in the
sense that we know all possible behaviours of the continuum func-
tion on the regular cardinals

• Singular cardinals: it is a hard and open problem to fully determine
the possible behaviour of the continuum function on singular
cardinals. The area of pcf theory deals with this part, and we
won’t say more about this here.6 6 See eg Menachem Kojman, PCF

Theory, Topology Atlas Invited Contri-
butions vol. 6 issue 1 (2001) p. 74–77,
http://at.yorku.ca/t/a/i/c/44.htm.

The power of power objects

But first, why should we care about the continuum function as topos
theorists? The reason is that almost all of the properties of toposes
(can be seen to) arise from the existence of power objects.

Definition 1. An elementary topos is a category with

1. finite limits

2. power objects: for all objects X there is an object PX and a relation
∈X ↪→ X × PX such that for any other relation R ↪→ X × Y there is
a unique morphism ρ : Y → PX and a pullback square

R //

��

∈X

��
X×Y

id×ρ
// X× PX

Power objects can be7 assumed or chosen to be (contravariantly) 7 up to the usual caveats

functorial.

http://at.yorku.ca/t/a/i/c/44.htm
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Very little logical structure is afforded by finite limits, but we
know the internal logic of an elementary topos is full higher or-
der intuitionistic logic, and much of mathematics can be described
therein. Thus the continuum function, the partial order reflection of
the power object functor, captures a lot of information about what
objects of toposes are and how they behave.

For the purposes of the rest of these notes, it will be helpful to
give another definition of elementary topos that highlights a different
breakdown of the topos properties, but again singling out power
objects.

Definition 2. A category E is an infinitary Heyting pretopos with sub-
object classifier if:

• it has finite limits The first two properties make E (infini-
tary) lextensive. ‘Small sums’ is not an
elementary property, and can only be
defined in the presence of a fixed base
topos.

• it has (small) disjoint sums stable under pullback

• it is a Heyting category8: the internal logic is first-order intuition-
8 amongst other things, the subobject
lattices are Heyting algebras, and one
has the usual quantifiers/connectives
available; see https://ncatlab.org/

nlab/show/Heyting+category.

istic

• it has a subobject classifier Ω (in the usual sense)

Given two infinitary Heyting pretoposes E, F as above, a mor-
phism9 from E to F is a lex, cocontinuous functor F → E. 9 an algebraic morphism, as emphasised

by Joyal at the conference: the ‘inverse
image’ part of an imaginary geometric
morphism.We say an infinitary Heyting pretopos E has finitary W-types if it

has initial algebras for finitary polynomial endofunctors of the form Finitary W-types are also initial alge-
bras for the polynomial endofunctors
defined using the dependent product
Πn, arising from cardinals n : A → B in
the slice topos over B.

X 7→ ∑
n∈N

An × Xn.

We say it has parameterised finitary W-types if it has finitary W-types
and these remain initial algebras (on pulling back along Y → 1) for
the induced polynomial endofunctors on E/Y.

Example 1. Examples of finitary W-types are as follows:

1. natural numbers objects

2. free monoids

3. free monoid actions

4. list objects

https://ncatlab.org/nlab/show/Heyting+category
https://ncatlab.org/nlab/show/Heyting+category
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Such a pretopos is good for studying strongly predicative math-
ematics. It is closely related to the unpublished notion of arithmetic
universe due to Joyal, and that of list-arithmetic pretopos of Maietti et
al. One can think of it as being quite like a presentable category, mi-
nus the actual presentability (i.e. generation under colimits of a set of
compact objects)

Note that there are no internal homs in general, so there are no
power objects, even though there is a subobject classifier. If we add
exponentials Ω(−), then E becomes a (cocomplete) elementary topos.

Forcing in a nutshell

To be blunt, the various types of forcing can all be performed using This was pointed out by Ščedrov in
his 1984 AMS Memoir Forcing and
Classifying Topoi, but was no doubt
known earlier.

sheaves. The general pattern of ordinary forcing (again, ahistorically)
is as follows:

P
take sheaves−−−−−−→ Sh(P,¬¬) Sub(1)

Φ−→2−−−−−−→ Sh(P,¬¬)Φ

small poset using double negation topology filterquotient construction
| |

(work in internal logic) (topos is now well-pointed)
↓ ↓

Boolean-valued model forced model of BZC/ZFC

Note that the apparent simplicity of the above recipe hides the so- The vertical arrows are given by a
delicate and technical construction due
to in various measures to Cole, Osius,
Fourman, Hayashi and Mitchell, and
give back a material set theory.

phisticated infinitary combinatorics that can go into the construction
of P and proving properties of the resulting model.

There are other types of forcing, given by other topos-theoretic
constructions:

• Equivariant sheaves for a continuous action of a topological group
G → Aut(P): the resulting model of material set theory is called a
symmetric submodel.

• The topos Cont(G) continuous actions of a topological group G
on sets. The resulting model of set theory with atoms10 is called a 10 Such ‘forcing’ models are due to

Fraenkel and Mostowski and deal with
the theory ZFCA: there sets can have
elements called atoms that have no
elements themselves, but are not empty.

permutation model.

• Taking sheaves on a complete Boolean algebra gives something
equivalent to forcing over a poset, but this raises the possibility of
taking sheaves over a complete Heyting algebra instead: this gives
Heyting valued models of intuitionistic material set theory.
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The key result to take from this section is that forcing like this can
only affect set-many11 values of the continuum function. But: Easton’s 11 In the sense there is a family of sets,

parameterised by a set, at which the
values of 2(−) are shifted up or down
as desired, with little or no control
on all other values. One can compute
an upper bound on this cardinality in
terms of the cardinality of the site at
hand.

solution of the continuum problem12 used a large, or class-sized,

12 W.B. Easton, Powers of regular cardi-
nals, Annals of Mathematical Logic 1
(1970) 139–178.

partial order P. This means he could adjust class-many values of
2(−), essentially one at a time. This technique is now known as class
forcing. As any category theorist knows, taking sheaves on a large
site, as it appears we would need to do, moves to a larger universe
due to size problems.

Class forcing using fibred sites

This is not a disaster, though. Compare the ‘faux topos’ of SGA4.1,13 13 SGA 4, IV.2.8 – this is an example of
what we now call a non-Grothendieck
topos with a geometric morphism to
Set.

which is built using a progroup (Gi|i ∈ I) with I large (or a proper
class), and is essentially the topos of continuous actions on sets of the
large topological group “limi∈I Gi”14. 14 For an example in practice, see the

author’s paper The Weak Choice Principle
WISC may Fail in the Category of Sets,
Studia Logica 103 (2015) 1005–1017.

To get around the issue of considering a large site of definition,
consider the following

Setup: large filtered category R with initial object, and a diagram of
sites:

E : Rop −→ Sitefib
Sh−→ Toposb Sitefib morphisms: (D, K) ⊥

F //
(C, J),

T
oo T is cover-preserving

The morphisms of Sitefib are fibrations of sites, introduced by Moer-
dijk15 to treat 2-categorical limits of toposes. The simplest example, 15 I. Moerdijk, Continuous fibrations

and inverse limits of toposes, Composito
Mathematica 58 (1986) 45–72.

namely a projection P×Q→ P of posets with top element, equipped
with the double-negation topology, and its right adjoint, turns out to
encompass many examples in classical set theory. Every geometric
morphism between Grothendieck toposes arises from a fibration of
sites, as long as one is happy to change the site of definition for the
domain topos.

Remark. Taking the perspective that a choice of site for a Grothendieck
topos is like choosing a basis for a vector space, fibrations of sites can
be considered as a kind of ‘normal form’ for geometric morphisms.

The diagram of sites is what is called a fibred site in SGA 4, and
the resulting diagram of toposes is called a fibred topos16. When the 16 See eg SGA 4.1 VI.7.1, where the

treatment is in terms of fibred cate-
gories rather than indexed categories.
With the usual caveats, these two ap-
proaches are equivalent. Note that
Verdier in his Lecture Notes in Mathe-
matics uses the notion described here.

diagram is small (i.e. R is small) then one can consider the ‘total
topos’, which is the 2-categorical limit of the diagram of toposes.

Ščedrov, in his thesis17 showed that set-iterated set-forcing is, on
17 Published as: A. Ščedrov, Forcing and
classifying topoi, Memoirs of the AMS
no. 295 (1984).
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the structural side, working with fibred toposes. Iterated forcing in
the traditional sense is, put simply, a process of doing one forcing
(hence sheaves on one site), then for a poset in the new model (so
an internal site in the topos) performing another forcing, and then
for another poset in the new model, forcing again, and so on. This
can be iterated either finitely or infinitely many times. Using such
techniques one can (for example) iteratively adjust values of the con-
tinuum function, ascending up a given family of (regular) cardinals.
Other kinds of infinitely iterated forcing can be used to eliminate
infinite combinatorial structures that are otherwise not destroyed by
single instances of forcing.

But if R is large? What do we do? Consider the case that R is
well-founded for simplicity. Form the diagram LEXcocont is the very large 2-category

of large infinitary lextensive categories
with functors preserving finite limits
and colimits. It contains locally pre-
sentable categories, which include
Grothendieck toposes.

E∗ : R −→ Toposop
b ↪→ LEXcocont

where the inclusion of toposes and (bounded) geometric morphisms
into lex categories and lex, cocontinuous functors takes the inverse
image functor. We want to form colimR E∗:

a

��

7→ E(a) //oo

��

colimR E∗ =: E

b 7→ E(b)

f ∗
OO 88

xx

There may be no dashed functors as shown, which would be the The lack of local smallness means we
can’t apply the adjoint functor theorem
as in the case for Grothendieck toposes.

right adjoints: the lex category E is not guaranteed to be locally
small. There are, however, nontrivial examples that give rise to lo-
cally small E , and such that the resulting direct image functor gives a
geometric morphism that is not bounded.

Theorem 1. Let E : Rop → Toposb be a filtered diagram with R
(classically) well founded with initial object. Then E = colimR E∗ is
an infinitary Heyting pretopos with subobject classifier and parame-
terised finitary W-types.

Let E : Rop → Toposb be a filtered diagram of toposes. For d ∈ D
and an object X ∈ E(d), say that ppowersets of X are eventually con-

stantq if there is j : d → d′ such that for all k : d′ → d′′, the canonical
comparison map

k∗P(j∗X)→ P(k∗ j∗X))

is an isomorphism, where we have written k∗ := E(k)∗ etc for short.
Further, say ppowersets are eventually constantq if ppowersets of X are

eventually constantq for every X.
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Theorem 2. Given a filtered diagram E : Rop → Toposb of toposes, if
ppowersets are eventually constantq, then E is a cocomplete elementary
topos.

This seems like a lot of conditions to check, but the following
lemma shows we can cut things down a fair bit

Lemma 1. Let f : E→ F be a geometric morphism, and X an object of
F such that the canonical map f ∗(PX) → P( f ∗X) is an isomorphism.
Then for any subquotient Y of X, the canonical f ∗PY → P( f ∗Y) is
also an isomorphism.

In the classical set case, sites are posets together with the double-
negation topology. The resulting categories of sheaves are localic
(so every object is a subquotient of a constant sheaf), which is an
important special case where we can say something stronger.

Corollary 1. If E(a) is localic for all a ∈ R, and ppowersets of κ are

eventually constantq for all κ in the base topos18, then E is a cocomplete 18 In fact, one only needs this to hold
at a a cofinal sequence of such κ, so
for example, at a cofinal sequence of
regular cardinals.

elementary topos.

Definition 3. A fibration of sites F : D � C : T is (κ, B)-Easton, for
κ ∈ Set, B ∈ Sh(C), if the canonical map

F∗(P(κ × B))→ P(F∗(κ × B))

is an isomorphism, where we have omitted the ‘constant sheaves’
functor applied to κ. In the localic case, we write κ-Easton for (κ, 1)-
Easton.

In actual fact, this is a definition of a property of a geometric mor-
phism, but we are mostly interested when a geometric morphism
arises from a given fibration of sites.

Example 2. Fix κ regular and let P be a poset with top such that
every ¬¬-sieve contains a covering sieve generated by ≤ κ elements.
Let Q be a poset with top such that every λop → Q bounded below
for all λ ≤ κ. Then P×Q→ P is κ-Easton.

Example 3. A poset map P′ → P is κ-Easton if (P′,¬¬) in the
internal logic of Sh(P,¬¬), has

⋂
i∈κ Si a covering sieve, where each

Si is a covering sieve.

Since for B a bound for a topos p : E → Set, every object is a sub-
quotient of p∗κ × B, for some κ ∈ Set, one can make a stronger
statement than Theorem 2.
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Note that if λ is a subquotient of κ in Set then (κ, B)-Easton im-
plies (λ, B)-Easton for any B.

Theorem 3. Given a filtered diagram of sites S : Rop → Sitefib, then if
for all a ∈ R in some cofinal class and every κ in some subquotient-
cofinal class in Set, every S(b) → S(a) is (κ, B)-Easton, for B some
bound for Sh(S(a)), then ppowersets are eventually constantq, and the
resulting pretopos as in Theorem 1 is a cocomplete elementary topos.

Again, in the localic case, things simplify, as each Ba can be taken
as terminal for localic toposes.

Future directions

Moerdijk used his notion of fibration of sites to give several simple
characterisations of properties of geometric morphisms at the site
level. We seek such a characterisation for the property of being (κ, B)-
Easton.

Question 1. Can we find a site-level characterisation of what it means
to be (κ, B)-Easton, in the sense of conditions on the fibration of sites
F : D� C : T, rather than on the geometric morphism or sheaves?

Question 2. Can we generalise κ× B in the definition of (κ, B)-Easton
fibration to a more general family (i.e. not just a product)? Or is this Recall that in practice, the B in κ × B

is a bound for the induced geometric
morphism between toposes.

even something that we need to do? Compare to embedding and
representation theorem for bounded toposes.

In the literature, the most easily understood class forcings are
sequential class forcings, but there are other more mysterious class
forcings that are not of this form. Almost all attention is on pretame
class forcings,19 and then tame class forcings are those that result in 19 See e.g. Section 2 of Sy D. Friedman,

Constructibility and Class Forcing, in:
Handbook of Set theory, Eds. Matthew
Foreman and Akihiro Kanamori,
Springer 2010. Available from http:

//www.logic.univie.ac.at/~sdf/

papers/class-forcing.pdf.

powersets existing in the class-forced model (cf the topos-theoretic
theorems above). We give an informal definition of a pretame class
forcing for the sake of completeness:

Definition 4. Let P be a large partial order. We say P is pretame if
for every set-indexed family (Di)i∈I of subclasses Di ⊂ P whose
down-closures are dense below some p ∈ P, there is a q ≤ p and a
family (di)i∈I of subsets di ⊂ Di such that the down-closure of each di

is dense below q.

It is the author’s view that being able to approach arbitrary pre-
tame forcings using the technology of fibred sites and toposes would
give a conceptual clarity.

http://www.logic.univie.ac.at/~sdf/papers/class-forcing.pdf
http://www.logic.univie.ac.at/~sdf/papers/class-forcing.pdf
http://www.logic.univie.ac.at/~sdf/papers/class-forcing.pdf
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Conjecture. Every pretame class forcing partial order can be written
as the colimit of the right adjoint functors in a large filtered diagram
Rop → Sitefib of (fibrations of) sites such that R has all initial seg-
ments small, and conversely, every such large filtered diagram of Does a pretame class forcing have no

ORD-chains?(fibrations of) sites gives rise to a pretame class forcing.

[[ Added April 2017: Note that it is not the case that every tame
class-forced model arises as in Theorem 1, since Jensen Coding20 20 See eg S.D. Friedman, A simpler proof

of Jensen’s coding theorem, Annals of Pure
and Applied Logic 79 (1994) 1–16.

must involve non-small sheaves for its class forcing partial order, and
it is tame, hence pretame. ]]

Question 3. BONUS QUESTION: does every geometric morphism
arise from a suitable choice of large fibred topos?

Given that Easton’s theorem only applies to sets in classical logic,
one can ask whether, for sets in non-classical logic (for instance, IZF
or CZF), there is an analogue of Easton’s theorem. Note that if one
merely drops the axiom of choice (so working in ZF), there are results
analogous to Easton’s using variants21 of the continuum function 21 A. Fernengel and P. Koepke,

An Easton-like theorem for Zermelo-
Fraenkel Set Theory without Choice,
arXiv:1607.00205.

and on embedding partially-ordered classes (with a mild ‘niceness’
condition) into the class of cardinals, ordered either by injections or
surjections22. Note that the first of these results only applies to initial 22 A. Karagila, Embedding orders into

the cardinals with DCκ , Fundamenta
Mathematicae, 226 (2014) 143–156.

ordinals, which excludes non-well-orderable sets. Karagila’s result
uses the choiceless definition of cardinals using Scott’s trick,23 but 23 This technique chooses a canonical set

representing each bijection class, using
the cumulative hierarchy and notion of
rank of a set.

says nothing about the continuum function. It is unclear whether
there is a meaningful version of Easton’s theorem working with
arbitrary constructive sets, or in an arbitrary topos, but one might
seek out such a result.

https://arxiv.org/1607.00205
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