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Abstract

As the cost of hardware decreases and software technology advances,

building automation systems (BAS) have been widely deployed to new

buildings or as part of the retrofit to replace the old control systems.

Though they are becoming more prevalent and promise important ben-

efits to the society, such as improved energy-efficiency and occupants’

comfort, many of their benefits remain unreachable. Research sug-

gests that this is because of the heterogeneous, fragmented and non-

standardized nature of existing BASs. One of the purported benefits of

these systems is the ability to reduce energy consumption through the

application of automated approaches such as fault detection and diagno-

sis (FDD) algorithms. Savings of up to 0.16 quadrillion BTUs per year

could be obtained in the US alone through the use of these approaches,

which are just software applications running on BAS hardware. How-

ever, deployment of these applications for buildings remains a challenge

due to the non-trivial efforts of organizing, managing and extracting

metadata associated with sensors (e.g., information about their type,

function, etc.), which is required by them. One of the reasons leading

to the problem is that varying conventions, acronyms, and standards

are used to define this metadata. Though standards and government-

mandated policies may lift these obstacles and enable these software-

based improvements to our building stock, this effort could take years

to come to fruition and there are alternative technical solutions, such as

automated metadata inference techniques, that could help reign in on

the non-standardized nature of today’s BASs.



This thesis sheds light on the visibility of this alternative approach by

answering three key questions, which are then validated using data from

more than 400 buildings in the US: (a) What is the specific operational

information required by FDD approaches for secondary heating, ventila-

tion, and air conditioning (HVAC) systems found in existing literature?

(b) How is the performance of existing metadata inference approaches

affected by changes in building characteristics, weather conditions, build-

ing usage patterns, and geographical locations? (c) What is an approach

that can provide physical interpretations in the case of incorrect meta-

data being inferred? We find that: (a) The BAS points required by

more than 30% of FDD approaches include six sensors in AHUs mon-

itoring supply air temperature, outside air temperature, chilled water

valve position, return air temperature, supply air flow rate, and mixed

air temperature; (b) The average performance of existing inference ap-

proaches in terms of accuracy is similar across building sites, though

there is significant variance, and the expected accuracy of classifying the

type of points required by a particular FDD application for a new un-

seen building is, on average, 75%; (c) A new approach based on physical

models is developed and validated on both the simulation data and the

real-world data to infer the point types confused by data-driven mod-

els with an accuracy ranging from 73% to 100%, and this approach can

provide physical interpretations in the case of incorrect inference. Our

results provide a foundation and starting point to infer the metadata

required by FDD approaches and minimize the implementation cost of

deploying FDD applications on multiple buildings.
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Chapter 1

Introduction

Commercial buildings in the United States (US) consumed 17.97 quadrillions British

Thermal Units (quads) in the year 2015, which is equal to 18.4% of the total en-

ergy consumed in the US in that year, as seen in Figure 1.1a. This consumption

is projected to further increase at an annual rate of 0.5% according to US Energy

Information Administration (EIA) [1]. Figure 1.1b shows that the commercial sector

will consume as much energy as the residential sector by 2040. The potential sav-

ings by improving the energy use in commercial buildings have proven to be sizable

according to recent research [2, 3, 4, 5]. For example, in [2] researchers demonstrate

20-30% energy savings could be attributed to re-commissioning of the heating, ven-

tilation, and air conditioning (HVAC) systems to rectify faulty operations, based on

a study covering a modest number of commercial office buildings. In [6] and [3] it

has been shown that various faults cause one quad of energy waste in commercial

buildings, which equals to about 11% of the energy consumed in 2005. Faults in

HVAC systems, such as duct leakage, condenser fouling, airflow not balanced, and

others, account for more than 80% of this wasted energy. To put these numbers in

perspective, one quad is approximately equal to the annual electricity consumption

1



Chapter 1. Introduction

of Italy [7]. As a result, many fault detection and diagnosis (FDD) approaches have

been developed for building HVAC systems to reduce the energy usage by improving

the operational performance of commercial buildings [8, 2, 9, 10, 11]. Applications

developed based on these approaches do not only reduce energy waste, but also

save time and money for building operators to troubleshoot, improve the occupants’

comfort (given that people on average spend 87% of their time indoors [12]), lower

environment impact, decrease cost for equipment repair and replacement, and many

others [2].

Commercial

18.4%

Residential

21.4%

Transportation
28.4%

Industrial

31.8%

97.52 quads in total (2015)

(a) Energy consumption by sector (b) Energy projections by sector up to 2040

Figure 1.1: Energy consumption patterns in the United States (Source: US Energy Infor-
mation Administration)

The function of FDD approaches is to detect any system malfunctions and diag-

nose the primary causes. These results are then used by building operators to rectify

the faults. The detection usually involves comparing the actual performance to a

reference [13]. The actual performance is measured based on different sensing points

in HVAC systems and the reference could either be calculated based on a physical

model using building design information or derived from historical sensing data of

normal status. The diagnosis focuses on identifying the magnitude and causes of the

faults, as well as isolating their type and location. Facility managers and building

operators, who are in charge of maintaining buildings, can benefit from these FDD

2



1.0.

tools.

To evaluate the feasibility of implementing FDD approaches in real buildings,

EIA enlisted the help of International Energy Agency (IEA) Annex 34 ([2, 5]) to

conduct thirty case studies involving twenty-six FDD tools on twenty buildings

across twelve countries. One of the conclusions from the study is that the amount

of information required by FDD tools and the effort required to extract it should

not be overlooked and underestimated. This required information can be classified

into main categories (see e.g. [2], [14], and [15]):

• Design information: This category includes the information generated, or gath-

ered during the design phase of the building before it is in operation. Some

examples include geometric data like component locations, floor maps struc-

ture drawing, HVAC system design data like the manufacturing data for each

HVAC equipment (e.g., duct, air handler unit, terminal box), etc.

• Operational information: This category includes the operational phase infor-

mation when the building starts to function and be occupied. Information

associated with sensing, actuating devices, as well as set points monitoring

and controlling running status of HVAC systems, falls into this category.

• FDD parameters: This class represents a set consisting of tuning parameters

of FDD algorithms, including rule thresholds, model parameters, the window

length of the signal, etc.

Design information can often be retrieved from design drawings, spreadsheets,

floor maps, diagrams and equipment manuals [16]. FDD parameters are typically

chosen either heuristically or based on training data [2]. Operational information is

3
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accessible through a centralized building automation system (BAS)1 [2, 15], which

controls the HVAC system of a building to ensure operational performance and

occupants’ comfort utilizing various sensing and actuating points. These points

inside a BAS are also called BAS points, and they represent the sensors and

actuators that are distributed throughout the system to monitor and change its

state. Typical examples include sensors used to monitor airflow, CO2, humidity,

temperature, and occupancy, as well as actuators associated with valves, dampers,

and fans to control the flow of fluid and air.

However, extracting needed information to make it ready to use for FDD tools

is not without challenges. Researchers in [17] reported a practical experience of

implementing the expert-based FDD systems on three different sites. It was found

that the cost of gathering the required information by FDD tools is rather high as

the operational information available in a BAS cannot be retrieved automatically.

For each test of installing the FDD tool, more than one day of manual effort was

spent to extract and standardize the operational information from a BAS. Here

the standardization refers to the process of converting operational information ex-

tracted from different buildings into a consistent and understandable namespace.

In [5] it is also claimed that the cost of running FDD tools is too high due to the

difficulty of interfacing with data. Researcher in [18] show that the lack of stan-

dardized and structured descriptive data prevents automated FDD algorithms from

properly connecting to data without building-specific customization. Additionally,

1The centralized system for buildings has many names, including building control system (BCS),
building management system (BMS), building energy management system (BEMS), energy man-
agement and control system (EMCS), building direct digital control system (DDC), etc. They are
same in the sense that they manage and control buildings using sensing and actuating devices,
with the minor difference being their perspectives. For example, BEMS focuses more on energy
consumption side while BCS focuses more on the control side for HVAC, lighting, and power
system.
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in [19] it is mentioned that one BAS point will cost approximately one minute to

be understood and interpreted, which accumulates to 83 hours of manual inves-

tigation for 5,000 points (a typical number of points for a modern medium-sized

commercial building). The Department of Energy [20] also concluded that the lack

of standard data formats, terms and definitions are significant barriers preventing

improvements to building performance. Because various equipment vendors, sensor

manufacturers, and controlling components are involved in the setup process of the

automation systems, distinct formats, naming conventions and syntaxes are being

used to describe data across buildings. Such inconsistency makes it complex to re-

trieve, manage, understand, integrate and make use of the metadata that describes

BAS points [21, 5, 13, 22, 18, 23].

The lack of readily accessible operational information for FDD approaches origi-

nates from the design and installation phase when instrumenting buildings, as there

is no common standard to follow in terms of defining metadata of BAS points.

Metadata here refers to the information that helps to identify and contextualize

the BAS point, such as the physical quantity it is measuring or changing (e.g., tem-

perature, humidity, flow, pressure), the medium it is interacting (e.g., water, air),

the hierarchal physical location (site, building, floor, room, zone, etc.), the unit and

range of the measurements, and many others. This metadata is essential to en-

able effective use of FDD approaches, yet in most situations, it is either unreliable,

uninterpretable or outdated [22, 24].

The goal of this research is to develop a metadata inference framework, which

provides operational information support to facilitate implementing FDD applica-

tions on multiple buildings. One of the main focuses is to tackle the problem of

inconsistent metadata associated with BAS points across buildings, which, once

5
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solved, will enable deployment of portable FDD applications 2.

The issue of inconsistent metadata in buildings was encountered as early as 2001

when researchers in [2] were performing case studies implementing FDD applica-

tion in real buildings, and they concluded that a good point naming convention

could lower the cost of implementing FDD tools. As part of the efforts to facili-

tate exchanging information between participants to test and validate FDD tools

on different buildings, a triplet-based standard point-naming scheme was then pro-

posed. Additionally, [22, 18, 25] and [26] also proposed different standards for point

names. However, these solutions have not been widely adopted in the existing build-

ing stock, and one of the reasons may be that none of these naming schemes cover

the wide variety of assets and information dimensions of metadata as is described

in [27]. Besides, it is expensive in terms of manual efforts (e.g., one day for one test

site) to convert inconsistent names from another building system to a new proposed

standard naming space manually [17]. Thus, recent research has focused on semi-

automating the process of acquiring and standardizing metadata directly from the

information available in BAS using computerized algorithms.

The following section first presents a motivating case study, which explores the

difficulties of implementing a rule-based FDD approach from [15] on five different

buildings. The industry challenges of large-scale implementations are identified fol-

lowed by the problem statement. Then a literature review is conducted to identify

research gaps, which drive the research scope and research questions that follow.

The last section outlines the thesis document organization.

2Here portable FDD applications refer to those that are scalable to be deployed on multiple
buildings with minimal customized configurations.
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1.1. Motivating Case Study

1.1 Motivating Case Study

As an initial attempt to understand how to implement FDD approaches in real-

world facilities, we conduct a case study to implement a rule-based FDD approach

named air handling unit (AHU) performance assessment rules (APAR) [15], which

is one of the most highly cited papers discussing FDD in HVAC systems. The rules

are applied on AHUs located in five buildings on the campus of Carnegie Mellon

University (CMU). To illustrate how the rules are applied to AHUs, the structure

of a typical AHU is shown in Figure 1.2. The outside air (OA, lower left) is drawn

into the duct due to the pressure difference and then mixed with return air (RA,

upper right) through a heat wheel drive to adjust humidity and make use of the free

heat in the return air. At the lower left, the damper is used to control the amount

of fresh air drawn into the system, and the yellow component serves as an air filter.

The mixed air is then conditioned either through the cooling coil or the heating coil

to reach the temperature set point for the supply air (SA, lower right). The cooling

or heating amount is adjusted by the valve to control how much chilled or hot water

is supplied to cycle in the coil. The conditioned air is eventually blown into variable

air volume (VAV) boxes above the ceiling of each zone. To balance the air pressure,

another fan will blow the exhausted air (EA, upper left) out of the AHU.

To assess the performance of AHUs to be faulty or normal, APAR classifies modes

of AHU operation in 1) heating; 2) cooling without mechanical cooling; 3) mechan-

ical cooling with 100% outdoor air; 4) mechanical cooling with minimum outdoor

air; and 5) abnormal states which do not fall into any of above four categories.

In mode 1, the outside air damper is positioned to allow the minimum outdoor

air fraction necessary to satisfy ventilation during heating; in mode 2, cooling is

maintained by adjusting the outside air damper without mechanical cooling, mean-

7
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Figure 1.2: Screenshot of one AHU from EIKON-LogicBuilder. It draws outside air (OA)
and mixes with return air (RA). Mixed air is conditioned and turned into supply air (SA).
Exhausted air (EA) is blown out to balance air pressure

ing the chilled water valve is fully closed; in mode 3 and 4, a comparison between

outdoor and return enthalpies is used to make decision either taking 100% outdoor

air or minimal outdoor air for mechanical cooling. Other unknown states fall into

mode 5.

Under different operation modes, 28 rules are generated to detect and diagnose

faults. The faults are categorized into five types:

1. Stuck or leaking mixing box dampers, heating coil valves, and cooling coil

valves;

2. Temperature sensor faults;

3. Design faults such as undersized coils;

4. Controller programming errors related to tuning, set points, and sequencing

logic;
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5. Inappropriate operator intervention.

Table 1.1 lists the required BAS points for deciding modes of operations and

evaluating the 28 rules. The last column shows the acronyms for the points be-

ing used for APAR. In addition to the points required, some other parameters like

thresholds as well as the design phase information (e.g., the minimum outside air

damper percentage) are also needed. Among these 13 types of different points, the

last two points about the temperature rise across fans are typically chosen heuris-

tically to be 2 F◦ [15, 14]. As a result, only the remaining 11 types of BAS points

need to be extracted from each AHU to detect faults using APAR.

Description of points Acronym
Valve hot water valve HW VLV

chilled water valve CHW VLV
Temperature mixed air temperature MAT

outside air temperature OAT
return air temperature RAT
supply air temperature SAT

Set Point supply air temperature set point SAT SPT
Humidity outside air relative humidity OA RH

return air relative humidity RA RH
Damper outside air damper OAD

mixed air damper MAD
Fan supply fan temperature rise ∆SFT

return fan temperature rise ∆RFT

Table 1.1: Required points for APAR

A detailed summary of all 28 rules and needed BAS points is shown in Table 1.2.

By checking whether the rule is satisfied using historical time series data from needed

points, a fault can be detected. Rules 25 to 28 are applied to all modes of operation,

and the remaining rules are only applied to the specific mode shown in the first

column of the table. In the column of rules, the variables which have either THRS,

min, max, ∆ in their names are all FDD parameters for the rules, which can be
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determined heuristically or tuned based on the operations of actual systems. “COT”

represents the change-over outside air temperature when switching between mode 3

and 4. In addition to these variables, the rest are 11 different types of points from a

BAS. A check mark represents whether the specific point of that column is needed

by the rule in that row.

To apply the same set of 28 rules to AHUs in multiple buildings, we need to map

the BAS points from different units to a common standardized namespace, such as

acronyms following the same naming convention. Table 1.1 shows one such naming

convention. The mapping will simplify the process to apply rules. In other words,

once rules are generated based on a particular naming convention, they can be

ported directly to any buildings with BAS points following that convention without

extra efforts.

We show the details of mapping points for different AHUs in Table 1.3. For

each single BAS point in an AHU, we extract the prefix (long string shown in the

first row), the point suffix (e.g., “MAT”), point description (additional information

to annotate the point, which is normally unavailable) and corresponding time series

samples. Notice the prefix and suffix together make up the whole BAS tag for

this point. By reviewing the combination of all these information and making use

of domain knowledge, we identify 11 required points (listed in the left column) for

each unit. The one with NA represents this required point is not available in this

unit and the one with question mark represents we are uncertain about the meaning

of this specific point. The Total row means the number of total points for this

unit in a BAS. The rows with name NA and ? count the number of unavailable and

uncertain points. Uncertain points refer to those having obscure descriptive naming

tags, for example, the unit in the last column has points named “VRT” and “VRH”
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1.1. Motivating Case Study

mode rules HW
VLV

CHW
VLV

MATOAT RAT SAT SAT
SPT

OA
RH

RA
RH

OADMAD

mode 1 1. SAT < MAT + ∆SFT - THRS_t X X X X X
2. if |RAT - OAT| > ∆T_min, |OAF -
OAF_min| > THRS_f

X X X X X

3. |HW VLV - 1| < THRS_hc & SAT
SPT - SAT > THRS_t

X X X X X

4. |HW VLV - 1| < THRS_hc X X X
mode 2 5. OAT > SAT SPT - ∆SFT +

THRS_t
X X X X X

6. SAT > RAT - ∆RFT + THRS_t X X X X
7. |SAT - ∆SFT - MAT| > THRS_t X X X X

mode 3 8. OAT < SAT SPT - ∆SFT - THRS_t X X X X X X X X
9. OAT > COT + THRS_t X X X X X X
10. |OAT - MAT| > THRS_t X X X X X X X
11. SAT > MAT + ∆SFT + THRS_t X X X X X X X X
12. SAT > RAT - ∆RFT + THRS_t X X X X X X X
13. |CHW VLV -1| < THRS_cc & SAT
- SAT SPT > THRS_t

X X X X X X X X

14. |CHW VLV -1| < THRS_cc X X X X X X
mode 4 15. OAT < COT - THRS_t X X X X X X

16. SAT > MAT + ∆SFT + THRS_t X X X X X X X X
17. SAT > RAT - ∆RFT + THRS_t X X X X X X X
18. if |RAT - OAT| > ∆T_min, |OAF
- OAF_min| > THRS_f

X X X X X X

19. |CHW VLV -1| < THRS_cc & SAT
- SAT SPT > THRS_t

X X X X X X X X

20. |CHW VLV -1| < THRS_cc X X X X X X
mode 5 21. CHW VLV > THRS_cc & HW

VLV > THRS_hc & THRS_md <
MAD < 1 - THRS_md

X X X

22. HW VLV > THRS_hc & CHW
VLV > THRS_cc

X X

23. HW VLV > THRS_hc & MAD >
THRS_cc

X X

24. THRS_md < MAD < 1 - THRS_-
md & CHW VLV > THRS_cc

X X X

all 25. |SAT - SAT SPT| > THRS_t X X
26. MAT < min(RAT, OAT) -
THRS_t

X X X

27. MAT > max(RAT, OAT) +
THRS_t

X X X

28. # mode transitions/hour > maxi-
mum # mode transitions/hour

X X X X X X X

Table 1.2: A summary of 28 rules and points needed, mode of operation depends on the
points including HW VLV, CHW VLV, OAT, RAT, OA RH, RA RH, and OAD

which we suspect might be the return air temperature and the return air humidity;

however, we do not have enough evidence to support this claim just from tag names

and time series data, and we put a question mark before these uncertain points.

The symbol X represents the number of usable points for APAR. For each count,
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we also calculate the percentage of the number of total points needed (11) inside

the parentheses. The rough estimation of time cost indicates that we need at least

one minute for one BAS point, which is consistent with what is claimed in [19].

This case study allowed us to understand several difficulties of extracting needed

operational information to implement FDD tools in real-world buildings. We sum-

marize them as follows:

1. Incomplete information: tags and descriptions do not include complete

information to yield meaningful interpretations of type and functionality of

BAS points. For example, it is difficult to decipher whether “HCO” or “HCV”

should be used as the hot water valve (HW VLV) in the first AHU from

Table 1.3. In cases like this, the graphical interface of a BAS or the control logic

specifying operation sequence could help to clarify the mappings. However,

this constitutes additional manual effort, and the information is not always

available.

The incomplete information will impact the deployment of FDD applications.

As is seen in Table 1.4, 25 out of 28 rules are not usable due to two such points.

Despite the fact that the number of points with incomplete information is

small, the percentage of unusable rules could be very high.

2. Inconsistent naming conventions: different tag names are sometimes used

for the same point across different buildings, as is seen in Table 1.3. One

example is “SAT SPT”, which is named differently across five units.

3BACnet_PC-NAE-1_PC-NAE-1/Programming.Air_Handling_Units.AHU-2.OA-
T.PRESENT_VALUE is the full name.

4BACnet_PH-NAE-1_PH-NAE-1/N2_Trunk_1.AHU-20.DPR-O.PRESENT_VALUE is the
full name.
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Building DOHERTY PC Craig Street
(300 South) Gates MI

Vendor Siemens Johnson
Controls

Automated
Logic

Automated
Logic Automatrix

Incomplete
information 25(2) 8(2) 0 0 21(4)

Missing
points 17(3) 14(2) 25(1) 0 18(2)

Combined 25(5) 21(4) 25(1) 0 21(6)

Table 1.4: Number of unusable rules due to incomplete information and missing points.
The number inside the parentheses represents the number of points leading to the unusable
rules

We notice the inconsistency of naming does not only exist across different ven-

dors but also for the same vendor. For example, Automated Logic uses “OA

Temp” and “outdoor temp”, as well as “Cooling Valve” and “chw vlv” alterna-

tively to represent the same BAS point. This may still be understandable by

facility managers and building operators; however, if we want computer pro-

grams to understand that these tags represent the same point, it is challenging

to achieve without having a complete list of all possible naming conventions

and the mappings.

The time spent to standardize these required points is largely due to such

inconsistency. If the names of these points from different units are standardized

to the same convention, a query based on this convention will be able to retrieve

all the required points from multiple units. For example, a query asking for

“MAT” could be used retrieve all mix air temperature sensors from many units

if the points inside have been standardized to a convention where “MAT” is

being used.

3. Missing points: four out of five AHUs do not have certain points required by

APAR, which is typical for older units. The one AHU with all points available

14



1.2. Motivating Case Study

is in a new building constructed in 2009.

Table 1.4 lists the number of rules impacted by missing points. Depending

on which point is missing, the number of impacted rules varies. It is worth

noting that some AHUs may not have the points required by APAR due to the

specific design of the unit. For example, some AHUs do not have a heating coil

and, as a result, there is no hot water valve to control the amount of hot water

supplied to heat the air. For these units, the rules relying on the unavailable

points cannot be applied. Another scenario is that the needed points are not

being instrumented in the unit, which means additional sensing and actuating

devices need to be installed to collect data in order to apply the rules.

All the difficulties mentioned above are leading to the increased cost in terms of

time and efforts to retrieve the required operational information, which results in

challenges of implementing FDD tools (e.g., unusable rules in the case of APAR).

Specifically, the first two difficulties are due to the fact that the required information

is encoded inside inconsistent or incomplete BAS tags, which prevents a clear un-

derstanding of the metadata associated with these BAS points. The third difficulty

is caused by the limitation of the design of the unit and the unavailability of the

hardware instrumentation. The design of the unit is inherently preventing the usage

of some FDD tools as the tools are not intentionally developed for those units. The

lack of hardware could be mitigated by instrumenting more sensors and actuators,

which would add additional cost. Another solution to the lack of hardware is to use

virtual meters to approximate the measurements from those devices. In the scope of

this thesis work, the focus is to reduce the cost of retrieving the required operational

information for FDD tools by tackling the first two difficulties.
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1.2 Industry Challenge and Needs

Based on the case study conducted and the difficulties we came across, we identify

the main industry challenge is that it is unclear whether the costs of implementing

automated FDD tools in commercial buildings are less than the benefits that these

tools can bring about. As a result, there are few incentives for facility managers to

implement FDD tools on real buildings. For buildings with modern BASs, if the

FDD tools were available as free software, then the implementation cost would be

dominated by the manual mapping effort as illustrated in our case study. Given

this, it is reasonable to assume that automating this mapping would tip the balance

of the cost-benefit analysis.

To further illustrate this, at the beginning of the case study, when we were trying

to find “MAT” in different units, we searched “MAT” directly among the BAS tags

for each AHU. Unfortunately, only one of the five units produces the desired point.

Since different units have their own conventions to encode the metadata, we have

to spend efforts to retrieve the required points every time for a new unit. In the

case study, we also observe the time spent to find the desired points increases as the

number of points in that unit grows. For example, finding 11 desired points out of

138 points for one AHU in a BAS costs 16 minutes while finding the same number

of points out of 55 points only costs 10 minutes, as is seen in Table 1.3.

Inconsistent naming conventions make it expensive (e.g., one day of manual

investigation for one test site) to retrieve needed information to implement FDD

tools [2, 17, 18, 24]. The manual cost will also increase as the number of buildings

requiring FDD tools increases. As a result, it will be useful to reduce such time and

efforts by finding effective and efficient ways to standardize the metadata of BAS

points across buildings to a consistent naming space.
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1.3. Problem Statement

Currently, standardizing this metadata is a manual process to implement FDD

tools. A simple back-of-the-envelope calculation can illustrate the cost of this man-

ual effort. If we consider getting required operational information for one FDD

tool from one building costs one day on average [17], implementing this FDD tool

on all commercial buildings in the US will require 5.6 million days given there are

5.6 million commercial buildings in the US according to EIA Commercial Buildings

Energy Consumption Survey (CBECS)5. Since the median hourly wage for a me-

chanical engineer (who is the typical person doing such HVAC operations) is USD

$40 according to Bureau of Labor Statistics 6, the total cost of this manual process

will add up to approximately $1.8 billion nationwide over all commercial buildings.

The cost of implementing multiple FDD tools is even higher than that. As a result,

there is a strong need to reduce the cost of retrieving required operational infor-

mation from BAS, which can eventually reach a situation when the benefits can

significantly outweigh the cost.

1.3 Problem Statement
This thesis deals with the problem of efficiently acquiring the consistent meta-

data associated with sensors and actuators (BAS points) from different building

automation systems in commercial buildings, such that FDD applications can be

deployed and used with minimal cost.

To illustrate and better formalize the problem, Figure 1.3 shows the information

associated with one BAS point, including the observed information at the top and

the consistent metadata at the bottom. The observed information from the BAS

typically includes data such as time series values and metadata such as string de-

5http://www.eia.gov/consumption/commercial/
6http://www.bls.gov/oes/current/oes172141.htm
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scriptors (i.e., tags), measurement units, data types, etc. As stated earlier, very

often this metadata is difficult to interpret and requires experts to decode it. Addi-

tionally, different building sites tend to use distinct conventions as different vendors

are involved in setting up each system.

Legend

BAS	point

Observed
Data:	

time	series	values

Metadata:
tag	string	descriptor,	unit,	
BACNet name,	data	type	...

Consistent
Metadata

unit

location

point	category

equipment

physical	quantity medium

function ...	...

Inference

...	...

Observed	
Information

Concept-level	
Property

Instance-level	
PropertyEntity

Figure 1.3: An illustration of the metadata information associated with one BAS point

The consistent metadata, as is shown at the bottom of Figure 1.3, is based on a

schema that consistently describes or annotates the BAS point entity. In the figure,

we divide this consistent metadata into concept-level properties and instance-level

properties. Concept-level properties associated with distinct entities from different

buildings can be the same as they describe the common concept in an abstract

and general way. The distinct possible values of concept-level properties are finite.

These properties include but are not limited to 1) the point category (it can only be

sensors, set points or commands), 2) the physical quantity or phenomena the point

is measuring or changing (e.g., temperature, humidity, pressure), 3) the medium

the point is interacting with (e.g., water, air, steam), 4) the unit representing the

magnitude of the data values (e.g., pascal, Fahrenheit), 5) the function the point is
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serving(e.g., temperature of return, supply, leaving or entering medium) and others.

Instance-level properties usually have their own specific representations for entities

across buildings, and the distinct values of instance-level properties could be infinite

such as the physical location the point resides in (site, building, floor, room, etc.),

or the equipment the point is associated with such as the specific AHU, or fan coil

unit (FCU).

These definitions of the data and meta-data fields have also been similarly pro-

posed by others [28, 26, 29, 30]. Table 1.5 shows a concrete example of two BAS

points from different systems describing both observed information and consistent

metadata. As we can see, the consistent metadata can reduce the cost of imple-

menting FDD applications by allowing people, and further, computer programs, to

understand and interpret BAS points across buildings. Armed with this knowledge,

we now proceed to review the relevant literature on the problem.

point A point B

Observed
information

Time series data

{
2016-01-03 9:45:20 AM: 4.75;
2016-01-03 9:46:19 AM: 4.58;
...
}

{
2015-12-17 11:53:23 AM: 60.23;
2015-12-17 11:54:23 AM: 60.61;
...
}

Tag string descriptor MI.AHU.3FL.011.HCO PC-NAE-1/N2-1.EN2.AHU-2.DAT-SP

Consistent
metadata

Point category Sensor Setpoint
Physical quantity Valve status Temperature
Medium Water Air
Unit Percentage Fahrenheit
Function Heating output of the coil Temperature of supply air
Location Mellon Institute Purnell Center
Equipment Air handler unit - 011 on the third floor Air handler unit - 2 in N2-1.EN2 zone

Table 1.5: A concrete example of two points in BAS where we have observed information
including time series data and tag string descriptors, as well as the consistent metadata
including concept-level and instance-level properties

1.4 Literature Review
The absence of consistent metadata is largely due to the lack of a common

standard for people to use when the points are being defined in building systems.
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Hence, many conventions, systems, and schemas have been proposed and devel-

oped [31, 2, 32, 33, 34, 18, 35, 26] to address the problem. These works attempt

to either define a model to organize the metadata using a schema (focusing on the

relationships between different point entities and their properties [25, 26, 36]), or

suggest conventions for naming each point individually in a consistent manner (i.e.,

assuming that the name alone contains enough metadata information) [2, 34, 18].

Nevertheless, naming conventions are sometimes insufficient to encode complicated

relationships among points and devices, and some of these schemas are oriented to-

wards the information from the design and construction phase of the building, and

cannot capture relationships and concepts needed for many applications in build-

ings [37, 38, 39]. To partially address limitations of existing approaches, recently the

Brick [29] schema has been designed and proposed as a potential solution to man-

age metadata associated with entities, subsystems, and relationships among them

to support portable building applications. All these efforts have made significant

progress towards addressing the problem for new buildings where building stake-

holders can adopt the standard schema when setting up the system. Despite that, it

is still expensive to convert existing building systems to any standard manually, as is

seen in [2, 17], and our case study described earlier in Section 1.1 highlights this chal-

lenge. Due to all of these limitations of pursuing metadata standardization, recent

research has focused on semi-automating the process of standardizing the metadata

for existing buildings by mapping BAS points to a standard schema [40, 41, 42].

The mapping is achieved through a computerized approach which learns a function

that takes the information of one BAS point (e.g., the time series samples and/or

the naming tags describing the point) and outputs the corresponding concepts and

properties for this point in a standard schema.
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These approaches, also called metadata inference approaches, can be divided into

time series based, tag-based, or a combination of both. Time series based approaches

utilize time series values from BAS points to learn the mapping [43, 44, 42, 45, 46].

They require the availability of historical data collected inside buildings. Tag-based

approaches, on the other hand, rely on the tag names associated with BAS points [19,

24], which are determined by how vendors from different BAS companies name the

points in the first place. Some researchers also use the combination of both time

series data and tag names to infer metadata [40, 47, 41]. Additionally, in [48, 49],

authors adopt active approaches to perturb control points to infer location and

equipment connection relationships. However, unlike the other passive approaches,

they require control of the system, which may only be feasible for some buildings

and during specific time slots.

In terms of the metadata information being inferred, if we follow the metadata

definition specified earlier in Figure 1.3, we will find many of these inference ap-

proaches focus on the concept-level properties associated with BAS points [43, 19,

40, 50, 41, 42, 45], which is also commonly referred as the “type” property.

To describe a few of these approaches, authors in [19] propose a point classifica-

tion system that can assign the semantic type of the point automatically from BAS

tags using the latent semantic indexing and a Naive Bayesian model. In [41] an

inference approach utilizing transfer learning is adopted to learn a set of statistical

classifiers of the metadata from a labeled building and adaptively integrate those

classifiers to another unlabeled building to infer the sensor types. It is worth men-

tioning that the “type” property of the metadata can be interpreted at the different

level of granularities and details. For example, researchers can distinguish “Return

Air Humidity Sensor” and “Outside Air Humidity Sensor” for AHUs as two different
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types or treat them as the same type like “Humidity Sensor” depending on what

level of information is needed. Such a different definition of the “type” property

can lead to varying performance of the metadata inference approaches. Hence, it is

essential to understand what is the required “type” of BAS points that need to be

inferred.

In addition to concept-level properties, there are also researchers working on

inferring the instance-level properties, such as location [51, 52, 53, 44, 54], equipment

associations [55, 48, 30], and other specific contextual information associated with

sensors [56].

To list a few with more details, in [53] authors applied empirical mode decom-

position on data from 15 environmental sensors across five rooms to find the sensors

which are in the same room by analyzing correlation coefficients of intrinsic mode

functions. Researchers in [44] explored how to infer the relative locations of temper-

ature sensors with respect to each other in three rooms, by using a linear correlation

and a statistical dependency measure. It is worth pointing out that both of these

studies are evaluated on a limited number of rooms in a single building, which is

partially due to the fact that the instance-level properties are more challenging to

be inferred at scale. Recently, authors in [48] propose a new method for discovering

connections between AHUs and VAV boxes from sensor data as well.

Being time series based or tag-based, focusing on concept-level or instance-level

properties, we note that all these metadata inference approaches show promise to

construct consistent metadata information to support building applications. How-

ever, as most of them are evaluated on a small scale, under specific building systems,

the generalizability of these approaches on a large scale remains an open question.

Additionally, the metadata being inferred is typically based on the information that
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is available in the testbed building while the necessity of inferring this information

has not been explored.

Another observation from the literature review is that most time series based

approaches rely on extracting statistical properties from historical data, which we

refer to data-driven models. These models are trained based on statistical features,

which are another representations of the labeled BAS points using statistical quan-

tities summarizing the time series values, and then used to make predictions for the

unlabeled points. They have demonstrated to be adequate to produce metadata cor-

rectly in many cases. Nevertheless, when the model makes an incorrect prediction,

it is often unintuitive to explain why it is wrong. The interpretation from statistical

perspectives lacks a fundamental understanding of the underlying physics process,

e.g., what are the thermodynamics driving the behaviors of each HVAC system that

leads to the similar or distinct patterns in time series data.

Attempts have been made previously in [54] where authors explored the pos-

sibility of using sensor data combined with an HVAC energy estimation model to

identify the exact room in which the sensor is located. This work allows for the

interpretation of incorrect results from physical principles. Yet, a comprehensive

explanation based on first principles for other metadata information in addition

to the location information is missing, and there are significant opportunities to

improve the interpretability of the statistical-based data-driven models.

1.5 Research Gaps
Our literature review is helpful to identify the following knowledge gaps:

• Research Gap 1: the required operational information of different

FDD approaches has not been identified and summarized.
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The operational information here refers to metadata associated with BAS

points. Existing metadata inference approaches focus on inferring the meta-

data that is available in BAS. However, it has not been established whether all

of the inferred metadata can be used by applications to improve operational

performance. Thus, to provide operational information support for FDD ap-

plications using metadata inference approaches, there is a need to identify and

summarize the required metadata for different FDD approaches.

• Research Gap 2: the generalizability of metadata inference approaches

to standardize the required operational information of a particular

FDD approach has not been validated on multiple buildings.

Our pilot study from [42] indicates that the performance of inferring point type

information can reach 75% in a single building where 20% of data are used to

train the models and the remaining 80% is used for testing. Additionally, other

approaches [41, 47, 40, 49] are also tested in a limited number of buildings

to infer different types of BAS points. However, the effectiveness of these

inference approaches to standardize the required operational information of

a particular FDD approach still needs to be validated on multiple buildings,

to evaluate our ability to deploy FDD applications effectively in real-world

buildings in a large scale.

• Research Gap 3: the existing metadata inference approaches based

on data-driven models have limited capabilities to provide inter-

pretability when they fail to produce the correct metadata.

Existing inference approaches are using data-driven models with features rely-

ing on statistical patterns and hand-crafted signatures of the data. However, as
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was suggested earlier, the interpretation from statistical perspectives is limited

to understand why the model fails and further provide remedies to improve

the performance.

We argue that to address these three gaps, we need to develop a metadata in-

ference framework, which can infer the required operational information for FDD

approaches and generalize across multiple HVAC systems and buildings. Addition-

ally, we need to develop a new metadata inference approach utilizing the physical

models to improve our understanding of the physical process and provide interpre-

tations when it fails.

Our vision is to enable implementing FDD tools on multiple HVAC systems and

across buildings. Our envisioned framework would help facility managers and build-

ing operators to reduce the time and efforts associated with retrieving the required

operational information for FDD application from BASs down to the minimum.

The envisioned outcome of this research is to go beyond deployment of a par-

ticular building application (e.g., FDD) on specific building subsystem, which may

generate further impacts than FDD applications. Such a framework formalizes the

metadata inference problem and provides a novel foundation for enhancing the ap-

plicability of running portable applications on multiple systems and potentially gen-

erate broader impacts in the realm of the Internet of Things.

1.6 Assumptions and Scope
There are several assumptions involved to conduct this research work to fulfill the

vision of implementing FDD tools at scale. First, we assume that the design phase

information is already available and that the operational information can be inferred

through the information available in BAS, including both time series values and the
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various metadata associated with BAS points shown in Figure 1.3. Additionally, we

assume that the historical time series data collected from the BAS and used to train

the metadata inference algorithms are not dominated by faulty conditions. That is,

though we cannot directly verify this, we assume that the data used for training the

algorithms are not so corrupted by faults that it makes the conditional distribution

of the data given its sensor type useless for the inference procedure.

The scope of this research will be limited to FDD on secondary HVAC systems in

commercial buildings, which are about airside distribution systems including AHUs,

FCUs, and terminal boxes (VAV and constant air volume (CAV) boxes). The reason

for setting this scope is because more than 60% of the energy wasted by faults is

caused by duct leakage, stuck fan, and other similar issues related to components in

the secondary HVAC system [3], i.e., the air side of HVAC system including VAV

air conditioning systems. From now on, we will use FDD approaches to explicitly

represent FDD approaches in secondary HVAC systems on commercial buildings.

Work on the primary HVAC systems including the waterside system (e.g., chillers

and boilers) will be left as the extended future work.

Additionally, we will also limit the scope to focus on inferring the concept-level

properties associated with BAS points using time series based metadata inference

approaches. The inference of instance-level properties along with other metadata

inference approaches could be studied by extending the framework proposed in this

thesis.

1.7 Research Questions

To address the research gaps identified, we propose three research questions

(RQ).
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1. What is the specific operational information required by FDD ap-

proaches for secondary HVAC systems found in existing literature?

The specific operational information refers to metadata associated with BAS

points, including both concept-level and instance-level properties.The purpose

of this question is to understand this metadata such that it can be inferred

using metadata inference approaches. We select and review 110 academic

publications about FDD approaches, to identify the required operational in-

formation for each of them. This information is summarized and analyzed to

reveal the commonly required information, as well as other relevant patterns

(e.g., which is the most popular HVAC subsystem that FDD approaches have

been applied to).

2. How is the performance of existing metadata inference approaches

affected by changes in building characteristics, weather conditions,

building usage patterns, and geographical locations?

As is stated earlier, the proposed framework utilizing metadata inference ap-

proaches should not be tested only on a single building; instead, the effective-

ness should be validated on multiple buildings with different building char-

acteristics to understand whether it can generalize well. The generalizability

can be defined as the performance of the model when we vary the weather

conditions and the geographical locations of buildings being tested. This per-

formance can be quantified with metrics like the accuracy, the F1 score, etc.

3. What is an approach that can be developed to complement existing

data-driven models by providing physical interpretations in the case

of incorrect metadata being inferred?
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Existing approaches are based on data-driven models utilizing statistical pat-

terns lacking the ability to capture the intrinsic physical dynamics of the HVAC

systems. We seek to develop a new approach based on the physical models

of HVAC systems to understand the behavior of each component and provide

physical interpretations for the incorrect inference outcome, which comple-

ments existing approaches.

1.8 Document Organization
The thesis is organized as follows. In Chapter 1 we introduce the problem to be

solved, and we define the scope of the research including three research questions.

To answer each of the research questions, in Chapter 2, we identify the operational

information from a list of FDD approaches. Then in Chapter 3 we present the

metadata inference framework and evaluate it on hundreds of buildings to study the

generalizability. We then have a small digression in Chapter 4 to explore the pure

data-driven approach using a convolutional neural network to tackle the metadata

inference problem. Lastly, we improve our understanding of metadata inference

approaches leveraging the physical models of the AHU in Chapter 5. We finally

present Chapter 6 to conclude the thesis and discuss the future work that can

follow.
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Chapter 2

Identification of Required

Operational Information from FDD

Approaches

Over the past thirty years, hundreds of FDD approaches have been developed for

HVAC systems in large commercial buildings to bring about benefits including en-

ergy savings, increased operating efficiency, reduction of maintenance cost, improved

occupants’ comfort and productivity, etc. These approaches leverage data collected

in buildings to detect any system malfunctions and provide diagnosis capabilities.

One piece of the required input information for these approaches is the operational

information, which is also referred as the concept-level and instance-level properties

associated with BAS points.

For different FDD approaches, this required operational information, also known

as metadata, has not been well summarized and documented, which prevents people

from applying metadata inference approaches effectively to produce this desired
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metadata. Hence, it is necessary to identify and summarize what the required BAS

points along with the metadata associated for each of FDD approaches are. This

metadata is also referred to as the “type” of BAS points. For example, a BAS

point of type supply air temperature sensor from an AHU has point category

“sensor”, measures the physical quantity “temperature” through the medium “air”,

serving the function of “tracking the temperature of supply air in an AHU”. The

unit (Celsius or Fahrenheit) can be further derived from actual data values. This

representation encodes the necessary concept-level properties. The instance-level

properties are typically less relevant, as FDD approaches are not designed to be

used only in specific equipment in a particular building. In the following contents of

this chapter, we will use point types to refer to the concept-level properties, which

is also the operational information we will identify.

The importance of identifying the information requirements for HVAC applica-

tions has previously also been addressed in [57] where the author proposes an ap-

proach to identify a general set of information requirements for performance analysis

and improvement of HVAC systems. The author further provides a very detailed

classification of these general information requirements in terms of HVAC compo-

nents, HVAC subsystems, and building design information. The novelty of our work

consists of focusing on the identification of more specific operational information

(types of BAS points) required by each of FDD approaches (e.g., mixed air tem-

perature sensor, supply air temperature sensor, return air temperature sensor from

an AHU), as previous work focused on summarizing the general set of information

requirements (e.g., type, location, medium of transporting components).

In this chapter, we first select a list of FDD approaches described in academic

publications that include BAS points as the input. Then we identify and summa-
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rize the types of BAS points for each of these selected approaches. This identified

operational information will be analyzed to understand:

1. What are the most commonly required types of BAS points for FDD ap-

proaches?

The answer to this question provides guidance regarding what BAS points and

associated metadata should be inferred using metadata inference approaches.

As a result, these inference approaches can be effectively used to provide the

operational information support and facilitate implementing FDD applications

on multiple HVAC systems.

2. What are the characteristics of the existing FDD approaches in terms of their

type and targeted system?

The answer to this question provides sights into the development status of

FDD approaches in secondary HVAC systems, which allows FDD research

community to know which FDD approach type (including qualitative, quanti-

tative and data-driven models defined in [9]) is most popular, what targeted

systems have been focused on most. The existence of this information associ-

ated with each FDD approach may also provide a starting point for formalizing

FDD approaches and their information flow.

3. What is the coverage of identified point types in existing buildings and what

are the missing points in existing buildings to deploy FDD applications?

This helps to understand the feasibility of implementing FDD at scale. Ad-

ditionally, it also guides engineers to be aware of what hardware should be

instrumented if specific FDD applications are desired when initially set up the

building.
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2.1 Selection of FDD Approaches

Common FDD approaches usually involve comparing the actual performance of

the system to a reference [13]. A high deviation between the reference and the actual

performance, which is either set heuristically based on experts’ domain knowledge

or decided with certain statistical significance from data (e.g., the value that is

three standard deviation out of range of historical values), indicates the existence

of a fault. One example we have encountered in Chapter 1 is a rule-based FDD

approach from [15] named APAR. The required operational information is shown

in Table 1.1 concerning 11 types of BAS points. In this section, our goal is to find

a list of FDD approaches in addition to APAR, which is then used to extract the

required BAS points.

Given the existence of many FDD approaches described in academic publications

such as journals, conference proceedings, books, theses and technical reports, exam-

ining all possible FDD approaches and identifying the BAS points needed by them

would be unrealistic as it is non-trivial to find all references describing the FDD

approaches, and it would take a significant amount of time to identify required

point types from all of them. Moreover, very likely, the distribution of point types

might converge after examining a certain number of publications. Hence, instead

of selecting FDD approaches out of all possible publications1, we start with a pool

of references which are cited in seven publications [9, 10, 58, 59, 60, 61, 57]. These

seven publications all have a long reference list, and they summarize and discuss a

large number of FDD approaches.

1Ideally, we could build a directed graph made of publications with each node pointing to the
publication that cites itself. By running a depth-first search querying all the nodes with a particular
condition, we could potentially find all relevant FDD approaches. However, it is rarely possible to
build the graph in the first place as we do not have full access to a massive publication database
tracking the citation information like Google Scholar.

32



2.1. Selection of FDD Approaches

After removing duplicate references, the total number of unique references in our

pool is 745. As we are only interested in FDD approaches that allow us to extract a

specific set of BAS points, we select these relevant FDD approaches by considering

the following two major criteria:

1. Is it applied to secondary HVAC systems?

As the research scope is about FDD approaches on secondary HVAC sys-

tems in commercial buildings, we focus on the air-side systems such as AHUs,

VAVs, FCUs, etc. References including FDD approaches applied only to pri-

mary HVAC components (e.g., chillers, boilers) are thus removed. There are

scenarios on which some FDD approaches have been applied to both primary

and secondary HVAC systems, in which case we keep the reference. Addi-

tionally, publications which are targeting residential buildings (e.g., FDD in

refrigerators, or residential heat pumps) are also filtered out.

This criterion reduces the reference count significantly from 745 down to 181,

which filters out references such as 1) reviews/surveys/handbooks; 2) papers

about FDD which are applied to chemical process, energy consumption of

thermal plant, and others instead of HVAC systems; 3) papers about HVAC

systems that focus on control optimization, performance improvement, HVAC

component design, energy conservation, and others instead of fault detection

and diagnosis.

2. Are the required BAS points distinguishable in this publication?

We consider the publications which include an FDD approach that can be

implemented. In other words, the FDD approach has to specify a set of BAS

points as the input. Using this constraint, we remove some software FDD tools
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(e.g., DABO [62, 63]) which we do not have access to the internal documen-

tation or source code regarding how the approaches are being implemented to

replicate them. Additionally, we also remove the publication discussing the

general FDD methodology without specifying details, for example, [64] de-

scribes a hierarchical rule-based integration methodology which assumes the

faults from sub-components have been detected.

This criterion eventually leaves us 110 publications describing 110 selected

FDD approaches which we will use in the next section to extract the required

operational information regarding BAS points.
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Figure 2.1: Counts of total and selected publications from 1984 to 2015

Figure 2.1 shows the publication count from 1984 to 2015. The vertical yellow

bar represents the total count of reference for that year while the hatched section

at the top represents the relevant references connected to the FDD approaches we

select. As we can see, the overall trend of the research in the field of FDD and

HVAC is increasing with a relative decrease in recent years. The drop is because

only a few publications after 2015 are included in the pool of references as we extract
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those references from (old) review papers and there is a delay between submission

and publishing.
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Figure 2.2: Publication counts and citation counts every five years

We further extract the citation count of these 110 selected publications from

Google Scholar. Figure 2.2 displays the paper count and citation count every five

years. We can see the same trend that more publications about FDD approaches

are published over the year with a decrease in recent years. It is natural to see

more citations for the old publications and fewer citations for the new publications.

Another interesting finding is that the top 3 most cited publications are [65] in 2004,

[15] in 2006 and [14] in 2001 with 172, 131, 122 citation counts each among these

110 FDD approaches. The first one is a principal component analysis (PCA) based

approach to diagnose the faults in AHU, and the latter two are both using rule-based

FDD named APAR.

2.2 Identification of the Operational Information
Once these 110 publications are selected, we need to identify the operational

information for each of them. Despite the existence of the approaches like Informa-
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tion Delivery Manual (IDM) [66] developed by BuildingSmart to unite information

from different business processes through the Architecture, Engineering, Construc-

tion and Facility Management (AEC/FM) project life cycle, or affinity diagramming

method [67] to discover common themes and issues among different work practices

to extract information items, many of the middle processes used in these approaches

(e.g., building process maps) still rely on human subjective interpretations depend-

ing on how the FDD approach is described in the publication and how the reader

understands the methodology. Perhaps one future direction to tackle such challenge

is formalizing FDD approaches and their information flows. In [68], the authors

specify FDD approaches with ontologies including information from self-description,

requirements, and configurations. Nevertheless, the process of converting each FDD

approach to this specification is still subjective, and the specification approach lacks

a formal description. Thus, presently, the task of extracting required operational

information for each FDD approach still requires manual efforts and subjective de-

cisions.

For some FDD approaches, the required BAS points are explicitly enumerated,

listed in tables or described in the text, as is seen in Figure 2.3. The most common

way of describing the required information is by texts as is seen in Figure 2.3b and

Figure 2.3c. For the FDD approaches which specify the required BAS points clearly,

different people will identify the same set of consistent BAS points as long as the

person has sufficient background knowledge to understand FDD approaches.

However, there are some other FDD approaches which describe the methodology

and the implementation steps without enough detail. We are aware that in this case

subjective decisions could be made regarding identifying required BAS points. For

example, in [72], the authors specified θS, “air temperature measured by the sensor”
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(a) Points are listed separately [15]

(b) Points are embeded in texts [69] (c) Points are embeded in texts [70]

(d) Points are in a table [71]

Figure 2.3: Examples of how input BAS points are presented in different FDD publications

in an AHU as one of the inputs to the model without providing the particular func-

tion of that sensor. Based on the context, we infer it to be “supply air temperature

sensor” from an AHU. Such decisions could be subjective and different people may

draw different conclusions. To mitigate the issue, we will: 1) open-source all the

results of the identified operational information where we will display the identified

BAS points for each of 110 FDD approaches; 2) mark the FDD approaches without

enough implementation details and conduct the analysis with and without these

approaches.

In addition to the required inputs for FDD approaches, we also extract the infor-

37



Chapter 2. Identification of Required Operational Information from FDD Approaches

mation including the types of FDD approaches and the targeted systems. The type

is defined following the definition in [9] including qualitative, quantitative and data-

driven models. The targeted systems include AHU, VAV, FCU, packaged rooftop

unit (RTU), and others which are related to the air-side of HVAC systems. It is

worth mentioning that some approaches may use a hybrid approach including both

qualitative and data-driven models targeting multiple sub-systems like both AHU

and VAV. In those scenarios, we will associate both types and targeted systems with

this approach.

After examining each FDD approach and identify the required BAS points, we

mark 24 out of 110 approaches without explicitly specifying the required inputs. We

plot the publication count for each approach type and target system. For the point

type, we show the 20 most frequent ones based on a total of 110 publications and a

reduced set of 86 publications after excluding FDD approaches without clear spec-

ifications. Figure 2.4 demonstrates the frequency counts for different classification

methods. It is worth noting that one publication could be counted multiple times if

it includes multiple types of approaches or targeted systems. As we can see, about

60% of the FDD approaches in our study are developed using data-driven models.

Also, most of FDD approaches developed for secondary HVAC systems are designed

for AHU equipment.

Regarding the BAS point types, we do not observe much difference when ex-

cluding 24 FDD approaches we are uncertain about. The top 20 frequent types

from both sets are the same with the only difference being the orders of their most

frequent types are not matched. The most widely used point types in FDD ap-

proaches are points in AHUs which include “supply air temperature”, “outside air

temperature”, etc. A mapping between the acronyms and the full descriptions of
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(d) Publication counts of 20 most frequent point types after excluding
uncertain FDD approaches

Figure 2.4: Publication counts by different classification methods
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the BAS points can be seen in Table A.1, A.2, A.3, which include points for AHU,

terminal box, and RTU, respectively. As the points required by FDD approaches

in FCU only include the fan power, we will only mention it here and will not list it

separately to a table in the appendix.
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Figure 2.5: Publication counts by sensor type and approach type

We also explore how each sensor type is preferred for each approach type and

target system. Since excluding 24 FDD approaches we are uncertain about rarely

affect the distribution of frequent types, we only show the results including all 110

publications in the following plots to have more statistical significance. Figure 2.5

displays a 2D heat map showing the publication counts by sensor type and approach

type. We can see how frequent the temperature related measurements are needed

in all approach types.

Figure 2.6 shows a 2D heat map exhibiting the publication counts by sensor

type and target system. Given the number of BAS points from RTU and FCU is

small, we only show AHU and VAV here. The reason we still need “VAV ZAT”

in AHU-targeted approaches is that we double count the required points for 13

FDD approaches which are applied to both AHU and VAV systems. Additionally,
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2.2. Identification of the Operational Information

there are some AHU-targeted approaches which do rely on the zone air temperature

measurements from the VAV box that the AHU is supplying air to and some VAV-

targeted approaches also require sensors from the AHU.
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Figure 2.7: Publication counts by sensor type and every five years

Figure 2.7 shows a 2D heat map displaying the publication counts by sensor type

and time (every five years). If we ignore the row after the year 2015, we can see the

overall trend of the publication counts regarding most frequent used BAS points is

increasing.
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Chapter 2. Identification of Required Operational Information from FDD Approaches

A total of 102 different BAS points required by FDD approaches are identified

from 110 publications, which are then classified into three groups belonging to AHU,

terminal box, and RTU. The details can be seen in Table A.1, A.2, A.3. We observe

that as more FDD approaches are reviewed, the number of new BAS points that

are identified from each additional approach becomes smaller. This is validated by

tracking the cumulative count of identified BAS points when we review more FDD

approaches. Since the sequence of the reviewed FDD approaches will impact the

trend of the cumulative count, we generate K random sequences representing K

possible ways of reviewing FDD approaches in order. For each sequence i, we track

the cumulative count of identified BAS points p(i) = {p(i)1 , p
(i)
2 , · · · , p

(i)
110} when the

number of reviewed FDD approaches increases from 1 to 110. Given K sequences,

we calculate the average case p̄ =
1

K

∑K
i=1 p

(i), the upper case defined as p̄ +

3σ, and the lower case defined as p̄ − 3σ, where σ = {σ1, σ2, · · · , σ110}, σ2
j =

1

K

∑K
i (p

(i)
j − p̄j)

2, p̄j =

∑K
i p

(i)
j

K
. To have enough statistical significance, we

choose K = 10000. The resulting three curves of the cumulative count for each

case can be seen in Figure 2.8. The two black straight line mark the position of

70% and 90% of the cumulative counts of BAS points. In order to cover 70% of

BAS points, we need to review 38% / 18% / 62% of publications under each case.

The bound indicates that 99.7% of time we are able to cover more than 70% of BAS

points by reviewing 18% to 62% of publications. Similarly, if we extend the coverage

to 90%, the number will change to 72% / 40% / 91% of publications respectively.

This conclusion is similar to what is claimed in [57].

We also briefly examine two of the existing schemas, Brick [29] and Haystack [26],

to verify if they can cover all the identified BAS points. We find that neither of

them can express all the information items without first extending the schema. On
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2.3. Coverage of Identified Information in Existing Buildings

Figure 2.8: Cumulative counts of identified BAS points using random order selection of
reviewed FDD approaches

the one hand, Brick does not have RTU related points, such as the air inlet and

outlet temperature of an evaporator inside an RTU. On the other hand, Haystack

does not capture power related measurements, such as pump power, fan power, etc.

This might suggest the need to develop an FDD-specific schema that will contain

all the required information for FDD applications in future, perhaps by extending

one of the existing ones.

2.3 Coverage of Identified Information in Existing

Buildings

It is not uncommon for the operational information required by FDD approaches

to be different from the BAS points available in buildings. In this section, we analyze

points in AHUs from existing buildings to understand how often these commonly

required BAS points are covered.

We have access to a dataset of 6145 BAS points from 614 AHUs inside 421

buildings. These buildings are grouped into 35 different sites across the US. The
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Chapter 2. Identification of Required Operational Information from FDD Approaches

details of this dataset are further explained in Section 3.3. We use this dataset to

understand how many AHUs have all the required BAS points for a particular FDD

approach. For this purpose, we select 69 FDD approaches applied to AHUs with

an explicit set of BAS points required. To understand the distribution of points,

we plot the top 20 frequency point types from both FDD approaches and existing

buildings in Figure 2.9.
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Figure 2.9: Top 20 frequent points from BAS and FDD approaches

As we can see, the overall distributions of frequent types existing in BAS and

required by FDD approach are similar where they share 12 out of 20 types. There

are point types which are in BAS but not in FDD (e.g., “ReturnAirQuality”) and

there are also points in FDD approaches but not in BAS (e.g., “ChW F”, “CLC AIR

InT” and “CLC AIR OutT” ). Among 75 types of BAS points in AHUs, only 36

(48%) types can be found in identified required BAS points for FDD approaches;

however, they cover 86% of total points in AHUs.

For each FDD approach, we can impose a hard constraint by counting the number

of AHUs that contain all the required points of this approach. The top five FDD
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approaches that are more easily applied to AHUs are demonstrated in the Table 2.1.

year title AHU
count

required inputs citation
count

1985 An innovation-based methodol-
ogy for HVAC system fault detec-
tion

315 MAT, OAT, RAT 50

2012 A rule augmented statistical
method for air-conditioning sys-
tem fault detection and diagnos-
tics

188 MAT, ChW VLV, SAT, SA
STATIC AP, VAV RH VLV, VAV
DP, VAV ZAT, VAV SAF

9

2001 EMCS and time series energy
data analysis in a large govern-
ment office building

152 MAT, RAT, OAT, SAT, SAT SP 13

2005 Transient pattern analysis for
fault detection and diagnosis of
HVAC systems

77 OAT, SA STATIC AP, OAD,
SAT, VAV ZAT

45

2006 Automated Fault Detection and
Diagnosis for an Air Handling
Unit Based on a GA-Trained
RBF Network

36 SA STATIC AP, SAF, SAT, ChW
VLV, SF SPEED, RF SPEED

2

Table 2.1: Top five FDD approaches that can be applied to most AHUs

Among all 69 FDD approaches applied to AHUs, there are 52 of them which

cannot be applied to any of 614 AHUs. This is mainly due to the fact that a

significant number of AHUs do not have all the required points of FDD approaches,

such as supply air flow rates, outside air flow rates and mixed air dampers, which

are commonly required by FDD approaches but not available in BASs. Table 2.2

shows the top 10 missing points in AHUs that lead to this problem. The problem

can be alleviated by instrumenting these missing points in AHUs or using virtual

sensors to approximate them.

2.4 Conclusion
In this chapter, we review and select 110 publications out of 745 references. The

selected papers include FDD approaches applied to secondary HVAC systems with

distinguishable BAS points as their inputs. We identify a total of 102 different
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Acronym Description
SAF supply air flow rate

CLC WATER InT cooling coil inlet water temperature
RAF return air flow rate

CLC WATER OutT cooling coil outlet water temperature
MAD mixed air damper position
RAH return air humidity
RAT return air temperature

ChW VLV chilled water valve position
HW VLV hot water valvle position
ChW F chilled water flow rate

Table 2.2: Top 10 missing points in AHUs

BAS points required by selected FDD approaches. These identified BAS points are

further summarized and analyzed to obtain the most common points and compared

against the points in real buildings. We find that:

• The BAS points required by more than 30% of FDD approaches include six

sensors monitoring supply air temperature, outside air temperature, chilled

water valve position, return air temperature, supply air flow rate, and mixed

air temperature, which are all instrumented inside AHUs. This suggests that

the metadata associated with these six sensors should be inferred using meta-

data inference approaches such that more FDD applications can be easily

implemented.

• Data-driven models are more prevalent which occupies 62% of total approaches

reviewed (68 out of 110), and 82% of developed FDD approaches (90 out of

110) can be applied to AHUs. Given the number of FDD approaches developed

based on data-driven models and targeting AHUs, there is a need to facilitate

converting applications that can be used in real-world buildings. Meanwhile,

it also suggests the necessity of developing FDD approaches applied to other
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HVAC subsystems in addition to AHUs.

• The overall distributions of frequent point types existing in BASs and required

by FDD approaches are similar where they share the same 12 out of 20 types.

Given BAS points available in an AHU, we check which FDD approaches can

be applied to this unit and find one FDD approach can be deployed to 315 out

of 614 AHUs. Since some AHUs do not have all the required BAS points for

FDD approaches, we track the frequent missing points in AHUs with top three

being supply air flow rate, cooling coil inlet water temperature and return air

flow rate. This guides building operators to instrument additional sensors if

more FDD applications are desired to be implemented.

These findings, though useful, do not fully address the practical challenges en-

countered by facility managers wishing to implement FDD approaches on their sys-

tems. For instance, it would be more meaningful to extend the analysis to include

information directly related to the energy saving potential of the different FDD al-

gorithms so that decisions about which algorithm to implement given the available

information can be made more objectively (and based on measures that are more

meaningful). Our analysis, however, is limited to extracting the required informa-

tion items for different FDD approaches without making any specific consideration

of how this information will be used. Showing the connecting between these identi-

fied requirements and energy savings or other benefits will be left as one potential

future avenue of research.

To sum up, this chapter identifies the required BAS points for different FDD

approaches and guides the metadata inference approach to produce the required

metadata for FDD applications, which will be the focus of the following chapters.
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Chapter 3

A Metadata Inference Framework

Applied to Hundreds of Buildings

The lack of consistent metadata associated with BAS points across buildings is one

of the main reasons preventing the deployment of building applications, which mo-

tivates the development of many metadata inference approaches [43, 44, 42, 45, 46],

as is discussed earlier in Section 1.4. These approaches have shown the potential

of standardizing metadata and further facilitating the deployment of portable FDD

applications. Nevertheless, each FDD application for which we use metadata infer-

ence approaches would have different sets of required BAS points, and each inference

approach would obtain those points with different performance. For example, if we

were interested in deploying an FDD algorithm in local zone VAV boxes that re-

quired access to zone-level temperature setpoints and temperature measurements,

it is not clear which of the existing metadata inference approaches would be best

suited to support this application. Moreover, studies to date have been preliminary,

and most of the approaches have been evaluated only on a small scale (typically on

This chapter is partially based on [73].
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two or three buildings). The generalizability of these approaches on a large scale

remains to be investigated. Additionally, the amount of human work required to

configure and run each inference approach in order to achieve its best performance

in a given application also varies. Hence, there is a need to better understand the

trade-offs of these choices.

In this chapter, to shed light on these choices and improve our understanding

of the limitations, we propose a metadata inference framework that provides op-

erational information for FDD applications. Using the framework, we evaluate six

metadata inference approaches on more than 400 buildings to infer the BAS points

required by a particular FDD application (APAR), which has been used by two

of the top three cited publications on FDD identified in Chapter 2. Since there

is considerable consistency in the tags used in our dataset (given that they come

from a single vendor), we limit our scope to time series based approaches. Specifi-

cally, we infer 12 types1 of BAS points collected from 614 AHUs from 421 buildings

across 35 different sites across the US. By applying this framework to evaluate six

different inference approaches on hundreds of buildings, we want to find out how

will the performance of existing metadata inference approaches change when we

vary the building characteristic under different weather conditions and geographical

locations. Specifically, we want to answer the following questions:

1. Is there one metadata inference approach that generally works well on different

building sites?

2. Is the information available from a subset of buildings rich enough to represent

the distribution of another group of buildings?

1Notice the type of BAS points in this context encodes the concept-level properties of the
metadata.
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3. How will the performance of inference approaches be affected when we vary

the building characteristics, weather conditions, and geographical locations?

3.1 Framework
We first introduce the metadata inference framework to provide operational in-

formation support for FDD approaches shown in Figure 3.1.

Notice the goal of the framework is to provide the operational information, i.e.,

BAS points with consistent metadata, such that FDD applications can be easily

implemented in multiple buildings. Therefore, the first step is to specify which

FDD approach to be implemented and identify the required BAS points for that

approach. This step has been done in Chapter 2.

Then we need to extract these required BAS points from existing buildings. As it

was shown earlier in Figure 1.3, we typically have access to the observed information

associated with BAS points, which includes time series values and very often obscure

metadata descriptions. Based on the information of identified required BAS points

for FDD approaches, we can label a small portion of the observed BAS points

with consistent metadata following a unified standard or schema. The choice of the

standard or schema is less relevant as long as it can encode all the required metadata

and the metadata representation is consistent. Our experiments were carried out

using the Brick metadata schema. This small portion of labeled BAS points will be

used as the training data to build the model. The model is then used to predict

the consistent metadata for the testing data, which are the unlabeled BAS points

in buildings.

It is worth pointing out that by using different strategies to produce this small

portion of training data and the remaining testing data, the performance of the

inference approaches will also vary. A good strategy should satisfy the specific use

50



3.1. Framework

Start

Observed 
BAS points 

Identify required 
BAS points for FDD 

Label a small portion

Generate training 
data

Training 
data

Unlabelled points

Testing
 data

Metadata 
inference

Start

Feature 
extraction

Classification 
model

End

Implement FDD 
applications

End

BAS points with 
consistent 
metadata

Figure 3.1: A metadata inference framework to provide operational information for FDD
applications
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case for different people and should try to minimize the amount of manual labeling

efforts and to maintain an acceptable level of performance such that it can be realistic

enough to be used in practice. For example, for a building manager with hundreds

of buildings where BAS points need to be labeled, she or he may prefer being able to

train a model on some labeled buildings and use the model to produce the consistent

metadata for the rest buildings, instead of labeling some data from a new building

every time the consistent metadata needs to be produced.

Once the training data and testing data are generated from the observed BAS

points, we feed training data as inputs to the metadata inference approaches to train

different models. These models can produce the labels (consistent metadata) for the

remaining BAS points, i.e., testing data. The consistent metadata for all BAS points

is eventually integrated and used to implement corresponding FDD applications.

One of the key components is the metadata inference process, which involves

two major steps: feature extraction and classification. These two steps are what

typically distinguish the different metadata inference approaches in the literature.

We will discuss this process in more details the next section.

3.2 Methodology

As stated previously, the goal of this chapter is to address the generalizabil-

ity of metadata inference approaches. Hence, we evaluate six time series based

approaches [74, 42, 41, 47, 40, 49] on more than 400 buildings. Five of these ap-

proaches were selected based on a literature review that we conducted to find time

series based metadata inference approaches applied to building automation data to

infer sensor types, and they represent the totality of the publications we found meet-

ing that criteria. However, we realize that there may be other approaches that exist,
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and many more will be developed later, so we leave it to other researchers to extend

the evaluation work. The sixth approach was taken from the database community

where it is applied to the problem of schema matching [75], which shares many sim-

ilarities with the metadata inference problem in the building community. Mapping

inconsistent metadata to a common schema is similar to mapping and integrating

schemas from different databases. As a result, we can borrow some instance-level

based schema matching approaches, as is presented in [74], to help our mapping

task using time series data. A detailed summary of these six time series based ap-

proaches can be seen in the Table 3.1 where features, models, metadata, evaluation

strategies, and testbeds are listed.

To evaluate them consistently, we need to make sure they are compared to the

same context. We can see the major differences among these approaches are: the fea-

tures being extracted and the models being constructed, which are the subprocesses

specified consisting metadata inference in Figure 3.1. Notice some other approaches

utilize active learning to pre-cluster the data first to reduce the amount of required

training data [40, 47]. We do not consider these steps in our evaluation as we treat

the clustering based active learning approach as a technique to select and reduce

training samples. The evaluation incorporating active approaches is left for future

work. For all the models, we use seven widely used linear and nonlinear classifiers

from column four in Table 3.1. In the end, we end up evaluating six types of features

from six time series based metadata inference approaches using seven classifiers on

each feature.

In addition to features and classifiers, we select same sets of BAS points and

evaluation strategies to be applied to the same dataset. Specifically, we choose

points driven by one application (APAR) to detect faults in AHU systems [15]. The
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effective implementation of ARAR has shown the ability to detect faults, reduce

energy waste and bring many other benefits. As we analyze the BAS points in

AHUs from different buildings, we are only concerned with one specific metadata

property: the type of BAS points. It is worth pointing by type of BAS points, we

refer to the concept-level properties of the metadata required by APAR.

3.3 Data

Figure 3.2: State-wise site distribution of AHU data in the United States

The data used for this study are collected using the data platform developed by

Johnson Controls. We have access to AHU data from 421 building across 35 different

sites. One site can be regarded as a group of buildings from one organization in a

city. These sites encompass a wide variety of building types including educational

institutes, office buildings, hospitals, libraries and others constructed in different

years. Figure 3.2 shows the state-wise site distribution of the buildings we have data

from, which covers different climate zones and 16 states. The data are collected for

one year (from Jan. 1st, 2015 to Dec. 31st, 2015), including different types of points

located inside AHUs. We ignore points which do not have one-year-long data. We

choose one-year-long data to make sure the data collected show different thermal
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conditions throughout the year.
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Figure 3.3: Frequency counts (greater than 30) of tags, green ones are selected by APAR

As different sensing points have distinct sampling intervals ranging from one sec-

ond to one hour, we re-sampled all the points to 15 minutes intervals using padding

by filling values forward. Additionally, we removed samples if they either had un-

clear descriptions or exhibited abnormal values (e.g., temperature values less than

-50 Fahrenheit, or negative humidity values). More details about the data cleaning

process can be found in Appendix B.1.1 This eventually gives us a raw data ma-

trix X of size 6145× 35040, representing 6145 BAS points with each having 35040

samples for the whole year (i.e., 1 sample every 15 minutes). For each BAS point,
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3.3. Data

a tag is attached to it following an internal convention inside the company that is

considerably consistent. As shown by [38], the frequency with which the naming

tags are used in buildings often follows an almost power law distribution. The top 50

frequent tags are shown in Figure 3.3. It is worth noting that these tags actually en-

code the metadata information including point types, physical quantities, medium,

and functions. For example, “DischargeAirTemperatureSetpoint” represents a set

point controlling the temperature of the air to be discharged out of an AHU.
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Vendor tag names Brick names
HeatingOutput AHU_Heating_Valve_Command
CoolingOutput AHU_Cooling_Valve_Command

MixedAirTemperature AHU_Mixed_Air_Temperature_Sensor
OutsideAirTemperature AHU_Outside_Air_Temperature_Sensor
ReturnAirTemperature AHU_Return_Air_Temperature_Sensor

DischargeAirTemperature AHU_Discharge_Air_Temperature_Sensor
DischargeAirTemperatureSetpoint AHU_Discharge_Air_Temperature_Setpoint

OutdoorAirHumidity AHU_Outside_Air_Humidity_Sensor
ReturnAirHumidity AHU_Return_Air_Humidity_Sensor

OutdoorAirDamperOutput AHU_Outside_Air_Damper_Position_Command
MixedAirDamperOutput AHU_Mixed_Air_Damper_Position_Command

Other Other

Table 3.2: Point name mappings between the vendor convention and Brick

As mentioned earlier, we focus on points required by APAR, which are marked
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with green colors in Figure 3.3. It can be seen that about half of the frequent tags

are selected by APAR. To map these points into a common schema, we choose to use

Brick [29] here to map the required points. For the unselected points, we label them

as “Other” as APAR does not require the metadata associated with those points.

Another option could be to use all the labels during the training but focus on the

points we are concerned with during the evaluation. However, the performance of

models would drop by including more classes as it results in a more complicated

decision boundary. As a result, we end up having 12 different types of point labels,

as is seen in Table 3.2 where we have both the original vendor specific tag names

and the Brick names. To better understand how these 12 different types of point

labels spread over building sites, Figure 3.4 shows the number of counts of each

label across sites, sorted from the site with most numbers to the least. We can see

the distribution is quite unbalanced where some sites could have up to 1317 points,

and some only have 2 points. Such a small number is likely due to the fact that old

buildings still rely on the pneumatic systems and only a limited number of digital

sensors are integrated into the BAS.

3.4 Experiments
In this section, we describe three sets of experiments using distinct evaluation

strategies to answer the question about the generalizability of metadata inference

approaches.

3.4.1 Generalizability on Single Site (S1)

To understand whether there is one inference approach that generally works well

on each site, in this experiment, we train the model using a specific ratio of data on

each site and test the model on the same site using the remaining data, and then
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we iterate over all sites. The ratio of data to be trained is selected as 10% at first.

We vary this ratio later to explore how the performance is affected. For training

on each site using stratified 10% of data, we repeat the process 20 times to ensure

coverage of the samples. We refer this experiment as Strategy 1 (S1).

This strategy envisions that, for any new unlabeled buildings, we can just label

10% of the BAS points and use this approach to infer the metadata for rest of the

points. In this scenario, some sites may not have enough samples to use as 10% of

training data, which means none of the classes have more than 10 points, and when

this is the case, we ignore these sites. Additionally, for some sites, there are less than

10 points in certain classes, we ignore those classes and evaluate the approaches on

data from the remaining classes.

3.4.2 Generalizability on Multiple Sites (S2)

To explore the generalizability on multiple sites, we conduct another experiment

using leave-one-site-out cross-validation. That is, we use data from all but one sites

to train and use the data from the remaining one site to test, and we iterate over

sites. We refer to this experiment as Strategy 2 (S2).

This strategy makes sure that no data from the same site will appear in both

training and testing samples. The reason for splitting by sites instead of buildings

is to make sure we have enough test instances to evaluate. Such an evaluation can

help us understand how the model performs on the unseen dataset. By using each of

the sites as the testing site and observing the performance, we can reason whether

the distribution drawn from a subset of buildings is generalizable. The vision is that

we can use the trained model to predict the needed metadata for a new, unseen site.
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3.4.3 Effects of Data (S3)

To study the effects of the amount of training data on the approaches, instead

of using the whole-year-long data directly as we did in previous two strategies, we

conduct a group of experiments varying the data being used to train the model. We

refer to this as Strategy 3 (S3). Specifically, we consider the following four scenarios:

1) Varying the amount of data: we extend S1 by increasing the training ratio

from 10% to 90% to study how the performance changes. Similarly, we extend S2

by changing the number of sites being used for training from 10 to 25 instead of 35;

2) Varying data duration: we use both weekly and monthly data to conduct the

same analysis for S2 instead of using one-year-long samples;

3) Temporal effects: we further study how the model performs when training the

model on one month and testing on another. We vary our data by site and month.

For each month, we use any combination of 34 out of the 35 sites to train. We test

on the remaining site for prediction performance over each of 12 months. We always

train with one month of data and on 34 sites, and test on the remaining one site

over all months;

4) Spatial effects: we also study the spatial effects of the data when we consider

splitting data into different climate zones based on cooling degree days and heating

degree days in the past 30 years as is seen in Table 3.3, which is defined by CBECS2.

Since each zone contains different sets of points, to have a fair comparison across

zones we synthetically generate a balanced data from the raw data where each zone

has the same number of points for each point label.

2A spreadsheet file providing the climate zone for each US county can be found
at https://www.eia.gov/consumption/commercial/data/archive/cbecs/CBECS%20climate%
20zones%20by%20county.xls

3https://www.eia.gov/consumption/commercial/maps.php
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Climate Zone Cooling Degree Days Heating Degree Days
cold Fewer than 2,000 More than 7,000
cool Fewer than 2,000 5,500 to 7,000

normal Fewer than 2,000 4,000 to 5,499
warm Fewer than 2,000 Fewer than 4,000
hot 2,000 or More Fewer than 4,000

Table 3.3: Climate zone definitions according to CBECS3

Specifically, we first pick the point labels (classes) which have at least shown up

15 times within each climate zone (the number is selected so that we have a balance

of the number of classes and the counts of samples). Once the labels are picked, we

randomly draw 15 samples from each class without replacement for each zone. We

end up having 105 points from 7 classes (15 per class) for each climate zone. Due to

the limited number of points found in buildings that are in the hot zones, we only

have data from four zones (cold, cool, normal, and warm).

To evaluate the spatial effects to the performance, for each zone we randomly

use 50% of data from each class to train and test on the remaining 50% of data from

this zone as well as all the data from rest zones.

3.5 Results and Discussions
In this section, we first define the metrics to be used, and then present results

and discussions. The implementation details can be seen in B.1.

3.5.1 Metrics

Evaluating the performance of the multi-class classifier model is not a trivial task

as there are many different metrics to choose with each depicting certain aspects of

the model performance and there is no single best metric measure for model compar-

isons. Common choices of metrics include single-class focus threshold metrics such as
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sensitivity/specificity, precision/recall, and F-measure, multiple-class focus thresh-

old metrics such as accuracy, error rate, and kappa measures, and ranking methods

and metrics such as receiver operation curve (ROC) analysis, precision-recall curves,

and area under curve (AUC) [76]. Multiple-class focus metrics consider the overall

performance and are less suited for the class-imbalanced situation as they are bi-

ased towards to the class with more samples [76]. Meanwhile, F-measure, a typical

single-class focus metrics, is a popular metric in the information retrieval community

and has been widely used for text classification due to the multiple classes and high

class-imbalance nature of text datasets [77]. Typical ranking methods like ROC and

AUC-based comparisons depict the trade-off between true positive rates and false

alarm rates, and are less independent of the choice of classification threshold [78].

They also demonstrate advantages on datasets with skewed class distribution and

unequal classification error costs [79].

When dealing with an unbalanced dataset, F1 score and AUC are preferred.

Nevertheless, both F1 score and AUC are originally defined for binary classifiers.

Extending these metrics for multiple classes requires averaging over the metric for

each class4. Considering different averaging methods and assuming the distribution

of each class (point type) in the real world is close to what we see in the data, we

decide to use micro F1 score to report the overall performance of the model, which

is defined as follows.

4Averaging can be done using macro, micro or weighted strategies. The choice of the averaging
depends on how each class is valued. The macro strategy calculates the unweighted mean, while
micro uses the global quantities (e.g., precision, recall, true positives) to calculate the score and
does not give advantages to small classes; and the weighted strategy calculates the weighted average,
where weights correspond to the number of instances for each class. A macro average is more biased
towards small classes and indicates the expected performance on a dataset with balanced classes.
On the other hand, the weighted average is more biased to classes with more samples as it gives
more weights to them. If we have a clear understanding of what weights we should assign to each
class, we can also calculate a weighted average of binary metrics.
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For predictions of class i out of C classes, for each fold/iteration j out of K fold-

s/iterations, we calculate number of true positives (TP (j)
i ), number of false positives

(FP (j)
i ), and number of false negatives (FN (j)

i ), by treating class i as positive and

rest all negative. Then we calculate aggregated TP, FP, FN over each class i and

each fold/iteration j, and define micro F1 score as follows:

TP :=
K∑
j=1

C∑
i=1

TP
(j)
i (3.1)

FP :=
K∑
j=1

C∑
i=1

FP
(j)
i (3.2)

FN :=
K∑
j=1

C∑
i=1

FN
(j)
i (3.3)

F1 :=
2 · TP

2 · TP + FP + FN
(3.4)

This micro F1 mathematically happens to be the same as the accuracy5, which

is defined as the total number of true positives divided by the total number of

predictions. Since for each class i, counts of false positives from another class î will

be counted towards false negatives of this class i and vice versa, all aggregated FP

and FN in the definition above are counted twice when we are using them to define

the total number of predictions:

TP +
1

2
FP +

1

2
FN (3.5)

5An illustration example of different multi-class metrics showing micro F1 and accuracy are
equivalent can be seen at https://github.com/INFERLab/metadata_inference/blob/master/
multiclass_metric_test.ipynb
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As a result, the accuracy is defined as:

Acc :=
TP

TP + 1
2
FP + 1

2
FN

== F1 (3.6)

Thus, we will use accuracy as the metric in this study. We do understand

that using a single metric to describe a model is limited and could neglect other

perspectives of the model, hence, we also provide the detailed performance of more

other metrics including macro F1 score and AUC score, as well as the single-class

metrics including F1 score, precision, recall, and AUC for each class in B.2, and we

just use the accuracy simply as a way to compare the performance. In addition to

all these different metrics, we also analyze the confusion matrix of the prediction to

understand the reason for the misclassification.

3.5.2 Generalizability on Single Site (S1)

Figure 3.5a shows the accuracy over 15 sites for each feature and classifier. As we

can see, Random Forest outperforms the rest of the classifiers all the time, yielding

the highest accuracy for each feature. It is worth pointing out that if we simply

take the majority vote (i.e., always predict the most frequent class), the accuracy

would be 56%. For datasets with a class imbalance, it is the improvement over

this majority vote what matters. So a 78% accuracy, as obtained with the combined

features in our study, indicates a significant improvement over the base case of using

the majority vote.

To understand how each feature performs over sites, Figure 3.5b shows the violin

plot of accuracy score over 15 sites for different features using Random Forest. The

score does vary drastically across sites for the same feature, with the difference

between the maximum and the minimum being 40% to 60%.
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Figure 3.5: Violin plot of accuracy score and accuracy score matrix for different features
and classifiers (S1)

The result in Figure 3.5b indicates that the same metadata inference approach

can perform quite differently on different sites with a standard deviation from 0.07

to 0.09. This variance is due to the distinct behaviors of points on each site. Addi-

tionally, all features show close performance as they are all similar in the sense that

they are based on descriptive statistics (e.g., max, mean, median, etc. of the time

series). We conduct the Kruskal-Wallis H test [80] to test whether accuracy scores

over sites from each approach are drawn from the same distribution. The resulting

p-value is p� 0.001, indicating that there is not enough evidence to reject the null
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hypothesis that scores generated from different approaches are from the same dis-

tribution. When we examine the feature for each site yielding the highest accuracy,

we find that almost all features achieve their highest site-specific performance using

Random Forest. Moreover, for any fixed feature, Random Forest outperforms the

rest of the classifiers all the time, as shown in the last column of Figure 3.5a. This

signals that Random Forest is well suited for classifying point types in buildings due

to its capabilities in dealing with flexible and overlapping decision boundaries and

noisy data, which is also aligned with our prior research results [42].

This experimental result implies that it is feasible to select a building site, label

10% of metadata for each point type, train a model using inference approaches, and

we are expected to label 78% of the rest points with consistent metadata correctly.

However, the actual performance can vary depending on which specific building site

is being used.

3.5.3 Generalizability on Multiple Sites (S2)

To summarize the experimental results of S2, where the goal is to evaluate the

inference performance of the model on unseen buildings based on training data from

well-labeled buildings, we compute the accuracy matrix of different features across

different classifiers. The results are shown in Figure 3.6a. We also show the violin

plots of the accuracy scores over 35 iterations of test sites in Figure 3.6b. As is

expected, all statistical-based features achieve similar results with Random Forest

being the best classifier.

On average, the scores from S2 are slightly lower than those from S1. Part of

the reason is that S2 is using a stricter condition where the test building sites do

not overlap with the training sites. The standard deviation of the accuracy score

across sites is also more significant for S2 (∼0.18) as compared with S1 (∼0.09).
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Figure 3.6: Violin plot of accuracy score and accuracy score matrix for different features
and classifiers (S2)

This makes sense, given that the variation in S2 is stronger due to the disjoint

training and testing samples, as well as the increased number of sites. Similarly, we

conduct the Kruskal-Wallis H test on the 35 accuracy scores from each approach

and obtain a p-value of p < 0.001, again failing to reject the null hypothesis that

the distributions are the same. We also notice the performance difference between

these two strategies is not remarkable, which might imply that the information

from a subset of buildings is capable of representing the distribution of the statistical

features being derived from each point type using the historical time series of another
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group of buildings. This indicates that time series values associated with points from

multiple buildings could have similar distributions, which is of particular interest as

it shows the possibility of training a model on some buildings and using the model

for other unseen buildings. However, it is worth noting that this initial finding is

based on points in AHUs from buildings within one vendor’s portfolio. The validity

of the conclusion remains to be evaluated on more diverse building portfolios.
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Figure 3.7: Normalized confusion matrix by row using F7: Combination and Random
Forest (S2). The number inside the bracket beside the label name on the vertical axis
represents the number of testing instances for this class

To further understand how the approaches perform under S2, we look at the con-

fusion matrix using “F7: Combination” and Random Forest to see which predictions

are incorrect. Due to the unbalanced number of samples for each class, we show

a normalized confusion matrix (i.e., each element is divided by the sum of all the

elements in the corresponding row). The values in each row represent the average

probability vector of this type being predicted for each of 12 types in Figure 3.7. The

number inside the parentheses beside the label name on the vertical axis represents

the number of testing instances for this class. We can see that “Outside Air Damper

Position Command” and “Mixed Air Damper Position Command” are most easily

confused with “Cooling Valve Command”. This is a reasonable mistake, as they

are all generating values within the range [0,100] and the damper output values are
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strongly correlated with the cooling status, which can impact each other and show

similar behaviors. The same result can be seen in Table B.3 where we compute the

precision, recall and F1 score for each class. We also notice that many point labels

are misclassified as “Other”, which is due to the diverse behavior of excluded points

in AHUs. If we can somehow exclude all “Other” points from the analysis and only

focus on the selected 11 types of point labels, the accuracy score increases to 80%

using S2.

3.5.4 Effects of Data (S3)

For this subsection, we explore how the model performs under S3 where we

consider varying the amount of data used for training the model as well as the

duration represented in the data (e.g., a full year of measurements), the seasons

that are represented, as well as other temporal and spatial effects.

Amount of Data

We first explore how the accuracy changes when we vary the amount of training

data for S1 and S2 while keeping the temporal duration (1 year) of each sample

fixed and not paying attention to the spatial location of the buildings in the training

sample. For S1, we increase the training ratio from 10% to 90% using “F4: Hong et

al. 2015” and Random Forest 6. As is expected, the accuracy increases from 78%

to 90%.

Similarly, for S2, we vary the number of sites being used. We start with only ten

sites, and we use the “leave-one-site-out” strategy to evaluate the performance. By

adding more sites to the model, we want to find out how the performance changes.
6If not specified, the following explorations of data effects are all using this feature and classifier

as shown in earlier results. The choice of feature does not significantly affect the result as long as
it is one of the statistically based features, which summarize the descriptive statistics of the time
series.
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Each time, a number of sites are randomly chosen out of 35 sites, and the process

is iterated 20 times. We pick the number of sites to vary from 10 to 25 since the

number of possible combinations for choosing 10 out of 35 is the same as choosing

25 out of 35. We then calculate accuracy score over 20 iterations as the performance

metric. Figure 3.8 shows how it changes when we vary the number of sites. As we

see, the general trend of the accuracy score is slightly increasing, and the standard

deviation decreases, indicating that the model becomes more accurate and stable

when we have data from more building sites.
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Figure 3.8: Violin plot of accuracy change when we vary the number of sites (S2)

Duration of Data

To study the effects of the duration of the data used for training, we divide

the year-long data into week-long and month-long segments and evaluate the model

performance for each segment using S2 where we train the model using data from 34

sites and test on the data from the remaining site, and we iterate until each site has

been used as the test site once. The evaluation gives us 52 values of the accuracy

score on each testing site for weekly data and 12 values for monthly data. Table 3.4

summarizes the result of the accuracy score from data of different durations. For the

yearly case, we report the statistics for accuracy score given 35 iterations on each
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test site. As is seen, the yearly data provides slightly better performance compared

with others, which makes sense since a longer duration can capture more temporal

characteristics of point behaviors. Given the performance drop for the weekly data

is not significant, we may still be able to use metadata inference approaches with a

short duration of data when one-year-long data are not available.

accuracy year month week
mean 0.735 0.701 0.671
median 0.739 0.687 0.662

standard deviation 0.158 0.155 0.158

Table 3.4: Statistics of accuracy when using data from different durations

Temporal Effects

To study other temporal effects, we report the average accuracy score across all

testing sites for all possible pairs of training and testing months.
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Figure 3.9: Accuracy score when training on one month and testing on another

Figure 3.9 shows the average performance of training on one month and testing

on another month. If we sum the values in the diagonal and take the mean, the
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value should be close to the mean of the monthly result 0.701 in Table 3.4. The

results from Figure 3.9 indicate that training and testing on the adjacent months

are likely to produce a slightly better performance. This implies that when training

and testing models on different building sites, it is not necessary to make sure the

data are from the same temporal period. The model will generally perform well as

long as the data are temporally adjacent.

Spatial Effects

We also wanted to explore how the model performs when we consider spatial

differences and split the data into different climate zones. Specifically, we iterate

the experiment process (as is described in Section 3.4.3) 20 times for each zone on

the synthetic dataset and report the average accuracy when training on one climate

zone and testing on another.
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Figure 3.10: Accuracy score when training from one climate zone and testing on another

Figure 3.10 shows the performance of training on one climate zone and testing

on another zone. We can see the performance is slightly better within each zone

compared with training and testing across zones. Training on data from cold zones

tends to provide better results. Furthermore, if we check the variations of each

experiment, the standard deviation is between 0.02 and 0.06, which means the dif-

ference between training and testing on different zones is not that significant. This is
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also aligned with the conclusion we drew previously in S2 that the time series values

associated with points from different buildings have similar distributions, regardless

of the location of the building.

3.5.5 Probability Perspective
So far, we have been interpreting prediction results deterministically. However,

another interesting perspective is to look at the predicted probability mass vector.

In other words, for each time series, the predicted output is not a simple label;

instead, we have a vector indicating the probability that this time series belongs to

each class.
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Figure 3.11: An example illustrating the probability prediction metric

Figure 3.11 explains the idea using 12 instances (one from each class). Each row

in Figure 3.11a is a probability mass vector indicating the likelihood of this point
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belonging to each class. The ideal prediction occurs when the most likely predictions

for each vector fall on the diagonal. This is similar to Figure 3.7 where we show the

average probability for each class, while Figure 3.11a represents the probability for

each specific point.

Given a probability threshold p (0 < p < 1), we have N time series X ∈ RN×T

being predicted as Y ∈ RN×m where m is the number of possible classes. For

each prediction yi ∈ Rm, we count it as part of the covered prediction set Ycoverp

if max(yi) > p, and count it as part of the uncertain prediction set Yuncertainp if

max(yi) ≤ p. Figure 3.11b shows the case when we set 0.4 as a threshold. In other

words, the covered prediction set includes predictions with more confidence, and the

uncertain prediction set includes predictions with more uncertainties.

Then, we can define the following two metrics given probability threshold p:

coverage: percentage of predictions with confidence higher than p

∣∣Ycoverp

∣∣
N

(3.7)

coverage accuracy: percentage of correct predictions among covered set

∑
yi∈Ycover

p
1(ytruei = arg maxj=1,··· ,m yij)∣∣Ycoverp

∣∣ (3.8)

Additionally, if we tolerate mistakes generated by the probability prediction and

assume that the predictions are correct as long as the actual label is within the top

d predictions ranked by probability vector, we can define another metric given the

tolerance number d:

tolerance accuracy: denote ŷdi as the top d predictions ranked by probability
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vector yi, the accuracy when we tolerate d mistakes is

∑N
i=i 1(ytruei ∈ ŷdi )

N
(3.9)

In the example shown in Figure 3.11a, the original accuracy is 83%(10/12).

However, we can have an accuracy of 90.9% (10/11) with 92% (11/12) coverage

by setting up 40% as the probability threshold; and the tolerance accuracy being

92%(11/12) by setting the tolerance number to 3 ( ŷ39 contains the true label and

ŷ310 does not).
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Figure 3.12: Probability metrics from two perspectives

Using the definitions above, we calculate these metrics by varying the tolerance

number and the probability threshold for both S1 and S2 in Figure 3.12. As we can

see the tolerance accuracy can go up to 95% if we tolerate three guesses. The use

case for this is to reduce the labeling efforts from identifying 1 out of 12 different

labels to identifying only 1 out of 3. Another perspective is to set up the probability

threshold. By setting it to .6 for example, we can cover 60% of the points with

an accuracy up to 80% - 90%. If we want to be more aggressive, we can choose

to only cover 40% of the points with an accuracy up to 95% in the case for S2.
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This indicates we can trust the algorithm with high probability (up to 95%) to label

40% of the total data correctly, and that we would only need to manually label the

remaining 60%. By incorporating probabilistic perspectives into the predictions, it

can be more efficient for building operators and managers to produce the consistent

metadata for buildings in practice.

3.6 Conclusion

This chapter investigates the generalizability of six time series based metadata

inference approaches by evaluating them on sensors from 614 AHUs and studying

how the data used to train the models can affect their performance. We find that

when evaluating the approaches on such a dataset, we can achieve the best per-

formance with an accuracy of 75%, regardless of training and testing on the same

site (S1: 10% to train, 90% to test) or training and testing on different sites (S2:

leave-one-site-out cross-validation). Moreover, these different testing approaches do

not exhibit a significant difference in terms of performance.

Another way to interpret these results is as follows. Consider ten building sites

containing a total of 1000 distinct BAS points, where each site has 100 points. If

we can obtain trust-worthy labels for at least 10 of these points in each site and

use them to train the model, existing metadata inference approaches could impute

the rest of the labels (i.e., the remaining 90 points on each site) with 78% accuracy

on that same site. When we are training and testing on different sites, the result

indicates that we can randomly pick nine sites to use 900 points to train the model,

and we are expected to predict 75% (75 points) of 100 points from an unseen site

correctly. At first glance, it may seem as if training and testing on different sites

require more training data, but it does not require any training data for a new
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unseen site, which would reduce the amount of training effort significantly as the

number of testing sites increases.

To study the feasibility of these approaches in more realistic conditions, we ex-

plore proxies for the amount of human effort required to train the models, including

varying the amount, duration and temporal/spatial factors of the training data. We

find that by increasing the training ratio from 10% to 90%, we can improve the

accuracy score from 78% to 90% when training and testing on the same site.

Increasing the amount of data being used also helps to reduce the variance of the

performance of the model in the case of training and testing on different sites. We

also observe that yearly data show the strongest patterns to differentiate distinct

point labels. By using training and testing data from different time periods, we find

the model can generally perform well as long as the data are temporally adjacent.

However, when we pick data from different climate zones, we have not found training

and testing on similar climate zones can provide significantly better results other

than when using data from cold zones, indicating the spatial effects to the model

are smaller compared with the temporal effects.

Additionally, we define metrics including coverage, coverage accuracy, and toler-

ance accuracy from probability perspectives. These metrics can make the predictions

of the metadata from the model more useful for building operators and managers,

as they can reduce the amount of time to focus on the points selected by the model.

For instance, direct predictions can only label 75% of points correctly. However,

with probability perspectives, we can predict 40% of points with a very high accu-

racy up to 95%, and for the remaining 60% of points, we can reduce the searching

efforts from 12 different types to 3 most likely candidates.

Several future working directions are suggested in this research field. First, more
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advanced feature extraction techniques considering temporal evolution and multi-

variate relationships of BAS points should be studied to differentiate inseparable

points by simple statistical features. These could include autoregressive-moving-

average models, graph and network analysis of sensor nodes, etc. Secondly, a more

comprehensive representation of metadata needs to be reasoned from existing BAS

on a large scale in addition to the types of BAS points, such as the location of the

points, the equipment the point belongs to, the functions and interactions between

sensors and building components. All these research directions will lead us towards

an automated metadata standardization in BAS to facilitate the ultimate vision of

portable FDD applications.
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Chapter 4

Convolutional Neural Networks

Applied to Metadata Inference

In this chapter, we explore a new metadata inference approach to infer the type

of BAS points from time series data based on convolutional neural networks. The

purpose is to investigate the inference problem from a purely data-driven perspective

where the efforts to design hand-crafted features are avoided. We want to explore

whether the neural network based approaches can achieve the same or even better

performance compared with existing approaches. Additionally, we also explore the

feasibility of using hierarchical classifiers and ensemble classifiers to further improve

the performance of existing models.

4.1 Motivation and Related Work
In the specific domain of time series based sensor metadata inference for BAS,

many approaches have been proposed using different features [44, 42, 45, 46]. These

approaches use hand-crafted engineered features (e.g., descriptive statistics, max-

imum, minimum and standard deviation) and very often overlook the sequential
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information that can be extracted. To illustrate the potential problem caused by

this, Figure 4.1 shows the plots of three datasets from Anscombe’s quartet [81].

If we consider the horizontal axis as the time, we can see the three datasets have

different patterns. However, when we calculate some statistical properties, all three

datasets have almost the same values as seen in Table 4.1.
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Figure 4.1: Plots of three datasets from Anscombe’s quartet

Statistical Property Value Accuracy
Mean 7.50 to 2 decimal

Sample variance 4.125 +/- 0.003
Correlation between x and y 0.816 to 3 decimal

Linear regression line y =
3.00 + 0.500x

to 2 and 3 decimal,
respectively

Coefficient of determination of
the linear regression 0.67 to 2 decimal

Table 4.1: Statistical quantities for three datasets

This phenomenon is further explained in [82]. In short, different datasets with

varying appearance could have the identical statistics 1, which makes such statisti-

cal features less sensitive to the change of the sequence (order) of values. Although

researchers have tried to overcome such issues by dividing time series data into

multiple windows, extracting features from each window, and then taking another
1An animation can be seen at https://www.autodeskresearch.com/publications/

samestats
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summary statistics of features from multiple windows [41], the power of these fea-

tures to incorporate the sequential information could still be limited.

To incorporate the sequential information, other efforts have been made to ex-

ploit deep neural networks, especially convolutional neural networks (CNN) for end-

to-end time series classification [83]. With different processing units (e.g., convo-

lution, pooling, rectifiers), CNNs have shown success in computer vision, natural

language processing, speech recognition, and time series analysis [84]. CNNs have

been mostly used as a supervised classification model when initially being designed.

However, one special architecture of CNN has been proposed as an unsupervised

feature extraction method directly using an auto-encoder (AE) structure [85]. Con-

volutional neural network auto-encoders (CAE) learn how to map the original data

into a latent representation (encoding process) which is then mapped back to the

original data (decoding process) using a convolutional layer in the middle. This

latent representation is normally used as the feature of the original time series. Due

to the convolution operations performed by continuously sliding windows of differ-

ent scales to the time series, the sequential information is preserved in the latent

layer. CAE has several variations including pooling and unpooling operations [86],

convolution and deconvolution operatoins [87], tied weights for encoder and decoder

layers [88], predicting noise as targets instead of the original inputs [89], etc. As

CAE reduces the efforts to build hand-crafted engineered features and can incorpo-

rate the sequential information, we attempt to build a specific architecture of CAE

for the purpose of inferring sensor metadata from time series in buildings. Addition-

ally, as a comparison of supervised method versus unsupervised feature extraction

methods, we will also build a CNN as a classier directly. The detailed description

of the proposed method will be presented in the next section.
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4.2 Methodology
To describe the methodology in detail, we will start by defining the problem

of time series classification using more specific notation. Given N one-dimensional

time series of length T from N sensors XN×T = {x1, · · · , xi, · · · , xN}, where xi ∈

RT and the corresponding class labels are Y N×1 = {y1, · · · , yi, · · · , yN} and yi ∈

{1, 2, · · · , C} (C is the number of unique classes), the objective is to predict the

class labels Y based on time series data X.

Suppose we have a function, or a model f , which is able to map x to y. Denote

ŷi = f(xi) representing the mapping relationship. The performance of the model

can be quantified by comparing the predicted label ŷi with the true label yi using a

loss function h. One example loss function can be defined in terms of the zero-one

loss using the indicator function:

h(y, ŷ) = 1(y = ŷ) (4.1)

If we evaluate different models from a model set F using N time series, the

optimal model can be found through the following optimization problem:

f ∗ = arg min
f∈F

N∑
i=1

h(yi, f(xi)) (4.2)

This model f is typically trained using a portion of labeled data (both x and y

are given) and then evaluated on the remaining unlabeled data (only x is given).

The model involves two parts, namely feature extraction and classification. Feature

extraction aims to find the feature, which is another representation of the original

data X, that allows the classifier to better discriminate data of different types.

Depending on the underlying assumptions of the data, various strategies can be
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used to build the model with distinct features and diverse classifiers.

In the previous chapters, we have extracted different statistical based features

and use the random forest, which is the classifier yielding the best performance. In

this chapter, we will explore other possibilities of building this model using convo-

lutional neural networks based approaches. We describe two such models, one is a

model named cnn-clf that can conduct both feature extraction and classification,

and the other is a feature extraction method named caeF. Both of these methods

are explained in more detail in the next section.

4.2.1 Convolution Neural Network as a Classifier
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Figure 4.2: Architecture of the convolutional neural network for time series data classifi-
cation

In this approach, the CNN is used as a supervised classifier on raw time series

data directly. The architecture can be seen in Figure 4.2 where we feed data with

batch size B of dimension T . We build the network with two convolutional layers

and two pooling layers followed by a fully connected layer with 30% drop-out ratio.

The number of convolutional filters and the size for convolution as well as the pooling
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can be seen in the figure as well. The last layer is based a softmax function to map

the continuous variables to C discrete labels. This model can be trained from the

data with known labels and then used to infer the metadata for points with unknown

labels.

In the implementation phase, we use a batch size of 200 with the dimension of

the data being 2976 (one-month-long) to predict 20 different classes. The training

and testing strategy will be discussed in Section 4.4. We mark this approach as

cnn-clf.

4.2.2 Convolution Neural Network Auto Encoder

A simple one hidden layer auto-encoder takes an input xi ∈ RT and maps it to

a latent representation hi ∈ Rd using an encoder function hi = fE(xi) = σ(Wxi + b)

where W ∈ Rd×T and b ∈ Rd are the weight and bias parameters respectively, and

σ(·) is an activation function to regulate the extent the neural in the specific layers to

be activated2. The latent representation hi is then mapped back to the reconstructed

input x̂i ∈ RT using an decoder function x̂i = gD(hi) = σ(W
′
hi + b

′
) where weights

(W ) are normally tied with the parameters from the symmetric encoder layer forcing

W T = W
′ . This reduces the number of parameters to train and regularizes the model

to be simple. By minimizing the following loss among all samples iteratively, we can

find the optimal weight and bias parameters that minimize the reconstruction error:

Loss =
N∑
i=1

||xi − x̂i||2 =
N∑
i=1

|| {xi − gD [fE(xi)]} ||2 (4.3)

Normally, the auto-encoder can have multiple encoder and decoder layers which

allows one to learn a deeper representation. The loss function can be represented

2The activation function σ is normally in the form of sigmoid, tanh or ReLU.
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as follows with a chain structure if we have m encoder layers and decode layers:

Loss =
N∑
i=1

||
[
xi − g1D(g2D(· · · gmD (fmE (· · · (f 1

E(xi))))))
]
||2 := ||X −Dφ(Eθ(X))||F

(4.4)

where D and E are notations used to represent all decoder and encoder layers

respectively, with weights and biases denoted as φ and θ.

CAE essentially has the same structure as a regular auto-encoder with the differ-

ence being that the encoder function is based on convolution and pooling operations

and the decoder function is based on deconvolution and unpooling operations. A

good explanation with 2D images can be found in [87]. An example of the CNN

architecture for time series can be seen in Figure 4.3.
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Figure 4.3: Architecture of the convolutional neural network autoencoder for feature ex-
traction

To explain the architecture, we use an auto-encoder with two encoder layers
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and two decoder layers. The structure of the layers has the transformation from

hE1
i = fE1(xi), hi = fE2(h

E1
i ), hD2

i = gD2(hi), x̂i = gD1(h
D2
i ). Suppose we are using k

filters to apply the convolution on input X with a stride of 1 and padding 0 to make

sure each filter slides T times, then we will have hE1 of dimension N × T × k, and

hE1
i,k = σ(xi ? W

k + bk) where ? is the convolution operation by sliding the window

on the data and take the weighted summation. A good illustration of common

operations including convolution, deconvolution, pooling and unpooling can be seen

in [87].

In addition to these typical operations for CAE, we also adopt the batch normal-

ization (BN) technique to avoid the problem of vanishing gradients as is suggested

in [90]. Due to the fast speed of rectified linear units (ReLU), we will use it as

the σ activation function after the convolution operation. The weights will also be

tied to the encoder and decode layers. However, since there exist negative values

in the time series data and ReLU will force them to be zero, we will not apply any

activation for the last layer in order to reconstruct the original input. Hence, the

weights on the last layer will not be tied with weights from the first layer while the

weights on the rest layer are tied in a symmetric fashion.

Once the network is trained, we can use the latent representation fmE (·) in the

hidden layer as the feature on which to perform classification. In the implementation

phase, we use the same parameter for the convolutional layers and pooling layers

specified in the figure. We mark this feature caeF. Such feature incorporating

sequential information will be evaluated on a classifier to compare with the existing

hand-crafted engineered features.
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4.2.3 Baseline Approach

Instead of using features based on existing approaches directly as the baseline, we

summarize the features into several categories based on the literature. The details

of the implementation can be seen in Appendix C.1. The categories are:

• Statistical feature (statF): Descriptive statistics such as mean, median, stan-

dard deviation, etc. of the time series.

• Window feature (winF): We divide the data into multiple sliding windows

and calculate features within each window. For each feature calculated over

multiple windows, another statistics can be used to generate a higher level of

abstraction.

• Time-frequency feature (tfaF): Features derived from time-frequency analysis

information including fast Fourier transform (FFT) and wavelet analysis.

• Distance-based similarity feature (dtwF): We use dynamic time warping (DTW)

as a distance measure to quantify the similarity between any pair of time series.

Additionally, we will also concatenate the above features to produce a combined

feature (combF). For each of the features above, the random forest will be used

as the classification model, and the same parameters will be used, as is shown in

Table B.1.

It is worth noting that the above categories of features could have overlaps,

for example, STFT in time-frequency analysis can also be considered as a window

feature. In this chapter, by saying winF, we mean applying statistics on windows,

and by saying time-frequency feature, we mean applying Fourier transform and

wavelet decomposition on the whole time series without using windows. Also, for
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the combined feature, we will simply combine all of the features. The study of

mixing and combining different features is not the focus of this work.

To summarize, we will use five approaches based on existing literatures including

statF, winF, tfaF, dtwF and combF, and two approaches based on convolutional

neural networks namely cnn-clf and caeF. These approaches are all feature ex-

tractions methods which will be combined with random forest to make predictions

except for cnn-clf which can classify point types directly.

4.3 Data

We use the same dataset that is described in Section 3.3. However, we label the

points differently. In the previous chapter, we focus on inferring 11 point types that

are required by a particular FDD approach - APAR. In this chapter, we investigate

the performance of metadata inference on the commonly required BAS points by

FDD approaches, which also align with 20 most common point types that appear in

AHUs. These top 20 frequent BAS points are shown in Figure 4.4. Meanwhile, we

eliminate the points whose frequency counts are less than 100. Moreover, we only

use one-month-long data from January in this study. This eventually gives us a raw

data matrix X of size 4822× 2976, representing 4822 BAS points with each having

2976 samples in January of the year 2015 (i.e., 1 sample every 15 minutes).

To better understand how these 20 different types of point labels spread over

building sites, Figure 4.5 shows the number of counts of each label across sites,

sorted from the site with most numbers to the least. We can see the distribution is

quite unbalanced with some sites having up to 1247 points and some only have 1

point.
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Figure 4.4: Frequency counts (greater than 30) of tags, green ones are selected by APAR
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Figure 4.5: Frequency counts of each point label across 35 different sites, the number in
the horizontal axis represents the total number of points at this site

4.4 Experiments

We will use the same evaluation strategy S2 as is introduced earlier in Sec-

tion 3.5.3 to explore the generalizability of the neural network based approaches

along with the baseline approaches. That is, we use data from all but one sites to

train and use the data from the remaining sites to test, and we iterate over sites.
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4.5 Results and Discussions

4.5.1 Metrics

As we have discussed different metrics earlier in Section 3.5.1, we will follow the

same rule and use accuracy as the metric in this study. We also provide the detailed

performance using other metrics such as F1 score, precision, recall, and AUC for

each class in Appendix C.2.

4.5.2 Comparison of Different Approaches

The average accuracy over different testing sites of the 20-class classification

problem can be seen in Table 4.2 for each approach. The two approaches yielding

the best score are winF and caeF, suggesting CNN based approaches can reach the

comparable performance with the existing approach.

statF winF tfaF dtwF combF cnn-clf caeF
accuracy 0.597 0.612 0.446 0.574 0.607 0.565 0.612

Table 4.2: Average accuracy for each approach

To better understand how the accuracy vary when different test sites are be-

ing used, we present the accuracy distribution over 35 sites using violin plots in

Figure 4.6. As we can see they all have very similar performance near 60%, with

winF and caeF has slightly better results. This confirms that CNN-based unsu-

pervised approach can perform similarly compared with existing statistical-based

approaches. It is worth mentioning we have tuned different parameters for both

cnn-clf and caeF approaches and the resulting performance does not change much

(less than 3% based on the parameters we explored).

Notice for this 20-class classification problem with unbalanced samples in each

class (seen in Figure 4.4), if we have a baseline model predicting every testing
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samples to the most frequent class, the resulting accuracy is only 11%, which is

much less than 60%. Nevertheless, an accuracy of 60% is not fully reflecting the

performance of the model. For caeF approach, we do show the other metrics (e.g.,

precision, recall, F1 score, AUC) measuring the prediction power for each class in

Appendix C.2.
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Figure 4.6: Violin plots over 35 sites for different approaches

To visualize the reconstruction capability of CAE, we show an example of how

one time series signal can be reconstructed going through convolution, pooling,

unpooling, and deconvolution operations in Figure 4.7. The plot under the title is

the output of the signal after each operation. The operation after second pooling

will produce the latent representation, which is also illustrated in Figure 4.3. The

reconstructed signal shown in Figure 4.7 is very close to the input signal, which

implicitly suggests the hidden latent representation could be a good approximation

(feature) of the original time series.

To further understand how this approach performs for each class, we plot the

normalized confusion matrix in Figure 4.8 for caeF. As we can see, all temperature

sensors, air flow sensors, fan outputs, along with heating and cooling outputs are

easily confused. This motivates us to explore the idea of using a hierarchical classifier
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input	signal	

conv	1

conv	2

pool	2

unpool 1

unpool 2

reconstructed	signal

Figure 4.7: An example of how CAE is used to reconstruct the time series signal

where we group 20 different types into larger groups and use two nested classifiers

to recognize point types.

4.5.3 A Hierarchical Approach

We define 6 point type groups as follows:

1. Temp: PreheatTemperature, MixedAirTemperature, OutsideAirTemperature,

DischargeAirTemperature, ReturnAirTemperature, ZoneTemperature, DischargeAirTem-

peratureSetpoint
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Figure 4.8: Normalized confusion matrix by row using CAE and Random Forest. The
number inside the bracket beside the label name on the vertical axis represents the number
of testing instances for this class

2. Humidity: OutdoorAirHumidity, ReturnAirHumidity

3. Flow: OutdoorAirFlow, DischargeAirFlow, ReturnAirQuality

4. Output: CoolingOutput, SupplyFanOutput, ReturnFanOutput, HeatingOut-

put

5. Integer: Occupancy, SupplyFanStatus, SupplyFanCommand

6. Pressure: DuctStaticPressure

With this group, the original 20-class classification task turns into a 6-class

classification problem. We can solve this using a high-level classifier. Once the

group label is generated, another low-level classifier will be used to produce the

specific type of the BAS points. The caeF and random forest are used in this study.
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To understand the performance of the first high-level classifier, we plot the con-

fusion matrix in log scale shown in Figure 4.9. The number inside corresponds to the

count of true positive, false positive, and false negative. The accuracy is calculated

by summing over the diagonal and dividing by the total sum of the confusion matrix.

As we can clearly see that when the number of classes decreases (the definition of

the label changes), the accuracy increases significantly.

0 1 2 3 4 5
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Output-4

Pressure-5

2064 2 28 0 36 0

1 445 1 0 3 5

33 0 308 0 14 1
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Confusion matrix with accuracy: 0.957

100
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Figure 4.9: Confusion matrix in log-scale using CAE and Random Forest when we group
sensors into six groups

Based on such a high accuracy, we proceed to the low-level classier. However,

we find that the low-level classifier does not perform well. As a matter of fact, the

resulting accuracy quickly drops from 96% down to 61%, which is the same as the

one in Table 4.2.

To understand the mechanism of the hierarchical classifier, Figure 4.10 shows

the re-ordered confusion matrix in log scale when we group the point types in the

same group. As we can see, all temperature sensors are very easily confused with

each other. Similarly, the cooling output is also heavily confused with the supply

fan output.
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Figure 4.10: Re-ordered confusion matrix in log-scale using CAE and Random Forest

4.5.4 An Ensemble of Classifiers

We notice that different approaches can classify the point types with different

levels of accuracy, as is seen in Table 4.3 where the F1 score for each class is shown for

each approach. For example, caeF is good at predicting “OutdoorAirHumidity”, and

cnn-clf is slightly better at predicting “Occupancy”. We can then use an ensemble

approach to combine those two models, which may produce better results than using

each alone.

A simple voting strategy based on the probability output of each classifier is used.

Specifically, for each prediction, we pick the label assignments that yields the highest

probability among all approaches. We find this can help increase the accuracy by

up to 3% (from 61% to 64%). For example, including three models winF, cnn-clf

and caeF is able to increase the accuracy up to 3%. We also observe that when
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statF winF tfaF dtwF combF cnn-clf caeF
PreheatTemperature 0.07 0.00 0.00 0.00 0.00 0.00 0.03
OutdoorAirFlow 0.50 0.61 0.36 0.56 0.59 0.51 0.65
OutdoorAirHumidity 0.78 0.80 0.77 0.78 0.81 0.80 0.86
SupplyFanCommand 0.07 0.12 0.01 0.05 0.08 0.04 0.11
MixedAirTemperature 0.37 0.41 0.14 0.37 0.38 0.26 0.39
CoolingOutput 0.63 0.69 0.41 0.58 0.61 0.62 0.66
OutsideAirTemperature 0.76 0.86 0.78 0.81 0.79 0.73 0.82
Occupancy 0.46 0.09 0.69 0.73 0.75 0.82 0.17
SupplyFanStatus 0.64 0.55 0.62 0.68 0.68 0.68 0.59
DischargeAirTemperature 0.61 0.64 0.39 0.54 0.60 0.52 0.62
ReturnAirHumidity 0.84 0.89 0.64 0.86 0.85 0.78 0.89
SupplyFanOutput 0.64 0.68 0.50 0.57 0.61 0.61 0.66
DischargeAirFlow 0.69 0.66 0.47 0.66 0.70 0.70 0.66
ReturnFanOutput 0.05 0.02 0.00 0.02 0.05 0.03 0.05
DuctStaticPressure 0.98 0.97 0.77 0.94 0.97 0.95 0.97
ReturnAirTemperature 0.51 0.51 0.28 0.44 0.47 0.49 0.48
ZoneTemperature 0.28 0.32 0.18 0.22 0.27 0.14 0.37
ReturnAirQuality 0.91 0.95 0.62 0.93 0.94 0.95 0.95
DischargeAirTemperatureSetpoint 0.66 0.76 0.39 0.55 0.70 0.34 0.76
HeatingOutput 0.13 0.15 0.11 0.01 0.06 0.29 0.08
highlighted counts 2 10 0 1 2 4 6

Table 4.3: Accuracy score for each class and for each approach. The highest score for each
class is highlighted in bold if it is higher than 0.5

more models are being used to build the ensemble classifier, the performance will

stop increasing and even start decreasing. This is probably due to that certain poor

models have higher probability predictions and could win during the voting phase.

Hence, the ensemble approach should be used with caution to make sure the right

combination of approaches is used.

4.6 Conclusion
In this chapter, we explore a purely data-driven approach based on convolutional

neural networks. The approach can generate similar and sometimes better perfor-

mance than existing approaches. However, when the number of classes increases, the

performance rapidly drops. Despite this, we show that we improve the performance

slightly (3%) by using ensemble classifiers.
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4.6. Conclusion

Furthermore, when the model makes incorrect predictions, it is hard to track why

the model makes mistakes. There is a need to develop new methods to understand

the behaviors of the metadata inference approaches and recognize when the model

will fail and why it fails.
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Chapter 5

A Physical Model-based Approach

In previous chapters, we have proposed a metadata inference framework and tested

it on both single building and multiple buildings using different time series based

inference approaches. These approaches rely on extracting statistical properties

from the time series, and as such, they are data-driven or black box models. Based

on these models, our results show that an expected accuracy ranging from 62%

to 75% can be achieved to infer the type information of BAS points required by

common FDD approaches. However, when the model makes an incorrect prediction,

it is often difficult to explain why it is wrong. The common approach to diagnose

these erroneous predictions are to plot the incorrectly labeled time series, calculate

statistical quantities, and reason from a statistical perspective.

For example, Figure 5.1 shows the time series data of six return air tempera-

ture sensors where three of them are correctly predicted and the remaining three

are incorrectly predicted. The summary statistics can be seen in the upper right

section of each subplot. We can see that the three incorrectly predicted return air

temperature sensors in Figure 5.1b have different patterns in time series data (e.g.,

a higher standard deviation and wider range) compared with the correctly predicted
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5.0.

RAT1 RAT2 RAT3
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mean 68.94 71.25 70.43
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(a) Three return air temperature sensors are correctly predicted
pred as SAT pred as MAT1 pred as MAT2

count 2976.0 2976.0 2976.0
mean 69.46 70.33 66.74
std 3.25 0.64 6.1
min 55.73 68.17 42.95
25% 69.76 69.94 65.58
50% 70.56 70.25 69.63
75% 70.88 70.62 70.5
max 72.55 73.68 75.48
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(b) Three return air temperature sensors are incorrectly predicted as supply air
and mix air temperature sensors

Figure 5.1: A total of six time series for return air temperature sensors

ones in Figure 5.1a. The distinct patterns make some return air temperature sen-

sors indistinguishable with supply air and mixed air temperature sensors. However,

this interpretation lacks a fundamental understanding of the underlying physical

processes, e.g., what are the thermodynamics driving the behaviors of each HVAC

system, and might not hold for other time series data from return air tempera-

tures. Hence, a more systematic explanation based on first principles is missing,
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and there is a need to incorporate physical models to improve our understanding of

the underlying process and further help the task of metadata inference.

Attempts at this have been made previously in [54] where authors utilize an

energy estimation model to infer which room the sensor is located. The sensor

data are combined with the energy model to understand the thermal performance

of different zones inside buildings. The effectiveness of using the physical model to

infer the location information motivates us to explore the potential of it further to

infer additional metadata such as type information of BAS points. To our knowledge,

the physical model-based approach to infer the type information of BAS points has

not been studied before.

In this chapter, we hypothesis that with the help of physical models, we can

understand the physical process (e.g., how the data values are generated following

the law of physics), uncover the underlying relationship of BAS points (e.g., how

the BAS points in the same unit can impact each other’s data patterns), and better

discriminate points that are confused in data-driven models. Explicitly, we define

physical models for the mixing box, the cooling coil and the heating coil in an

AHU using mathematical equations. Then we propose a new physical model-based

approach to recognize BAS points that are easily confused. To validate whether this

knowledge from the physical model can help the metadata inference task, we test

the approach on both simulation and real-world datasets.

5.1 Physical Model of an AHU

An AHU is an integrated large equipment used to circulate and condition the

air being supplied to a building. Its major components include ducts, dampers, a

mixing box, fans, cooling, and heating coils as shown in Figure 5.2. Sensors and
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actuators in the AHU monitor and change the condition of the unit. A mapping

between the acronyms in Figure 5.2 and the full descriptions for these BAS points

can be found in Table A.1. A typical way of building a physical model for an AHU is

to use a lumped-parameter approach where each component is modeled separately,

and then all components are aggregated together, which has been studied as early

as in the 1980s [91, 92]. These models include the room and zone model, the heating

coil model, the duct and pipe model, the damper model, the valve model, the fan

and pump model, the humidifier model, the temperature, and controller models [91],

all of which are described by detailed linear and nonlinear differential equations. To

provide modeling for chilled water cooling coils, authors in [93] develop a detailed

model for a cooling coil based on dynamic forwarding modeling which considers the

transient behaviors of the system in addition to the steady states. However, one

problem associated with these models is that they are too detailed and require a

large number of parameters, making them less practical to be used on site [94].

Meanwhile, researchers in [95, 94, 96] have built simplified models for zones, mixing

boxes, heating coils and cooling coils in AHUs. The simplification is achieved with

fewer parameters and more assumptions. For example, instead of using an array of

temperature sensors to measure the spatial temperature distribution, the simplified

model will assume a uniform distribution in space and use only one temperature

sensor. Some cooling coil models also consider the humidity changes while others

just focus on the temperature and flow rates change.

In addition to modeling AHUs using physical models as we described, there are

also black-box data-driven models. As we focus on interpretative models of an AHU

in secondary HVAC systems, we will not introduce them in this section. A detailed

review of modeling methods for HVAC systems can also be found in [97, 98, 99].
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Another field that is related to the HVAC modeling is the virtual sensing tech-

nique. It is not a new concept in BAS. The sequences of operations in HVAC rely

heavily on the “software points” which are derived points based on the physical

existing “hardware points” [22]. For example, the point “enthalpy” is a derived

software point based on humidity sensor and temperature sensor to determine the

economizer status. These virtual sensors in existing BAS are modeled based on a

specific mathematical formula. Although the research in this area is still at a very

early stage [100], there are some recent developments on virtual sensing focusing on

vapor compression systems [101, 102], chillers [103, 104], heat pumps [105, 101, 102]

and AHUs [106, 107].

Specifically, virtual sensors in AHUs include virtual mixed air temperature sen-

sor [106], virtual cooling coil capacity sensor [107], and virtual filter status [108].

These virtual sensing methods are tested either using simulation data or on a small

testbed and showed different limitations. For example, [106] proposed a smart

mixed-air temperature sensor inside ducts of an AHU, which can provide more

accurate results compared with using the single-point measurement of mixed air

temperature alone. The increased accuracy is achieved through combining informa-

tion from damper control signal, outdoor and return air temperature. However, such

method still needs at least one mixed air temperature sensor to reduce the error and

is mainly applicable to constant-air-volume (CAV) systems. [107] developed models

for direct expansion (DX) coils using manufactured data to generate virtual cooling

coil capacity sensor.

It is worth pointing out that all physical models are approximations to the dy-

namics of the actual system based on mathematical equations that represent an

abstraction of their physical behaviors. The comprehensive and complicated models
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can simulate the systems with more details while it could be difficult in practice to

properly configure and commission them [109]. In our case, we are not interested in

a particular single AHU to model with sufficient details and requiring configurations

and commissions; instead, we are more interested in the general physical behaviors

of AHU components which can be modeled using sensors already instrumented in-

side BASs. Hence, we select simplified models for three AHU components we are

interested in.
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Outside Air Supply Air

RAH RAT RAF

F

Figure 5.2: Schematic diagram of a typical AHU

In this section, we specifically focus on three major components in AHU, namely,

the mixing box, the cooling coil, and the heating coil. The variables and parameters

that are used in the models throughout this chapter can be seen in Table 5.1. It is

worth mentioning that the flow rate can be measured using either mass flow rate ṁ

[kg/s] or volume flow rate V̇ [m3/s]. They can be easily converted by multiplying

the density of the medium (air or water). For consistency, we use the mass flow rate

in all of our models.
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Symbol Unit Description
Cc kJ/(kg◦C) specific heat of the cooling coil
Ch kJ/(kg◦C) specific heat of the heating coil
Cpa kJ/(kg◦C) specific heat of air
Cpw kJ/(kg◦C) specific heat of water
fout % outdoor air fraction
ṁout kg/s outdoor air flow rate
ṁsup kg/s supply air flow rate
ṁw,c kg/s chilled water flow rate
ṁmax
w,c kg/s maximum chilled water flow rate

ṁw,h kg/s hot water flow rate
ṁmax
w,h kg/s maximum hot water flow rate
Mc kg air quality of cooling coil
Mh kg air quality of heating coil
Tmix

◦C mix air temperature
Tout

◦C outside air temperature
Tret

◦C return air temperature
Tsup

◦C supply air temperature
Tc

◦C cooling coil outlet air temperature
Tai,c

◦C cooling coil inlet air temperature
Twi,c

◦C cooling coil inlet water temperature
Two,c

◦C cooling coil outlet water temperature
Th

◦C heating coil outlet air temperature
Tai,h

◦C heating coil inlet air temperature
Twi,h

◦C heating coil inlet water temperature
Two,h

◦C heating coil outlet water temperature
uc % percentage of cooling coil valve position
uh % percentage of heating coil valve position

Table 5.1: Nomenclature table

5.1.1 Mixing Box

A mixing box is the section of an AHU to mix the return air with the outside

air through a mixed air damper controlling the mixing fraction, as is shown in

Figure 5.2. This mixed air damper also serves as a device to optimize energy usage by

making use of the heat from the return air in winter when the return air temperature

is higher than the outside air and the cooling capacity of it in summer when the

104



5.1. Physical Model of an AHU

return air temperature is lower than the outside air. Another outdoor air damper

is used to control the outdoor air fraction. Once the air is mixed, it is conditioned

through heating and cooling coils to be supplied to zones. Modeling methods for the

mixing box have been proposed in both [95, 94, 110] where relationships between

temperature measurements and air flow rates are defined. These models are used to

study optimal control strategies and automated fault diagnostics, based on energy

and mass balance equations.

Though the two models have similar objectives and complexity, the one in [95]

requires the mixed air flow rate as an input, and this measurement is often unavail-

able in current building systems as is seen earlier in Section 2.3. Hence, we adopt

the model from [94] where we use outdoor air flow rate, supply air flow rate, return

air temperature, mixed air temperature, and outdoor air temperature to build the

physical model. We start by defining the outdoor air fraction as the ratio between

the “supply air mass flow rate” and “the outdoor air flow rate”:

fout =
ṁout

ṁsup

(5.1)

Since there is a portion of return air mixing with the outside air to produce

the supply air, fout represents the percentage of the outdoor air during the mixing

process. On the other hand, this fraction is also related to the temperature difference

between the return air and both the mixed air and the outdoor air. In other words,

it is also the ratio between the temperature difference before the mixing box, and

after the mixing box:

fout =
Tret − Tmix
Tret − Tout

(5.2)
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The equation can be rewritten as:

Tmix = foutTout + (1− fout)Tret (5.3)

=
ṁout

ṁsup

Tout + (1− ṁout

ṁsup

)Tret (5.4)

which suggests the mixed air temperature is a linear combination of outdoor air

temperature and return air temperature weighted by the outdoor air fraction. As a

result, we have built a mathematical relationship between these five sensors. Given

inputs from four sensors, we can estimate the remaining one. Notice this model is

an approximation but it is able to capture the underlying physical process, as it has

been shown in previous publications [111, 94, 110].

5.1.2 Cooling Coil

Both cooling coils and heating coils are heat exchangers which transfer the energy

between the fluid and the air. As is seen in Figure 5.2, the cooling coil circulates

the chilled water from the chiller to cool down the air passing through the coil.

The amount of cooling capacity is controlled using a chilled water valve regulating

the flow rate of the water. Comprehensive modeling of the cooling coil has been

previously seen in [93] where authors use a dynamic modeling approach considering

the transient behaviors of the cooling coil with sufficient details (e.g., modeling

the spatial and time distributions of the temperature and humidity of the coil)

and [112] where researchers build a coupled model of the cooling coils together

with the temperature sensors inside VAV boxes. Nevertheless, these two models

are difficult to be used in our study given that many inputs and parameters are

required by the models. In [95], an empirical model is adopted to approximate the
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air temperature using the water temperature as follows:

Tc = 0.0587T 2
wo,c + 1.773Two,c + 1.1816 (5.5)

However, such an equation lacks sufficient physical interpretations and makes the

assumption that air temperature is only determined by water temperature using a

second-order polynomial equation with coefficients being fixed constants. Such an

assumption is less likely to generalize to cooling coils in different AHUs. In [96]

researchers use a model which is both simplified and have physical foundations

based on the law of conservation of energy. Hence, given the reasons above, we will

use this model in our study. Following the definition in [96], the thermal balance is

defined as:

McCc
dTc
dt

= ṁsupCpa(Tai,c − Tc)− ṁw,cCpw(Two,c − Twi,c) (5.6)

ṁw,c can be represented in terms of uc [94]:

ṁw,c = ṁmax
w,c · uc2

In Equation 5.6, the parameters with fixed values includeMc, Cc, Cpa, Cpw, ṁ
max
w,c ,

the variables include Tc, Tai,c, Two,c, Twi,c, ṁsup, uc. If we assume Tai,c, Two,c, Twi,c, ṁsup, uc

do not change the values in a short time period from t0 to t1, Equation 5.6 can be

approximately solved:
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dTc
dt

= −ṁsupCpa
McCc

Tc +
ṁsupCpaTai,c − ṁw,cCpw(Two,c − Twi,c)

McCc
(5.7)

dTc
dt

= acTc + bc (5.8)

T t1c =
(acT

t0
c + bc) expac(t1−t0)−bc

ac
(5.9)

where ac = − ṁsupCpa

McCc
, bc =

ṁsupCpaTai,c−ṁw,cCpw(Two,c−Twi,c)

McCc
.

Given the values from the sensors Tai,c, Two,c, Twi,c, ṁsup, uc and an initial value

T t0c , we are able to model Tc over time.

5.1.3 Heating Coil

As early as in the 1980s, a very detailed modeling method for heating coils

was presented in [91] where the relationships between temperatures, air pressures,

frictional coefficients and other specific variables in the coil are modeled based on

the number of transfer units (NTU) methods. The purpose of the simulation model

is to study fault diagnosis and energy optimization. Another heating coil model

in [95] is later proposed to study various control strategies to improve the efficiency.

This model requires the humidity measurements of the air before and after the coils

for the mass balance equation. However, both models require variables which are

not commonly seen in existing buildings, as is seen in Section 2.3 where the common

BAS points in AHUs are listed. To have a model that is both simple and has physical

interpretations, we adopt the same heater exchanger model presented in [96]. The

heating coil is similar to how we model the cooling coil, which is defined as:

MhCh
dTh
dt

= ṁsupCpa(Tai,h − Th)− ṁw,hCpw(Two,h − Twi,h) (5.10)
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And we can solve Th in a similar manner as

T t1h =
(ahT

t0
h + bh)e

a(t1−t0) − bh
ah

(5.11)

where ah = − ṁsupCpa

MhCh
, bh =

ṁsupCpaTai,h−ṁw,hCpw(Two,h−Twi,h)

MhCh
.

5.2 Model-based Metadata Inference Approach

In this section, we propose a model-based approach to infer the type of BAS

points. The underlying reasoning is that if we can find the label assignment (pre-

diction of the point types) that fits the model best, this assignment will most likely

be the correct assignment. This is related to the problem of system identification

where the mathematical models of dynamical systems are built based on observed

data from the systems [113]. However, instead of collecting data and picking the

“best” model from the model set based on data, we approach it the other way around

assuming we have known the model and we want to pick the “best” data with the

correct label assignment that fits the model. We describe this approach in detail as

follows.

Denote F as a set of models describing the physical process of the HVAC system.

For any model f ∈ F , we can implicitly define the model using the equation:

f(X,θ) = 0 (5.12)

whereX = (x1, · · · ,xn) represents n variables used in the model and θ represents

the relevant parameters. These n variables are distinct BAS points which can be
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labeled as

LX = (1, 2, · · · , n) (5.13)

Without loss of generality, we can represent the model explicitly as

x1 = g(X\x1 ,θ) (5.14)

where X\x1 = (x2, · · · ,xn).

Now, given m time series Z = (z1, · · · , zm) from m BAS points in one unit1, we

want to generate the labels for m time series, i.e., find which BAS points correspond

to these m time series. It is required that m ≥ n meaning the set Z should at least

include all the variables (BAS points) required in model f . We denote the label set

LZ = (Lz1 , Lz2 , · · · , Lzm) where one example could be

LZ = (1, 2, · · · , n, 0, · · · , 0) (5.15)

representing the first n time series in Z correspond to the labels (1, 2, · · · , n),

and the remaining (m − n) time series marked as 0 does not belong to any BAS

points in the label set LX for this model. It is worth mentioning that, because we

assume m BAS points are from the same unit and each point will have a different

label, the true label set L∗Z for these m time series will be a re-ordered version of

LZ , or a permutation of the original sequence.

Our goal is to find the true label set L∗Z for time series data Z. We argue that

if the time series data with correct labels are identified, the model should fit the

1Here we assume we have identified BAS points that are in the same unit (e.g. AHU) but have
not recognized the identity of each point. We further assume that there are no redundant BAS
points in the unit and each point will have a different label.
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data “better” compared to the data with incorrect labels. Notice we do not fit data

to models, but rather the other way around by evaluating how well the model can

explain the data. The goodness of fit can be quantified using a fitness function.

Suppose we have found one set of labels LZ = (Lz1 , Lz2 , · · · , Lzm). We can extract

n time series Z̃ required by the model as

Z̃(LZ) = (z̃1, · · · , z̃n) (5.16)

=

(
m∑
i=1

zi1(Lzi = 1), · · · ,
m∑
i=1

zi1(Lzi = n)

)
(5.17)

which is a subset of permuted Z.

Notice that Z̃ is determined by the label set LZ . Using Equation 5.14, we can

predict z̃1 as

ẑ1 = g(Z̃(LZ)\z̃1 ,θ) (5.18)

If the label set LZ correctly depicts the true labels for Z, then ẑ1 should be very

close to z̃1. We use a fitness function h(z̃1, ẑ1) to evaluate how close they are (e.g.,

the goodness of fit). If a large value of h indicates more similarities, the problem is

converted to finding

L̂∗Z = arg max
LZ

h (z̃1(LZ), ẑ1(LZ)) (5.19)

by iterating over all possible permutations LZ .

Theoretically, we need to iterate m!
(m−n)! times as there are m!

(m−n)! different ways

to arrange label sequences (label assignments) for LZ ; in practice, we might know
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which permutations are infeasible, so we can rule out some sequences. For example,

if we know the true label for z1 is 1, all label assignments that are not labeling z1

as 1 can be eliminated. Hence, we can focus on the permutations which have the

labels for points we are uncertain about.

An example from the mixing box

To better understand the model-based metadata inference approach, we provide

a simple example based on the mixing box. Here a mapping between the components

of the approach and the model can be seen in Table 5.2. The model f and variables

X are explained in the first two rows. Notice that this model is quite simple, and

we do not have parameters θ associated it with. The corresponding label set and

the names for the variables X are specified. We further convert the model from the

implicit form to the explicit form regarding one variable x5.

Approach Mixing Box Model

f(X,θ) = 0
Tret − Tmix
Tret − Tout

− ṁout

ṁsup

= 0

X (ṁout, ṁsup, Tout, Tret, Tmix)
θ φ
LX (1, 2, 3, 4, 5)

LX name (OAF, SAF, OAT, RAT, MAT)
x5 Tmix

x5 = g(X\x5 ,θ) Tmix =
ṁout

ṁsup

Tout + (1− ṁout

ṁsup

)Tret

Z (z1, z2, z3, z4, z5)
LZ (?, ?, ?, ?, ?)

Table 5.2: A mapping between the element in the approach and the mixing box model

Now, given time series data Z from five sensors shown in Figure 5.3, we need

to find the corresponding true label set LZ for these five sensors. To achieve that,

suppose we generate two possible label assignments (1, 2, 3, 4, 5) and (1, 2, 3, 5, 4) as

is seen in Table 5.3. If we can find which one of these two has a higher probability of
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Figure 5.3: An example of raw time series plots from five sensors in the mixing box

being the correct label set, then we can theoretically iterate all possible permutations

(a total of 5! = 120 permutations) and identify the most probable correct assignment.

For illustration purpose, let us assume we are certain about z1, z2, z3 being (1-OAF,

2-SAF, 3-OAT), and we do not know the label assignments for z4, z5. We evaluate

both assignments and use the fitness function h to find out which one is more

probable. The third row in Table 5.3 is the process of extracting the necessary BAS

points for the model-based on the label assignment LZ . The fourth row is to predict

ẑ5 using the rest variables following Equation 5.3. Then we evaluate how close is

the predicted variable ẑ5 to the true value z̃5 using a fitness function h.

In this case, we use R2 score as the fitness function, which is also known as the

coefficient of determination and measures the proportion of the total variance of the

dependent variable (true value) explained by the model (predicted value). Denote
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Label Assignment 1 Label Assignment 2
L
(1)
Z = (1, 2, 3, 4, 5) L

(2)
Z = (1, 2, 3, 5, 4)

Z̃(L
(1)
Z ) = (z̃1, z̃2, z̃3, z̃4, z̃5) = (z1, z2, z3, z4, z5) Z̃(L

(2)
Z ) = (z̃1, z̃2, z̃3, z̃4, z̃5) = (z1, z2, z3, z5, z4)

ẑ5(L
(1)
Z ) =

z̃1
z̃2
z̃3 + (1− z̃1

z̃2
)z̃4 ẑ5(L

(2)
Z ) =

z̃1
z̃2
z̃3 + (1− z̃1

z̃2
)z̃4

h
(
z̃5(L

(1)
Z ), ẑ5(L

(1)
Z )
)

= 0.80 h
(
z̃5(L

(2)
Z ), ẑ5(L

(2)
Z )
)

= 0.62

Table 5.3: An evaluation process for two label assignments

z̃ as the true value and ẑ as the predicted value, it is defined as:

hR2(z̃, ẑ) = 1− ||z̃− ẑ||2

||z̃− z̄||2
= 1−

∑
i(z̃i − ẑi)2∑
i(z̃i − z̄)2

(5.20)

where z̄ =
1

n

∑n
i=1 z̃i.

The R2 score indicates how well the model fits the data (the higher, the better).

As we can see in the last row of Table 5.3, the label assignment 1 has a higher value

compared with label assignment 2. Hence, it is more likely the label assignment 1 is

correct, which is aligned with the ground truth where we use “RAT” (z4) to predict

“MAT” (z5). Meanwhile, in assignment 2 we use “MAT” (z5) to predict “RAT” (z4).,

which is not aligned with the model and gives us a smaller R2 score. The predicted

results from two label assignments can be seen in Figure 5.4. If the prediction is

perfect, we should see a straight line y = x. However, due to many impacting

factors (e.g., data collection errors, noise and disturbances to the sensor hardware,

the limitations of the model, etc.), we are only seeing a linear trend indicating the

model approximately captures the behavior of these sensors.

As we have demonstrated that the proposed physical model-based inference ap-

proach can classify BAS points using a simple example, we now proceed to validate

the hypothesis that the approach can help the inference task on larger datasets.
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Figure 5.4: An example showing how MAT is recognized against RAT, the left figure shows
the R2 score of actual mix air temperature versus predicated values, the right figure shows
R2 score of actual return air temperature versus incorrectly predicated values

5.3 Data

Attempting to test the hypothesis using real-world time series data directly could

be challenging as we have limited control of the process that generates the data.

Various issues could occur during the data collection process, including but not

limited to gaps in the data, out of range readings, inconsistent sampling rates,

sensor faults leading to biased values, noisy external conditions, etc. There are

remedies to some of the issues (e.g., outliers could be corrected based on statistical

methods and domain knowledge; downsampling or upsampling could be applied to

convert the sampling rate of the data, etc.). However, these solutions are providing

approximations to the original time series sequence and might distort the original

data reflecting the physical process. Additionally, many other issues associated with

the real-world data remain to be addressed.

To rule out such variation due to the quality of data and focus on the underlying

physical process, we study how the proposed model-based metadata inference ap-

proach performs on simulation data first. Then, we further evaluate the approach on

real-world datasets. In this section, we begin by describing both of these datasets.
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5.3.1 Simulation Data

A simulation tool will be used to generate synthetic measurement data for the

variables used in the physical models. There are several software packages available

for HVAC simulations including EnergyPlus [114], MATLAB-Simulink 2, HVAC-

SIM+ [115], TRNSYS [116], and Dymola [117]. All these software packages use

differential equations to describe the underlying thermodynamic processes of the

HVAC system. The differences between these packages are the scope and the details

they include in the model for each component. For example, EnergyPlus concen-

trates on modeling energy consumption and water use in buildings and can generate

the energy usage patterns of HVAC components while HVACSIM+, TRNSYS, and

Dymola focus on the thermal dynamics perspectives of the modeling considering

heat balance, mass balance and flow balance. In our study, we are more interested

in the thermodynamics of the system, and Dymola is used. Dymola has gained

popularity in the simulation community as it is based on the simulation language

Modelica [118] and has been widely used to model complex dynamic systems. There

are also many open-source Modelica libraries available as well, e.g., Buildings library

maintained by LBL [119].

In our particular simulation model, a 12-story large office building with the

floor area of 498,588 ft2 is used as the testbed, which is one of DOE reference

buildings [120]. The model has been tunned following the standards and building

codes required by the city of Chicago. This model was run for one week under three

different weather conditions including spring, summer, and winter. The simulation

was repeated with and without control strategies applied to the building, which

eventually produces results of six runs where each run corresponds to one-week long

2https://www.mathworks.com/products/simulink.html
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simulation for the building. Each building has three AHUs located in the bottom,

the middle and the top section of the building. In total, we have 18 instances that

can be used for our study. The simulations are internally run at the one-second

resolution, and the data are only recorded when there is a change. We then sample

all the data to a one-minute resolution to conduct the analysis.

Table 5.4 summarizes the simulation dataset to be used including the BAS points

required in each model of the AHU. In addition to the points initially required by

three models (mixing box, cooling, and heating coil), we also include the BAS points

that are easily confused using data-driven models, as is seen from the confusion

matrix in Figure 4.10. For example, “SAT” and “RAT” are often confused; “HW

VLV / ChW VLV” and “SF SPEED” are often confused. We include the additional

points to find out whether the physical model-based approach can discriminate the

confused pairs.

Model # of instances BAS points used in each AHU
Mixing box 18 OAF, SAF, SAT, MAT, OAT, RAT
Cooling coil 18 CLC AIR InT, CLC AIR OutT, CLC WA-

TER InT, CLC WATER OutT, ChW VLV,
SAF, SF SPEED

Heating coil 18 HTC AIR OutT, HTC WATER InT, HTC
WATER OutT, HW VLV, ChW VLV, SAF,
SF SPEED

Table 5.4: A summary of the simulation dataset to be used

5.3.2 Real-world Data

For our real-world testbed, We use the same dataset that is described in Sec-

tion 3.3. However, to make sure one unit contains all the BAS points required by

the models, we have to eliminate many AHUs from our original dataset. For the

mixing box, we can extract 32 AHUs that include all five sensors required by the
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mixing box model. For the cooling coil and heating coil, it is not common for the

real buildings to record the air temperature before and after the coil, especially the

air temperature before the cooling coil and after the heating coil. As a result, we

relax the condition when selecting AHUs. We keep the AHU as long as it has all

the required points by the model except for the air temperature before and after the

coil. Since the model requires the air temperature measurements around the coil,

we will use other temperature sensors to approximate the measurements, which will

be discussed in the next section. Additionally, to make sure we have enough test-

ing examples, we divide one-year-long data into 12 months and treat them as 12

different instances.

Table 5.5 summarizes the real-world dataset to be used including the BAS points

required in each model of the AHU. Similar to the simulation data, we also include

additional measurements that are easily confused in the data-driven models.

Model # of instances BAS points used in each AHU
Mixing box 384 OAF, SAF, SAT, MAT, OAT, RAT
Cooling coil 96 MAT, SAT, CLC WATER InT, CLC WA-

TER OutT, ChW VLV, SAF, SF SPEED
Heating coil 12 MAT, SAT, HTC WATER InT, HTC WA-

TER OutT, HW VLV, ChW VLV, SAF, SF
SPEED

Table 5.5: A summary of the real-world dataset to be used

5.4 Experiments
In this section, we describe the experiments conducted to evaluate the capabili-

ties of physical model-based approaches. We specifically explore how the approach

can help classify the confused point types from the confusion matrix in Figure 4.10.

Similar to the example provided earlier in Section 5.1, we assume we have recognized
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the BAS points that belong to the same unit, and we know the labels (the point

type) for some of the points. We want to infer the type information of the remaining

BAS points that have not been labeled. To achieve that, we assign possible labels to

these BAS points. For each assignment, we apply the model to the data to generate

the predicted values based on the labels. Then we evaluate the goodness-of-fit of

the model-based on a fitness function by comparing the predicted values with the

true values. The label assignment that gives the best fit will be the predicted label

for these BAS points.

In addition to R2 score used in the simple example in Section 5.1, other fitness

functions h will be used as well. Jf we denote the predicted variable as ẑ and the

true value as z̃ (ẑ, z̃ ∈ Rn), then we have the following fitness functions:

1. DTW: Dynamic time warping for measuring similarity between two temporal

sequences [121] is used, and the Euclidian distance measure is selected to find

the warping path.

2. MAE: Mean absolute error loss defined as hMAE =
1

n

∑
i |z̃i − ẑi|.

3. MSE: Mean squared error loss defined as hMSE =
1

n

∑
i(z̃i − ẑi)2.

4. MedAE: Median absolute error loss defined as hMedAE = median(|z̃1 −

ẑ1|, · · · , |z̃n − ẑn|).

Notice that these four fitness functions will produce a smaller value if the model

fits the data well (the predicted values are close to the true values). Hence arg min

will be used to select the best label assignments instead of arg max.

Armed with these metrics, we now describe the experiments on mixing boxes,

cooling coils and heating coils to recognized different point types.
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1. Mixing Box: classify different temperature sensors

In the mixing box model, we assume we have recognized “SAF, OAF, OAT”

but not “MAT” or “RAT”. In other words, for each unit i, we have two time

series z(i)1 and z
(i)
2 and we want to find out which one is “MAT” and which one

is “RAT”. First, we assume z
(i)
1 is “MAT” and z

(i)
2 is “RAT”, and we use the

model to produce the predicted “MAT” using z
(i)
2 following Equation 5.3. By

comparing predicted “MAT” with z
(i)
1 using the fitness function, we can get a

scalar measuring the goodness-of-fit of this assignment. Now we assume z
(i)
1

is “RAT” and z
(i)
2 is “MAT”, and we predict “MAT” using z

(i)
1 and compare it

with z
(i)
2 using the same fitness function to get another scalar. By comparing

these two scalars, we can conclude which label assignment is more probable.

We repeat this step for a total ofM units (the second column in Table 5.4 and

Table 5.5) and count the number of units where we can generate the correct

assignment. The performance is reported using accuracy.

In addition to recognizing the pair “MAT” versus “RAT”, we also recognize

the pair “RAT” and “SAT” following the same logic. The difference is that we

assume we know the labels for “SAF, OAF, OAT, MAT’ but not for “RAT” or

“SAT”.

2. Cooling Coil: classify cooling coil valve versus supply fan output

In the cooling coil model, we assume we know the labels for all the points

in each unit except those for “ChW VLV” and “SF SPEED”. As is mentioned

earlier, it is not commonplace for cooling coils in AHUs to have “ CLC AIR

InT, CLC AIR OutT”. Hence, we will use “MAT” to approximate “CLC AIR

InT”, which can be a reasonable estimation when there is no heating coil for
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the unit. We also use “SAT” to approximate “CLC AIR OutT” since they are

close and there is not much heat exchange happening between the cooling coil

air outlet and the supply air section, as is seen from the schematic diagram

of the AHU in Figure 5.2. Notice that this is a decision we make due to the

constraint of the data we have access to and, in practical use, we would suggest

to instrument the necessary hardware if a very accurate model is desired.

Similar to the mixing box model, we calculate the predicted “CLC AIR OutT”

following Equation 5.6 using “ChW VLV” and “SF SPEED”, respectively. We

are expecting that “ChW VLV” can generate a better prediction then “SF

SPEED”. Notice there are parameters we need to choose to use the model to

make the predictions. Table 5.6 shows the values we choose for these param-

eters θ.

Parameter Value
Cpa 1.005 kJ/(kg◦C)
Cpw 4.1865 kJ/(kg◦C)
∆t 15 min / 1 min
Mc 10 kg
Cc 0.91 kJ/(kg◦C)
ṁmax
w,c 0.38 kg/s

Mh 10 kg
Ch 0.91 kJ/(kg◦C)
ṁmax
w,h 0.38 kg/s

Table 5.6: The parameters for the cooling coil and heating coil model

Among all these parameters, Cpa and Cpw are specific heat for air and water

with fixed values. The simulation time step ∆t is set to be 15 minutes for the

real-world data and 1 minute for the simulation data. For the parameters of

cooling coils, the values should change for different units. However, as we do

not have access to the design specification of each coil, we choose the values
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empirically following the 4-row coil definition in [93] for all simulations. The

same values are also used for the simulation of a heating coil. Utilizing data

to estimate these parameters is left future work.

3. Heating Coil: classify heating coil valve versus supply fan output

In the cooling coil model, we assume we know the labels for all the points

in each unit except those for “HW VLV” and “SF SPEED”. In the real-world

dataset, we also do not have “ HTC AIR InT, HTC AIR OutT”. We can

reasonably approximate “ HTC AIR InT” using “MAT”. However, the unit that

has a heating coil also has a cooling coil, and there are no sensors instrumented

to measure the air side temperature before the cooling coil after the heating

coil. As a compromise, we assume the cooling coil has little impacts on the

temperature change, and we use “SAT” to approximate “HTC AIR OutT”.

Similarly, we use the model to predict “HTC AIR OutT” following Equa-

tion 5.10 using the parameters in Table 5.6. In addition to recognizing the

pair “HW VLV” versus “SF SPEED”, we also try to recognize the pair “HW

VLV” versus “ChW VLV” following the same logic.

5.5 Validation Results

5.5.1 Simulation Data

We are using the accuracy to measure the performance of the physical model-

based approach to recognize point types. Table 5.7 shows the results for different

scenarios with distinct fitness functions when using the simulation data. As we can

see, the median absolute error and the mean absolute error perform better in all five

tasks, being able to achieve an accuracy range from 78% to 100%.
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R2 DTW MAE MSE MedAE
MAT vs RAT 1.00 1.00 1.00 1.00 1.00
RAT vs SAT 0.72 0.50 1.00 0.72 0.83
ChW VLV vs SF SPEED 0.61 0.61 0.78 0.61 0.89
HW VLV vs SF SPEED 1.00 1.00 1.00 1.00 1.00
HW VLV vs ChW VLV 0.94 0.94 0.94 0.94 1.00

Table 5.7: Classification accuracy summary of different models using different metric func-
tions with simulation data

To get a sense of how this approach differs from the existing approaches utilizing

descriptive statistics, we calculate the mean and standard deviation of 18 mixed

air temperature sensors and 18 return air temperature sensors and plot them in

Figure 5.5 with different colors. Each point in the figure represents either “RAT”

or “MAT”. Using statistical quantities, two different types of sensors are separable

in most cases. However, there are still points which are not distinguishable using

statistical features, as is seen in the lower bottom section of the figure where two

“MAT” sensors are treated as “RAT” sensors if these two statistical quantities are

used. However, these points can be recognized correctly using the physical model-

based approaches.
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Figure 5.5: Scatter plot of mix air temperature sensors and return air temperature sensors
in 2D using mean and standard deviation
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To understand the predictive power of the model, Figure 5.6 shows the time series

plots of the predicted value versus the actual values for the cooling coil outlet air

temperature. The predicted values are almost the same as compared to the actual

values, indicating the model can generate one variable based on other variables. The

predictive power of the model-based on other associated variables is the essential

reason that helps us to produce the label assignments correctly for the points.
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Figure 5.6: Time series plots of predicted values and actual values using simulation data

We now examine how each model performs using the real-world data in the next

subsection.

5.5.2 Real-world Data

Table 5.8 shows the accuracy for different models using each of the fitness func-

tions for the real-world dataset. As we can see, overall, the highest accuracy can

be achieved when we use R2 as the fitness function to discriminate different point

types. It has yielded the highest accuracy for three out of five models. The accuracy

87% in the first row suggests that we can recognize the types being “MAT” or “RAT”

correctly from time series data 87% of the time among 384 testing instances. It is

worth pointing out this model does not rely on the training data of other “MAT”

or “RAT”. Instead, we are using the information from other BAS points related to
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these sensors to identify them. The identity is defined based on the relationship of

this BAS point with other BAS points instead of solely depending on the patterns

of the time series data.

R2 DTW MAE MSE MedAE
MAT vs RAT 0.87 0.59 0.64 0.56 0.77
RAT vs SAT 0.65 0.63 0.69 0.65 0.73
ChW VLV vs SF SPEED 0.75 0.66 0.81 0.75 0.83
HW VLV vs SF SPEED 0.83 0.67 0.83 0.83 0.75
HW VLV vs ChW VLV 0.83 0.75 0.83 0.83 0.75

Table 5.8: Classification accuracy summary of different models using different metric func-
tions with real-world data

We also observe that MedAE performs better in recognizing “RAT versus SAT”

and “ChW VLV versus SF SPEED”. One explanation is that the median absolute

error only considers the median error loss, which is more robust to outliers and the

data with extreme values. This could be the case for classifying “RAT versus SAT”

and “ChW VLV versus SF SPEED” where the R2 score is not performing the best.

Mixing Box

We further examine what are the values of metrics when different label assign-

ments are made for the mixing box from one unit. Figure 5.7 shows the scatter

plots of the true values versus the predicted values from three label assignments

including when we assign the label correctly (base), when we confuse “MAT” with

“RAT” (A1), and when we confuse “RAT” with “SAT” (A2). Since the base one is

generated from the true label assignments, when the highest R2 score is associated

with it, this indicates we have produced a correct label assignment, i.e., recognizing

the point types correctly from the confused pairs. The negative R2 scores indicate

the model fits the data poorly and produces a larger sum of squares of residuals

than the total sum of squares. This can happen when we force the data to follow a

125



Chapter 5. A Physical Model-based Approach

certain linear model where we do not have an intercept term, which is the case in

our mixing box model. It could also happen when the model is nonlinear, which we

will see in the coil models.
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Figure 5.7: Scatter plots for three label assignments of mixing box where the highest R2

score represents the most probable assignment. The base one is the correct assignments;
A1 and A2 are generated based on two incorrect label assignments

Figure 5.8 shows the scatter plots from three label assignments for another unit.

We encounter negative R2 scores for all three assignments and the one with the

highest score is not the base one, indicating the model makes an incorrect assign-

ment. To understand why the model makes an incorrect assignment, we plot the

raw time series for the sensors in this unit in Figure 5.9.

10 15 20 25 30
predicted value [C]

14

16

18

20

22

24

26

28

tru
e 

va
lu

e 
[C

]

DTW      149.99
MAE        4.77
MSE       30.81
MedAE      5.58
R2        -7.68

correct assignment (base)

10 15 20 25
predicted value [C]

16

17

18

19

20

21

22

23

24

tru
e 

va
lu

e 
[C

]

DTW      69.11
MAE       2.49
MSE       9.44
MedAE     1.78
R2       -2.74

label assignment 1 (A1)

10 15 20 25
predicted value [C]

14

16

18

20

22

24

26

28

tru
e 

va
lu

e 
[C

]

DTW      66.81
MAE       2.91
MSE      11.15
MedAE     2.71
R2       -2.14

label assignment 2 (A2)

Figure 5.8: Scatter plots for three label assignments of mixing box with incorrect inference
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Figure 5.9: Raw time series plots of points in the mixing box with incorrect inference

As we can see from the raw time series, “SAF” and “OAF” turn into 0 during

night hours. This can happen when the outdoor air damper is completely closed,

and there is no air flowing in the AHU duct. This is not common in our dataset

as most HVAC systems maintain a minimum amount of air flowing even during the

night time when the HVAC system is shut down, e.g., there is no fan running, and

the cooling/heating valves are closed while the natural ventilation is on. When the

flow rates are 0 during the night, our physical model does not hold anymore. Let

us revisit the model for the mixed air temperature:

Tmix =
ṁout

ṁsup

Tout + (1− ṁout

ṁsup

)Tret (5.21)
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Figure 5.10: Scatter plots for the model after removing 0 values from the flow rate mea-
surements

When “SAF” and “OAF” are 0, the ratio
ṁout

ṁsup

is not defined, which leads to

the abnormal behaviors of the model. In our implementation, we let Tmix = Tret

as long as ṁsup = 0, and Tmix = Tout if ṁret = 0 and ṁsup 6= 0. However, such an

approximation might still not reflect the actual behavior. Hence we further ignore

all the time steps where the flow rates are 0 and only use the data during the daytime

when there is air flowing. The resulting data is shown in scatter plots in Figure 5.10.

As we can see the R2 score is still negative, but the base assignment has a higher

score than A1 assignment.

Cooling Coil

For the cooling coil model, we only consider two assignments where the base

represents the true label assignment, and A1 represents the case when we confuse

“ChW VLV” with “SF SPEED”. Figure 5.11 shows the scatter plots of these two

scenarios. As we can see, the predicted values based on “ChW VLV” fit the model

better than that of “SF SPEED”, which is justified by each one of the five metrics.

Figure 5.12 also shows four scatter plots when incorrect assignments are pro-

duced. Although the difference between R2 scores is subtle, the two examples shown
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Figure 5.11: Scatter plots for two label assignments of cooling coil where the highest R2

score represents the most probable assignment. The base one is the correct assignments;
A1 is generated based on incorrect label assignments.

in the figures suggest that the physical model can sometimes fail. To understand

why in Figure 5.13 we also plot the raw time series for one unit where the incorrect

assignments are made.

As we can see “ChW VLV” and “SF SPEED” indeed have similar patterns and

ranges based on time series data, which leads to the similar predicted values for

“CLC AIR OutT” and further similar R2 scores. To understand why the similar

predicted values are generated, notice “CLC AIR OutT” or Tc for the next timetick

is calculated based on
dTc
dt

and Tc at the current timetick. When “ChW VLV” and

“SF SPEED’ are used to predict “CLC AIR OutT” respectively, the same initial

value T t0c is provided and the variable that affects the Tc is
dTc
dt

defined as:

dTc
dt

= −ṁsupCpa
McCc

Tc +
ṁsupCpaTai,c − ṁmax

w,c uc
2 · Cpw(Two,c − Twi,c)

McCc
(5.22)

In the base case, the correct values of “ChW VLV” are fed into uc to calculate
dTc
dt

(base); and in the case of A1, the values from “SF SPEED” are fed into uc to

calculate
dTc
dt

(A1). As the predicted values of Tc is affected by
dTc
dt

, we plot how
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Figure 5.12: Scatter plots of two examples for points in cooling coil with incorrect inference

this quantity changes over time for two label assignments in Figure 5.14a. It is clear

that both assignment have very similar gradient values over time. If we further

plot
dTc
dt

(base) against
dTc
dt

(A1) in Figure 5.14b, we can clearly see a straight line.

Such a high similarity of
dTc
dt

for two label assignments is the main reason that the

physical model fails to recognize points of different types.

Heating Coil

Figure 5.15 shows the scatter plots of the true values versus the predicted values

from three label assignments including when we assign the label correctly (base)

when we confuse “HW VLV” as “SF SPEED” (A1), and when we confuse “HW

VLV” as “ChW VLV” (A2). The base one having the highest R2 is the correct
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Figure 5.13: Raw time series plots of points in the cooling coil with incorrect inference
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Figure 5.14: Time series and scatter plots of dTdt for two label assignments

assignment.

Figure 5.16 shows the scatter plots for another unit when the incorrect assign-

ments are made. These three scatter plots do also have similar patterns. Hence we

plot the raw time series of eight BAS points for this unit in Figure 5.17. As is seen

131



Chapter 5. A Physical Model-based Approach

10 15 20 25
predicted value [C]

10.0

12.5

15.0

17.5

20.0

22.5

25.0

tru
e 

va
lu

e 
[C

]

DTW      78.40
MAE       2.74
MSE      12.87
MedAE     2.22
R2       -0.12

correct assignment (base)

10 15 20 25
predicted value [C]

10.0

12.5

15.0

17.5

20.0

22.5

25.0

tru
e 

va
lu

e 
[C

]

DTW      74.36
MAE       2.74
MSE      13.00
MedAE     2.17
R2       -0.14

label assignment 1 (A1)

10 0 10 20
predicted value [C]

10.0

12.5

15.0

17.5

20.0

22.5

25.0

tru
e 

va
lu

e 
[C

]

DTW      148.82
MAE        2.97
MSE       20.16
MedAE      2.14
R2        -0.76

label assignment 2 (A2)

Figure 5.15: Scatter plots for three label assignments of heating coil where the highest R2

score represents the most probable assignment. The base one is the correct assignments;
A1 and A2 are generated based on incorrect label assignments

in the figure, “HW VLV”, “SF SPEED” and “ChW VLV” do have similar patterns

and range, which make them indistinguishable sometimes. We could also reason

similarly by computing
dTh
dt

for three different labels assignments.
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Figure 5.16: Scatter plots for three label assignments of heating coil with incorrect inference

Meanwhile, we notice even in the case of a correct assignment of the model, a

negative R2 score is generated. The negative R2 score is because the model being

used is based on a non-linear differential equation, which could generate predictions

worse than a straight line of the average of the true values. Another reason is that

we use ‘SAT” to approximate “HTC AIR OutT” which might not be valid in many

cases. For example, we assume this could be true during the winter when the chilled
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Figure 5.17: Raw time series plots of points in the heating coil with incorrect inference

water valve is fully closed. However, as is seen in Figure 5.17, the chilled water valve

can still be open even during the winter. Additionally, we only have one unit from

the real-world dataset. The observation and conclusion from this specific heating

coil might not also hold for other heating coils.

5.6 Discussions and Limitations
The physical model-based approach has been demonstrated to be feasible to

infer the type of BAS points in AHUs. One advantage is that we do not require

training data the same way as data-driven models. In other words, the identity of

certain time series is determined by the relationship with other time series in the

same unit, instead of being determined by other times series of the same type from

different units. This poses some advantages as the time series of the same type from

different units might have very different patterns, but the relationships of points in
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the same units will be largely dictated by physics. This can potentially complement

the data-driven models where we first infer the BAS points which we are certainly

based on the probability interpretation, and for the points we are uncertain about,

we can utilize physical models to discriminate them. Furthermore, when the model

fails, we can reason based on physical principles, e.g., whether the assumptions of

the model holds, whether the model can describe the actual system, whether certain

time series are distinguishable using time series data alone, etc.

However, this approach does have limitations such as the following:

• It needs prior knowledge of which sensors are in the same unit. This will not

be a problem when such information can be derived based on tags. For exam-

ple, as is seen earlier in Table 1.3, the points which are in the same unit may

have the same prefix. However, for some other units with uncommon naming

conventions for tags, such information might not be able to be extracted. The

metadata inference approaches to derive the equipment and location informa-

tion [51, 52, 53, 44, 54] could potentially be used.

• It needs to assume a portion of BAS points has been labeled to infer the

remaining unknown points, which helps reduce the possible permutations of

label assignments. The need of labeled points is from the practical implemen-

tation perspectives as it reduces the complexity of the approach and improves

the confidence level of the results.

• It needs to make sure the BAS has all the variables required by the models.

Otherwise, we either disregard the model or approximate the required vari-

ables in the model. The approximation could impact the performance of the

approach, which can be seen in the heating coil and cooling coil examples.
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• It needs to use the additional parameters, for example, the design maximum

flow rate, the size and the dimension of the cooling/heating coil. It takes the

effort to collect these data and sometimes they are even unavailable. When

we make some assumptions and set the value heuristically, the model might

not reflect the actual system behavior.

5.7 Conclusion
In this chapter, we extend the existing work of metadata inference approaches

by introducing a new approach based on physical models. The approach has been

tested and validated on both the simulation data and the real-world data to infer

the types of BAS points inside the mixing box, the cooling coil and the heating coil

of an AHU. The resulting accuracy ranges from 73% to 100% regarding classifying

the easily confused types in data-driven approaches. Using the physical models,

we can understand how the data values of BAS points are generated and how the

relationship among points can help the identification task. We can further diagnose

the model when it makes incorrect label assignments.

The physical model-based approach has its limitations as it relies on the informa-

tion from BAS points that are known to be functionally tied together by a specific

building system. To address this limitation, a promising future direction to work on

is to integrate the physical model-based approach with the data-driven approaches,

which may generate more metadata information to facilitate the deployment of FDD

applications. Additionally, some other future directions could be studied including

making use of virtual sensing technology to approximate some values which are

not available in BAS but are required by the models, and development of grey-box

models to estimate the model parameters from the data.
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Conclusions

In this dissertation, we focus on the use of time series data obtained from sensors and

actuators in buildings to infer the associated metadata information. In particular, we

develop a metadata inference framework to provide operational information support

such that the manual efforts to acquire this required information can be reduced

by computerized algorithms based on metadata inference approaches. This will

decrease the cost of deploying FDD applications on multiple buildings and further

bring more benefits to building managers. Moreover, it is important to note that

metadata inference is not only useful as a one-time effort, since it can also be used

to verify and re-tune metadata throughout the life of the building and may even be

used for security purposes (i.e., to ensure that the reported time series values are

behaving as expected) if one is concerned with unauthorized tampering with the

BAS.

The main conclusions of this thesis are briefly outlined below.

1. Understanding the required BAS points and associated metadata for

FDD approaches in secondary HVAC systems guides the metadata

136



6.0.

inference task.

(a) The most commonly required BAS points by FDD algorithms are iden-

tified, of which six points in AHUs are used by more than 30% of FDD

approaches including sensors monitoring supply air temperature, outside

air temperature, chilled water valve position, return air temperature, sup-

ply air flow rate, and mixed air temperature. These identified BAS points

provide guidance regarding what metadata should be inferred using the

metadata inference approaches.

(b) Data-driven models are more prevalent which occupies 62% of total ap-

proaches reviewed (68 out of 110), and 82% of developed FDD approaches

(90 out of 110) can be applied to AHUs.

(c) The overall distributions of frequent point types existing in BASs and

required by FDD approaches are similar where they share the same 12

out of 20 types. The identified BAS points for different FDD approaches

can help building managers to select which approaches are applicable to

the buildings being managed. It also provides guidance regarding what

hardware should be instrumented if FDD applications are desired for a

specific building.

2. The existing metadata inference approaches can be generalized to

multiple building sites.

(a) The average performance of these approaches in terms of accuracy is sim-

ilar across building sites, though there is a variance for different building

sites given the difference in the points distribution.
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(b) The expected accuracy of classifying the type of points required by a

particular FDD application (APAR) for a new unseen building is, on

average, 75%.

(c) The performance of the metadata inference approach does not decrease

as long as training data and testing data are extracted from adjacent

months.

(d) The coverage and tolerance accuracy based on probabilistic interpreta-

tions can provide useful information to building operators and managers

who need to label BAS points in buildings, as they can trust the predic-

tions with high probabilities and reduce the searching scope to focus only

on the points which have uncertain predictions from the model.

3. A physical model-based metadata inference approach can comple-

ment existing data-driven models and provide physical interpreta-

tions in the case of incorrect metadata being inferred.

(a) The approach can demonstrate how the data values of BAS points are

generated and how the relationship among BAS points in the same unit

can affect each other based on physical principles.

(b) The approach has shown its capabilities to discriminate the BAS points

that are easily confused in data-driven based metadata inference ap-

proaches.

(c) Diagnosis can be conducted on the approach when an incorrect prediction

of the metadata is produced.

(d) The approach is developed based on the physical principles which do not

require the training data.
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Despite all these positive findings, this line of research work is still far from fully

minimizing the cost of implementation for FDD applications. The work presented

in this dissertation serves as a starting point for different new avenues of research,

including:

1. There is a need to evaluate tag-based approaches, as well as active approaches

to infer the required metadata in large scale in addition to time series based

approaches.

2. A study to quantify the economic gain and benefits of using metadata inference

approaches when implementing FDD applications in real buildings is needed.

3. Simulation models for buildings could be used to generate datasets in a con-

trolled environment for the study of metadata inference approaches. This

clean dataset can be further corrupted to resemble real-world data, but allow-

ing one to control for many of the uncontrollable variables such as the presence

of faults in the training datasets.

4. The physical model-based approach could be combined with the data-driven

models to build a grey-box model to improve the capabilities and limitations

of existing approaches.

5. A user-friendly interface could be developed to bridge the metadata being

inferred and the implementation of FDD applications.
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Appendix A

Identified BAS points

A.1 BAS points in AHUs

Table A.1: List of points related to the AHU

Group Point Name Description

Temperature SAT supply air temperature

OAT outside air temperature

RAT return air temperature

MAT mixed air temperature

EAT exhaust air temperature

ZAT air temperature of the zone supplied by AHU

directly

PHC AIR OutT preheating coil leaving water temperature

PHC WATER OutT preheating coil leaving air temperature

CLC AIR InT cooling coil inlet air temperature (air temp

before coil)
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CLC AIR OutT cooling coil outlet air temperature (air temp

after coil)

CLC WATER InT cooling coil inlet water temperature

CLC WATER OutT cooling coil outlet water temperature

HTC AIR InT heating coil inlet air temperature (air temp

before coil)

HTC AIR OutT heating coil outlet air temperature (air temp

after coil)

HTC WATER InT heating coil inlet water temperature

HTC WATER OutT heating coil outlet water temperature

Humidity SAH supply air humidity

OAH outside air humidity

RAH return air humidity

MAH mixed air humidity

CLC AIR InH cooling coil inlet air humidity (air temp be-

fore coil)

CLC AIR OutH cooling coil outlet air humidity (air temp af-

ter coil)

Flow SAF supply air flow rate

RAF return air flow rate

OAF outside air flow rate

CLD F cold duct air flow rate (dual duct AHU)

HT F hot duct air flow rate (dual duct AHU)

HTC AF heating coil air flow rate

ChW F chilled water flow rate
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HW F hot water flow rate

Air Pressure OA STATIC AP outside air static air pressure

RA STATIC AP return air static air pressure

SA STATIC AP supply air static air pressure

CO2 SA CO2 supply air CO2 level

EA CO2 exhaust air CO2 level

Occupancy OCC occupany ( to decide whether the AHU sys-

tem is in occupied mode or not)

Setpoint SAT SP supply air temperature setpoint

RAT SP return air temperature setpoint

HT AIRT SP hot duct air temperature setpoint (dual duct

AHU)

CLD AIRT SP cold duct air temperature setpoint (dual duct

AHU)

ZAT SP air temperature setpoint of the zone supplied

by AHU directly

MAT SP mixed air temperature setpoint

OAF SP outside air flow rate setpoint

RAF SP return air flow rate setpoint

SAF SP supply air flow rate setpoint

SA STATIC AP SP supply air static air pressure setpoint

Valve ChW VLV chilled water valve position

ChW VLV CMD chilled water valve position control command

HW VLV hot water valvle position
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PHT VLV preheat valve position

Damper OAD outside air damper position

EAD exhaust air damper position

MAD mixed air damper position

RAD return air damper position

Fan FAN SPEED fan speed of the AHU

HR FAN SPEED heat recover fan speed

RA FAN SPEED

CMD

return fan speed control command

SF SPEED supply air fan speed

SF SPEED CMD supply air fan speed control command

SF STATUS supply air fan status (ON/OFF)

RF SPEED return air fan speed

RF SPEED CMD return air fan speed control command

RF STATUS return air fan status (ON/OFF)

Electrical ChW PUMP POWER chilled water pump power

FAN POWER fan power

PUMP POWER pump power

RF POWER return air fan power

SF POWER supply air fan power

UNIT CURRENT unit current

UNIT POWER power consumption of whole unit

UNIT VOLTAGE unit voltage
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A.2 BAS points in Terminal Boxes

Table A.2: List of points related to the terminal box

Category Point Name Description

Temperature VAV POST RH T air temperature after reheat valve in vav

VAV PRE RH T air temperature before reheat valve in vav

VAV SAT supply air temperature out of VAV

VAV ZAT zone air temperature supplied by VAV

CAV SAT supply air temperature out of CAV (constant

air volume box)

Humidity VAV ZAH zone air humidity supplied by VAV

Flow VAV SAF vav supply air flow rate

VAV ZAF vav zone air flow rate

Air Pressure VAV SA STATIC AP vav supply air static pressure

VAV ZAP vav zone air pressure

Setpoint VAV COOL SP vav cooling temperature setpoint

VAV HEAT SP vav heating temperature setpoint

VAV ZAT SP vav zone air temperature setpoint

VAV SAF SP vav supply air flow rate setpoint

VAV SAF MAX SP supply air flow rate maximum setpoint

VAV SAF MIN SP supply air flow rate minimum setpoint

VAV ZAF SP zone air flow setpoint

VAV ZAF MAX SP zone air flow rate maximum setpoint

VAV ZAF MIN SP zone air flow rate minimum setpoint
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VAV SA STATIC AP

SP

supply air static air pressure setpoint

Valve VAV RH VLV vav box reheat valve position

Damper VAV DP vav damper position

A.3 BAS points in RTUs

Table A.3: List of points related to the RTU

Category Point Name Description

Temperature RTU RAT return air temperature

RTU EVP AIR InT evaporator air inlet temperature

RTU EVP AIR OutT evaporator air outlet temperature

RTU CLC WATER

InT

cooling coil water inlet temperature

RTU CLC WATER

OutT

cooling coil water outlet temperature

Humidity RTU RAH return air humidity

Electrical RTU FAN CUR-

RENT

fan current

RTU AC-

CONDENSER

COMPRESSOR

POWER

power consumption of the air conditioner

compressor from an RTU
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Appendix B

Supplement Materials of Large Scale

Evaluation

B.1 Implementation Details

In this appendix, we specifically talk about the implementation details for feature

extractions and the parameters for the classifiers. We mainly use numpy,pandas,

scikit-learn packages for all implementations.

B.1.1 Data Cleaning

Since different sensing points have distinct sampling intervals ranging from one

second to one hour, we re-sampled all the points to 15 minutes intervals using

padding by filling values forward. Specifically, this was implemented using the re-

sample function from the pandas package available for Python. A code snippet

for the re-sampling process can be seen below.

def extract_for_one_customer(this_customer, start_t, end_t, freq =

’15Min’, debug = False):
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base_time = pd.date_range(start_t,end_t,freq=freq)

ts_dim = len(base_time)

DataX = []

IgnoreX = []

Meta = []

for eq,pts in this_customer.items():

for pt,val in pts.items():

val = val.dropna().groupby(level=0).last()

if val.size != 0:

if debug:

print([eq,pt])

interpolated_data = val.resample(freq,

fill_method=’ffill’)[start_t:end_t]

if interpolated_data.size == ts_dim:

DataX.append(interpolated_data.values)

Meta.append([eq,pt])

else:

#skip the point if it does not have enough data

IgnoreX.append([eq,pt,interpolated_data])

return DataX,Meta,IgnoreX

Additionally, we removed samples if they either had unclear descriptions or ex-

hibited abnormal values. The specific rules for this are provided below:

• we remove the points if they are measuring humidity and contain negative

values;
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• we remove the points if they are measuring temperature and contain values

smaller than -50 or greater than 300;

• we remove points if their description of point points is just “Point”.

A code snippet for the data cleaning can be seen below.

# clean abnormal points

ix = [i for i in np.unique(np.where(X_raw < 0)[0]) \

if ’Humidity’ in pt_types[i]] +

[i for i in np.unique(np.where(X_raw < -50)[0]) or \

i in np.unique(np.where(X_raw > 300)[0]) \

if ’Temperature’ in pt_types[i]] +

[i for i in range(len(y_raw)) \

if ’Point’ in pt_types[i]] # remove points named ’Point’

X = np.delete(X, ix, axis=0)

y = np.delete(y, ix, axis=0)

df = df.drop(ix)

B.1.2 Features

We implemented 6 different types of features as is seen in Table 3.1. Additionally,

we combine all 6 features to generate the 7-th feature. The details of each feature

are described as follows:

• For “F1: Li et al. 1994” [74], we extract mean, variance and coefficient of

variation;

• For “F2: Gao et al. 2015” [42], in additional to what is described in the table,

we include the 2-nd to 4-th order of central moments of the data, as well as the
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entropy. The entropy is calculated by digitizing the data to 100 bins evenly if

it contains more than 100 discrete values.

• For “F3: Hong et al. 2015” [41], we use the exact features described in the

table.

• For “F4: Bhattacharya et al. 2015” [47], we use the exact features described

in the table.

• For “F5: Balaji et al. 2015” [40], we also use 100 bins to digitize the data when

calculating the entropy.

• For “F6: Koh et al. 2016” [49], we use the amplitude of the first three frequency

components.

• For “F7: Combination”, we simply combine all the previous features.

B.1.3 Classifiers

Seven classifiers are used, namely k-nearest neighbor (kNN), naive Bayes, logistic

regression, linear discriminant analysis (LDA), decision tree, random forest, and

AdaBoost. Both random forest and Adaboost use decision trees as the base classifiers

to build the ensemble classifier. We vary some parameters of those classifiers, but

we notice the performance is not significantly affected. We did also try SVM with

RBF kernel. Due to the long running time and low performance, we did not include

it in the results. For reference purpose, the following parameters are used for the

classifiers:
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classifier parameters
kNN k=3

Logistic C=1e5
Decision Tree max depth = 10
Random Forest max depth=10, number of estimators=20

AdaBoost max depth=10, number of estimators=100

Table B.1: The parameters used for different classifiers

B.2 Performance of Other Metrics

B.2.1 Macro F1 Score Matrix for Features and Classifiers

We show macro F1 score matrices for both strategies in Figure B.1, which have

the similar trend compared with accuracy score. However, the overall values are

smaller compared with micro F1 score (accuracy) due to a few classes with low

performance decreases the overall macro F1 score.
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Figure B.1: Macro F1 score matrix from two strategies

B.2.2 Macro AUC Score Matrix for Features and Classifiers

We show macro AUC score matrices for both strategies in Figure B.2, which

have the similar trend compared with accuracy score. Macro AUC is generated

by “averaging” over individual AUC calculated based on a “one versus all” binary
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classifier is built for each class. It shows a very high value, which is largely due to

the number of true negatives is pretty high.
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Figure B.2: Macro AUC score matrix from two strategies

B.2.3 ROC Examples

We show the ROC examples using“F7: Combination” and “Random Forest” for

both strategies in Figure B.3.
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Figure B.3: ROC examples from two strategies
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B.2.4 Single Class Metrics for Each Class

We show the precision, recall, F1 score, AUC and support using“F7: Combina-

tion” and “Random Forest” for both S1 and S2 in Table B.2 and Table B.3. The

column “support” represents the ratio of samples for the corresponding class.

precision recall F1 score AUC support
AHU_Heating_Valve_Command 0.63 0.43 0.51 0.939 0.016
AHU_Cooling_Valve_Command 0.66 0.63 0.65 0.962 0.057
AHU_Mixed_Air_Temperature_Sensor 0.49 0.44 0.46 0.911 0.058
AHU_Outside_Air_Temperature_Sensor 0.89 0.90 0.90 0.987 0.043
AHU_Return_Air_Temperature_Sensor 0.57 0.53 0.55 0.938 0.063
AHU_Discharge_Air_Temperature_Sensor 0.63 0.68 0.65 0.878 0.089
AHU_Discharge_Air_Temperature_Setpoint 0.78 0.62 0.69 0.942 0.033
AHU_Outside_Air_Humidity_Sensor 0.96 0.87 0.91 0.991 0.016
AHU_Return_Air_Humidity_Sensor 0.88 0.81 0.84 0.992 0.037
AHU_Outside_Air_Damper_Position_Command 0.35 0.24 0.29 0.888 0.009
AHU_Mixed_Air_Damper_Position_Command 0.11 0.01 0.01 0.804 0.002
Other 0.85 0.89 0.87 0.843 0.578

Table B.2: Precision, recall, F1 score, AUC and support for each class (S1)

precision recall F1 score AUC support
AHU_Heating_Valve_Command 0.04 0.01 0.01 0.916 0.020
AHU_Cooling_Valve_Command 0.51 0.52 0.51 0.956 0.057
AHU_Mixed_Air_Temperature_Sensor 0.48 0.49 0.48 0.936 0.057
AHU_Outside_Air_Temperature_Sensor 0.86 0.68 0.76 0.976 0.044
AHU_Return_Air_Temperature_Sensor 0.51 0.67 0.58 0.960 0.062
AHU_Discharge_Air_Temperature_Sensor 0.68 0.70 0.69 0.968 0.086
AHU_Discharge_Air_Temperature_Setpoint 0.89 0.86 0.87 0.980 0.039
AHU_Outside_Air_Humidity_Sensor 0.98 0.81 0.89 0.994 0.018
AHU_Return_Air_Humidity_Sensor 0.76 0.74 0.75 0.989 0.040
AHU_Outside_Air_Damper_Position_Command 0.00 0.00 0.00 0.925 0.015
AHU_Mixed_Air_Damper_Position_Command 0.00 0.00 0.00 0.763 0.002
Other 0.84 0.87 0.85 0.916 0.561

Table B.3: Precision, recall, F1 score, AUC and support for each class (S2)
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Appendix C

Supplement Materials of CNN

Approach

C.1 Implementation Details of Baseline Features
In this appendix, we specifically talk about the implementation details for four

feature extractions. We mainly use numpy,pandas, scikit-learn packages for all

implementations. Additionally, we combine all four features to generate the fifth

combined feature(combF). The details of each feature are described as follows:

• statF: The following statistical quantities are included namely minimum, me-

dian, mean, maximum, standard deviation, skewness, kurtosis, entropy (100

bins are used to digitize the data), 2/9/25/75/91/98-th percentiles, mode, and

coefficient of variation. Additionally, the signal energy, the slope, the first and

second variance of the difference between consecutive samples, the number of

up and down changes are also included.

• winF: We calculate 22 statistical features (statF) on N sliding windows of

length 4 with an overlapping of 2. Then another set of statistics including min-
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imum, median, maximum, and standard deviation are used over N windows,

which eventually produces the feature vector of length 88.

• tfaF: The fifth level of detailed wavelet coefficients based on “Harr” wavelets

are used. The amplitude of top 20 frequent components based on FFT is used

as well.

• dtwF: The Euclidean distance is used as the distance metric to calculate the

warping distance. Once calculated, a log scale will be applied to the original

calculated dynamic warping distance.

C.2 Performance of Other Metrics fo CAE
We show the precision, recall, F1 score, AUC and support using “caeF” and

“Random Forest” in Table C.1. The column “support” represent the ratio of samples

for the corresponding class.
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precision recall F1 score AUC support
PreheatTemperature 0.17 0.01 0.02 0.814 0.022
OutdoorAirFlow 0.68 0.64 0.66 0.973 0.030
OutdoorAirHumidity 0.91 0.78 0.84 0.985 0.023
SupplyFanCommand 0.36 0.07 0.12 0.951 0.043
MixedAirTemperature 0.41 0.37 0.39 0.896 0.074
CoolingOutput 0.59 0.76 0.67 0.969 0.073
OutsideAirTemperature 0.94 0.75 0.84 0.968 0.056
Occupancy 0.23 0.11 0.15 0.936 0.027
SupplyFanStatus 0.48 0.83 0.60 0.957 0.065
DischargeAirTemperature 0.55 0.75 0.63 0.941 0.110
ReturnAirHumidity 0.86 0.95 0.90 0.995 0.051
SupplyFanOutput 0.63 0.67 0.65 0.935 0.065
DischargeAirFlow 0.69 0.69 0.69 0.979 0.025
ReturnFanOutput 0.06 0.02 0.03 0.842 0.023
DuctStaticPressure 0.97 0.97 0.97 0.991 0.068
ReturnAirTemperature 0.44 0.55 0.49 0.935 0.079
ZoneTemperature 0.49 0.35 0.41 0.953 0.052
ReturnAirQuality 0.95 0.94 0.94 0.991 0.040
DischargeAirTemperatureSetpoint 0.79 0.76 0.77 0.984 0.049
HeatingOutput 0.17 0.07 0.10 0.919 0.026

Table C.1: Precision, recall, F1 score, AUC and support for each class
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