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Abstract

Scientific Computation provides a critical role in the scientific process because
it allows us ask complex queries and test predictions that would otherwise be
unfeasible to perform experimentally. Because of its power, Scientific Com-
puting has helped drive advances in many fields ranging from Engineering and
Physics to Biology and Sociology to Economics and Drug Development and
even to Machine Learning and Artificial Intelligence. Common among these
domains is the desire for timely computational results, thus a considerable
amount of human expert effort is spent towards obtaining performance for
these scientific codes. However, this is no easy task because each of these do-
mains present their own unique set of challenges to software developers, such
as domain specific operations, structurally complex data and ever-growing
datasets. Compounding these problems are the myriads of constantly chang-
ing, complex and unique hardware platforms that an expert must target.
Unfortunately, an expert is typically forced to reproduce their effort across
multiple problem domains and hardware platforms.

In this thesis, we demonstrate the automatic generation of expert level
high-performance scientific codes for Dense Linear Algebra (DLA), Struc-
tured Mesh (Stencil), Sparse Linear Algebra and Graph Analytic. In partic-
ular, this thesis seeks to address the issue of obtaining performance on many
complex platforms for a certain class of matrix-like operations that span
across many scientific, engineering and social fields. We do this by automat-
ing a method used for obtaining high performance in DLA and extending it
to structured, sparse and scale-free domains. We argue that it is through the
use of the underlying structure found in the data from these domains that
enables this process. Thus, obtaining performance for most operations does
not occur in isolation of the data being operated on, but instead depends
significantly on the structure of the data.
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Chapter 1

Introduction

Over the past seven decades, Scientific Computation joined the ranks of the-
oretical and experimental science as part of the three pillars of the scientific
process. In this process, we make observations of natural phenomena and
use the first pillar, theoretical, to deduce the underlying process in order to
develop a theory. Using the second pillar, experimental, we test the accuracy
of our theory. We then iterate over these steps to refine our theory until we
get closer to the truth. However, we are limited in the experiments we can
conduct in that they may be too large, too dangerous, too unrealistic to carry
out, they may require a time scale that is too short or too long to be practical,
or require time to flow backwards. The third pillar, Scientific Computation,
addresses these limitations. Scientific queries are posed as mathematical op-
erations which we implement as code and compute in order to obtain our
answer. Problem size, time scale, and even the direction of time is no longer
dependent on real world limitations. Instead these features are dependent
on the computational power of the hardware and the ability of the scientific
code to extract performance from that power. Thus, for Scientific Computa-
tion, obtaining performance from the code is key. This has been the driving
force behind High Performance Computing (HPC), which is the science and
application of producing high performance software and hardware. While
much work has resulted in the automation of how we obtain performance, a
perpetual frontier exists because we can only automate what we understand.
Therefore, a great deal of performance is dependent on expert programmers
who hand code and tune these application for every new piece of hardware.

The development of Scientific Computation has lead to the widespread
availability of HPC resources and expertise. This has lead to ability to exper-
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imentally measure networks outside the original applications of HPC, such
as those that arise in social, biological, financial, epidemiological, energy and
transportation settings. In the same way that physics and engineering drove
much of the early innovation in HPC, we see a rise in the use of computational
techniques to answer questions in the natural and social sciences. Unlike the
datasets collected from physics and engineering problems, the structure of
these collections are seemingly irregular, hyper sparse and extremely large.
Once again performance is critical in order to answer computational complex
queries over these datasets. Thus not only has computation in the social sci-
ences inherited the problems of HPC, but the complexity of their data has
precluded the use of many existing HPC solutions. Is there a common class
of problems between traditional scientific computing and big data where we
can use the same performance techniques? And under what conditions are
these techniques applicable on social science problems.

In this dissertation, I argue that if we have a matrix-like operation over
structured data, then we can use the knowledge of this structure to produce
a high performance implementation. More precisely, if we start with an op-
eration that we can decompose into an efficient access pattern and compute
core, then the dataset’s structure allows us to determine two things: First,
how to efficiently access and store the data in memory. Second, the structure
determines how to specialize the computation to this problem. Thus, know-
ing the structure allows us to couple an efficient compute core to an efficient
access to a high performance implementation of the original operation.

1.1 A Motivating Example

Alone, an efficient compute kernel or memory access pattern is not sufficient
for performance, but rather both pieces are needed in tandem. We illustrate
this in Figure 1.1 using a double precision matrix-matrix multiply (Gemm)
as our example. This operation computes C = AB + Ĉ, where A ∈ Rm×k,
B ∈ Rk×n and C, Ĉ ∈ Rm×k. More precisely, it computes the following:

ci,j =
k�

p

ai,pbp,j + ĉi,j (1.1)

Where each element ci,j of C is the result of an inner-product between a
row in A and a column in B.
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Figure 1.1: Performance starts with finding the correct algorithm and ends
with combining data layout transformations with efficient kernels.

In order to motivate this two part approach to performance, we will
break an implementation of Gemminto multiple pieces: a baseline imple-
mentation, an efficient algorithm, an algorithm turned to an efficient access
pattern, and the access pattern coupled with a fast kernel. We show this
in Figure 1.1, we compare the performance versus the problem size of four
implementations. The first implementation, baseline operation, directly im-
plements equation 1.1 as three loops in C without any additional algorithmic
transformations. This implementation sustains 10% of the machine’s peak
performance. The second implementation, BLIS Algorithm, uses 8 loops to
implement the Gemm algorithm in [1, 2]. The additional looping allows for
sustained performance at 15% of the machine peak. It does this by insuring
that the cache hierarchy is effectively used. However, the additional loops
incur a substantial indexing overhead, in order to access the input matrices.
These matrices are not stored in an order that is amenable to the access
pattern determined by the algorithm. To correct this, the implementation
marked algorithm + layout transform, uses the same algorithm as the previ-
ous implementation, but performs a data layout transformation on the A and
B matrices such that the algorithm accesses each element in unit stride. The
kernel in this implementation is naively implemented and relies entirely on
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the compiler to extract performance. Overall this implementation achieves
near 45% of the machine’s peak. The final implementation, algorithm +
layout transform + kernel achieves near 90% of peak by replacing the naive
kernel from the previous implementation with a generated and tuned kernel
for that machine.

From Figure 1.1, both the data layout transformation and an efficient
kernel are necessary for performance, but they both depend on finding an
efficient algorithm for the target operation on a given dataset. This approach
sketches how we handle the other three domains targeted in this thesis, where
we will split the problems in two parts (access and kernel) and optimize each
part to the problem.

1.2 My Contributions

The goal of this work is to uncover the necessary techniques and transforma-
tions for systematically producing high performance code for Linear Algebra
and similar operations. Specifically, my contributions are as follows:

• I generalize a two part method for performance, used in dense linear
algebra, to a broader set of domains.

• I develop a systematic approach to generating high performance dense
matrix-matrix multiplication kernel that matches or exceeds the per-
formance of expert written kernels.

• I provide a method for generating efficient vectorized time-tiled stencil
kernels for finite difference and similar structed mesh applications that
perform near their theoretical peak.

• I implement a high performance Sparse Matrix-Vector multiplication
for scale-free data using a hierarchical sparse data structure. This im-
plementation outperforms the state of the art Sparse Matrix-Vector
library.

• I also implement a high performance graph analytic library for real-
world scale-free data, which leverages the techniques from the three
previous contributions. For a broad class of problems this library also
outperforms the state of the art.
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Chapter 2

A Method for High
Performance

2.1 Introduction

In this chapter, we describe the method for producing high performance
implementations of matrix-like operations in the domains of dense linear
algebra, structured mesh, sparse linear algebra and graph analytics. This
two part method – illustrated in Figure 2.1 – obtains performance by first
yielding an efficient access pattern, which can provide a high rate of access
through the memory hierarchy (Figure 2.2 left) to the second component of
this process – a generated kernel that is tuned to the system’s microarchitec-
ture (Figure 2.2 right) to maintain this rate of computation. This method
is a generalization of the Goto approach [2] for designing high performance
implementations of dense matrix-matrix multiplication. In order to make
this generalization from the dense to sparse we take into account the struc-
ture of the data, in particular the relationship between the elements in the
dataset and their neighbors. By taking a structure-centric approach, we re-
shape the dataset and build algorithms on them in such a way that we are no
longer computing on sparse data, but instead on dense clusters. We then use
the same techniques for generating high performance dense matrix-matrix
multiply kernels for these dense clusters. Thus, finding and capturing this
structure is key for this method.

To elaborate on this method for high performance (Figure 2.1), we be-
gin with the operation, which is a mathematical that maps the input of the
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Operation

Fully Tuned  Implementation

A Systematic Approach to High Performance:

Structure

Part I: Efficient Access:

Partitioning

Algorithm
Nesting I

Algorithms

Data Layout
Transform

Data 
Structures

Operation

ISA

Part II: Fast Kernel:

Instruction
Selection

Memory
Hierarchy

Optimize

Instruction
Scheduling

HW Details

Figure 2.1: Throughout this thesis we use this two part process to produce
high performance implementations of matrix-like operations. This method
divides the implementation of an operation into an efficient access pattern
that feeds an efficient kernel that performs the computation. This process is a
generalization of the Goto technique [2] for high performance Matrix-Matrix
Multiplication.

problem to the desired output. We restrict ourselves to operations that are
similar to matrix-matrix, matrix-vector and iterative matrix-vector multipli-
cation. This restriction allows us perform our computations using a class of
algorithms, divide-and-conquer, which are amenable to machines with deep
cache hierarchies.

How we layer these divide-and-conquer algorithms depends entirely on
the input dataset is partitioned, which is why we focus on structured (dense
and structured mesh) and semi-structured (scale-free networks) data. This
partitioning is determined by the structure of the data because we want to
hierarchically capture the dense clusters of elements in the data. With this
hierarchical partitioning we determine the layering – or nesting – of divide-
and-conquer algorithms that recursively compute on these partitions. We
then pick a data structure that provides efficient access to the partitioned
data. The dataset is then packed contiguously in this data structure, also
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prescribed by the algorithm nesting. These steps result in an efficient ac-
cess pattern for a tuned computational. This kernel starts with the inner
most nesting of algorithms from the previous step. We then select a mix of
instruction to map this nesting of algorithms to the hardware. This mix is
then statically scheduled and then optimized before being emitted as kernel
code. We then combine the access pattern and kernel to produce the high
performance implementation of the target operation.

We apply this approach in the remainder of thesis, where we target four
domains using parts or the whole of this method. We selected these domains
because they are representative of four of the computational dwarfs in [3]
and span a large space of computational science. In Chapter 4, we automate
this method by providing a systematic approach to generating expert level
matrix-matrix multiply kernels. The data access portion of this process is
provided by [2, 1]. In Chapter 5, we apply this method to structured mesh
computations and we demonstrate how structure plays an important role in
both the access pattern and in the kernel code. In Chapter 6, we demonstrate
how to apply this entire method to sparse matrix operations on synthetic
scale-free data which hinges on using the underlying structure in the data.
We extend this to graph operations on real-world data in Chapter 7 to show
that the necessary structure for this method does exist in real data. The
remainder of this chapter is devoted to a detailed description of this method
for high performance.

Registers

L1 Cache

L2 Cache

L3 Cache

Main Memory (DRAM)

Size

Memory Hierarchy:

…

Microarchitecture (Core and Threads):

SIMD
Functional
Unit 0

SIMD
Functional
Unit f-1

Register File

L1 Cache

L2 Cache

Scheduler (Reservation Station)

L1 Load/Store Unit

Figure 2.2: Our focus for performance is exclusively on the memory hierarchy
and the microarchitecture. The method described in Figure 2.1 creates a high
performance implementation by laying the dataset to efficiently feed a kernel
tuned to the microarchitecture.
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2.2 Preliminaries

In this section, we will provide a brief overview of the computational domains
and the class of operations in these domains that we target. In particular, we
will describe the linear algebra-like operations where this method for perfor-
mance works. Lastly, this thesis focuses on obtaining high performance on
modern computer architectures, therefore we will discuss the characteristics
of these architectures.

2.2.1 Domains

In Figure 2.3 we show a graphical representation along with its corresponding
matrix representation of the data typically found in the four domains that
we target. We picked these domains partly because they represent data
typically seen in a large number of scientific applications. More importantly,
we selected these domains because they present their own unique challenges
in how data in these domains are structured.

Dense Linear Algebra. In this domain, datasets are dense because the
value of an element is determined by a linear combination of all elements in
the system. If we were to represent this graphically, this connectivity leads to
a complete graph. This domain is at the heart of high performance computing
to the extent that the performance of large machines are determined by
the speed at which they can compute solutions to large dense systems of
equations. Thus, modern computer architectures are typically optimized
for these computations. We selected this domain because it provides the
benchmark for our method.

Structured Mesh (Stencils). These computations typically arise in the
computation of PDEs using finite-difference methods. The structure of this
data is typically an n-dimensional mesh that corresponds to the relation-
ship between an element and its neighbors. We chose this domain because
exploiting this regular structure is critical for performance.

Sparse Linear Algebra. Data in this domains typically arises in the so-
lution of PDEs using finite-element methods. The structure of this data is
dependent on how the problem domain is divided into mesh elements. In
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Figure 2.3: In this thesis we target four different domains: Dense Linear
Algebra, Structured Mesh, Scale-Free and Real-World Networks. On the
left we show a graphical representation of these domains with the matrix
interpretation shown on the right. We picked these domains because they
represent four of the original Seven Computational Dwarfs [3].
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this thesis we actually restricted ourselves to sparse matrices generated from
synthetic scale-free data. This data is fractal-like and hypersparse and fairly
representative of real-world graph data. We chose this domain the show that
the method for performance works on sparse scale-free data.

Graph Analytics. The data in this domain typical arises from biological
and social networks. This data is typically scale-free, but random. A hall-
mark of this data is the hierarchical clustering of elements that naturally
captures dense communities. This domain was selected to demonstrate that
the method indeed works on real-world data.

2.2.2 Operations and Semirings

We restrict our method to matrix-like operations over the described domains.
Specifically, these operations are matrix-matrix multiplication, matrix-vector
multiplication and iterative matrix-vector multiplication which are described
in Table 2.1. We say these are matrix-like operations because we define them
over operation specific semirings. At a high level these semirings replace the
addition and multiplication operator with a different function. More formally,
a semiring is a set S with an additive operator + (which is not necessarily
the standard addition) and a multiplicative operator × (once again, not
necessarily the standard multiplication), along with an additive identity 0
where a+ 0 = a and a multiplicative identity 1 where a× 1 = a.

For example, if we want to compute Single Source Shortest Path (SSSP)
as an iterative matrix-vector product, then we would formulate the semiring
as follows: S is an integer value which corresponds to distance to the source,
the additive operator + is the minimum value between two elements in S,
the multiplicative operator × is the addition of two elements from S, the
additive identity is ∞, and the multiplicative identity is zero. In Table 2.2,
we list the matrix operation and semiring for the operations discussed in this
thesis. The author in [4] provides a listing of semiring-like operations for
n-body problems and in [5] the authors describe graph operations in terms
of semirings.

2.2.3 An Overview of Modern Computer Architecture

We target modern computer architecture which are characterized by two key
features, deep memory hierarchies and complex microarchitectures. This is
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Operation Matrix Form Formalism

Matrix-Matrix C = AB cij =
�k

p aipbpj

Matrix-Vector y = Ax yi =
�n

j Aijxj

Iterative Matrix-Vector y = Atx y = (
�p A)x

Table 2.1: These are the matrix operations we target in this thesis. By
defining these operations over arbitrary semirings we are able to target a
large class of problems.

Operation Matrix Op. + ×

Matrix-Matrix C = AB fadd(a,b) fmul(a,b)

Matrix-Vector y = Ax fadd(a,b) fmul(a,b)

Stencils y = Atx fadd(a,b) fmul(a,b)

SSSP y = Atx min(a,b) add(a,b)

PageRank y = Atx scaled add(a,b) dampen add(a,b)

Table 2.2: In this table we describe the operations treated in this thesis and
how they are represented as matrix-like operations over arbitrary semirings.
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System Bus

DRAM 0 DRAM s-1

Socket 0 Socket s-1

…

…

System:

Last Level Cache

…

Socket:

On Die Interconnect

Core 0 Core c-1

L1 Cache

…

Core:

L1 Load/Store Unit
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L2 Cache …

HW Thread:

Scheduler (Reservation Station)

SIMD
Functional
Unit 0

SIMD
Functional
Unit f-1

Register File

Figure 2.4: Here we provide a representative overview of a modern shared
memory architecture. We color code each icon as follows: orange represents a
computational unit, blue represents a storage unit and green corresponds to
a communication unit. Additionally, we show how these units are connected
to each other. For example, in the socket level view, each core must pass
through a common interconnect in order to reach the shared last level cache.

why we split our method into two parts, where the first part focuses on the
memory hierarchy and the second part focuses on generating a tuned kernel
for the microarchitecture. In Figure 2.4, we illustrate a modern computer
architecture at multiple levels of granularity from the system level all the
way down to a functional unit view. Note, in each of these views, we dis-
tinguish between compute, memory and communication units and how they
interconnect.
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…

SIMD Functional Unit:

Shuffle & Permute Instructions

FPU/ALU[0] FPU/ALU[v-1]

Vector[0] Vector[v-1]

…

Figure 2.5: We can subdivide Figure 2.4 by exposing the view of a SIMD
functional unit which compute short vector SIMD instructions. These func-
tional units perform multiple independent operations simultaneously using a
single instruction.

Continuing with the figure, we start at the system level which is com-
posed of multiple compute sockets where each socket can directly access its
own memory and can access the memory of its neighbors at the added cost of
communicating over a shared bus. This configuration is called Non-Uniform
Memory Access (NUMA). Second, we can decompose these sockets into mul-
tiple compute cores that communicate to each other over a shared On-Die
Interconnect that connects to a shared Last Level Cache (LLC). This con-
figuration, where each compute element shares access to the same memory
at the same speed, is called Symmetric Multi Processor (SMP). Next, we
can divide a core into Hardware Threads that share functional units that
access the L1 and L2 cache. These hardware threads also share the under-
lying hardware resources on the core. We can view each thread as having
its own private memory in the form of a register file, where computation on
this register file is performed by a variety of Single Instruction Multiple Data
(SIMD) functional units and communication between these units is governed
by the instruction scheduler. These SIMD instructions compute short vector
operations using a single instruction, and are necessary for performance on
these architectures. We go even further in describing these SIMD functional
units in Figure 2.5. Here each element in a SIMD functional unit corresponds
to a location in a vector register. We have multiple scalar functional units
which compute on specific locations in the SIMD vector and the commu-
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nication of elements between these vectors is performed by the shuffle and
permute engine. In Figure 2.2, we provide a simplified view of a modern
architecture where we show the memory hierarchy and a combined view of
the microarchitecture.

Given a computer architecture that fits this described model, performance
is obtained by efficiently streaming the dataset through this hierarchy of
memory and caches, and effectively using all of the computational units in
parallel. In the next two sections, we will show how we target operations to
this hierarchy and microarchitecture.

2.3 A Method for Efficient Data Access

We have a two part method for obtaining performance on modern computer
architectures that splits the problem into efficient data access and kernel
code generation. The goal of the first part of our method (labeled Part I in
Figure 2.1) is to produce an efficient access pattern that brings the working
dataset through the memory hierarchy as quickly as possible. This pro-
cess entails dividing the original dataset in smaller working sets that can fit
through the various levels of cache between DRAM and registers (left side
of Figure 2.2). We achieve this by partitioning the dataset hierarchically in
a manner that preserves tightly connected clusters. We then implement the
target operation as layering of divide-and-conquer algorithms over the parti-
tioned data which will move these partitions through the memory hierarchy
in a cache efficient manner. Once we determine a layering of algorithms, we
transform and repack the dataset to match how it is accessed. This insures
that the kernel generated in the next section (labeled Part II in Figure 2.1)
has contiguous access to the data. In the remainder of this section we will
detail this process and in the next section we will connect this to the kernel
generation.

2.3.1 Partitioning the Data

Partitioning the dataset is critical for performance because the operations
we target essentially compute an element’s value based on its neighbors (for
example PageRank). Thus, maintaining the physical locality of the dataset
in how it is partitioned will maximize cache utilization of neighboring ele-
ments. In our approach, we recursively partition our dataset in a manner
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Figure 2.6: For each domain we show two different strategies for partitioning
the data using only two partitions in the first two domains and three in the
last two. How we partition our data will greatly affect the performance of
the computations being performed on them. Ideally, we want partitions to
capture clusters of neighboring data.

15



that hierarchically captures compute dense communities in the data. This
allows us to efficiently map the dataset to memory using divide-and-conquer
algorithms. These algorithms work by recursively traversing through this
hierarchical partitioning until a small enough partitioned is reached an com-
puted on. By computing an entire partition before proceeding to the next
makes these algorithms amenable to the cache hierarchy. However, in order
to effectively use the cache these partitions need to fit the cache which they
are targeting and ideally these partitions contain elements which communi-
cate frequently with each other.

In Figure 2.6, we show two different partitionings for our four dataset
examples. In the case of our Complete Graph (representative of DLA) both
partitionings are equally as good because each partition contains an equal
number of elements and these elements have the same number of edges be-
tween them. In the Structured Grid example, we preference the partitioning
which keeps neighboring grid elements together because these grid points ex-
change information to each other, thus keeping them in the same partition
insures that this information is exchanged more frequently than if they were
not in the same partition. This is more apparent in the Scale-Free and Real-
World examples where one set of partitions captures the community clusters
and the other does not.

More formally, we can state a hierarchical partitioning over graph G =
(V,E) as follows: First, let the top level partition be P (0) = V , then we
can partition the vertices such that all partitions for a given level i cover
their parent set, P (i) =

�
j P

(i+1)
j , and these partitions are non-overlapping,

∅ =
�

j P
(i+1)
j . If we want each partition at a particular level i to fit in a given

cache of size s, then we would select are partitions such that ∀j|P (i)| ≤ s.
We can express this constraint for each level of the memory hierarchy.

Now, it is critical that we select our partitions in a way that captures
tightly connected clusters. The elements in these cluster communicate more
with each other than elements outside of their community. To express this,
we need a graphical view our partitions, let G

(i)
jk = (V

(i)
jk , E

(i)
jk ) which is the

subgraph that connects vertices of P
(i)
j to vertices of P

(i)
k where V

(i)
jk = V ∩

(P
(i)
j ∪ P

(i)
k ) and E

(i)
jk = E ∩ (P

(i)
j × P

(i)
k )). To express our goal that the

partitions capture dense communities we can use the following formulation:
∀j|E(i)

jj | ≥
�

k �=j |E
(i)
jk |+ |E(i)

kj |. This states that we want the number of edges
within the graph of a partition to be greater than the number of edges leaving
that partition. Capturing these communities is the objective of partitioning,
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however it is up to the expert to determine these partitions within these
constraints. If they do satisfy these constraints then the following steps
in this section will insure to production of a high performance data access
pattern.

The expert can use a graph partitioner to automatically determine these
partitions [6]. However, this approach is computationally expensive. Ideally,
this partitioning step is performed by the domain expert prior to the com-
putation. The expert is typically involved in the collection of the dataset
therefore the expert can use her domain knowledge at this step to determine
the location of these partitions.

For the purposes of this chapter, we will assume that these partitions are
obtained and stored hierarchically. We will also assume that this partitioned
data is stored in a way which we can access the partitions. In the following
code listing, we illustrate how a partition Gjk from the graph G:

G_jk = get_col_part( get_row_part( G, j ), k )

In this code snippet, obtaining the incoming edges into subgraph cor-
responds to gathering the column partitions of an adjacency matrix, and
obtaining the outgoing edges corresponds to gathering the row partitions.
Combining these two functions allow us to extract subgraphs from a larger
graph. We will express our divide-and-conquer algorithms in terms of these
extractions. If our partitions capture physically locality, then these algo-
rithms will preserve them throughout the cache hierarchy.

2.3.2 A Nesting of Algorithms

In this section we show how a nesting of divide-and-conquer algorithms ef-
ficiently computes on the partitions of the previous subsection. These algo-
rithms recursively divide the dataset until a base case is reached and directly
computed on. For our purposes, the size and contents of these divisions is
determined by the partitioning of the dataset. Thus by hierarchically captur-
ing clusters, we can insure that computations within a cluster occur before
computations outside said cluster, and this computation occurs within the
cache.

If we continuing with our running matrix-vector and use the dataset and
partitioning in Figure 2.6, then we can decompose it into the following nesting
of algorithms:
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Figure 2.7: Top: we show the partitioning of the output vector y and the
input vector x. Bottom: We show the application of divide-and-conquer
algorithms to performance matrix-vector multiplication (y = Ax).
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mv-row(y,A,x,

mv-col(_,_,_,

mv-row(_,_,_,

mv-col(_,_,_,

op(_,_,_ )))))

Here we perform the computation by alternating between an algorithm
that computes by rows and one that computes by columns using the algo-
rithms from Table 2.3. How the algorithms decompose the dataset is based
on its partitioning (Figure 2.6). We illustrate this pictorially in Figure 2.7.
Alternatively, we can express this nesting as the following series of C loops:

for(io=0 < 8; io+=2) /* algo by rows */

for(jo=0 < 8; jo+=2) /* algo by cols */

for(ii=0 < 2; ii++) /* algo by rows */

for(ji=0 < 2; ji++) /* algo by cols */

y[idx_y(io,ii)] += A[idx_a(io,ii,jo,ji)] *

x[idx_x(jo,jj)];

We can clearly see that in the first two loops we divide the problem into
sixteen 2× 2 matrix-vector multiplies and the second set of loops computes
those 2 × 2 multiplies. Additionally, note that indexing (idx A, idx y and
idx x) is described as a function of the loop variables. This is done to sepa-
rate the logical indexing of the data from the physical indexing in memory.
Ideally, this mapping is designed to insure contiguous memory access.

In Table 2.3, we show the algorithms we use for Matrix-Vector Multipli-
cation, Iterative Matrix-Vector Multiplication and Matrix-Matrix Multipli-
cation. We call the recursive application of these algorithms a nesting and
this determines how the dataset is accessed during the computation. Ideally,
we want the elements in the dataset stored in the order that they will be
computed, so we will take this a step further in the next subsection use this
nesting to rearrange the dataset in that desired order.

Coarse Grain Parallelism. As we indicated in Figure 2.4, modern sys-
tems provide various resources for coarse grain parallelism. We determine
the division of computation across these resources through the selection of
the same algorithms which have been decorated with parallel directives.
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Algorithm Formula Code

mv-row(y,A,x,op) yi = Ai:x

for(i=0;i<nrows;i++)

A_i = get_row_part(A,i)

y_i = get_row_part(y,i)

op(y_i,A_i,x)

mv-col(y,A,x,op) y = A:jxj

for(j=0;j<ncols;j++)

A_j = get_col_part(A,j)

y_j = get_col_part(x,j)

op(y,A_j,x_j)

imv-it(y,A,x,T,op) y = ATx

r[0] = x

for(t=0;t<T;t++)

op(r[t+1],A,r[t])

y = r[T]

mm-row(C,A,B,op) Ci: = Ai:B

for(i=0;i<nrows;i++)

C_i = get_row_part(C,i)

A_i = get_row_part(A,i)

op(C_i, A_i, B)

mm-col(C,A,B,op) C:j = AB:j

for(j=0;i<ncols;j++)

C_j = get_col_part(C,j)

B_j = get_col_part(B,j)

op(C_j, A, B_j)

mm-acc(C,A,B,op) C =
�

p A:pBp:

for(p=0;p<ncom;p++)

A_p = get_col_part(A,p)

B_p = get_row_part(B,p)

op(C, A_p, B_p)

Table 2.3: In this table we list the various divide-and-conquer algorithms
used throughout this thesis.
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The cost of communication and availability of the shared resources ulti-
mately determine which algorithms get selected. For example, we preference
partitioning by rows rather than columns because the latter requires accu-
mulating to a shared resource (elements of vector y). This contention in turn
requires locks which serialize access and potentially slow down computation
if this access is in slower memory. Additionally, parallelism is not restricted
to one level of the machine hierarchy. For example the authors in [7] provide
a detailed treatment of nested parallelism.

Fine Grain Parallelism. In Figure 2.5 we illustrate a Single Instruction
Multiple Data (SIMD) functional unit. These instructions allow fine grain
parallelism at the microarchitectural level. In order to use them, we have to
design our code to efficiently use these instructions. Thus, our inner-most
algorithms are typically selected to permit the computation of multiple in-
dependent operations because communication is typically expensive within
a SIMD vector. Using matrix-vector multiplication as our example, we pref-
erence the algorithm by rows over the columns for the inner most algorithm
because it computes multiple independent operations that accumulate to dif-
ferent values of the output vector y.

2.3.3 Designing a Data Structure

The algorithm nesting in the previous subsection tells us how the dataset is
accessed logically (as a mathematical object) but it does not prescribe how
the dataset will be accessed physically (as elements in memory). However,
how the dataset is stored physically and the format in which it is stored
will greatly impact the overall performance of the implementation. This is
because our divide-and-conquer algorithms make extensive use of partition
access (i.e. get row part and get col part). If we have a hierarchically
partitioned graph like Figure 2.6, then we want a data structure that insures
low cost access to these partitions. To achieve this, we will select a hierar-
chical data structure the matches our algorithm nest and the format for each
level of that data structure is determined by the structure of the original
dataset. In Chapter 6 and Chapter 7, we will show how we select a data
structure for scale-free and real-world datasets.
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Row Major Ordering: Data Layout Transform:

Figure 2.8: On the left we show a row major access pattern for a matrix
and on the right we show the access pattern for our matrix-vector example.
Ideally we want to arrange the matrix in memory in the access pattern on
the right.

2.3.4 The Power of a Data Layout Transformation

Once the algorithm nesting is determined, we can go one step further by
insuring that the dataset is access in unit stride. Doing this will maximize
our cache utilization and reduce the number of TLB entries needed to address
the working data set [2]. For example, a standard two dimensional C matrix
is most efficiently accessed in row major ordering (Figure 2.8 left) however,
our matrix-vector example uses a more complex access pattern (Figure 2.8
right). Continuing with matrix-vector example, we can repack the input
dataset A into A dlt where each element is stored in the other that it will be
accessed:

p=0;

for(io=0 < 8; io+=2)

for(jo=0 < 8; jo+=2)

for(ii=0 < 2; ii++)

for(ji=0 < 2; ji++)

A_DLT[p++] =

A[idx_a(io,ii,jo,ji)];

Once our data is repacked, we can implement our algorithm nesting using
A dlt:
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#define contig(io,ii,jo,ji) (p++)

for(io=0 < 8; io+=2) /* algo by rows */

for(jo=0 < 8; jo+=2) /* algo by cols */

for(ii=0 < 2; ii++) /* algo by rows */

for(ji=0 < 2; ji++) /* algo by cols */

y[idx_y(io,ii)] +=

A_dlt[contig(io,ii,jo,ji)] * /* Contiguous */

x[idx_x(jo,jj)];

We can see that each element of A dlt is accessed in the contiguous order
illustrated on the right side of Figure 2.8. By performing this repacking, we
can insure that the kernel we generate will efficiently access the dataset.

2.4 A Method for Fast Kernels

In the previous section, we outlined the process for constructing on efficient
access pattern for matrix-like operations. In this section we discuss the sec-
ond part of our method – how to construct an efficient kernel for this access
pattern. We do this by extract the inner most loops of our access pattern
which we will call the kernel. Using our matrix-vector multiply example we
would separate the outer two loops from the inner two loops to form the
access pattern and kernel:

access_patern_mv(A,x,y)

for(io=0 < 8; io+=2)

for(jo=0 < 8; jo+=2)

kernel(A,x,y,io,jo);

kernel(A,x,y)

for(ii=0 < 2; ii++)

for(ji=0 < 2; ji++)

y[idx_y(io,ii)] +=

A[contig(io,ii,jo,ji)] *

x[idx_x(jo,jj)];

Then, we find an efficient mix of instructions that implements this kernel.
After that, we statically schedule these instructions. Last, we optimize and
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emit these instructions as code. In the rest of this section we detail our
generic process for generating kernels.

2.4.1 Selecting an Instruction Mapping

In Figure 2.5 we illustrate a SIMD functional unit and in order to produce
a high performance implementation we need to efficiently utilize these units.
Given a kernel we can find a myriad of instruction mixes – or combinations
of SIMD instructions – that implement the kernel. Continuing with our
2 × 2 matrix-vector multiplication kernel, we can construct two different
instructions mixes for the same operation. In this first example, we store the
y vector in a SIMD register and broadcast each element of x into their own
register. We will call this the broadcast-based instruction mix.

x0vec = vbroadcast(x[0])

x1vec = vbroadcast(x[1])

A0vec = vload(A[:][0])

A1vec = vload(A[:][1])

r0vec = vfma(A0vec, x0vec, 0)

r1vec = vfma(A1vec, x1vec, r0vec)

vstore(y,r1vec)

In the next example, we load rows of A into SIMD registers that are
multiplied by a SIMD register of x elements, and the resulting vectors are
accumulated within the register and stored into y. We will call this the
accumulation-based instruction mix.

xvec = vload(x)

A0vec = vload(A[0][:])

A1vec = vload(A[1][:])

r0vec = vmul( A0vec, xvec )

r1vec = vmul( A1vec, xvec )

y0sca = hadd( r0vec )

y1sca = hadd( r1vec )

sstore( y[0], y0sca )

sstore( y[1], y1sca )

24



Both of these instruction mixes will implement the desired matrix-vector
kernel. However, we want to select the most efficient kernel. In particular we
want to select a mix that sustains a high rate of computation because many
of these kernel operations will be performed inside a nesting of loops. In this
situation, the individual performance of a kernel is less important than the
steady-state performance.

Selecting a High-Throughput Instruction Mix. Our goal is to find
the instruction mix that, on average, takes the fewest number of cycles to
pass through the microarchitecture. Because we are only interested in the
instruction mix performance inside a much larger loop in steady-state, we
can use Little’s Law [8] to model the microarchitecture. Little’s law tells us
that the average waiting time of a queue in steady-state, W , is equal to the
average number of elements in the system N divided by the average arrival
rate of elements into the system, λ. We can express this as follows:

W =
N

λ
(2.1)

Because the system is in steady-state, the arrival rate of elements into
the system is equal to the average departure rate out of the system. We
can use this formula to estimate the average amount of time it takes the
microarchitecture to clear a given instruction mix in steady-state. We are
not concerned if those instructions came from the same iteration, but rather
we want to know if that particular mix of instructions has moved through
the processor, this allows us to ignore instruction dependencies for this com-
putation.

To illustrate this, let us assume that we only have one type of functional
unit that computes at a rate of two instructions per cycle (λ = 2), and let us
select the broadcast based matrix-vector multiply instruction mix from the
beginning of this subsection which has N = 7 instructions. By modeling this
system as a queue we can apply Little’s Law, so the average waiting time of
the instructions in this mix would then be 3.5 cycles.

However, if we want to model a more complex microarchitecture, then
we can adjust our calculations. If we have multiple functional units, then
we are concerned with the functional unit that is the bottleneck. We want
to know which functional unit, queue, has the longest average waiting time.
For example, let us assume that we have two functional units, a memory
functional unit and a arithmetic functional unit. We assign them their own
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average waiting time Wmem and Walu, and their own average arrival rate λmem

and λalu. Let us also assume that our microarchitecture has two memory
functional units and one arithmetic functional unit, that will give us λmem = 2
and λalu = 1. If we take the broadcast based matrix-vector kernel, we can
divide its instructions into two queues with Nmem = 5 and Nalu = 2. This
would result in the waiting times of Wmem = 2.5 and Walu = 2. This means
that on this microarchitecture the broadcast based implementation has a
waiting time of 2.5 cycles. We can apply the exact same process to the second
instruction mix, the accumulation-based mix, for the matrix-vector kernel,
where we have Nmem = 5 and Nalu = 4. This mix will give us a maximum
average waiting time of 4 cycles. Thus, for this hypothetical architecture, the
first instruction-mix will sustain a higher throughput relative to the second
one. This process only estimates which mix will have the lowest waiting time
on average in the steady-state. Once we select this mix, we will need to
schedule the instructions in order to sustain the estimated performance.

2.4.2 Instruction Scheduling is Important

Once an instruction mix is selected, we need to statically schedule the in-
structions in order to sustain the rate of computation enabled by the mix.
Typically, instruction take more than a single cycle to compute, and if we
do not overlap instructions then during those cycles the processor is stalled.
Thus, we prevent these stall cycles by overlapping independent instructions
during those stalled cycles. While most modern architectures are out-of-
order, meaning they can rearrange instruction on the fly as resources become
available, we show in [9] that at high throughput an out-of-order proces-
sor benefits from statically scheduled instructions. For our purposes, we use
software pipeline scheduling [10] which is a systematic method for scheduling
loops by interleaving instructions between different iterations in order to hide
instruction latency.

2.4.3 Further Optimizations and Code Generation

The last step of kernel generation process involves performing compiler opti-
mizations on our scheduled instruction mix. For example, we fully unrolling
the loops in the kernel which eliminates branching and simplifies index com-
putation. Additionally, we include transformations such as common subex-
pression and array scalarization where arrays are replaced with scalar regis-
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ters. Lastly, in Chapter 6 we show how we can specialize kernels to specific
patterns and shapes that appear in the dataset. Once the code is optimized
we generate it using ANSI C with inline assembly intrinsics that preserve
instruction order. We detail this in [9].

2.5 Chapter Summary

In this chapter, we outlined our two part method for producing high perfor-
mance implementations of matrix-like operations. This process is a gener-
alization of the Goto approach for matrix-matrix multiplication, and works
by yielding an efficient access pattern that feeds a tuned kernel. We also de-
tailed how we use problem structure to generalize this approach to domains
outside of dense linear algebra, specifically to operations that are expressible
as matrix-like operations over arbitrary semirings. In the following chapters
we will highlight key features in this method and show that it is extensible to
various domains such as structured mesh computations, sparse computations
and graph analytics.

27



28



Chapter 3

Related Work

3.1 Introduction

In this chapter, we describe the overarching story of the development of
high performance computational libraries for the domains targeted in this
thesis. We will also show how these domains relate to one another and lay
the groundwork for our approach. Additionally, we will discuss where this
thesis fits in this story.

Before beginning, we will provide a brief overview of what follows. We
will start with the development of high performance Dense Linear Algebra
(DLA) libraries. The advances in this field proceeded in lock step with the
development of computer hardware, responding to the divergence in processor
and main memory speed, then the advancement of caches and eventually with
the addition of short vector instructions. These refinements have led to the
development of modern Linear Algebra libraries that cast the bulk of their
work in terms of the Matrix-Matrix Multiplication operation, which in turn is
built on divide and conquer algorithms that partition their inputs into cache
size blocks that are eventually computed on hand tuned kernels. Thus the
bulk of DLA performance rests on the shoulders of expert coders who hand
tune Matrix-Matrix Multiply kernels. In this thesis we provide a systematic
approach to generating these kernels.

While the machinery for DLA achieves high performance, it is not neces-
sarily suited to problems over structured matrices such as those which arise
from solving differential equations over discretized objects, i.e. when Finite
Difference Methods are employed. In this domain, the very regular structure
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the arises from discretization of physical objects is exploited in the selection
and implementation of algorithms for solving these problems. What results is
a layering of loops – which partition the problem in both spacial dimensions
and in the temporal dimension – over a kernel which acts as a stencil over
these discretized points. Like Matrix-Matrix Multiply kernels we also provide
a mechanical approach to generating high performance stencil kernels.

The previous two domains deal with extremely regular problems. How-
ever, half of this thesis targets graph analytics over seemingly unstructured
real-world problems. To bridge the previous work to the graph domain, we
discuss the work done by Kim et. al. in [11] where they show that high
performance for Finite Element Methods (FEM) is achievable without graph
partitioning. They do this by retaining the structural information of the
input domain and using this to determine how elements are stored in a hi-
erarchical data structure. In this thesis, we leverage this idea for real-world
graphs with underlying structure.

The current state of the graph domain can be captured in two different
approaches. The first is a dataflow approach which expresses graph opera-
tions as functions over edges and vertices that are applied when their inputs
are modified an continue until a convergence criteria is met. Overhead is the
limiting factor in this approach. The second approach, cast graph operations
in terms of Linear Algebra over operation specific semirings. Much like DLA,
in this approach performance is dependent on the underlying building blocks
which we will address in this thesis.

3.2 Related Work

In this section, we elaborate on the historical development of Matrix-Matrix
Multiplication, Stencil computations, Sparse Matrix computations and graph
analytics.

Matrix-Matrix Multiplication. In the field of Dense Linear Algebra
(DLA), Matrix Multiplication is the key operation on which most of the
BLAS-3 [12] and LAPACK routines [13]) are built [14, 15].

As long as this operation is efficient on a given target architecture, then
all other BLAS-3 and LAPACK operations that cast the bulk of their com-
putation on it could leverage this performance. It was recognized that one
could achieve high performance for matrix-matrix multiplication by taking

30



advantage of its high operational intensity and exploiting algorithmic opti-
mizations such as blocking to achieve a high level of performance.

In PhiPAC [16], the authors took this blocked approach and parameter-
ized the various optimizations over the operations so search – or auto-tuning
– could determine their values. This auto-tuning approach was extended by
ATLAS [17] which decoupled the compute kernel from the bulk of the data
access by packing the working data-set into buffers for a tuned kernel to com-
pute on. The authors of [18] identified that many of the search parameters
can be determined analytically without search.

The GotoBLAS [2] provided a key insight regarding blocking that if the
blocking strategy can guarantee that the working data-set can be brought to
the registers at the rate necessary for peak performance then given an efficient
kernel peak performance can be practically achieved. The authors further
identified that blocking for the L2 cache is sufficient on modern machines
and that performing a data layout transformation simplifies the construction
of a high performance kernel. The BLIS [19] project extended the Goto-
BLAS by decomposing via blocking into an even smaller micro-kernel. Once
the outer blocking parameters are determined [20] tuning this kernel to a
given architecture is all that is necessary for high performance. In [21], we
automate this last leg of performance for Matrix-Multiplication by distilling
the kernel down even further and automating its generation. In this thesis,
we discuss how we generate these high performance kernels.

It is worth noting that a great deal of work has focused on the generation
of cache resident small matrix kernels such as LGen [22, 23, 24] and the
Built-to-Order BLAS [25]. For many scientific and engineering application
there is a need for linear algebra operations on cache resident data which
these kernel code generators solve. However our focus is on problems larger
than the cache.

Stencils and Structured Mesh. Many applications, which can be ex-
pressed in terms of Linear Algebra, give rise to systems of equations with
very specific structures. For example in solving Partial Differential Equa-
tions (PDE) using Finite Difference Methods (FDM) the resulting system
of equations for a 3 dimensional object can be expressed using a tridiagonal
matrix. This type of matrix is far from dense which makes DLA libraries in-
efficient for solving these systems of equations. These problems are extremely
regular and can be expressed as the successive application of function over
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every point, where the function computes the value of each point from its
neighbors.

This function is called a Stencil because it applies a repeated pattern over
a collection of elements. Stencil Computations are not restricted to PDEs,
in fact they appear in convolution codes in signal and image processing,
in simulations for cellular automata, weather and earthquakes and in any
domain where the computation can be described as a regular computation
over neighboring elements. Because of their ubiquity and importance in
scientific computing, the compiler community has focused a great deal of
attention on optimizing them.

In the early 1980s compilers were designed specifically for compiling sten-
cil kernels like the [26, 27, 28] . These early compilers split the stencil
computation into two parts: A microcode compute kernel, which was fed to
the sequencer of the Connection Machine, and a layering of outer loops that
dealt with data movement which fed the appropriate elements to the kernel.
These stencil compilers achieved performance by focus on the reuse of ele-
ments across multiple stencils (multistencils) and minimizing communication
across nodes.

As caches became more common, new stencil designs focused on the ex-
plicit use of cache locality through tiling. The authors in [29] identified that
explicit cache tiling is not necessary for one and two dimensional stencils
because even a small cache is sufficient for reuse. However, as the number of
dimensions increase, explicit cache tiling becomes necessary for performance.
In their work the provide a strategy for applying tiling to three dimensional
stencil codes, along with an analytical approach to determining tile sizes. In
[30] the authors identify the limitations of spacial tiling alone and provide
strategies for prefetching using a model based approach.

The issue is that only blocking in the spacial dimensions of a stencil ig-
nores the amount of reuse that can be obtained by also blocking in the time
dimension. In the paper [31] , the authors identified that loop skewing alone
is not sufficient to improve locality in stencils, but when combined with loop
interchange and data forwarding it becomes a more powerful transformation
called time skewing or time tiling. The idea is that the stencil dimensions
can be rearranged to allow for blocking in the time dimension. This is made
more powerful by forwarding the result of one iteration to the next, with-
out making a round trip to memory. This approach is automated in the
Panorama compiler [32] for a broad class of imperfectly nested stencil prob-
lems. In [33] the authors extend time tiling to modern multiprocessors with
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deep memory hierarchies. In their treatment of time tiling they provide a
systematic approach for determining tile sizes.

In [34] the authors put these techniques to practice and develop a tempo-
ral blocking stencil implementation for the Gauss-Seidel algorithm for multi-
grid solvers. The idea is that cache sized multistencils are applied iteratively
over the same block before proceeding to the next block. This insures that
the computation of the multistencil occurs entirely within cache after the
first iteration, as opposed to being loaded from main memory before each
iteration. This is significant development in stencil computations because
now stencil performance is no longer dependent on the bandwidth between
main memory and the processor, but on the size of the cache and the ability
of an expert programmer to produce an efficient kernel.

Spacial and temporal blocking are at the core of high performance sten-
cil computation, however their application on modern multiprocessors and
heterogeneous systems is non-trivial. Thus, much of the current work has
focused on systematically extending these optimizations in a mechanical fash-
ion for a broad class of stencils. In [35] the authors show that these tech-
niques work on a wide variety of computer architectures ranging from modern
microarchitectures, to Very Large Instruction Word (VLIW) and Single In-
struction Multiple Data (SIMD) processors. The authors then extend this
work in [36] by creating an autotuning framework that implements stencils
that are expressed in a FORTRAN-like descriptor language. Autotuning is
employed to find the optimal spacial and temporal tiling for the target sys-
tem. Similarly, the Parallel Autotuned Stencils (PATUS) framework [37]
also automatic tunes and generates stencils from a specification, but in a
C rather than FORTRAN. The Porchoir framework [38] produces stencil
code from a C++ specification, but instead of using autotuning, it relies on
cache oblivious algorithms for performance. Rather than using cache oblivi-
ous approach or autotuning, the PLuTo framework [39] casts the problem of
optimal tiling for parallelization of stencils in terms of the polyhedral model
then solves for those parameters. In [40] we address the issue of generating
high performance SIMD stencil code by separating the problem into three
separate concerns optimizing loop tiling for cache locality, optimizing tiling
for parallelism and generating high performance SIMD stencil kernels. The
work described in this thesis focuses on the third part. In [41] we take this
a step further by incorporating a data layout transformation.
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Sparse Matrix Multiplication. In the same way that stencils arise as a
specialization of Linear Algebra operations over matrices with specific struc-
tures, many applications such as Finite Element Methods (FEM) result in
system of equations that lead to unstructured sparse matrices. These matri-
ces are then efficiently solved using sparse specific operations such as Sparse
Matrix-Vector Multiplication (spMV), Sparse Triangular Solve (spTS) and
Sparse Matrix-Matrix Multiplication (spMM). In [42] the author provides
an excellent survey of the applications where sparse matrices arise, compu-
tations over sparse matrices and early storage formats formats for sparse
matrices.

Following in the footsteps of DLA, many sparse APIs were built around a
common core of routine over a variety of formats [43, 44]. Unlike DLA, sparse
Linear Algebra libraries must deal with a variety of formats to deal with the
different sparsity patterns that arise in real world problems. This exacerbates
the problem of producing high performance libraries in this domain, as each
format would require a tuned implementation for each architecture. This
would be an enormous undertaking if done by hand, which is why a great deal
of research has focused on the automatic generation of fast sparse libraries.

In [45, 46] the authors create a template based library for implementing
sparse operations over an arbitrary datatype which they call the Wooden-
man API. They combine this approach with a restructuring compiler which
converts the matrix code into an optimized interface called the Ironman API.

The SPARSITY framework [47] combined cache and register block-
ing along with autotuning in order to automatically generate tuned Sparse
Matrix-Vector and Sparse Matrix-Matrix Operations. They demonstrated
that these techniques work for a wide variety of architectures and reduce the
amount of expert itme needed to produce fast kernels. The Optimized Sparse
Kernel Interface (OSKI) [48] took SPARSITY a step further by exposing
an autotuning API along with providing memory hierarchy aware kernels to
match modern architectures. The benefit of this level of performance abstrac-
tions is that it allows library users to pass domain knowledge to these building
blocks and reap the performance benefit while minimizing the amount of ex-
pensive autotuning. More recently, the authors in [49] take these techniques
to manycore accelerators, showing that these transformations work even on
the extreme end of the hardware spectrum.

Up until this point, the bulk of the research in sparse computations has
focused on problems arising from engineering and the hard sciences. However,
a growing body of research is focusing on sparse problems arising from the
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social sciences. These problems tend to be larger and more unstructured
than their engineering counterparts. These real world networks tend to fall
in the category of scale-free graphs [50], where their degree distribution
follow an inverse exponential. This means that a few key elements in the
graph carry the bulk of the edges, while the vast majority of nodes contain
only a few. This structural departure means that many of the blocking and
tiling techniques that worked for engineering-type networks no longer fit as
naturally. As a result, we are seeing the development of sparse libraries
for these type of real-world networks. For example, the Compressed Sparse
Block (CSB) [51] assumes that little reuse will occur over these graphs and
therefore minimizes data access by compressing the indices of the sparse
elements and laying out the data efficiently in memory. In [52] the authors
take a different approach by incorporating the problem of graph partitioning
along with cache-oblivious storage. The authors recognize that locality is
necessary in order to take advantage of cache blocking.

In [53], we also combine locality with storage by creating a hierarchical
sparse data structure for storing scale-free graphs which we call Recursiv
Matrix Vectors. The idea is that even in real world scale-free data there
is a hierarchical cluster structure and if we can capture that in a tree like
format then we can maximize cache reuse within these clusters. In this thesis,
we show how to implement a high performance SPMV around our storage
format. This format borrows ideas from FLASH [54], a hierarchical dense
matrix format. We will show how to implement a high performance graph
analytic library on this format.

Graph Computation. The graph computation story is rapidly unfolding
and we can classify the emerging work into two distinct, but not necessarily
incompatible approaches: the data flow approach and the linear algebra-like
approach.

In the data flow approach, the graph frameworks decouple the compu-
tation from the data access pattern. Graph operations are implemented in
terms of small atomic functions over vertices and edges, and these functions
are executed when their inputs have been modified. This process either oc-
curs as bulk computations or as the new data is made available, and this
continues until no more vertices or edges are modified. Prime examples of
this approach include Pregel [55], GraphLAB [56], Ligra [57]. There are
a myriad of optimizations to this approach, for example GraphChi [58], X-
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Stream [59] reshape the graph to take advantage of the memory hierarchy. A
more aggressive optimization is seen in Galois [60] and its extension in Elixir
[61] introduce the notion of speculation by requiring the atomic functions be
invertible. This allows the framework to run-ahead on computation on the
assumption that more work can be done on a particular path. If this is later
deemed an incorrect assumption, then the computation can be rolled back.

For the linear algebra approach to graph analytics we have the Combi-
natorial BLAS [62] and Knowledge Discovery Toolbox represent graph op-
erations as matrix operations over specialized semirings which capture the
desired graph computation. These libraries leverage many of the approaches
used for sparse matrix computations on distributed memory systems and re-
duce the burden on the programmer. This approach is made into an API in
the GraphBLAS project [5] through the use of C++ templates. Algorithms
in this interface are implemented as iterative sparse matrix vector products
on user defined semirings. The goal of the GraphBLAS is to define an in-
terface for common graph analytic routines that can be tuned to the target
system. It is worth noting that most real-world networks are not static, but
evolve over time. Therefore, the Spatio-Temporal Interaction Network and
Graph Extensible Representation (STINGER) [63] is a graph library and
data format for performing analytics on time varying graphs. They use a
specialized data structure to accommodate frequent updates to the graph,
and to facilitate parallel operations over the graph. Their interface allows
the user to provide a mapping function between physical vertex ID in the
graph and their logical ID in memory.

In this thesis we implement a library in the style of the GraphBLAS using
the techniques and transformations from our Matrix-Matrix Multiplication,
Stencil and SPMV implementations. The key idea that allows us to link the
work in the three previous areas to graph analytics comes from [11]. In this
paper the authors created a solver for hp-Adaptive FEM that takes advantage
of structural information from the original application to keep neighboring
data nearby in memory. They use a hierarchical storage – Unassembled
Hyper-Matrices (UHM) – to store each refinement of a node as a child of
the parent. In this way they use structural information to preserve locality
which naturally allows for an efficient parallel implementation in [64]. We
use this idea by developing a data structure that preserves graph locality in a
hierarchical fashion. This allows us to take advantage of the cache hierarchy
by using a similarly layering approach seen in Matrix-Matrix multiplication
which in turn allows us to use high performance kernels.
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3.3 Chapter Summary

In this chapter, we detailed the development of Matrix-Matrix Multiplication
kernels, Stencil Computation, Sparse Matrix Multiplication and Graph An-
alytics. Dense Matrix-Matrix Multiplication kernels form the computational
basis for high performance Dense Linear Algebra Operations (DLA). We can
view stencil and sparse computations as specializations of DLA, which take
advantage of structure and sparsity for performance. Further, we can cast
graph operations in terms of linear algebra and take advantage of these spe-
cializations. The remainder of this thesis is devoted to the generation of
efficient kernels in these fields, along with the implementation of high perfor-
mance sparse matrix and graph libraries that take advantage of these types
of kernels.
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Chapter 4

Matrix-Matrix Multiplication
as Template for Performance

4.1 Introduction

Throughout this thesis, we discuss a systematic approach for producing high
performance implementations for matrix-like operations. This approach di-
vides the problem into an algorithmic portion that feeds an efficient kernel
portion. Our approach is a generalization of the approach used to produce
high performance matrix-matrix multiply code for dense problems, which is
why we use it as a our template. We will discuss the prior work behind the
algorithmic side of the problem which includes a provably high performance
algorithmic nesting that in turn leads to an efficient access pattern and data
layout transformation. We will also discuss our contribution to this process
by automating the generation of efficient dense kernel.

Around the turn of the century, Kazushige Goto revolutionalized the
way matrix-matrix multiplication is implemented with the GotoBLAS ap-
proach [2]. Specifically, Goto demonstrated that data movement and compu-
tation for computing gemm can be systematically orchestrated in a specific
manner, as depicted in Figure 4.1, that does not change as we shift between
architectures. In Goto’s implementations, a small macro-kernel needs to be
custom-implemented. The BLIS framework [1] refactored Goto’s algorithm
exposing additional loops so that only a much smaller micro-kernel needs to
be customized for a new architecture, with all the other parts implemented
in the C programming language.
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Figure 4.1: (Figure from [1] ) The GotoBLAS approach for matrix multipli-
cation as refactored in BLIS. Blocked arrows represent explicit data packing,
and thin arrows represent the data layout in after packing.
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In isolation this chapter provides a key contribution to the field of Dense
Linear Algebra – the generation of a high performance gemm kernel. These
efficient gemm kernels provide the foundation for high performance scientific
codes which is why substantial effort is placed on improving the performance
of these kernels on new hardware. Our contribution reduces this gemm ker-
nel into an even smaller building block and provides a mechanical process
for generating these blocks. As a part of this thesis, this chapter empha-
sizes the method for performance described in Chapter 2 and demonstrates
how to make the kernel generation phase mechanical. In later chapters, this
approach will allows us produce high performance implementations of oper-
ations for structured mesh, spares linear algebra and graph analytics.

4.2 Anatomy of a Gemm Micro-Kernel

BLIS is a framework for rapidly instantiating the BLAS using the Goto-
BLAS (now maintained as OpenBLAS[65]) approach [2], and it is one of the
most efficient expert-tuned implementations of the BLAS. The GotoBLAS
approach performs loop tiling [66] and packing of data for different layers [67]
within the cache hierarchy in a specific manner to expose an inner kernel.
The specific loop tiling strategy in GotoBLAS has been shown to work well
on many modern CPU architectures. BLIS extends these ideas, and tiles the
loops in the GotoBLAS inner kernel to expose an even smaller Gemm kernel,
the micro-kernel, and showed that high performance is attained when this
micro-kernel is optimized [68].

4.2.1 The Micro-Kernel

The micro-kernel is a small matrix multiplication that implements C+= AB,
where C is a mr ×nr matrix, while A and B are micro-panels of size mr × kc
and kc×nr respectively. In addition, because of the packing of A and B prior
to the invocation of the micro-kernel, it can be assumed that A is stored in a
contiguous block of memory in column-major order while B is contiguously
stored in row-major order. Since the micro-kernel is a small gemm kernel,
the micro-kernel can be described, using compiler terminology, as a gemm
kernel computed using a triply-nested loop of the KIJ or KJI variant.

Within the BLIS framework, it can also be assumed that mr, nr � kc. In
addition, we assume that the bounds of the loops (i.e. kc, mr, and nr) are
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determined analytically using the models from [20].
Computing the micro-kernel. Mathematically, the micro-kernel is

computed by first partitioning A into columns and B into rows. The output
C is then computed in the following manner:

C += ( a0 . . . akc−1 )




bT0
...

bTkc−1




+=
kc−1�

i=0

aib
T
i ,

where the fundamental computation is now

C+= aib
T
i ,

a single outer-product, and our task is to compute the outer-product multiple
times, each time with a new column and row from A and B, in as efficient a
manner as possible.

4.2.2 Decomposing the Outer-Product

Focusing on a single outer-product, C+ = abT , we can decompose the outer-
product further by performing loop tiling of C. This, in turn, will require us
to block the columns of A and rows of B into sub-columns and sub-rows of
conformal lengths respectively, as follows:

C →




C0,0 C0,1 . . .
C1,0 C1,1 . . .
...

...
. . .


 a →




a0

a1

...


 b →




b0

b1

...




In this case, the outer-product is decomposed into a smaller unit of com-
putation, which we will term as Unit Update, which computes

C i,j+ = (ai)T bj,

where Ci,j is now a mv × nu matrix, and the subvectors of ai and bj are
vectors of length mv and nu. We can view this operation in the following
pseudo-code snippet:
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unit_update( C, a, b )

for( i = 0; i < m_v; ++i )

for( j = 0; j < n_u; ++j )

C[i][j] += a[i] * b[j];

Decomposing the outer-product into smaller unit updates allows us to
determine how to compute the outer-product with the available instructions
on the targeted architectures. In the case where mv = nu = 1, each unit
update computes a single element in the matrix. This means that the outer-
product, C, is computed element-wise, can be performed using the following
code:

for( i = 0; i < m_r / m_v; ++i )

for( j = 0; j < n_r / n_u; ++j )

a_i = sub_vector( a[i*m_v : (i+1)*m_v] );

b_j = sub_vector( b[j*n_u : (j+1)*n_u] );

C_ij = sub_block( C[i*m_v:(i+1)*m_v][j*n_u:(j+1)*n_u] );

unit_update( C_ij, a_i, b_j );

Where bj is streamed from the L1 cache, and ai is loaded into the registers
from the L2 cache. Alternatively, interchanging the two loops yields,

for( j = 0; j < n_r / n_u; ++j )

for( i = 0; i < m_r / m_v; ++i )

a_i = sub_vector( a[i*m_v : (i+1)*m_v] );

b_j = sub_vector( b[j*n_u : (j+1)*n_u] );

C_ij = sub_block( C[i*m_v:(i+1)*m_v][j*n_u:(j+1)*n_u] );

unit_update( C_ij, a_i, b_j );

Where each iteration of the inner-most loop requires new values of ai to
be loaded from the L2 cache. In either case, we can replace the micro-kernel
block in Figure 4.1 with the new diagram in Figure 4.2.

The interesting case is when mv �= 1 and/or nu �= 1. In this case, each
unit update is a smaller outer-product. By selecting appropriate values of mv

and nu, we gain the flexibility of mapping the computation of the unit update
(C i,j) to the availability of vector / single-instruction-multiple data (SIMD)
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Figure 4.2: An additional three loops are introduced after decomposing the
BLIS micro-kernel into smaller outer-product kernels of size mv × nu. These
set of loops would replace the micro-kernel shown in Figure 4.1.

instructions available on modern architecture. This flexibility of mapping
also yields us a family of algorithms that compute the outer-product, which
is the kernel within the micro-kernel we are trying to optimized.

4.3 Identifying Outer-Product Kernels

Recall that the micro-kernel is essentially a loop around multiple outer-
products. In addition, each outer-product can be further decomposed into
smaller unit updates of size mv ×nu. In this section, we discuss how the val-
ues of mv and nu are determined by the instructions available on the desired
architecture.

4.3.1 The Building Blocks: SIMD Instructions

The key to high performance is to use Single Instruction Multiple Data
(SIMD) vector instructions available on many of the modern processors.
We assume that all computation involves double precision arithmetic and
that each vector register can store v double precision floating point numbers,
where v is a power of two. In addition, we assume that the following classes
of vector instructions are available:
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1. Vector Stores. Vector store instructions write all v elements of a vector
register to memory.

2. Vector Load. Load instructions read u unique elements of data from
memory, where u ≤ v and u is a power of two. An element is
considered unique if it resides in a unique memory address. In cases
where u < v, each of the u unique elements are duplicated v/u times.

We assume that all elements loaded by a single Load instruction are
within v memory addresses of each other1. Prefetches are considered
Load instructions.

3. Vector Shuffles. Shuffle Instructions reorders and/or duplicates the
elements in a vector register. We restrict ourselves to only instructions
that be represented by a nv×nv matrix where each row contains exactly
nv − 1 zeros and a single one, but each column may contain multiple
ones. In addition, we assume that the number of ones in each column
is a power of two.

4. Vector Computation. It is assumed instructions that perform com-
putation on vector registers are element-wise operations. This means
that, given vector registers, reg a and reg b, the output is of the form:

reg a op reg b =




α0 op0 β0

α1 op1 β1
...

αv−1 opv−1 βv−1


 ,

where opi and opj, i �= j may be different binary operators. The result
of the computation may be stored in one of the input registers, or a
third vector register.

5. Composite Instructions. Some instructions – we will call them Com-
posite Instructions – can be viewed as a combination of some of the
previous three types of instruction. For example, the instruction,

vfmadd231pd, reg, reg, mem1to8

instruction on the Xeon Phi can be expressed as a Load instruction, fol-
lowed by a broadcast (Shuffle) instruction, followed by a fused multiply-
add (Computation) instruction.

1This implies that our framework do not handle vector gather instructions. However,
these Gather/Scatter instructions are not required in dense linear algebra kernels, as ma-
trices are often packed for locality.
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Figure 4.3: SIMD computation of a 4 × 4 outer-product using four unit
updates of size 4 × 1. Shaded register represents the register that is being
updated during the particular stage of computation.

4.3.2 Mapping Unit Updates to SIMD Instructions

Given the available SIMD instructions, one possible size of a single unit
update is for mv = v and nu = 1, where v is the size of a SIMD register.
This means that v values from a, and a single value of b is loaded into two
SIMD registers, reg a and reg b. In addition, we know that the loaded
value of b is duplicated v times because nu < v. Computing with reg a and
reg b will yield a single unit update of size v × 1. A single outer-product of
mr×nr can then be computed through mr/mv×nr/nu multiple unit updates
as shown in Figure 4.3.

Alternatively, a different algorithm emerges when mv = v and nu = 2.
The difference is that reg b would contain two unique values, each duplicated
v/2 times. After the first computation is performed, the values in reg b

has to be shuffled before the next computation can be performed. This
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computation-shuffle cycle has to be repeated at least nu−1 times in order to
compute a single unit update. Pictorially, this is shown in Figure 4.4. The
astute reader will recognized that we could have chosen to shuffle the values
in reg a without significantly changing the computation of the unit update.

4.3.3 A family of Outer-Product Algorithms

What we can observe from the two algorithms described previously are the
following:

– The size of a single unit update can be determined by the number of
unique values loaded into registers reg a and reg b.

– When there are more than one unique values in registers reg a and
reg b, the number of computation-shuffles required is the minimum of
mv and nu.

– Loading more unique values into reg b reduces the number of Loads
of b from the L1 cache, at the cost of increasing the number of shuffles
required to compute the unit update.

Given that we chose not to shuffle reg a, this means that there are
log2(v) + 1 different ways of picking nu, i.e. the number of unique elements
loaded into reg b (while still being a power of 2). For a given choice of nu,
the different ways in which the data in reg b should be shuffled yields differ-
ent implementations for the unit update. By accumulating the instructions
for computing all mr/mv ×nr/nu unit updates, different sets of instructions,
or instruction mix, describing different implementations of the outer-product
can be obtained.

Recall that the different number of loaded unique elements results in dif-
ferent number of loads and shuffle stages required. On different architectures,
the cost (in term of latency) of loads and shuffles may differ, which suggests
a need for a means to estimate the cost of computing with a set of instruction
mix.

4.4 Selecting Outer-Product Kernels

Having derived a family of algorithms – or instruction mixes – to compute
the outer-product, we need to select one of these algorithms to implement.
We build a model of the architecture and then rely on queuing theory to
select the kernel with the highest throughput. Specifically, we are selecting
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Figure 4.4: SIMD computation of a 4 × 4 outer-product using two unit up-
dates of size 4 × 2. As there are multiple (2) unique values, vector shuffles
must be performed to compute each unit update. Shaded registers denotes
output register for the current stage of computation.
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the instruction mix with the shortest average waiting time. This is because
this instruction mix will fit inside a much larger looping structure and will be
computed for many iterations. Thus, we are only concerned with the steady-
state behavior, which is where most the compute time will be spent. The key
assumption is that our architecture is a stable system in steady-state, where
the arrival rate of instructions into the architecture is equal to the average
departure rate of instructions out of the system. Additionally, we can ignore
dependencies between instructions, because we are only interesting in how
long the mix of instructions wait in the system. These instructions can come
from different iterations of the instruction mix, which is sufficient because our
kernels typically have no inter-loop dependencies other than accumulations.
We will provide a brief overview of this process, but for a more detailed
treatment of using queueing theory to estimate the performance of the outer-
product instruction mixes, we refer the reader to our work in [21].

The first part of our queuing theory based approach to estimating the
performance of instructions mixes starts with representing the microarchitec-
ture as queues. Each functional unit in the microarchitecture is responsible
for processing a subset of instructions from the Instruction Set Architecture
(ISA), so we represent these functional units as servers and the instructions
in the mix as jobs in a server’s queue. We illustrate this in Figure 4.5.

Taking this server and queue view of the microarchitecture allows us to
adapt Little’s Law [8] to estimate the throughput of a given instruction mix.
Formally stated as L = λW , this law tells us that the expected number of
jobs waiting for a server, L, is equal to the product of the average arrival
rate of jobs into the system (λ) and the average waiting time of jobs in the
system.

Since we are concerned with the throughput of an instruction mix – in
particular we want to find the mix with the highest throughput – we can
rewrite the formula as λ = L

W
to determine the throughput for any given

functional unit. Because performance of an outer-product instruction mix is
limited by the functional unit with the slowest throughput, we can estimate
an outer-product mix as follows:

λouter product = min

�
λi

Li

�

Where λouter product is the throughput of a given outer-product instruc-

tion mix, λi is the throughput for functional unit i and Li is the number of
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Figure 4.5: Model of a subset of the Intel Sandy Bridge architecture, showing
only the floating point addition and multiplication units, the load/store units
and the vector shuffle units. Instructions enter the pipelines, and when all
instructions required for computing the outer-product leave their respectively
pipeline, the outer-product is computed.

instructions in the given outer-product mix going to functional unit i. The
throughput of the outer-product mix is the inverse of the time needed to
clear the slowest functional unit. In the next subsection we will provide a
concrete example.

4.4.1 Estimating Throughput

Consider the instruction mix required to compute the 4 × 4 outer-product
shown in Figure 4.3 being executed on the model Sandy Bridge architecture
described in Figure 4.5. The instruction mix contains a single Load of a
vector of a, four Loads (with duplication) of elements from b, four multiplies
and four adds (Computation) instructions. All instructions will be sent to
their respective pipelines. In addition, another four job items are also sent
to the pipeline connected to the shuffle functional unit. This is because the
Load of element from b on the SandyBridge is a Composite instruction, that
comprises of two instructions, a Load and a Shuffle.

Based on documentations from the hardware manufacturers [69], we know
that the throughputs of the Shuffle and Computation instructions are 1 per
cycle, and Loads have a throughput of 2 per cycle. This means that the
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Figure 4.6: Our outer product kernel generation work flow produces expert
level code by: enumerating a space of implementations, modeling their ex-
pected performance, selecting the top candidate and translating that into
efficient code.

estimated throughput of the system is

λouter product = min

�
λload
Lload

,
λadd
Ladd

,
λmul
Lmul

,
λshuffle
Lshuffle

�

= min

�
2

5
,
1

4
,
1

4
,
1

4

�

= 0.25 outer-product per cycle

However, these throughput values are based on the assumption that the
instructions in all queues are fully pipelined, and independent. When the
instructions in the pipelines are not independent, this implies that the latency
of executing that instruction cannot be hidden. As such the throughput of the
pipeline drops. This can happen when one instruction has to be computed
before dependent instructions can be processed. What this means is that
the pipeline has to stall, thus increasing the average waiting time of that
pipeline.

4.5 Generating the Gemm Micro-Kernel

In the previous section, we described an analytical technique for determin-
ing the most efficient instructions mix for implementing the outer-product
kernel on a given architecture. By using queuing theory to we can estimate
the sustained throughput of a potential implementation without empirical
measurements. The end goal of this step is to transform this highly parallel
instruction-mix into an efficient kernel.
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In this section we describe our code generator that performs this trans-
formation on an instruction-mix. This generator takes as its input an outer-
product instruction-mix and outputs a high performance kernel.

By using the parallel outer-product formulation over an inner(dot)-product
formulation the resulting mix contains a large number of independent instruc-
tions. Using these independent instructions, or instruction level parallelism
(ILP), the latency of these instruction are easily hidden through the applica-
tion of static scheduling. This enables the kernel to achieve the performance
predicted by the model. Thus, the main functions of our code generator
is to capture the desired instruction-mix in a template, statically schedule
the instruction-mix, and emit ANSI C code in a manner that preserves the
static instruction schedule. In these three steps our generator produces a
high performance kernel that approaches the theoretical performance of an
instruction-mix as determined by our queueuing theory model.

4.5.1 A Work Flow for Kernel Generation

Our complete work flow is captured in Figure 4.6, and it accomplishes the
following: We start with the ISA for the target architecture, this includes
the available instructions along with their latency and throughput. This in-
formation is passed to our Unit Update Enumeration stage which enumerates
the space of all unit updates, for example given the ISA in Figure 4.7 the unit
updates in Figure 4.8 are enumerated. After the unit update space is enu-
merated, all possible tilings of these unit updates that lead to a valid mr×nr

outer-products are enumerated (Figure 4.9). The performance of these outer-
products are then estimated using our queueing theory model described in
the previous section. This process insures that the selected instruction-mix
can sustain a high throughput, given that all other instruction overheads are
minimize. The steps that follow, focus on minimizing said overhead through
several optimizations including static instruction scheduling.

Continuing with the work flow, the best instruction-mix tiling is selected
and passed to a kernel builder which blocks the outer-product into chunks of
unit updates. This will reduce register pressure when we perform instruction
scheduling (see Figure 4.11). The kernel builder then outputs a skeleton of
the kernel, like the one in Figure 4.12, which captures the various blocking
parameters of the kernel along with a set of embedding functions such as
Figure 4.10. These embedding functions capture the selected instruction-mix
as functions. At this point the embedding functions and skeleton represented
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Figure 4.7: These cartoons illustrate the SIMD Vector instructions that are
considered for outer-product kernel generation.

an untuned matrix multiply kernel that is implemented using the selected
instruction-mix.

The embedding functions and the skeleton are then passed to a Scheduling
and Optimization phase which hides the instruction latency by statically
performing software pipelining scheduling [10], which allows the kernel to
perform near the predicted performance. The resulting statically scheduled
code is then emitted using inline assembly ANSI C intrinsics from [9], which
produces C code that can be compiled with a fixed static schedule. This
process yields outer-product kernel code (Figure 4.13) that achieves expert
level performance. The role of the external compiler on this emitted C code
is to provide register coloring, simplify memory indexing computation, and
insure efficient instruction alignments for the fetch and decode stages of the
processor.

4.5.2 Embedding Functions Capture the Instruction-
Mix

The instruction-mix selected by our queuing model is not a complete kernel,
instead it is a collection of instructions that describe the data movement and
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Figure 4.9: Given the unit updates in Figure 4.8 we can enumerate two
possible implementations of a mr ×nr = 8× 4 outer-product. On the left we
have an instruction-mix composed entirely of vbroadcast unit updates and
on the right we have an instruction-mix composed of vshuffle unit updates.
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get_b_element( b_reg, ii, jj, pp )

if( ii == 0 )

switch( jj )

case 0:

b_reg[jj] = vload(&B[jj + pp*nr])

case 1:

b_reg[jj] = vshuffle(b_reg[jj-1])

case 2:

b_reg[jj] = vpermute(b_reg[jj-1])

case 3:

b_reg[jj] = vshuffle(b_reg[jj-1])

get_a_element( a_reg, ii, jj, pp )

if( jj == 0 && ii mod v == 0)

a_reg[ii] = vload( &A[ii + pp*mr] )

fma( a_reg, b_reg, c_reg, ii, jj, pp )

if( ii mod v == 0 )

c_reg[ii][jj] = vfma( a_reg[ii],

b_reg[jj],

c_reg[ii][jj] )

Figure 4.10: In order to pass the instruction-mix to the kernel code generator,
it is encoded as a function, similar to listing. These functions dispatch to a
specific instruction which depends on what element Cii,jj is being on in the
outer product.

floating-point computation of data elements in a permuted outer-product.
The dependencies, register allocation and memory address computation is im-
plicit in this stage. Therefore, the first step in transforming this instruction-
mix into a kernel is to make these characteristics explicit. This is done by
expressing the three components of an outer-product instruction-mix (gather-
ing of the elements A, gathering of the elements of B, performing the multiply
and accumulate of C) are expressed as embedding functions: get a element,
get b element, and fma (Figure 4.10). In these functions dependencies, reg-
ister utilization, and memory address computation are made explicit.

These functions take the following inputs: arrays of registers that rep-
resent the elements of a,b and c, along with the indices for the m, n and
k dimension of the current unit-update. The embedding functions maps
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the indices of the outer-product to the appropriate instructions from the
instruction-mix. Because these functions capture the majority of the work a
handful of optimizations are applied to these embedding functions. Namely,
we optimize for the fetch and decode stage of the processor by minimizing
bytes per instruction. This is critical because the maximum rate of floating
point computations for a modern processor is very close to the maximum
rate that it can fetch and decode instructions.

Optimizing for Bytes per Instruction. On most modern processors, the
maximum throughput of the fetch and decode units is low enough to become
a bottleneck. Thus, some of the optimizations performed by our generator
minimize the instruction length and decode complexity in order to avoid
this bottleneck. The following decisions ensure that shorter instructions are
generated:

1. In some cases, we generate instructions that are meant to operate on
single-precision data instead of instructions that operate on double-
precision data. An example of this is the use of the vmovaps instruction
to load reg a, instead of vmovapd. This is because both instructions
perform the identical operation but the single-precision instruction can
be encoded in fewer bytes.

2. We hold the partially accumulated intermediate mr × nr matrix of C,
which we will refer to as T , using high-ordered registers (i.e. register
xmm8 to xmm16). On most architecture we tested, high-ordered SIMD
registers require more bytes to encode. Thus, by using the low-ordered
registers to hold working values and high-ordered registers to store T ,
we ensure that each instruction has at most one register operand (i.e.
the output operand) that is a high-ordered register.

3. For memory operations, address offsets that are beyond the range of
−128 to 127 bytes require additional bytes to encode. Therefore, we
restrict address offsets to fit in this range by subtracting 128 bytes from
the base pointers into A and B.

4.5.3 From Embedding Functions to Generated Code

Once we have established the necessary peripheral instructions to the instruction-
mix and established the dependencies between these instructions we can gen-
erate an implementation. This entails the application of instruction schedul-
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Figure 4.11: Once a candidate outer product tiling is selected (figure 4.9), we
perform an additional layer of blocking (ms, and ns) to assist the code gen-
erator in minimizing register spills. Register blocking allows fewer registers
to be live at a given cycle thus allowing the code generator to aggressively
schedule the instructions.

ing in order to hide – or overlap – the latency associated with these instruc-
tions. Static instruction scheduling is key for this next step, however this
optimization is limited by the number of available registers. Thus, the pri-
mary step in the kernel builder (Figure 4.6) is to determine a further layer of
blocking for the outer product to insure a sufficient number of registers for
scheduling.

4.5.4 Limits Imposed by Registers

Recall that in order to compute a unit update, nu permutations of the ele-
ments in reg b are required. However, a multiply and an add is performed
with each permutation. This implies that each unit update will require two
new registers (RR = 2): One to store the permutation of reg b, and another
to hold the output of the multiplication. On architectures with a fused-
multiply-add instruction, only one new register is required (i.e. RR = 1).

As the register that holds the output of the accumulated result is reused
over multiple outer-products, it means that the number of vector width com-
putations that we can perform in a given unit-update is (Nupdates) that can
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/* initialize temp buffer */

for( i = 0; i < m_r; i++ )

for( j = 0; j < n_r; j++ )

c_reg[ii][jj] = 0;

/* computation */

#unroll(k_u)

#schedule_software_pipeline

for( pp = 0; pp < k_b; pp++ )

/* perform the outer products */

for( i = 0; i < m_r; i+=m_s )

for( j = 0; j < n_r; j+=n_s )

for( ii = i; ii < i+m_s; ii++ )

get_a_elem(a_reg, ii,j );

for( jj = j; jj < j+n_s; jj++ )

get_b_elem(b_reg, ii,jj );

fma( c_reg, a_reg, b_reg, ii,jj,pp );

/* accumulate temp to results */

for( i = 0; i < m_r; i++ )

for( j = 0; j < n_r; j++ )

C[(ii,jj)] += c_reg[ii][jj];

Figure 4.12: In this code skeleton we capture an outline of the gener-
ated kernel. We pass a similar outline to our code generated along with
our instruction-mix. This mix is encoded as the functions get a elem,
get b elem and fma. The code generator uses this information to gener-
ate the code, perform optimizations such as unrolling and code motion and
schedule the resulting kernel code using software pipelining in way that tar-
gets the microarchitecture.
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be performed without register spilling is constraint only by the number of
registers given by the following:

Nupdates =

�
Rtotal − mrnr

mv
−RA

RR

�
, (4.1)

where Rtotal and RA are the total number of registers and the registers re-
quired to hold the the column of A.

If we let msnsv = mrnu then these blocking dimensions ms and ns for
tiling unit-updates are selected such that:

msns ≤ Nupdatesv (4.2)

In Figure 4.11, we show the blocking and scheduling of a vshuffle instruction-
mix (Figure 4.9) for a mr × nr = 8× 4 outer-product.

4.5.5 Scheduling and Tuning

Remember, the instruction-mix selected by the Queueing Model Estima-
tor is translated by the Kernel Builder into several embedding functions
(get a elem, get b elem and fma), like those in Figure 4.10. These function
are embedded in a looping structure that matches the outer-product kernel
(Figure 4.12). These loops iterate over the mr, nr,ms and ns dimensions and
generate the dependencies between the instructions inside the embedding
functions.

Once these dependencies are built, a few basic optimizations, such as
common sub-expression elimination, are performed such that the only the
original instruction-mix plus a few looping instructions exist in the final
output code.

Next, the code generator performs software pipelining [10] over the entire
looping structure of the outer-product. By statically scheduling the kernel,
the risk of instruction stalls is minimized thus allowing the processor to com-
pute the instruction-mix near the rate predicted by our model. Once the
code is scheduled, the generator emits a mix of C code and inline assem-
bly instruction macros which preserve the schedule [9]. This resulting code
implements a high performance outer-product kernel with the desired dimen-
sions and the selected instruction-mix. We provide an excerpt of a generated
kernel in Figure 4.13.
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for( pp = 0; pp < k_b; pp+=KUNR )

{

/* STEADY STATE CODE */

VLOAD_IA(GET_A_ADDR(0),GET_A_REG(0))

VLOAD_IA(GET_A_ADDR(1),GET_A_REG(1))

VLOAD_IA(GET_B_ADDR(0),GET_B_REG(0))

VSHUFFLE_IA(0x05,GET_B_REG(0),GET_B_REG(1))

VFMA(GET_A_REG(0),GET_B_REG(0),GET_C_REG(0,0))

VFMA(GET_A_REG(0),GET_B_REG(1),GET_C_REG(0,1))

VPERM2F128_IA(0x01,GET_B_REG(1),GET_B_REG(2))

VSHUFFLE_IA(0x05,GET_B_REG(2),GET_B_REG(3))

VFMA(GET_A_REG(1),GET_B_REG(0),GET_C_REG(0,0))

VFMA(GET_A_REG(1),GET_B_REG(1),GET_C_REG(0,1))

/* snip */

}

Figure 4.13: This is generated excerpt from our kernel generator. The re-
sulting kernel code implements the instruction-mix identified by our queueing
theory model and is statically scheduled to maintain the estimated perfor-
mance of the mix.

4.6 Experimental Results

In this section, we test the effectiveness of our kernel generation system
in automating the last-mile for high performance dense linear algebra. We
evaluate both the queueing theory model, which finds an efficient outer-
product instruction-mix, and the code generation system, which translates
that mix into a high performance kernel.

We use a variety of machines listed in Table 4.5 that span a diverse range
of double precision vector lengths (v ∈ {2, 4, 8}), number and partitioning
of functional units, and instruction latencies. Because our kernel fits in the
context of a larger Goto/BLIS-style Gemm context, the blocking parame-
ters mc, kc,mr and nr are determined from the analytical models developed
in [2] and [20] along with the cache and microarchitecture details listed in
Table 4.1 and Table 4.2 respectively. The microarchitecture details in partic-
ular (Table 4.2) were used by the queueing theory model to select the highest
throughput outer-product instruction-mix. Additionally, these details deter-
mined Nupdates and the register sub-blocking dimensions ms, ns using the
formula developed in the previous section.
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Proc. uArch. Freq.
SL1

(KiB) WL1 NL1

SL2

(KiB) WL2 NL2

SL3

(MiB) WL3 NL3

Core 2 X9650 Penryn 3 4× 32 8 256 2× 6000 24 16384 - - -

Xeon X5680 Nehalem 3.333 6× 32 8 64 6× 256 8 512 12 16 12288

Core i5-2500
Sandy
Bridge 3.3 4× 32 4 512 4× 256 4 4096 6 12 32768

Core i7-4770K Haswell 3.5 4× 32 8 256 4× 256 8 2048 8 16 32768

Xeon Phi 5110p
Knights
Corner 1.053 60× 32 8 256 60× 512 8 4096 - - -

Table 4.1: Cache details of the processors used in our experiments. These cache details are needed for
determining mc, kc,mr and nr according to [2] and [20]. The value Sl corresponds to the size of the l level
of cache. Wl is the number of ways and Nl is the number of cache lines in each way.
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uArch. Reg. �fma �L1 �L2 �shuf. �prm. �bcst. Rfma Rmem Rshuf. Rprm. Rbcst.

Penryn 16 8 3 15 1 - 1 p0 ∧ p1 p2 p5 - p0

Nehalem 16 8 4 10 1 - 2 p0 ∧ p1 p2 p0 ∨ p5 - p5
Sandy
Bridge 16 8 4 12 1 2 3 p0 ∧ p1 p2 ∨ p3 p5 p5 p5 ∧ (p2 ∨ p3)

Haswell 16 5 4 12 1 3 5 p0 ∨ p1 p2 ∨ p3 p5 p5 p2 ∨ p3
Knights
Corner 32 4 1 11 4 6 4 p0 pmem p0 ∧ pmem p0 p0 ∧ pmem

Table 4.2: Here we capture the pertinent microarchitecture parameters that are used for our queueing
theory model. The column �u represents the latency in cycles of instruction u, where L1 and L2 represents
instruction reads that hit in those caches. In the case of a system without fused-multiply-add (fma), the
latency is represented as the sum of the multiply instruction and add instruction. The columns Ru represent
the functional units that are required to compute instruction u. For some instructions multiple function
units may be required (represented by ∧) and some instruction may take multiple paths (represented by ∨).
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# vperm. updates # vbcast. updates # Reads (Lmem) # Vect. (Lp0) λop
flop
cyc.

GFLOP
s

0 30 1+0+30+4=35 31 0.02857 13.71 14.44

1 26 1+1+26+4=32 32 0.03125 15 15.80

2 22 1+2+22+4=29 33 0.03030 14.55 15.32

3 18 1+3+18+4=26 34 0.02941 14.12 14.87

4 14 1+4+14+4=23 35 0.02857 13.71 14.41

5 10 1+5+10+4=20 36 0.02778 13.33 14.04

6 6 1+6+6+4 =17 37 0.02703 12.97 13.66

7 2 1+7+2+4 =14 38 0.02632 12.63 13.30

Table 4.3: We estimate the number of cycles needed to compute our generated Xeon Phi outer-product
kernels. The first column is the number of vpermute unit updates of size 4 × 8 used to implement the
outer product. The remainder of the outer-product is computed using multiple 1× 8 broadcast based unit
updates. Note, λop = λouter-product = min( 1

Lmem
, 1
Lp0

) is the throughput of an outer-product.
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mr × nr

#bcast.
updt.

#shuf.
updt.

#mem.
Lp2∨p3

#fma
Lp0∧p1

#shuf.
Lp5 λout.-prod.

flop
cyc.

GFLOP
s

8× 4 8 0 2 + 8 = 10 8 8 0.125 4 26.4

8× 4 0 2 2 + 1 = 3 8 3 0.125 4 26.4

4× 12 0 3 1 + 3 = 4 12 9 0.083 4 26.4

4× 12 12 0 1 + 12 = 13 12 12 0.083 4 26.4

Table 4.4: We estimate the number of cycles needed to compute our generated Sandy Bridge outer-product
kernels. We implement outer-products of size mr×nr ∈ {8×4, 4×12}. Note that the model predicts similar
performance across these implementation, however due to subtle microarchitecture details the experimental
performance is different.
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Processor( uArch.) mc × kc mr × nr Nupdates ms × ns

Core 2 X9650 (Penryn) 256× 256 4× 4 3 2× 2

Xeon X5680 (Nehalem) 256× 256 2× 8 3 2× 2

Core i5-2500 (Sandy Bridge) 96× 256 8× 4 3 4× 2

Core i7-4770K (Haswell) 256× 512 4× 12 3 4× 4

Xeon Phi 5110p (Xeon Phi) 120× 240 30× 8 1 8× 1

Table 4.5: The cache blocking parametersmc and kc where determined using
the results in [2] and the hardware parameters in Table 4.1 and Table 4.2.
The register blocking parameters mr and nr were determined from [20] using
the values in Table 4.1. Lastly, Nupdates and subsequently the sub-blocking
dimension ms and ns were determined using Equation 4.1. mc, kc,mr, nr,ms

and ns correspond to the values used in the generated code (see Figure 4.12).
Note Nupdatesv ≥ msns

.

4.6.1 Analysis of Queueing Model

In order to demonstrate the effectiveness of our model, we compare the pre-
dicted performance against the actual performance estimated by our queue-
ing theory model. For the Xeon Phi, we compare the performance of eight
different instruction-mix implementations of an 8 × 30 outer-product. We
selected a family of instruction-mixes where the work is partitioned between
8 permute unit updates and 8×1 broadcast based unit updates. In Table 4.3,
we detail each outer-product implementation. Each row represents a specific
implementation, where the first two columns represent the number of per-
mute and broadcast unit updates in the implementation. In the next two
columns we compute the number of instructions that need the memory port
(pmem) and vector port (p0) respectively. For the Xeon Phi each permute
component requires one load instruction, a permute instruction and four fma
instructions. The broadcast based component requires one load and one
fma instruction. Additionally, each implementation requires four prefetch
instructions that occupy the memory ports. In the fifth column we use our
queueing theory model to estimate the performance of the implementation.
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We can estimate the performance in FLOP per cycle as:

flop

cyc.
= λouter-product(mr)(nr)(2flop) (4.3)

In the last column, we estimate the performance in GFLOP using the fol-
lowing formula:

GFLOP

s
= f

flop

cyc.
(4.4)

Each of these implementations has a different throughput predicted by our
model. In our experiment (Figure 4.14), we compare the relative performance
of these implementations. Assuming that the overheads are similar between
all implementations, then if the model does not fit, we expect a significant
difference between the relative ordering of the implementations and the pre-
dictions. However, for the Xeon Phi we see that the relative ordering of the
implementations is preserved in the experimental results, with the exception
of one of the implementations. We suspect that the overhead is slightly lower
for the 0 permute, 30 broadcast implementation.

It is worth noting that the Xeon Phi requires that four threads run con-
currently in order to effectively utilize a core. This requires that we distribute
the work across multiple threads. Therefore, we used the implementation in
[7] with the following parameters: the number of threads used in each dimen-
sion (ic and jr) must satisfy icjr ≤ 59(4), and ideally should be factors of
m
mc

and n respectively. By empirical selection, ic = 12 and jr = 16 satisfied
both of those requirements and resulted in the largest number of cores that
achieved efficient per core performance.

We repeat the same experiment with the Sandy Bridge processor. In Ta-
ble 4.4 we estimate the performance for several implementations. Unlike the
Xeon Phi experiment we chose two different kernel sizes (mr×nr). According
to [20], the 8× 4 implementations is more efficient than the 4× 12. In Fig-
ure 4.14 we plot the performance of the four implementations. What we see
is despite that our model predicts identical performance, we see a significant
difference between the kernels of different sizes. What this demonstrates is
that even if we can produce an efficient kernel in isolation, our model operates
within the constraints of the larger GotoBLAS/BLIS algorithm. There are
also additional and subtle microarchitectural details that explain the differ-
ence between implementations of the same size on this system. For example,
even though both ports p2 and p3 service memory operations, they are lim-
ited in the total number of bytes that can be read in a cycle. Therefore, the
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Sandy Bridge retires less than 2 memory operations per cycle. In the case
where this is not an issue (between the two 8 × 4 implementations, we at-
tribute the performance difference to scheduling because the permute based
approach has fewer dependencies than the broadcast implementation, giving
the scheduler greater freedom to hide instruction latency.

This experiment demonstrates that for outer-product implementations
of same size we can accurately estimate the performance of our generated
implementations. However, our kernels operate within the constraints of a
bigger GotoBLAS/BLIS Gemm algorithm, and our performance is ultimately
limited by the parameters selected for the bigger algorithm. In the next sub-
sections, we look at this interaction in the opposite direction, how decisions
made in generating the kernel affect the overall GotoBLAS/BLIS algorithm.

4.6.2 Analysis of the Generated Kernels

We evaluate the effectiveness of our kernel generation approach by compar-
ing the performance of our generated outer-product kernels against state-of-
the-art Gemm implementations such as OpenBLAS [65] and ATLAS [17].
We selected OpenBLAS because it is the highest performance open source
BLAS implementation on most architectures, including the systems used in
this paper. ATLAS was also selected because it is a high performance code
generation system. Unlike, our code generator, this framework relies on hand
tuned assembly kernels and uses search to determine the blocking dimensions
around these kernels. The systems used in this experiment represent the past
four major microarchitecture designs from Intel Table 4.5. The parameters
for the GotoBLAS/BLIS Gemmalgorithm were analytically selected to maxi-
mize performance. These values also match the ones used by the OpenBLAS.

In these experiments (Figure 4.15 and Figure 4.16), our generated code
is within 2-5% of the expert tuned OpenBLAS. We suspect this difference
is due to loop overhead because we rely on the compiler to optimize this
which results in several extra instructions over the expert code. The older
the processor generation, the more pronounced of an effect this has, which is
why ATLAS outperforms our code on the Penryn. We believe we can resolve
this difference by implementing the looping structure in inline assembly which
should give us performance that is near identical to the expert written code.
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Figure 4.14: In both of these experiments we test the accuracy of our queue-
ing theory model. Top: On the Xeon Phi we evaluate the performance of
eight implementations of the same outer-product. Bottom: We do a similar
experiment, but with two different outer-product sizes.
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Figure 4.15: We compare the performance of our generated kernels against
ATLAS and the OpenBLAS for various problem sizes to demonstrate that
expert level performance can be automated. We see that our generated
code approaches the performance of hand tuned expert code and for most
architectures exceeds the performance of the generated ATLAS code.
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Figure 4.16: Like the graphs in Figure 4.15, we compare the performance
of our generated kernels against the OpenBLAS and ATLAS.
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Figure 4.17: Given an outer-product instruction-mix of an mr × nr = 8× 4,
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updates. In the uniform case, each N-update is ms × ns = 4 × 2, in the
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Figure 4.18: In this experiment, we compare the performance of two kernels
implementing the same mr × nr = 8× 4 outer-product using either uniform
or non-uniform N-update sizes. The uniform N-update implementation per-
forms better because it leads to few clusters of large (in Bytes) instructions
which prevent the fetch and decode stages from becoming bottlenecks.
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Port (RU) p0 p1 p2 - �D p3 - �D p5

Cycles - Uniform 32.0 32.0 8.0 - 12.0 8.0 - 16.0 16.0

Cycles - Non-Uniform 32.0 32.0 8.0 - 12.0 8.0 - 16.0 16.0

Table 4.6: IACA results comparing instruction throughput between the uni-
form and non-uniform N-update implementations. Each port represents a
functional unit that is used for our operation. �D represents data fetch la-
tency. What this shows is that both the uniform and non-uniform shaped
implementations of the same outer product look identical to the Out-of-
Order engine, as simulated by the IACA tool. However, we will show the
performance of the two implementations are significantly different.

4.6.3 Sensitivity to Parameters

In addition to using static scheduling and avoiding register spilling, we ob-
serve that even in the presence of an Out-Of-Order engine there is a benefit
from maintaining uniformly-sized N-updates for creating the outer product.

Given two implementation of the micro-kernel, we vary the instruction
tile sizes and compare the performance. Our reference implementation uses
uniformly sized N-updates of size ms × ns = 4 × 2. We compare this to
an implementation composed of two types of N-updates of size ms × ns =
4 × 3 and ms × ns = 4 × 1. We illustrate these two implementations in
Figure 4.17, where each outer-product is partitioned according to a uniform
or non-uniform scheme.

We ensure that both implementations are free of register spilling and are
scheduled – not only to avoid stalls – but also to insure that the number
of instructions between prefetch instructions and their subsequent loads are
uniform. We ran both implementations through the Intel Code Architecture
Analyzer (IACA), a software simulator for Intel microarchitectures, and de-
termined that both implementations lack instruction stalls, spend an equal
number of cycles on each functional unit, and have an identical throughput
(Figure 4.6). However, the results in Figure 4.18 do not reflect the results
we obtained from IACA because the non-uniform N-update implementation
performs 4% worse than the uniform N-update.

The non-uniform N-update implementation leads to clusters of instruc-
tions with very long encodings. This would present a bottleneck for the
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Figure 4.19: In this experiment we show that improving static scheduling by
increasing the number of register spills degrades the overall performance of
the Gemm operation. The GotoBLAS/BLIS algorithm attempts to minimize
the number of TLB misses, however spilling into memory that would not have
otherwise been used, increases TLB misses in this algorithm.

decoder and slow down the overall execution rate. Using uniform N-updates
results in large instructions being evenly distributed throughout the code
which prevents the decoder from becoming a bottleneck.

Registers. For generating our kernels, our aversion to register spilling goes
beyond the performance penalty of the additional store to and load from
memory. The reason is that these kernels fit in a much larger Gemm al-
gorithm that achieves high performance by reducing Translation Look-aside
Buffer (TLB) misses, and by spilling registers to memory this is disrupted
and performance degrades significantly as result of these TLB misses. To
demonstrate how large of an effect that register spilling in the kernel has on
the number of TLB misses, we evaluate three kernels with varying degrees
of register spilling (No Spilling, Moderate and Heavy). This is achieved by
varying how much the N-updates overlap when we schedule them using soft-
ware pipelining. The greater the overlap, the greater the register pressure
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Figure 4.20: The overall algorithm that our kernels embedded in, the Go-
toBLAS/BLIS Gemm, maximizes performance by insuring that the kernel
receives data at a sufficient rate while minimizing TLB misses. Spilling into
memory requires that extra TLB entries be utilized to address memory that
would not have been used otherwise. Thus even if spilling improves the ker-
nel performance in isolation, it will degrade the overall performance of the
Gemm operation.
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and the larger the number of spills. In addition to measuring performance
(FLOPs per cycle), we also measure TLB misses using PAPI [70]. The goal
is to show that by increasing the amount of register spilling we will disrupt
how the larger Gemm algorithm avoids TLB misses.

The performance per cycle results in Figure 4.6.3 demonstrate that as
we increase the number of spills performance decreases – which is what we
would expect. In Figure 4.6.3, We see that for large problem sizes the number
of TLB misses is greater for the Heavy amount of spilling compared to the
Moderate amount which is greater for the No Spilling case. If it were the case
that the added latency incurred by the register spills were the only source
of performance penalty, then we would not expect to see a change in the
number of TLB misses between the three cases.

This shows that register spilling has performance implication beyond the
additional round trip to cache because it disrupts the TLB miss avoiding
characteristics of the Gemm algorithm described in [2]. For practical pur-
poses this removes spilling as an option when the outer-product instruction-
mix is translated into a kernel.

4.7 Chapter Summary

In this chapter, we address the last-mile problem of generating the architecture-
specific micro-kernel for the general matrix-matrix multiplication routine
that underlies most high performance linear algebra libraries. Specifically,
we reveal the system behind generating high performance kernels that tradi-
tionally is implemented manually by a domain expert.

In following with the two part method of this thesis, we rely on an existing
access pattern from the GotoBLAS and BLIS, and provide an approach to
generating high performance tuned kernels. To validate that the performance
of our generated micro-kernels are indeed high performance, we compared our
generated results with those from OpenBLAS, which uses a similar approach
to high performance matrix multiply. On many of the architectures, we
demonstrated that the generated kernels are within 2-5% of the OpenBLAS
performance. In addition, we also show that the generated kernels also scale
in a similar fashion when parallelized on SMP system such as the Xeon Phi.
While analytically generating the micro-kernels makes us competitive with
expert-implemented kernels, empirical fine-tuning could then be employed to
recover the missing performance without having to exhaustively search over
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a large space. This is something we will explore in the future. In the next
chapter, we extend this mechanical approach of decoupling data access from
the kernel computation and optimizing each separately, to structured mesh
(stencil) computations.
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Chapter 5

Structure Matters for
Structured Mesh Computations

5.1 Introduction

Stencil, or structured mesh, computations are an important class of problems
that arise from the simulation of a variety of problems. In this chapter, we ap-
proach stencil computations in a fashion similar to our matrix-multiplication
approach. Given a stencil computation, we split the problem into two parts:
the access pattern and the kernel code. The algorithm, and in turn, the
access pattern is determined by the polyhedral compiler PolyOpt/C [71] and
the kernel generation is performed by our automatic code generator. In this
chapter we will focus on the code generator, and a more detailed explanation
of the compilation processed can be found in [40].

The contribution of this chapter to the whole of the thesis is as follows:
• We will describe where the structure arises in these problems and how
it is exploited.

• We show how the regular structure of a stencil computation can be
exploited for performance in the generation of kernel code.

• We will show how to produce efficient SIMD code for structured com-
putations.

In the following section, we provide a motivating example which shows
step by step where stencil computations come from. After that, we will
describe important optimizations for stencil operations and how the structure
of the problem enables these transformations. Following that, we will discuss
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the details of our code generation system which was built on Spiral [72]. In
the next section we evaluate the performance of our approach. Finally, we
will summarize the chapter.

5.2 Background

A stencil computation is an extremely regular computation that is typically
defined as a filter, or stencil, applied on each element in the data set. This
stencil is a function which computes the value of a point based on its neigh-
bors. In the following paragraphs we describe the transformation of a real
world problem into a stencil computation.

5.2.1 A Motivating Example

Stencils commonly arise from the solution of Partial Differential Equation
(PDE) using the Finite Difference Method. For example, suppose we want to
solve the heat flow equation for a conductive rod. We would first describe the
problem using a models and in this situation they are the Partial Differential
Equation (PDE) for the heat transfer equation.

∂u

∂t
= h2

�
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

�
(5.1)

This equation succinctly captures the flow of heat through an object
where u(x, y, z, t) is a function that represents the temperature at position
(x, y, z) at time t, and h is the thermal diffusivity of the material. For
the sake of simplicity we are going to ignore boundary conditions and heat
sources. If we only focus on the one dimensional case we can drop the other
two variables and use the following equation:

∂u

∂t
= h2∂

2u

∂x2
(5.2)

If we want to solve this equation numerically then we need to discretize
the function u on a grid. We show this in Figure 5.1, where the spacing s of
the grid elements determines the desired resolution.

Additionally, because we are looking for numerical solution we will ap-
proximate the partial derivatives of u using difference equations. For example

80



x

One Dimensional Grid:

𝒖(𝟎, 𝒕) 𝒖(𝑳, 𝒕)

Figure 5.1: We discretize the metal rod on this one dimensional grid of length
L with a grid spacing of s.

we can compute the first derivative ∂u
∂x

using the following forward difference
equation:

∂

∂x
u(x) ≈ u(x+ 1)− u(x)

Δx
(5.3)

Where Δx = s is our step size and x + 1 is the grid point to right of of
grid point x. We show these elements on the grid in Figure 5.2

x

3 Point Stencil:

Figure 5.2: We can approximate the derivative of the center element using
the values of the left and right neighbors.

In order to numerically solve the heat equation, we also need to compute
the second derivative. In the following equation, we compute it using a
central difference approximation:

∂2

∂x2
u(x) ≈ u(x+ 1)− 2u(x) + u(x− 1)

2(Δx)2
(5.4)
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These equation (5.2.1 and 5.2.1) are by no means the only approximations
and other expansions can be used depending on the desired error. Using these
approximations, we can describe Equation 5.2.1 numerically.

u(x, t+ 1)− u(x, t)

Δt
= h

u(x+ 1, t)− 2u(x, t) + u(x− 1, t)

2(Δx)2
(5.5)

To simplify this expression we are going to set Δx = Δt = s and rewrite
in terms of u(x, t+ 1):

u(x, t+ 1) = h
u(x+ 1, t)− 2u(x, t) + u(x− 1, t)

s
+ u(x, t) (5.6)

If we were to describe the problem in terms of linear system of equations,
then we will see that this admits a regular structure, namely a banded matrix.
For the sake of simplicity we will set s = 1.

A =




h 2h
h 2h+ 1 h

h 2h+ 1 h
. . . . . . . . .

h 2h+ 1 h
2h h




(5.7)

We will immediately see that this structure will come in handy in reducing
the amount of computation needed on operations over A. For example, if
we want to compute a time step we can simply do a matrix vector product
x(t+1) = Ax(t). In the general case this would require O(n2) operations.
However, our matrix is tridiagonal, so we can reduce the computation down
to O(n). We capture this in the inner most loop of the following listing:

for( t = 0; t < TSTEPS; ++t )

for( i = 1; i< L; ++i )

x[i][t+1] = h * x[i-1][t] +

(2h+1) * x[i][t] +

h * x[i+1][t];
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3-Point 1D Stencil in Time:

t

Figure 5.3: The calculation of an element in the subsequent time step depend
on the neighbors in the previous time step.

In this listing, we added an extra loop for traversing through the time
dimension. We can visualize each iteration as a stencil over the elements in
Figure 5.3

We can imagine that the entire computation can be viewed as the ap-
plication of this stencil on every data point. We will call this the 3-pt 1-D
stencil. If we want, we can view the iteration space of multiple iterations
applied through time. An important point to note is the computation of an
element only depends on its neighbors in the previous iteration

However, if we have measured a set of temperatures and we want to find
the starting values, then we must solve b = Ax where b are our ending values
and x are our unknowns. We can find this solution iteratively using Jacobi’s
method.

x(k+1) = D−1(b−Rx(k)) (5.8)

Where A = D + R, D is a diagonal matrix and R has 0 for each of its
diagonal elements. This expression is computed iteratively until �x(k+1) −
x(k)� < �. We can break this matrix equation into summations in terms of
elements of A:

χ
(k+1)
i =

1

αii

(βi −
�

i�=j

αijχ
(k)
j ) (5.9)

Once again, we take advantage of the fact that A has a very specific
structure in the context of our finite difference approximation of the heat
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equation. Using this fact we can rewrite Equation 5.9 as follows:

χ
(k+1)
i =

1

2
(βi − χ

(k)
i+1 − χ

(k)
i−1) (5.10)

Using this specialization significantly reduces the amount of computation
needed by the Jacobi method. We sketch this code in the following listing:

/* time dimension */

for( t=0; t<NITER; ++t)

/* space dimension */

for( i=1; i<L; ++i )

x[i][t+1] =

0.5 * (b[i]-x[i+1][t]-x[x-1][t]);

In summary, the process of translating a problem into a stencil begins
the problem statement as a set of relations, in this case a PDE. We then
discretize the problem space and express the approximation of our original
relations in terms of elements on this grid. This allows us to express the
approximation of problem as a system of equations. If we want to implement
this as code we can use the structure of the stencil to minimize the amount
of work needed to perform the operation. In the following section, we will
discuss a variety of optimizations for improving the performance of stencil
computations.

5.3 Theory

In this section, we will discuss the key optimizations necessary for achieving
high performance on stencil computations. This includes spacial blocking,
temporal blocking (time-tiling) and SIMD vectorization. For our examples,
we will use a one dimensional 3-point stencil and a 9-point two dimensional
stencil. In Figure 5.4, we show two options for two dimensional stencils. We
will write these stencils with the coefficients in an array that we traverse in
the inner-most loop.
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x

9-Point  2D Stencil:
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5-Point 2D Stencil:

y

Figure 5.4: In these two 2-Dimensional stencils the value of the center element
is dependent on the values of its neighbors.

coef[v] = {h,2h+1,h};

/* time dimension */

for( t = 0; t < TSTEPS; ++t )

/* space dimension */

for( i = 1; i< L; ++i )

/* 3-point 1D stencil */

for( p = 0; p < v; ++p )

x[i][t+1] += coef[p] *

x[i+p-1][t]

5.3.1 Spacial Blocking

Modern computer architectures utilize deep memory hierarchies to compen-
sate for the speed gap between the faster processor and the slower memory.
In order to take full advantage of these caches, it is necessary to block – or
tile – our code in the spacial dimension. Just like the matrix-matrix multi-
plication case, the operation is partitioned such that a small, cache-resident
sub-problem is computed completely before moving on to this next block.
To illustrate this transformation, it makes more sense to consider the two
dimensional case of 9-point stencil.
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5-Point 2D Multi-Stencil:
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Figure 5.5: A multistencil is the application of a stencil on a block of elements.

/* time dimension */

for( t = 0; t < TSTEPS; ++t )

/* space dimensions */

for( i = 1; i< M; ++i )

for( j = 1; j< N; ++j )

/* 9-point 2D stencil */

for( p = 0; p < v; ++p )

for( q = 0; q < w; ++q )

X[i][j][t+1] += coef[p][q] *

X[i+p-1][][t]

In this example, the coefficients of the stencil are stored in the two dimen-
sional matrix labeled coef. The input is a matrix X ∈ RM×N and its spacial
dimensions indexed by the variables i and j. We can add two additional
loops to the spacial dimensions of the input matrix to create the following
multistencils.
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/* time dimension */

for( t = 0; t < TSTEPS; ++t )

/* outer space dimensions */

for( i = 1; i< M; i+=MB )

for( j = 1; j< N; j+=NB )

/* inner space dimensions (multistencil) */

for( ii = 0; ii< LB; ++ii )

for( jj = 0; jj< MB; ++jj )

/* 9-point 2D stencil */

for( p = 0; p < v; ++p )

for( q = 0; q < w; ++q )

X[i][j][t+1] += coef[p][q] *

X[i+p-1][j+q-1][t]

In this example we block over X using mb × nb tiles. These dimensions
would be selected to fit within the targeted cache level. It is easy to imagine
that as we target more levels of cache the number of loops will increase. As
we will see in the next section, these transformations will results in complex
and costly index computations.

An important detail to note is that this pair of inner-most loops combined
with the computation is a stencil in and of its own. We can view this as a
non-tiled – or unblocked – stencil, and we can view the outer loops over
this unblocked stencil as the blocked version of the stencil. This is called a
multistencil Figure 5.5.

5.3.2 Temporal Blocking

Alone, spacial blocking only provides a marginal benefit. This is because the
amount of reuses of each element in the input is dependent on the size of the
stencil. For example, in the case of a 5-point stencil, each input element is
only reused seven times and for a 9-point stencil only nine times. If we include
the temporal dimension then we would get much more reuse of the spacial
elements over multiple time steps. This would be time tiling or temporal
blocking. The idea is that the computation is reorder such that correctness is
preserved, however a small cache sized spacial block is computed for multiple
time steps which we illustrate in Figure 5.6. Once the block is computed,
then the region that overlaps with the next block – ghost region – is shared
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3-Point 1D Stencil with Time Tiling:
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Figure 5.6: We can block a stencil in the time dimension –time tiling– pro-
vided that the dependencies are resolved in a correct order.

with the next block and it too is computed. We will demonstrate a time-tiled
1D stencil in Figure 5.7 in the following listing:

/* outer time dimension */

for( to = 0; to < TSTEPS; to+=d )

for( xo = 0; xo < M; xo+=mb )

/* start of an upward trapezoid */

for( ti = 0; ti < d; ++ti )

time = to + ti;

/* overlap between time tiles */

start_x = xo + ti;

end_x = xo + mb + 2d - ti;

for( xi = start_x; xi < end_x; xi++ )

/* 3 point stencil */

for( p = 0; p < 3; ++p )

x[xi][time+1] += coef[p] *

x[xi+p-1][time]

In this listing, we block both the space dimension by mb and the time
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Overlapping Time Tiles:
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Figure 5.7: We can use multiple overlapping time tiles to block the operation
in both the time and space dimension.

dimension by d, which adds loops over ti and xi. These inner loops create
the time-tile. We can view this time tile as a whole stencil of its own that is
marching along the outer time (to) and space dimension (xo). If the blocking
dimensions are small enough then this time-tile is computed exclusively in
cache.

There are a wide variety of tile shapes meant to minimize communication
between blocks or simplify computation (see Figure 5.8). In this case, we
only showed the simplest strategy. Unfortunately, in this implementation
of the upward facing trapezoid we must keep copies of the spacial elements
over multiple time steps. If we are more deliberate with our application of
time-tiles and allow the use of different shapes then we can minimize the
overlap and thus the need to keep more than two copies in time of a given
point in space. We illustrate this in Figure 5.9. In order to simplify how we
express this in code, we will break the tiles into functions. We start with the
one dimensional stencil:

89



x
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Downward Trapezoid:
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Upward Left and Right Triangle:
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t

Figure 5.8: We can minimize redundant computation by mixing differently
shaped time-tiled blocks.
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inline unblocked_sten1d(x, time_cur, time_nxt, xi)

/* 3 point stencil */

for( p = 0; p < 3; ++p )

x[xi][time_nxt] += coef[p] *

x[xi+p-1][time_cur]

As long as we minimize the overlap between tiles such that we are not
recomputed values, then for this one dimensional stencil we only need two
spacial dimensions. Next, we will describe downward trapezoids as the fol-
lowing function.

inline down_trap_sten1d(mb,db,*x,xo,to)

/* start of a downward trapezoid */

for( ti = 0; ti < db; ++ti )

/* we only need two time copies */

time_cur = (to + ti) % 2;

time_nxt = (to + ti + 1) % 2;

start_x = xo + db - 1 - ti;

end_x = xo + mb + db + 1 + ti;

for( xi = start_x; xi < end_x; xi++ )

unblocked_sten1d(x, time_cur, time_nxt, xi);

For completeness we will also include a upwards left sided triangle stencil
(Figure 5.8) which will handle the edge case.

inline left_up_tri_sten1d(db,*x,xo,to)

for( ti = 0; ti < db; ++ti )

time_cur = (to + ti) % 2 ;

time_nxt = (to + ti + 1) % 2;

start_x = xo;

end_x = xo + d - ti;

for( xi = start_x; xi < end_x; xi++ )

unblocked_sten1d(x, time_cur, time_nxt, xi);

The original upward trapezoid and downward right sided triangle can
also be implemented in this fashion. Additionally, let us assume that the
boundaries are handled by separate stencils that use either forward or back-
ward differences to compute their elements. Lastly, we are restricting By
combining these time-tiled stencils blocks, we can re-implement our original
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Figure 5.9: We can alternate between upward and downward trapezoidal
tiles to minimize redundant computation.

unblocked stencil into a spacial and temporal blocked version:

void blocked_sten1d(x,M,TSTEPS,mb,db)

for( to = 0; to < TSTEPS; to+=db )

/* edge cases */

left_up_tri_sten1d(db,x,0,to);

/* steady-state */

for( xo = db; xo < M-mb; xo+=(mb+2*db) )

up_trap_sten1d(mb,db,x,xo+mb,to);

for( xo = db+mb; xo < M-mb; xo+=(mb+2*db) )

down_trap_sten1d(mb,db,x,xo,to);

/* epilog*/

right_dwn_tri_sten1d(db,x,M-mb,to);

In this blocked implementation, we have broken the time-tile into two
parts: the edge cases that computes enough values of x for a steady-state,
which in turn computes until there are no longer enough values to continue
the pattern. If mb and db are appropriately selected we can insure that much
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of the stencil computation operates within the cache and performs near the
processor’s peak performance. An important note is that we can recursively
apply both spacial and temporal blocking on our stencil. This is necessary,
if we wish to block for multiple levels of cache.

Time-tiling is not an optimization that works in isolation. Several ad-
ditional components are needed in order to maximize its benefit: First, we
need to incorporate spacial blocking in order to have enough elements to
reuse over multiple time dimensions. Second, we need to reuses vectors for
each time dimension in order to benefit from the cache. While this is not ab-
solutely necessary, it increases our chances of cache hits and minimizes traffic
to main memory. Third, index computation becomes complicated as we add
additional spacial and temporal dimensions. Therefore, transformations such
as unrolling and code motion help alleviate the indexing bottleneck. Last,
we can maximize cache utilization and reduce cache misses if we perform a
data layout transformation by packing our input vector in a manner that
guarantees unit stride access.

5.3.3 SIMD Vectorization

In order to perform more useful work per instruction, most modern architec-
tures provide short vector instructions or, Single Instruction Multiple Data
(SIMD) units. These instructions are necessary in order to fully utilize the
peak floating point capacity of the target system. However, efficiently utiliz-
ing them is not necessarily straight forward and typically involves additional
transformation. For example, in the following code listing we demonstrate
a naive SIMD implementation which illustrates the implementation in Fig-
ure 5.10.

for( t = 0; t < TSTEPS; ++t )

for( xo = 0; xo< L; xo+=v )

for( p = 0; p < w; ++p )

#pragma vectorize(v)

for( xv = 0; xi< v; xv++ )

x[xo+xv][t+1] += coef[p] *

x[xo+xv+p-1][t]

While this approach works, it has a severe limitation, each element is
loaded v times. Not only are these loads redundant, but they are also costly.
A typical modern microarchitecture contains a limited number of memory
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Redundant Vector Loads from Memory:

Figure 5.10: SIMD instructions allow us to maximize the number of float-
ing point operations per cycle, however a naive implementation results in a
redundant number of costly loads.

functional units, and in this scenario they will become the bottleneck. Ideally,
an element should only be loaded once.

A DLT Inside the Vectors: To address these redundant loads, we intro-
duced a method for performing data layout transformations within vectors.
An element is loaded once, but reordered multiple times within SIMD vector
registers. We illustrate this in Figure 5.12, 5.13, 5.14 and 5.15 and in the
following listing:
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for( t = 0; t < TSTEPS; ++t )

vblock_left = vload(&x[t][0]);

vblock_cent = vload(&x[t][v]);

vblock_right = vload(&x[t][2*v]);

/* steady-state */

for( xo = v; xo< L; xo+=v )

/* transform layout in vectors */

xform_left = shift_left(vblock_left,vblock_cent,v);

xform_cent = block_cent;

xform_right = shift_right(vblock_cent,vblock_right);

/* perform stencil */

vres = c[0]*xform_left + c[1]*xform_cent + c[2]*xform_right;

vstore( x[t+1][xo], vres);

/* get next blocks */

vblock_left = vblock_cent;

vblock_cent = vblock_right;

vblock_right = vload(&x[t][2*v+xo])

At each iteration of the steady-state three transformed vectors are filled
with shifted data from the vectors blocks vblock left, vblock cent and
vblock right. The shifting functions concatenate two vectors and returns a
shifted sub-vector. For example, shift right takes two vectors c and r and
returns c = [c1, . . . , cv−1, r0]. Similarly, shift left takes l and r and returns
c = [lv−1, c0, . . . , cv−1]. These functions are implemented using vector shuffle
and permutation instructions. Once the vectors blocks are shifted then the
stencil can be computed. After the operation is performed then the next
vector block is loaded. The net result is that we trade off expensive vector
loads for less expensive vector permutation instructions.

While we focus on reshaping the data within the SIMD vectors, the au-
thors in [41] provide an excellent example of how we can reshape the input
data within memory to facilitate the use of aligned SIMD loads.
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1D/2D/3D Template
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Figure 5.11: Our stencil code generator is composed of two parts: First, a
compiler based framework which takes an input stencil as C code and uses
polyhedral analysis to generate an spacial and temporally blocked access
pattern that is amenable to fine and coarse grain parallelism. Second, a
kernel code generator which generates highly tuned vectorized kernel code
for the access pattern. The result of these two processes are combined in
order to produce a high performance implementation.
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5.4 Mechanism

In the previous section, we discussed the optimizations which are necessary
for implementing a high performance stencil operation. In this section, we
will describe our framework for generating arbitrary stencil operations using
these transformations. We accomplish this by splitting the problem in two
parts, data movement and kernel generation. In the first part, the operation is
expressed in terms of simple C implementation. This implementation passed
through the PolyOpt/C compiler which uses polyhedral analysis to perform
spacial and temporal blocking, followed by transformations for coarse grain
parallelism and fine grain SIMD parallelism. This described in more detail
in [40] and [71]. The second part of the generator replaces the line codelet, or
inner-most stencil, with an automatically generated kernel using the SPIRAL
framework [72]. We detail this complete process in Figure 5.11.

5.4.1 Kernel Generation

The first part of our framework provides an access pattern that allows a kernel
to efficient compute on aligned, cache resident data. Just like the matrix-
matrix multiplication case, it is up to the kernel to achieve the performance
that the access pattern allows. Our stencil kernel generator takes a template
of the desired kernel along with architectural parameters and produces a
high tuned implementation within the SPIRAL framework. We can break
this process up into the three parts.

A Templated Kernel. The first part of kernel generation process starts
with a template of the stencil’s loop structure and data access pattern. This
template takes as an input the unit stencil computation and an architecture
container. Using these two pieces, we can create an untuned stencil kernel.
In the following listing, we illustrate the template for the one dimensional
kernel. For the higher dimensional kernels we add additional loops.
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inline template_generic_1d_sten(x,L,T, STEN, arch)

for( t = 0; t < T; ++t )

vb_left = arch.VLOAD(&x[t][0]);

vb_cent = arch.VLOAD(&x[t][arch.V]);

vb_rght = arch.VLOAD(&x[t][2*arch.V]);

/* steady-state */

for( xo = v; xo< L; xo+=arch.V )

/* shift elements in vectors */

xf_left = arch.SHFT_LEFT(vb_left,vb_cent,vb_rght);

xf_cent = arch.SHFT_CENT(vb_left,vb_cent,vb_rght);

xf_rght = arch.SHFT_RGHT(vb_left,vb_cent,vb_rght);

/* perform stencil */

vres = STEN(xf_left, xf_cent, xf_rght,arch);

arch.VSTORE(x[t+1][xo],vres);

/* get next blocks */

vb_left = vb_cent; vb_cent = vb_rght;

vb_rght = arch.VLOAD(&x[t][2*v+xo])

This template captures our approach to SIMD vectorization, where ele-
ments are only gathered once. The template first gathers vector blocks, then
performs the steady state loop where elements are shifted using an architec-
ture specific shifting functions. Once the elements are shifted they are passed
to the stencil computation. The following listing shows an implementation
of the 1D Jacobi for use in the template.

inline generic_1d_jacobi(left,cent,rght,arch)

sum = arch.ADD(left,cent,right);

return arch.MUL(0.33f,sum);

This unit of computation is expressed in terms of the right, center and
left element of the stencil along with the architecture specific parameters.
This computation is portable across any platform as long as the architecture
container expresses the requisite operation.

Parameterized SIMD Mapping. The bulk of the performance for our
kernels depends on the implementation of the shifting functions. These in-
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Figure 5.12: We can minimize the need for redundant vector loads through
the use of shifting functions which load the data once and rearrange the
elements within SIMD registers. This illustration shows the implementation
of a shifting function for SSE 2-way SIMD instructions.

sure that we only load an from memory to register once. However, their
implementation is performance critical because at least one shifting function
occurs for each computation. Thus to insure that the shifting function does
not become the bottleneck, it must sustain a throughput greater than or
equal to the computation. In the next listing we show a simple example of
the shifting functions for 2-way SSE instructions. This is the function shown
in Figure 5.12.

SSE_2x64f.SHIFT_LEFT:=(BLOCK_LEFT,BLOCK_CENT,BLOCK_RGHT)->

vshuffle_2x64f(BLOCK_LEFT,BLOCK_CENT, [2,1]);

SSE_2x64f.SHIFT_CENT:=(BLOCK_LEFT,BLOCK_CENT,BLOCK_RGHT)->

vshuffle_2x64f(BLOCK_LEFT,BLOCK_CENT, [2,1]);

SSE_2x64f.SHIFT_RGHT:=(BLOCK_LEFT,BLOCK_CENT,BLOCK_RGHT)->

vshuffle_2x64f(BLOCK_CENT,BLOCK_RGHT, [2,1]);

In this listing, we provide a mapping between the shifting functions and
architecture specific instructions. This architecture is the simplest case, as
we can express each shift in terms of a shuffle instruction. This mapping
is expressed using a LISP like intermediate language inside SPIRAL. We can
extend this to 4-way SSE instructions as shown in Figure 5.13:
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FE HGBA DC JI LK

FE HGED GF GF IH

Shifting Function for SSE 4-way:

Figure 5.13: In the case of the SSE 4-way shifting function we can use the
instruction palignr which allows us to concatenate two vectors and extract
a contiguous sub-vector.

SHIFT_LEFT_SSE_4x32f:= (BLOCK_LEFT,BLOCK_CENT,BLOCK_RGHT)->

alignr_4x32f(BLOCK_LEFT,BLOCK_CENT, (3)*4) );

SHIFT_CENT_SSE_4x32f:= (BLOCK_LEFT,BLOCK_CENT,BLOCK_RGHT)->

BLOCK_CENT;

SHIFT_RGHT_SSE_4x32f:= (BLOCK_LEFT,BLOCK_CENT,BLOCK_RGHT)->

alignr_4x32f(BLOCK_CENT,BLOCK_RGHT, (1)*4) );

In the 4-way SSE case, we can use the alignr instruction, which con-
catenates two inputs and returns a shifted sub-vector of the concatenation.
While this is a convenient instruction, it is not available for longer SIMD
width. Next, we will show how the complexity of these shift functions in-
creases as SIMD width increases. In the following listings, we show the AVX
4-way and 8-way case, which we illustrate in Figure 5.14 and Figure 5.15:
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BA DC FE HG

DC FE

DC FE ED GFCB ED

BA DC FE HG

Shifting Function for AVX 4-way:

Figure 5.14: As we move from SSE to AVX we are confronted with the issue
of moving elements between lanes (upper and lower half of the vector) and
within lanes. Because no AVX instruction can move within and between
lanes we first move blocks across lanes then within.

SHIFT_CENT_AVX_4x64f:=(BLOCK_LEFT,BLOCK_CENT,BLOCK_RGHT)->

vpermf128_4x64f(BLOCK_CENT,BLOCK_RGHT, [2,1]);

SHIFT_LEFT_AVX_4x64f:=(BLOCK_LEFT,BLOCK_CENT,BLOCK_RGHT)->

let(

tmp:=SHIFT_CENT_AVX_4x64f(BLOCK_LEFT,

BLOCK_CENT,BLOCK_RGHT),

vshuffle_4x64f(BLOCK_CENT,tmp,[2,1,2,1]));

SHIFT_RGHT_AVX_4x64f:=(BLOCK_LEFT,BLOCK_CENT,BLOCK_RGHT)->

let(

tmp := SHIFT_CENT_AVX_4x64f(BLOCK_LEFT,

BLOCK_CENT,BLOCK_RGHT),

vshuffle_4x64f(tmp,BLOCK_RGHT,[2,1,2,1]));
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BA DC FE HG JI LK NM PO

FE HG JI LK

ED GF IH KJ FE HG JI LK GF IH KJ ML

FE DC JI HG JI HG NM LKFE HG JI LK

Shifting Function for AVX 8-way:

Figure 5.15: Here we show the 8-way AVX shifting function. Note that the
longer the SIMD vector width, the more complicated these shifting functions
become.

SHIFT_CENT_AVX_8x32f:=(BLOCK_LEFT,BLOCK_CENT,BLOCK_RGHT)->

vpermf128_8x32f(BLOCK_CENT,BLOCK_RGHT, [2,1]);

SHIFT_LEFT_AVX_8x32f:=(BLOCK_LEFT,BLOCK_CENT,BLOCK_RGHT)->

let(

tmp1 := SHIFT_CENT_AVX_8x32f(BLOCK_LEFT,

BLOCK_CENT,BLOCK_RGHT),

tmp2 := vshuffle_8x32f(tmp1, BLOCK_CENT,

[4,3,2,1,4,3,2,1]),

vshuffle_8x32f(tmp2,tmp1,[3,2,1,4,3,2,1,4]));

SHIFT_RGHT_AVX_8x32f:=(BLOCK_LEFT,BLOCK_CENT,BLOCK_RGHT)->

let(

tmp1 := SHIFT_CENT_AVX_8x32f(BLOCK_LEFT,BLOCK_CENT,

BLOCK_RGHT),

tmp2 := vshuffle_8x32f(BLOCK_RGHT,tmp1,

[4,3,2,1,4,3,2,1]),

vshuffle_8x32f(tmp1,tmp2,[1,4,3,2,1,4,3,2]));
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These AVX implementations are substantially more complex than their
SSE counterparts. This is a result of how AVX registers are partitioned into
lanes. Instructions are split between those that move elements within lanes
and those that move elements across lanes. Thus, in order to shift elements
within a SIMD register a combination of these instructions are necessary.

Further Optimizations. The previous two steps build an unoptimized
stencil kernel with the desired SIMD instructions. The final step is to opti-
mize these code such that the performance is only constrained by the com-
putation and not by the overhead. The key transformation performed on
this unoptimized code include loop unrolling, array scalarization and Com-
mon Subexpression Elimination (CSE). First, both the spacial and temporal
loops are unrolled to minimize loop overhead and to simplify index com-
putation. For these stencils, index computation can become a substantial
source of overhead and unrolling mitigates this by replacing loop variables
with constants. We can demonstrate this transformation below:

#pragma unroll

for( xi = 0; xi < 2; ++xi )

y[xo+xi]=x[xo+xi-1]+x[xo+xi]+x[xo+xi+1];

In this previous listing each index computation requires the addition two
variables and a constant. If we left this as a loop we would have ten index
computations per iteration. However, if we unroll it we can reduce this
computation significantly to three operations per iteration.

y_p = &y[0]; x_p = &x[0];

y_p[0]=x_p[-1]+x_p[0]+x_p[1];

y_p[1]=x_p[0] +x_p[1]+x_p[2];

By combining unrolling with simple indexing optimization we can simplify
all memory accesses to a base address plus an offset. Now that indexing is
no longer the bottleneck the next issue that emerges is memory access. Each
iteration performing yi = xi−1 + xi + xi+1 requires four memory operations.
However, many of these elements are reused because of spacial blocking and
temporal blocking. But in order to take advantage of this, we need to store
these elements in registers. In our next transformation, local arrays – namely
the intermediate values of the input and output arrays – are replaced with
variables. This reduces memory traffic by storing these intermediate values
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in registers. We can visualize this transformation in the following listings:

/* read into temp buffers */

for( xi = -1; xi < 3; ++xi )

in[xi+1] = x[xi];

/* steady-state */

for( xi = 0; xi < 2; ++xi )

out[xi]=in[xi]+in[xi+1]+in[xi+2];

/* write out */

for( xi = 0; xi < 2; ++xi )

y[xo+xi] = out[xi];

In this listing, the input elements are stored in a temporary array in, the
intermediate result is computed and stored in in, and those values are even-
tually written out. This transformation only introduces many more memory
accesses, but like many other optimizations this is is used in conjunction with
other transformations. If we unroll all three loops and replace the temporary
arrays with variables.

/* read into temp buffers */

in_0 = x[xo-1];

in_1 = x[xo+0];

in_2 = x[xo+1];

in_3 = x[xo+2];

/* steady-state */

out_0 =in_0+in_1+in_2;

out_1 =in_1+in_2+in_3;

/* write out */

y[xo+0] = out_0;

y[xo+1] = out_1;

Provided we have a sufficient number of registers, we can use these tempo-
rary variables without having to incur memory traffic. These two optimiza-
tions – unrolling and array scalarization – help insure that the performance is
dependent only on the computation. Thus, the next transformation reduces
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the amount of computation needed for certain stencils. In the previous list-
ing, we see that certain computations are repeated between stencils. By
using Common Subexpression Elimination (CSE), we can eliminate redun-
dant computation by computing an operation once and reusing its result
multiple times. For example, we can eliminate an addition from the previous
steady-state computation:

/* steady-state */

t_1p2 =in_1+in_2;

out_0 =in_0+t_1p2;

out_1 =t1p2+in_3;

The effectiveness of this transformation is dependent on the stencil being
used. In the general case it may not provide a benefit. The stencil ker-
nel generation and these optimizations are performed inside of the SPIRAL
framework. In particular the optimizations are handled by a built in opti-
mizing compiler. The result of the kernel generator is a highly optimized
SIMD kernel implemented in C. This kernel is then placed inside the loop
nesting that is provided by the PolyOpt/C compiler. In the next section we
will evaluate the performance of the code resulting from this process.

5.5 Experiments

In this chapter, we have discussed where stencil computation arise, what
transformations are necessary for their performance and how to systemati-
cally produce a high performance implementation. This section is devoted to
the performance evaluation of this approach. We will provide an empirical
and an analytical evaluation of our approach. In the empirical test we will
show that for real world stencil computations we outperform the state of the
art and in the analytical analysis we will show how close our kernels are to
the peak theoretical performance.

5.5.1 Empirical Results

In this experiment, we will compare the performance of the stencil code
generated by our framework – with and without the tuned kernels – against
a baseline implementation and the PTile compiler [73]. Both our approach
and PTile output an implementation in C code which is then compiled using
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Stencil t dim. x dim. y dim. z dim.

Jacobi 2D 20 2000 2000 –
Laplacian 2D 20 2000 2000 –
Poisson 2D 20 2000 2000 –
Jacobi 3D 20 256 256 256
Laplacian 3D 20 256 256 256
Correlation – 2000 2000 2000
Covariance – 2000 2000 2000
Doitgen – 256 256 256

Table 5.1: This table contains the stencils and their corresponding block
sizes.

the Intel Compiler. These experiments were performed on an Intel Core
i7-2600K (Sandy Bridge) which has four cores, each running at 3.4 GHz.
The overall peak performance of this chip is 108.8 GFLOP/s for double
precision and 217.6 GFLOP/s for single precision. We selected kernels from
the PolyBench collection [71] which represent stencil computations from a
variety of domains including physics (two and three dimension Laplacian and
Poisson Solver), probability (covariance), signal processing (correlation) and
linear algebra (doitgen). We list the problem sizes used for these experiments
in Table 5.1. We break the results in four plots for each of the vector widths,
2-way SSE double precision, 4-way SSE single precision, 4-way AVX double
precision and 8-way SSE single precision.

In Figure 5.16 and Figure 5.17, we show the results our stencils using
SSE instructions. In each of these plots we show the baseline operation
compiled both sequentially and in parallel. We also show the performance
of our implementation with the data access alone along with the data access
combined with our generated kernels. In the SSE case the addition of the
kernels adds between a 1.5× to 2× improvement over the data access pattern
alone. In Figure 5.18 and Figure 5.19 are the results for AVX instructions. In
these two cases the addition of the generated kernels provide an even greater
speed up over the access pattern than in the SSE case.

Overall, our generated implementations outperform those produced by
PTile for most stencils on most SIMD data types. However, in the 3 di-
mensional cases our implementation does not perform as well as PTile. Our
approach tends to do the best where arithmetic is greater than data. This is
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Figure 5.16: In this and Figures 5.17, 5.17 and 5.17 we compare the per-
formance of our generated code against PTile for 8 different stencils. For
each stencil we show several bar plots: The first – Operation (Seq.) – is
the baseline stencil operation written in C and compiled with full sequential
optimizations. The second bar – Operation (Par.) is the same baseline C
implementation compiled with automatic parallelization. The third line –
Data Access – is our generated implementation without a tuned kernel. This
included spacial and temporal blocking and fine and coarse grain parallelism.
The fourth line – DA+kernel – is our access pattern combined with a highly
tuned kernel. The fifth line represents the baseline C code compiled with
PTile. With the exception of the 3D kernels we outperform PTile for SSE
2-way instructions.
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Figure 5.17: In the SSE 4-way case we outperform PTile for every stencil.
However, our kernel reduces the performance for the Jacobi 3D stencil.
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Figure 5.18: With the exception of the 3 dimensional stencils we outperform
PTile.
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Figure 5.19: In the AVX 8-way case our performance is substantially better
than PTile.
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because modern architectures are constrained by memory access. As we add
more dimensions we need more registers to hold reusable values or we are
forced to spill values to memory. However, on these machines we are limited
in the number of available to us.

5.5.2 Analytic Model

In addition to the empirical results, we provide an analytical analysis of
the kernel portion of our stencil code. Here we determine how effective our
kernels are at approaching the peak theoretical performance. For this analysis
we use a very simple model to determine the maximum throughput based on
bottlenecks in the processors functional units. The idea is we can characterize
a kernel by the number of each type of SIMD instruction (ni), where the type
(i) is based on which functional units will compute that function. Given this
characterization, we can estimate the bottleneck by finding the minimum
quotient of the number of functional units of a particular type (fi) and the
number of instructions going to that unit (ni). If we take that bottleneck
and multiply it by the number of floating point operations in that particular
stencil (k) then we get the estimated performance. More formally we have:

r = kmin
i
(
fi
ni

) (5.11)

If we were to take the 7-point 3-D Jacobi stencil using SSE instructions
on the Intel Core i7-2600K our bottleneck would be the addition instructions
(nadd = 6) because only one functional unit can service it (fadd = 1). The
number of floating point operations for this stencil using SSE instructions
would be j = 14 because we have 6 additions and 1 multiplications using
2-way vectors. This would give us a theoretical peak of 2.33 Floating Point
Operations per cycle. We show these instruction counts for several stencils in
Table 5.2. In Figure 5.20 we compare the theoretical peak of several stencils
using our analytic model against an empirical benchmark of these kernels.
We show this for two machines, the Intel Core i7-2600K (Sandy Bridge) and
an Intel Xeon X5680 (Nehalem). It is worth noting that our model does not
consider the Common Subexpression Elimination optimization where some
redundant floating point instructions are removed. This leads to a lower
theoretical estimate than what some of our kernels achieve. We chose not to
include this in the model because it is highly dependent on the kernel being
used and whether or not this transformation is applicable.
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Stencil # of Points Adds Muls. Mem. Shuffles

Jacobi 1D 3 2 1 2 1 – 5
Jacobi 2D 7 4 1 2 1 – 5
Jacobi 3D 9 6 1 2 1 – 5

Table 5.2: In this table we show the type and number of instructions needed
per operation to compute the given stencils.
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Figure 5.20: In this plot we compare our analytical performance model
against empirical results of our generated kernels.
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5.6 Chapter Summary

In going with the theme of this thesis, we demonstrated how to produce
high performance implementations for stencil operation using the two part
method. The regular structure of the stencil operation, coupled with the
algorithm determined how we should lay out the data. In this class of opera-
tions the layout was performed on the SIMD registers as opposed to explicit
blocks in memory, as was the case for matrix-matrix multiplication. The
kernel generation allowed us to produce highly specialized stencil code that
was tailored both to the problem and the computer architecture. What this
shows is that for stencil computations we have a systematic approach for
obtaining performance.

We focused on stencil computations because it captures a large class of
problems in many domains where structure plays an important roll in the
computation. Moreover, the particular stencils we focused on are represen-
tative of this fairly broad class, which is why will extend this framework to
more operations. This means we must put more focus on representing this
operations within our kernel generator and capturing the boundaries of their
domain in a more formal approach. Additionally, the data layout transform
used in this chapter was mostly focused within SIMD registers. For future
work, we will look at in-memory data layout transformations, like those used
in the high performance matrix-matrix multiplication operation. This would
provide a major performance benefit by simplifying index computation and
by preserving spacial locality of the working dataset. In the next chapter,
we will show how this can be achieved for graph computations over regular,
yet scale-free graphs.
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Chapter 6

Hierarchical Data Structures
Bridge the Dense-Sparse
Performance Gap

6.1 Introduction

In the previous chapters, we discussed a systematic approach for produc-
ing high performance implementations of Dense Linear Algebra (DLA) and
Structured Mesh operations. This entailed splitting the operation in two
parts. The first is the algorithm, data access and data layout which feed the
second part, an efficiently generated kernel. In the case of DLA, the first
part was provided for us by the work of others. Similarly, in the Structured
Mesh case we relied on a Polyhedral Compiler to provide us with that access
pattern while we provided efficient generated kernels. In this chapter, we will
tackle both halves of the problem, data access and kernel code, for sparse
Matrix-Vector Multiplication (spMV) on synthetic scale-free data. Further,
we will show the importance of a data structure that bridges these halves
together.

We target scale-free graphs because many real-world networks share that
topology [74, 75]. In these graphs, there are a small number of nodes with
many edges and many nodes with only a few edges. The nodes with many
connections are referred to as hub nodes and they connect many neighboring
nodes within their cluster. If we zoom into one of these neighborhoods we
would see this behavior repeat, as illustrated by Figure 6.1. In this chap-
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Figure 6.1: In this cartoon, we demonstrate the recursive nature of a scale-
free graph. At the highest view, we see that a few key vertices (hubs) contain
the majority of the edges. We can partition the graph based on these key
vertices. If we descend into a sub-graph created by this partitioning, we see
the same behavior.

ter, we leverage the characteristics of scale-free graphs in order to create an
efficient data structure that provides fast access to clusters of nodes in a
hierarchical fashion.

Our data structure uses a hierarchical sparse data format to efficiently
map scale-free graphs to modern computer architectures. This format cap-
tures the structure of the graph at multiple levels of resolution. By varying
the resolution at a given level, we can fit that sub-graphs to the caches of
the target system. This allows us to maximize cache reuse and minimize
bandwidth requirements for spMV like operations. Additionally, by using
a sparse encoding at each level of the hierarchy, we can reduce the storage
requirements of our format.

We recognize that the domain expert has extremely valuable knowledge
on the structure of their graph and the details underlying the problem from
which it came. In order to capture this structure, we rely on the domain
expert to provide a mapping function between the structure of the graph
and our data structure.

6.1.1 Our Contribution

This chapter can be broken into three key contributions.

• We provide a hierarchical sparse format called Recursive Matrix and
Vector (RMV). This hierarchical format captures the structure of the
graph using a tree of specialized containers.

• We provide an Application Programming Interface (API) that allows
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Figure 6.2: In this figure, we show how the adjacency matrix of the graph
is stored hierarchically using our format. At the depth d5, we have a view of
what the original incidence matrix. We store the graph hierarchically, so as
we move up this pyramid, the graph is coarsened. Each element in the levels
above d5 is a pointer to the elements in the level below it.

the domain expert to construct these RMV objects from domain knowl-
edge. The expert can pass the structural information of the graph to
our data structure.

• Lastly, we perform a performance analysis of our format using synthetic
scale-free graphs.

This chapter will demonstrate that the mechanical process for obtaining
performance is also applicable to sparse data, if we understand the underlying
structure of the data. In the next chapter, we extend this work from synthetic
scale-free data to real world scale-free data.
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6.2 Proposed Mechanism

In this section, we describe our hierarchical sparse data format and its con-
structor function. If the user provides our framework with domain knowledge
about the structure of the graph, then our framework can construct both a
sparse matrix and dense vector in our format that preserves this structure in
memory.

Data Format. The key component to our storage scheme is the hierachical
Recursive Matrix or Vector (RMV) element. The graph is stored recursively
by blocks inside this container. The graph is represented at multiple gran-
ularities (Figure 6.2). At the very top this block contains the entire graph
below it and at the very bottom the blocks contain pointers to the weights
of the edges or values of the vertices.

struct recursive_dense_vector{

type; size;

values; };

struct recursive_sparse_matrix{

type; size;

bitmask_matrix;

values; };

In each Recursive Matrix or Vector container, there is a field that deter-
mines if its elements point to containers at a finer level of the graph, or if
they point to the actual values. Next, it contains the number of rows and
columns of blocks that it can access. Additionally, there is a bit matrix that
describes the pattern of the non-zero elements. Lastly, there is an array that
either containers pointers to the next level of blocks or values if we are the
final level. In Figure 6.3 we show an instantiation of this object. We then
show in Figure 6.4 a fully constructed Recursive Sparse Matrix of height 2.
The top level provides a coarse view of the matrix, and each of its elements
point to a Recursive Sparse Matrix on the bottom level.

Construction. The user provides the structural information of the graph
to our framework. In order to enable the assembly of these RMV objects
based on the user’s knowledge, we provide a tree based descriptor. This tree
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Figure 6.3: This figure represents an instantiated Recursive Sparse Matrix.
It contains the shape of a sparse graph as a bit matrix and the corresponding
values stored as a dense list. Note that the bit matrix can be treated as an
integer, which can be used to select a kernel specialized to that specific shape.

captures the recursive partitioning of the vertices in the graph as a nesting
of partitionings. The nodes of this tree are shape descriptors and they are
generated by a user provided get child function.

struct shape_desc{

depth; nnz; rows; cols;

void *user_data

void *get_child; };

Each of these descriptors represents the shape of the graph at its assigned
depth. The first four parameters give the coarse structure of the sub-graph
being viewed. The user data field allows the user to pass bookkeeping infor-
mation to the get child function during the formation of this tree.

desc_child = get_child(i,j, desc_parent )

Using these descriptors and functions, we can assemble a RMV object
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Figure 6.4: We have a two level Recursive Sparse Matrix object. The top level
captures the shape of the bottom layer. Additionally, each of its elements
points to the Recursive Sparse Matrix objects on the bottom level.

according to a user defined partitioning. We have used this tree based ap-
proach for assembling the Recursive Matrix object from synthetic data, as
well as, from COO formatted sparse matrix data.

assemble_recursive_matrix(

recursive_sparse_matrix *head,

shape_desc *parent )

{

head->values = malloc( parent-> nnz )

for i,j in parent->rows,cols

if child = parent->get_child(i,j,parent)

!= NULL

mark_bit_mask(i,j, head )

assemble_recursive_matrix

( head->values[p++], child )

}

In the pseudo code snippet listed above, we capture the essence of how
a Recursive Matrix is constructed recursively from the shape tree. In the
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Figure 6.5: Here we illustrate a blocked Sparse Matrix-Vector Multiply
(spMV). The output and input vector are stored as Recursive Dense Vectors
with a depth of 2. The top level of the vectors are 1× 4 vectors of pointers,
that point to 1 × 4 sub-vectors of scalar elements. The matrix is stored as
a Recursive Sparse Matrix, also with a depth of 2. The top level is a 4 × 4
sparse matrix, where each non-zero points to a 4×4 sparse matrix of scalars.

snippet we show that at each descent into the recursive matrix we simulta-
neously descend into the user provided shape tree that describes the graph.
The construction of the Recursive Vector follows a similar approach based
on these tree shape descriptors.

Computation. Computing a Sparse Matrix-Vector Multiply (spMV) us-
ing the RMV object is equivalent to performing a blocked Matrix-Vector
Multiply. Functionally, it entails a recursively blocked spMV, that descends
down the matrix and vector objects until it reaches the actual data values.
This is illustrated in Figure 6.5. Note that the sub-vectors are reused across
many elements in the matrix, so they are kept in the cache. The amount of
reuse is dependent on how the user partitioned the vertices of the graph.

An additional feature of our structures is the ability to dispatch to spe-
cialized functions. In each container for the sparse matrices, there is a bit
matrix which determines the shape at that level. This matrix can be treated
as a single integral type and used to dispatch the children to a specialized
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version of that function. The specialized function can be optimized to include
the indirect indexing directly in the code.

spmv_dispatch( y, mat, x){

switch(mat->bit_matrix)

..

case 65:

spmv_65(y,mat->values, x)

}

The corresponding spmv 65 function can be fully unrolled and optimized
to avoid indirect address computation. As long as the size of the instruction
cache permits, we can specialize to all potential matrix shapes for a given
block size.

spmv_65(y,vals,x){

y_0 += vals[0] * x[0];

y_0 += vals[1] * x[1];

y_0 += vals[2] * x[2];

y_0 += vals[3] * x[3];

y_1 += vals[4] * x[0];

y_1 += vals[5] * x[1];

y_2 += vals[6] * x[0];

y_2 += vals[7] * x[2];

y_3 += vals[8] * x[0];

y_3 += vals[9] * x[3];

y[0] += y_0;

y[1] += y_1;

y[2] += y_2;

y[3] += y_3;

}

In the previous example, we demonstrated how to aggressively optimize
the specialized spMV kernel for a specific shape using scalar instructions. We
could extend this approach to SIMD instructions.
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Figure 6.6: In this analysis, we determine the minimum block density needed
to justify the use of a bit matrix over a COO style list for a range of block
sizes. If the user can partition their graph into blocks that maintain these
densities, then the graph will reap the benefits of our storage mechanism.
On the secondary axis we show the possible range of overhead of the RMV
structure, measured in Bytes per Non-Zero, for each given block size. The
denser the block, the lower the overhead.

Data Structure Analysis.

srmv(n) = stype(n) + ssize(n) + snnz(n) + smask(n)+
sptr mask + sptr vals

(6.1)

Where stype is the block type, ssize are the dimensions of the block, snnz
is the number of non zeros in this block, smask is the actual bit mask matrix,
and sptr mask and sptr vals are the bit mask and value pointers, respectively.

These blocks only store a small local sub-graph, so the size of the data
types used can be minimized to the number of bits needed to encode a block of
that size. We can represent these sizes s as functions of n, where n represents
the size of an n×n block that we would like to store in our RMV Structure.
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We can replace the size s terms with the following functions:

stype(n) = 8b
ssize(n) = 2log2(n)
snnz(n) = 2log2(n)
smask(n) = n2

sptr mask(n) = 64b
sptr vals(n) = 64b

(6.2)

This overhead formula is only for a single block. If we assemble a graph
in a hierarchical fashion using blocks of size b (fixed size blocks are not a
requirement of our structure), then our overhead becomes:

s(n, b) =
1− 1

rk

1− 1
r

srmv(b) (6.3)

Where k = logb n, r = db2 and d is the average density of the graph in
each block.

If we make n arbitrarily large, then smask(n) becomes the dominant fac-
tor. If we store a large graph as a single block in our storage scheme, then
the overhead would be unnecessarily large compared to Coordinate Storage
(COO). However, our scheme is designed to store a scale-free graph hierar-
chically such that the density of the leaves is greater than the entire graph.
Thus, if the density of the blocks is sufficiently large, then this overhead is
amortized over many elements. Otherwise, a COO list should be used for
that block, a feature that our format allows. Thus, we need to balance the
size of our blocks with the density of the sub-graph that they will store.

Achieving this desired density for larger block sizes may not be practical
for real world scale-free graphs. Fortunately, we do not need a high density of
the overall graph, only high densities in tightly clustered sub-graphs. Thus,
the question becomes: given a sub-graph of size n, what minimum density is
needed to overcome the overhead of our storage format, RMV, compared to
COO? In Figure 6.6, we compare necessary density to break even in overhead
for a given block size. This is computed using by solving for density d in
mask(n) = coo(n)nnz, where nnz = dn2. For a range of block sizes, this plot
shows what density is needed to justify the use of the bit matrix over COO
inside the RMV structure. In that plot, we also calculate the range of the
overhead of our RMV mechanism for each block size.
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6.3 Experimental Setup and Analysis

In this section, we evaluate the performance of our data format for synthetic
scale-free graphs. We want to show that we can achieve reasonable spMV
performance for a single threaded, scalar, and un-optimized implementation
of our framework. Additionally, we show that we achieve competitive per-
formance with the state of the art. We chose spMV as a proxy for graph
operations for the following reasons: First, many graph operations can be
represented in terms of iterative spMV-like operations. Second, this opera-
tion is typically expertly tuned, so it sets a high bar for performance.

Synthetic Dataset. For our datasets, we generate synthetic Discrete Kro-
necker Graphs [76] of various sizes. We chose these graphs because they
approximate scale-free graphs. Using Kronecker graphs we can control the
sparsity, number of non-zeros and graph size in a predictable fashion. The
construction of the Kronecker Graphs used in our experiments is as follows:

We start with an initiator matrix Bi, which in our case is the arrowhead
pattern.

B1 =




1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1


 (6.4)

We construct larger Kronecker Graphs Bi for i > 1 using the Kronecker
Tensor ⊗ in this formula Bi = B1 ⊗ Bi−1. The term on the left-hand side
describes the coarse structure of the matrix, where the term on the right-
hand side describes the fine grain structure. For our arrowhead initiator B1,
we can visualize this matrix as:

Bi+1 =




Bi Bi Bi Bi

Bi Bi 0 0
Bi 0 Bi 0
Bi 0 0 Bi


 (6.5)

While our format does not require the graph to be a Kronecker Graph,
using it allows us to quickly compute the number of non-zeroes (or edges),
the number of vertices and the density. We can then relate these features to
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the performance of our implementation.

nnz(Bi) = 10i

num verts(Bi) = 4i

density(Bi) = nnz(Bi)
num verts(Bi)2

= (2
5
)i

(6.6)

We selected these graphs because they represent the ideal case for our
data format, because we can base our partitioning on the mathematical rep-
resentation of the Kronecker Graph. However, our data format is not limited
only to Kronecker Graphs. It can store arbitrary sparse graphs, but we only
expect to see performance benefits if the user can map the structure of their
graph to our Recursive Matrix data structure.

Test Bench. Our target systems include: an Intel Core i5-5200U running
at 2.20 GHz with a memory bandwidth of 25.6 GB/s and an Intel Xeon
E5-2667 v3 running at 3.2 GHz with 68 GB/s of memory bandwidth. The
theoretical peak spMVperformance on these machines are 6.4 GFLOP/s and
12.75 GFLOP/s respectively. This assumes that the vectors are resident in
the cache and that for every 8B consumed, 2 FLOPs are performed.

6.3.1 Performance Analysis

In order to demonstrate the effectiveness of our data structure for matrix-
vector like operations on scale-free graphs, we evaluated two variants of our
framework: a scalar and Single Instruction Multiple Data (SIMD) implemen-
tation.

The goal of our scalar experiment (Figure 6.7) is to show the performance
of a minimally tuned scalar spMV implementation using our RMV data struc-
ture over synthetic scale-free data. We do this to establish a baseline of what
is achievable by using our data-structure and we relate this to the density of
the graph and the overhead of our format. What we see in Figure 6.7 is that
as the problem size grows larger, the density of the synthetic scale free graph
decreases, but the fraction of overhead introduced by our structure converges
to 25%. For comparison this value is 66% for COO. We also see that for our
untuned scalar implementation, the RMV spMV sustains 10% and 40% peak
floating point performance on the Xeon E5 and Core i5, respectively.
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Density & Overhead
Untuned Scalar SPMV Recursive Matrix Vector
Performance [Gflop/s]

Xeon E5-2667v3

Core-i5 5200U

Graph Density

RMV Overhead

Problem Size [log10 𝑛𝑛𝑧]

Figure 6.7: On the primary y-axis we measure the performance of an un-
tuned scalar spMV on our RMV data structure for graph sizes ranging from
10 to 108 non-zero edges. For the problems larger than 106 the graph data
exceeds the size of the caches on both systems, with the largest graph con-
taining 800MB of graph data. The untuned scalar implementation achieves
between 10% to 40% of the target systems’ double precision floating point
peak performance for synthetic data. On the secondary axis, we compare
the graph’s density relative to the overhead imposed by our data structure
as the problem size grows. For comparison the overhead for COO is 66%.

In Figure 6.8 we compare an optimized version of our data-structure and
spMV framework against state of the art implementations. We use SIMD
short vector instructions to compute the inner-most 4×4 blocks of the spMV.
These kernels specialize to the shape of sub-graph, which dispatch on the
bit-matrix and only compute on the non-zero elements for that particular
mask. Additionally, we chose block sizes that fit the sub-graphs into the
various caches. When constructing the graph, we lay out the elements in
a contiguous order that matches how they will be computed (this is done
by passing a user defined malloc routine during the RMV construction).
Lastly, we use prefetching to load the next sub-graph in its respective cache.
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Figure 6.8: In this experiment, we compare the performance of a tuned
SIMD spMV implementation on our RMV data structure against state of
the art implementations on synthetic scale-free data. This data set exceeds
the cache and is 800MB, excluding overhead. Our RMV implementation out-
performs the other implementations until 107 non-zero elements. We suspect
that by rearranging our data layout we can make more effective use of the
large number of channels on this system.

The application of these optimizations parallel the implementation of a high
performance dense linear algebra routine.

For a single thread, our implementation outperforms the state of the art
for synthetic scale-free graphs up to the size of 107 non-zero edges. We suspect
that for larger sizes our blocking dimensions are not optimal. Furthermore,
we suspect that for those larger sizes our data layout does not efficiently
use the memory subsystem. This could be addressed by using a layout that
maximizes memory level parallelism. We leave these two adjustments for
future work.
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6.4 Chapter Summary

In this chapter, we demonstrate that our mechanical approach to performance
is applicable to matrix operations over sparse data, where the structure of the
data is known. Just as in the Matrix-Matrix Multiply and Structured Mesh
case, we split the problem in a data access and kernel generation portion.
The key to extending this approach was the use of a data structure which
captured the structure of the graph and bridged the data access to the kernel.
In the next chapter, we will extend this work to graph operations on real-
world scale-free networks.
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Chapter 7

Real-World Networks Provide
Sufficient Structure for
Performance

7.1 Introduction

In this chapter, we extend our work in the previous chapter on synthetic
scale-free networks to Graph Operations over real-world scale-free networks.
In keeping with the overall theme of this thesis, we identify hierarchical
structures in real-world graphs that allow us to map the graph data to the
memory hierarchy. Once the graph data is laid out efficiently in memory we
can perform efficient iterative spMV-like graph operations.

The contribution of this chapter:
• We identify that the hierarchical cluster structure seen in real-world
scale free graphs can be used to partition the graph hierarchically in
memory.

• We demonstrate how we can develop a high performance libraries for
graph algorithms implemented as matrix computations.

• We show how to utilize time-tiling for high performance graph opera-
tions.

This chapter is organized as follows: First, we examine the properties
of real-world scale-free networks. Next, we discuss a matrix formulation of
graph operations. From that we develop a time-tile approach for these graph
operations. This mechanism allows us to leverage the structure of the graph
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to speed up the time needed to converge to a solution, and it allows us to
make efficient use of the cache hierarchy. After we develop the theory behind
our approach, we describe the implementation of graph framework. This is
a linear algebra based framework which utilizes time-tiling. After this, we
evaluate the performance of our framework on real-world data and analyze
the results. Last, we summarize our graph framework.

7.2 Theory

In this chapter, we develop a framework for efficiently performing graph an-
alytics over real-world scale-free graphs on modern computer architectures.
Our solution leverages the structure in real-world graphs to guide the selec-
tion of the algorithms used and the mapping of the graph data to our target
architecture. The structure in question is the hierarchical clustering property
seen in many real-world graphs, and we use this to dictate how we recursively
partition our graph for our graph algorithms, and how this partitioned graph
is laid out in memory to maximize effective cache reuse in the hierarchical
memory subsystem.

7.2.1 Real-World Graphs

In this work, we restrict ourselves to real-world graphs where the vast ma-
jority of vertices have only a few edges, and a very small number of vertices
contain many edges. Examples of these kinds of graphs include:

• web networks: web pages are the vertices and the edges are the hyper-
links between those pages [77, 75, 78].

• email traffic: we can view as the email addresses representing vertices
and the destination of the email represents the edge between two ver-
tices. Alternatively, the emails can be viewed as the vertices with edges
between two emails representing similar correspondence [79, 80].

• research paper relations: papers are the vertices and the edges can
represent citations between articles or co-authorship [81, 82, 83, 84, 85]

• routing networks: vertices are routes and edges are either physical or
virtual connections between routers [86, 87].

• social networks: individuals form the vertices and their relationships
are captured as edges [88, 89, 90].
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• biological networks: for example in protein-protein interaction net-
works, each protein represents a vertex and the edge connect two pro-
teins represents that two proteins are involved in the same process.
[91, 92]

• financial data: accounts are represented as vertices and transfers be-
tween accounts form the edges [93, 94, 95].

• transportation networks: vertices can represent intersections and the
roads connecting intersections are captured by edges [96, 97].

In the follow sections, we will review generic, yet important properties
observed in real-world graphs.

7.2.2 Scale-Free Networks

A scale-free network [50, 98] is a graph whose degree distribution, or the
probability of a vertex having a certain number of edges, follows a power-law
distribution:

P (k) = k−γ (7.1)

This equations captures the probability that a vertex has k edges is ap-
proximately k−γ , where γ is a constant specific to the graph. This creates a
long tail distribution where the vast majority of vertices in real-world graphs
have very few edges and a small number of key vertices have a very large
number of edges. We call these rare, highly connected vertices hubs or au-
thorities [77]. In the following sections, we will show why these hubs are
critical for propagating information throughout the graph. For now it is
worth noting that these hubs form distinct clusters within the graph. In
Figure 7.1 we show a cartoon of a small scale-free graph with the distinct
communities marked using colored backgrounds. The hubs in this illustration
are the nodes with the most edges.

Models for Real-world. Another key property of real networks is the
small-world behavior [99]. This property states that neighboring vertices
are more likely to share each other neighbors than to be connected to other
vertices in the graph. This behavior explains the tight knit communities
that arise in real-world networks. Additionally, this property gives rise to
hub nodes, or vertices with many edges. Lastly, even those these networks
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Figure 7.1: In this illustration we show a cartoon of a scale-free graph. We
highlighted the clusters in this graph.

are sparse they have relative small diameters, thus the distance between any
two vertices is small.

7.2.3 Hierarchical Clustering in Real-World Graphs

A key property that emerges in real-world networks is the hierarchical orga-
nization of clusters [100], [101], and [102]. Vertices in these graphs hierar-
chically organize to form a recursive cluster structure. We can visualize this
with the hub and spoke model. The vast majority of vertices have only a few
edges (spokes) that connect to vertices with many edges (hubs). If we were
to collapse the hubs and their spokes into a single super-node, we would see
the exact same hub and spoke pattern over these super-nodes. Thus, the pat-
tern repeats until there is a single super-node. We capture this hierarchical
structure in Figure 7.1.

As a consequence of this hierarchical topology, hubs are critical for infor-
mation flow into their communities. This notion is reinforced by observations
in real-world networks. For example, in [103] the authors observed that in
infection models over scale-free graph, highly connects hubs contracted and
spread the infection very quickly. Thus, providing preferential treatment to
highly connected hubs decreased the overall infection rate. Similarly, the
authors in [104] observed that for viruses spreading on computer networks,
that topology, not the spreading rate of the virus, determines the overall
rate in which machines are infected. In [90] the authors provided another
perspective of information flow through scale-free topologies. They observed
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that information originating from a community is more important within the
community than to vertices outside of the community. This is explained by
the fact that vertices within a community have high connectivity to each
other, but very little connectivity outside.

Communities in real-world scale-free networks are hierarchically clustered.
Information flowing throughout the graph travels through highly connected
hubs, but most information within a community is mostly propagated locally.
We use these two key properties in the design and implementation of graph
analytic framework. First, all graph data is stored in a manner that preserves
this hierarchical structure and matches it to the cache hierarchy. Second,
the algorithms we select in implementing our graph operations focus their
computation locally, within the communities of the graph, before computing
the operation globally on the graph.

In the next sections, we describe the graph operations we target, the
algorithms selected in their implementation, and the optimizations we per-
form. Whenever possible, we take advantage of the hierarchical to extract
performance at each step of the way.

7.2.4 Operations Over Graphs

For our experiments in this chapter, we target Sparse Matrix Vector Product
(spMV), the Single Source Shortest Path (SSSP) and PageRank operation.
The spMV operation computes y = Ax where y and x are dense vectors and
A is a sparse matrix. This operation serves as a proxy for more complex
operations and it is a well studied operations with highly tuned implementa-
tions on modern hardware. We will demonstrate how many graph algorithms
can be built on spMV and why it is important that this operation is efficient.

The Single Source Shortest Path (SSSP) operations solves the problem of
computing the shortest path between all vertices to a selected source. More
precisely: given a graph G = (V,E) and a source vertex s ∈ V we compute
the distance dv from vertex s to vertex v ∈ V . We illustrate this process in
Figure 7.3.

We selected this operation because it forms the basis of other operations
such as betweeness centrality and All Pairs Shortest Path (APSP). Addi-
tionally, this operation serves as a proxy for other graph operations such
as Traversal, Minimum Spanning Tree (MST), and Inference because with
slight modification of the algorithm we use (GraphBLAS) [5] we can imple-
ment them.
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Figure 7.2: We can represent our graph on the left as an adjacency matrix A
where each entry aij represents an edge from vertex j to vertex i. Depending
on how we label our graph we can preserve the locality of the graph in the
matrix.

We also target the PageRank [105] operation, which determines the im-
portance of website based on the probability that a random web surfer will
reach that page. In this Graph BLAS style, we implement this as an iter-
ative sparse Matrix-Vector product where for each vertex we compute the
weighted sum of all incoming edges. Between every iteration the weights of
each vertex are dampened and a fudge factor is added. This continues until
the difference between two iterations is less than a given threshold.

7.2.5 Graph Operations as Matrix Operations

In this chapter we implement graph operations using the approach in the
GraphBLAS/Combinatorial BLAS [5]. In this approach, graph operations
are represented as transformations of a module defined over a particular
semiring that is selected for the operation. This is done in two steps: First,
the input graph G = (V,E) is represented as an Adjacency Matrix A (Fig-
ure 7.2) where each entry αij represents the weight of an edge from vertex
j to vertex i. If the entry is 0 then there is no edge. For scale-free net-
works this leads to a hypersparse [106] matrix. Second, the graph operation
is implemented as either a Matrix-Vector, iterative Matrix-Vector, or Matrix
Multiplication over a semiring S, selected for the operations. The semiring
is an algebraic structure with an addition operator +, multiplication opera-
tor ·, an additive identity 0 and multiplicative identity 1. Additionally, the
additive identity 0 is the multiplicative annilator 0 · a = 0.
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For example, we want a transformation B = Ak where each entry βij

the computes the shortest path, of k or fewer hops, between vertex j and
i. Then we define the underlying semiring such that + is the min operator,
· is normal addition and 0 and 1 are ∞ and 0 respectively. If we want to
explicitly compute the shortest path of k or fewer hops from vertex j to i
then using the standard basis vector ex, we perform:

dij = eTi A
kej (7.2)

If we want the distances between vertex s and all other vertices then we
can compute

y = Akes (7.3)

Where γi ∈ y is the shortest distance dsi between s and i using k or fewer
hops. This operation is equivalent to the Single Source Shortest Path (SSSP)
problem. In order to implement this operation we can either explicitly com-
pute Ak where k = |V |− 1 (longest possible path) or iteratively compute the
Matrix Vector Product, y = (A . . . (A(Ax))). The former approach is compu-
tationally prohibitive as it may require O(|V |3(k−1)) operations whereas the
later requires O(|V |3) operations.

To compute SSSP using the GraphBLAS approach, we perform an It-
erative Matrix-Vector product y(k) = Akx, where xs = 0 and xi�=s = ∞.
Additionally, k is largest number of hops between needed for all shortest
paths between s and vertex i. The Iterative Matrix-Vector product is com-
puted until the convergence condition, y(k+1) = yk is met, because once the
shortest path is found then no additional hops will make the path shorter.
Stated differently, if the most number of hops in any shortest path is k then
Ak = Ah where h > k.

It is important to note that this approach to graph analytics hinges on
the performance of the matrix-vector operation. However, for large graphs
spMV is bandwidth bound. Therefore, without modification this approach
is limited by the available bandwidth between the processor and memory.

7.2.6 Performance Enhancements for Graph Opera-
tions

We identify a major issues in this approach with regards to performance.
We know from real-world scale-free networks that a significant proportion of
information flows within clusters [104, 90]. Another way to look at this is
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a. Original Graph c. Shortest Path Solutions to Source 𝑨

b. Matrix Representation of Graph

=

d. Iterative Matrix Vector Implementation

Figure 7.3: a. We show a graph G = (V,E) with weights. b. Graph G
is represented as an adjacency matrix A. c. We show the solution of the
shortest paths problem (SSSP) to source vertex a d. We show the iterative
matrix vector computation of SSSP, y = Akx where we use a semiring that
replaces the addition and multiplication with min and +. The vector x is
the starting values and y is the solution.
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Figure 7.4: Depending on how the vertices are labeled we can preserve
the locality of the graph in the adjacency matrix. This is ideal because a
large amount of communication occurs within the community. Thus, preserv-
ing this locality in the graph insures that this communication occurs within
blocks of cache.

the density of edges on the diagonal of a Kronecker graph approximation of
a real-world graph is greater than the off-diagonals [76].

Therefore, it would be beneficial to focus computation on these clusters.
Thus, multiple passes in these clusters are necessary and performing them
in succession would benefit from temporal locality. However, in the iterative
matrix-vector approach only a single pass is made to each edge between
iterations.

7.2.7 Temporal Blocking for Graphs

In scale-free networks, the bulk of the communication occurs within the clus-
ters, but the iterative spMV approach does not make use of this feature,
and instead computes over all edges before repeating an edge computation.
Ideally, we want to focus as much useful computation within a cluster before
moving on. This would both reduce the amount of work until convergence
and improve locality.

Thus, we propose an adjustment to the iterative matrix-vector product
approach to graph analytics by adopting a similar technique used for the
stencil methods, time-tiling [31]. Rather than iteratively computing the en-
tire Matrix-Vector product on the graph, we perform multiple smaller local
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passes on subgraphs. Because these subgraphs are clusters, where informa-
tion propagates the fastest, a local solution can be determined within cluster
before distributing it outside of the cluster.

We can formulate our time-tiled approach as the following:

y =

�
(A0,0)

k A0,1

A1,0 (A1,1)
k

�n

x (7.4)

Where Aij are sub-blocks of the shortest distance matrix A.
It is worth noting that if we look at the shortest path transformation

matrix Ak from earlier, and k < |V | is the maximum number of hops for
the shortest path, then Ah = Ak for any h > k. Additionally, we can say
eTi αijejA

k = Ak. An informal proof of this is that Ak already represents
the shortest paths between any two vertices, therefore adding an additional
vertex to any of those paths (eTi αijej) will not make them shorter. A con-
sequence of this result is that whatever optimization perform on the SSSP
GraphBLAS operation, we will have a correct result as long as we eventually
compute Ak. Therefore, for all n > k, the following true:

Ak =

�
(A0,0)

k A0,1

A1,0 (A1,1)
k

�n

(7.5)

While this may appear like additional work compared to the iterative
matrix-vector product y = Akx, it is worth noting that we iterate until
convergence. Therefore, work stops once all shortest paths back to the source
are found.

If tiled properly, computing local solutions from these time-tiled itera-
tions can occur entirely within the cache by making effective use of temporal
locality in the cache. While the local solutions may not be part of the global
solution, it may be close because the solution of the spokes are more likely
to be affected by the hubs. Ultimately, the identical solution will be reached,
whether we do multiple global passes or time-tiled iterations, but by lever-
aging the structure of the graph and the behavior of scale-free networks the
global solution may be reached faster.

7.2.8 Spacial Blocking for Graphs

Similar to the previous chapter we want to capture clusters hierarchically
in blocks that fit the memory hierarchy. This builds on how information
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Figure 7.5: left: We show a non-ideal layout of vertex and edge data in
memory. Elements with the same color come from the same cluster. right:
We show an ideal layout where neighboring edges and vertices are laid out
contiguously in memory.

flows within scale-free graphs [104, 90, 107, 103] and leverages the fact that
nearby vertices are more likely to communicate with each other than distant
neighbors. By capturing the proximity of this vertices in cache we can insure
that communication between them is efficient. Thus, if two vertices are
neighbors in the graph then they will be neighbors in memory and utilize
spacial locality. In Figure 7.4 we capture this graph locality in the adjacency
matrix, and in Figure 7.5 we show how this would look laid out in memory.

7.3 Implementation of a High-Performance

Graph Library

In the previous section, we identified that real-world scale free networks have
a hierarchical cluster structure that we can use to hierarchically partition a
graph. We described a method for representing graph algorithms in terms
of linear algebra-like operations. Lastly, we described how to use the hi-
erarchical partitioning for space and time tiling on these linear algebra-like
algorithms.
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In this section, we describe how we go from this theory – hierarchical
partitioning, linear algebra representation and space/time tiling – to a high
performance implementation of a graph library.

We build our graph library around a generalized version of the Recursive
Matrix Vector (RMV) data structure that we presented in the previous chap-
ter. This structure allows us to capture the hierarchical recursive structure
of the graph and traverse through that structure efficiently. We then develop
recursive graph algorithms that operate on this structure. These recursive
algorithms allow us to tile both spatially and temporally. These algorithms
will ultimate divide the graph into very small sub-graphs that are computed
on using extremely efficient, automatically generated kernels.

7.3.1 Generalized Hierarchical Sparse Framework

In the previous chapter, we developed a hierarchical sparse matrix frame-
work for scale-free networks. This implementation was optimized for Kro-
necker Graphs [76], a class of scale-free networks. This data structure stores
structured Kronecker Graphs hierarchically and efficiently in memory. While
Kronecker Graphs can approximate real-world networks, more flexibility is
needed for storing real-world networks. For this flexibility we generalize our
RMV data structure to accommodate real-world data, while retaining the
hierarchical sparse structure. We call this format Generic Recursive Matrix
Vector Storage (GERMV).

Like the RMV data structure, GERMV is a tree-like hierarchical matrix
storage. It stores a matrix as a hierarchical nesting of blocks. Further, each
of these blocks is described by a node. This structure can be viewed as
Hierarchically Tiled Array [108] or FLASH [54] if the base data type in each
tile could be sparse instead of dense. The key difference between the RMV
data structure of the previous chapter and the GERMV data structure is
the generalization of indexing. In the original RMV structure indexing was
restricted by a bit-matrix, but in the GERMV indexing can be done in COO,
CSR, bit matrix, or a dense matrix format.

To accommodate generic indexing and generic data container in C we
break up the GERMV container into two pieces, a base container that de-
termines the payload and a payload that contains the indexing and data
elements. In the following listing we show the base container.
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typedef struct germv_base_ts

{

enum type;

void *payload

}

The field type determines how the following field payload needs to be inter-
preted. Essentially, this is one method for implementing class-like structures
in C.

typedef struct payload_dense_double

{

double [][] data;

}

typedef struct payload_coo_uint16

{

uint8_t row_idx;

uint8_t col_idx;

uint16_t data;

}

In this code snippet, we demonstrate how to capture different formats as
wrappers. If the base object’s type is dense double then its payload is cast
using the appropriate wrapper. This approach to classes provides us with a
low overhead method of implementing an abstract hierarchical matrix type.
In the next section, we demonstrate how we use GERMV object.

Abstract Matrix Types. The GERMV structure allows us to capture
a graph as a hierarchical partitioning. This is done by creating a tree-like
representation of the matrix where each level of the tree represents a parti-
tioning of the parent node. To accommodate this, the GERMV allows for
arbitrary data types. Typically, the leaf blocks will contain a value data
type (i.e. float or int), whereas the interior nodes - or hierarchically blocks -
have values with a pointer data type. These pointers, in turn, point to their
child blocks. We can continue this recursively until we hit the leaf nodes.
For example, in the following listing we describe a payload type that indexes
using the COO format:
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typedef struct payload_coo_germv_base

{

uint8_t row_idx;

uint8_t col_idx;

germv_base_t data;

}

Given this pointer data type we can create a hierarchically partitioned
graph with a single vertex and edge, one leaf node and one interior root node.

#define CONSTRUCT(type) ...

#define ADD_ELEM(package, i,j, data) ..

germv_base_t *interior =

CONSTRUCT( payload_coo_germv_base );

germv_base_t *leaf =

CONSTRUCT( payload_coo_float );

ADD_ELEM(interior, 0,0, leaf);

ADD_ELEM(leaf, 0,0, 3.14f );

We create two GERMV objects, one is the root or interior node and the
other is the leaf node. We use a pointer data type with COO indexing for
payload type for the root node. For the leaf node we use COO indexing with
a floating point indexing. Once the objects are constructed, we attach the
leaf to the interior by adding it as an element and similarly we add an edge
and value to the leaf using the same mechanism.

7.3.2 A High Performance spMV Implementation

Now that we have a hierarchical data structure we can build recursive algo-
rithms for the operations we are interested in. We start with Sparse Matrix
Vector Product (spMV) because it is an important operation on its own and
because it will form the basis of the graph operations that we are ultimately
interested in.

The spMV computes y = Ax where y ∈ Rm, x ∈ Rn and A ∈ Rm×n. This
operations requires mn multiplications and additions and at the very least
2m + n + mn memory accesses. The latter figure assumes perfect reuse of
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a. Blocked Row Partitioning b. Blocked Column Partitioning

Figure 7.6: In our framework we implement the spMV operation by the
recursive application of two blocked spMV algorithms. Left: we have a par-
titioning of rows where the output vector and the matrix are divided into
blocks of rows and each output vector block is computed with the correspond-
ing block from the matrix and the entire input vector. Right: we divide the
matrix into column blocks and input into row blocks and we compute the
output vector by accumulating the results of each matrix and input product.

the y and x vector. The cost of memory access is typically more expensive
than computation, therefore we want to maximize reuse. In order to do
this, we construct a recursive spMV over our GERMV and we match the
block sizes to fit the cache hierarchy. In Figure 7.6, we show two recursive
spMV algorithms, one that partitions the matrix by rows and the other
that partitions by columns. When computing the operation, We divide the
GERMV matrix into blocks then recursively apply these spMV algorithms
until we reach the base elements of the matrix.

In Figure 7.7 and Figure 7.8 we show a matrix and graphical representa-
tion of the spMV blocked algorithms we use. We realize this process in the
following code snippet:

spmv_dispatch(A,x,y)

{

if( is_leaf(A) )

spmv_kernel(A,x,y)

else if( is_node(A) )

spmv_block_row_and_col(A,x,y)

}
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Figure 7.7: Part a: We show the adjacency matrix partitioned by rows.
The colors correspond to the cluster where the input vector and output vector
are accessing the same vertices on the graph. Part b: If we look at the first
blocked row of the matrix we can divide it into two pieces, a block that
contains the edges within a cluster, and the edges that gather data from the
rest of the graph to the cluster. Part c: We can visualize this as a graph
where information flows bidirectionally within the cluster and the remaining
edges flow into the cluster.
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Figure 7.8: Part a: In this figure we partition the adjacency matrix by
columns. The colored diagonal blocks represents the clusters in the graph.
Part b: We select a blocked column from the graph and we divide it into
two pieces, the cluster where all computation occurs within the cluster and
the rest of the block which scatters data from the cluster to the rest of
the graph. Part c: We capture this behavior in the graph where the edge
direction represents the flow of information.
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The algorithm first determines if we are dealing with a leaf GERMV
container (an object with real values) or a node GERMV container (an object
with pointer values) and dispatches to the appropriate code. If the GERMV
is a node, then spMV is computed recursively on the non-NULL pointer
values by calling the dispatch function on the value. If the GERMV is a leaf,
then it is computed.

spmv_block_row_and_col(A,x,y)

{

for( i = 0 .. mb-1 )

for( j = 0 .. nb-1 )

Ab = get_elem( A, i,j );

yb = get_elem( y, i );

xb = get_elem( x, j );

spmv_dispatch( Ab,xb,yb )

}

In this listing we show a blocked spMV algorithm that partitions both
the rows and columns. The values mb and nb correspond to the number of
blocked rows and columns, respectively. In the next listing, we show the base
case for our spMV.

spmv_kernel(A,x,y)

{

for( i = 0 .. mb-1 )

for( j = 0 .. nb-1 )

y[i] += A[i][j] * x[j]

}

To summarize our spMV implementation, we divide the operation by
recursive applications of a blocked row and column spMV algorithm. The
block sizes for each recursion match the size of the cache at each level of the
hierarchy. Further, the partitioning of the spMV operation and the block
sizes determine how the matrix is recursively stored in our GERMV object.
Assuming that the vertices in the adjacency matrix are ordered in local-
ity preserving manner, then our approach keeps graph cluster in cache and
effectively uses that locality.
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7.3.3 Parallelism

Our target systems are modern multi-core architectures. Thus it is impor-
tant that our framework supports efficient parallel computation. In order
to accommodate this we add two key features to our framework, parallel
algorithms and efficient allocation of GERMV objects. First, we examine a
parallel blocked spMV algorithm in the following listing:

spmv_block_row_and_col(A,x,y)

{

#pragma parallel for

for( i = 0 .. mb-1 )

for( j = 0 .. nb-1 )

Ab = get_elem( A, i,j );

yb = get_elem( y, i );

xb = get_elem( x, j );

spmv_dispatch( Ab,xb,yb )

}

In this implementation, the outer loop is parallelized, which means that
it performs mb blocked row spMV operations. By dividing the work among
the rows of the output vector and matrix we can avoid the need for multiple
threads accumulating to the same location. Alternatively, we can view this
approach as each graph cluster computing locally and gathering external
information in parallel.

The second component of our parallel framework is a parallel-aware allo-
cation of the GERMV matrix object. During the construction of the object,
each row is allocated contiguously on the core that will ultimately compute it.
This insures that on Non-Uniform Memory Architectures (NUMA) data will
be located close to the core that will compute it. By combing this efficient
allocation with a parallel blocked row algorithm we are able to efficiently
compute spMV on parallel architectures.

7.3.4 Kernel Code Generation

We have discussed divide-and-conquer algorithms for computing spMV on
our GERMV data structure which recurse until they reach a base case. This
base case is implemented as a high performance kernel which computes on the
residual cache resident sliver that the recursive algorithms provide. Thus, in
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order to achieve a high performance implementation we need efficient kernels.
In order to make our framework as generic as possible we leverage kernel code
generation to provide efficient spMV kernels for any arbitrary data type.

Our kernel code generator works as follows: Given a semi-ring with an
addition and multiplication operator the kernel code generator produces a
tuned spMV implementation over that semi-ring. For example if we want
a standard spMV over floating point values, we would provide the semiring
including a floating-point multiplication and a floating-point addition. Al-
ternatively, if we wanted a kernel that traverses one hop through a graph
then that semiring then we would use a binary and operator with a binary
or operator over a binary adjacency matrix.

In this code snippet we illustrate at high level how we template the kernel.

#define spmv_dense_kern(_ADD,_MUL) \

void spmv_semiring_kernel(A,x,y) \

{ \

for( i = 0 .. mb-1 ) \

for( j = 0 .. nb-1 ) \

res = _MUL(A[i][j],x[j]); \

y[i] = _ADD(y[i],res ); \

}

In order to instantiate it we must define the addition and multiplication
operator:

#define FLOAT_ADD(A,B) (A+B)

#define FLOAT_MUL(A,B) (A*B)

spmv_semiring_kernel(FLOAT_ADD,FLOAT_MUL)

Alternatively, if we want a single hop graph traversal over a binary adja-
cency matrix we could define the addition and multiplication as follows:

#define BIN_ADD(A,B) (A|B)

#define BIN_MUL(A,B) (A&B)

spmv_semiring_kernel(BIN_ADD,BIN_MUL)

This is the essence of our kernel generation system for spMV-like op-
erations. By taking this semiring approach, not only do we define spMV
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operations of different data types, but also graph operations. We make this
a high performance code generator by using the techniques that we developed
for dense matrix-matrix multiplication and stencil kernels.

Performance Enhancements. The key optimizations that we perform
on the generated kernels involve minimizing the number of loads, instruction
scheduling and loop unrolling. Typically, these spMV kernels contain signif-
icantly more load operations than computations. Even if the processor has
sufficient bandwidth to sustain these loads, typically there are not enough
memory functional units to support the number of operations. To address
this we combine load operations to maximize the memory functional unit
utilization and minimize the number of load operations.

In this listing, we illustrate how we combine contiguous loads into a single
operation. If we start with an spMV kernel for data stored in a COO style
format:

void spmv_semiring_kernel(A,x,y)

{

for( p = 0 .. nnz )

// sequential

a = A.data[p];

i = A.row_idx[p];

j = A.col_idx[p];

// random access

yd = y[i];

xd = x[j];

// computation

res = _MUL(a,xd);

y[i] = _ADD(yd,res );

}

We can condense the sequential load operations into fewer loads with
larger data widths. If we need a smaller data chunk then we can simply
extract it with bitwise operations. If we assume that the data elements and
indices are 1 Byte in width and that we can perform 8 Byte loads, then
applying this transformation on the previous listing would look like:
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#define EXTRACT(bulk,pos) (bulk >> pos*8) & 0xF

chunk_width = sizeof(uint8_t);

num_chunks = sizeof(uint64_t)/chunk_width

for( q = 0: num_chunks: nnz )

{

bulk_a = A.data[q: q+num_chunks];

bulk_ridx = A.row_idx[q: q+num_chunks];

bulk_cidx = A.col_idx[q: q+num_chunks];

for( p = q :q+num_chunks )

{

// sequential

a = EXTRACT(bulk_a,p);

i = EXTRACT(bulk_ridx,p);

j = EXTRACT(bulk_cidx,p);

.....

}

}

The number of load operations is significantly reduced, which is critical
for performance on processors with a low number of memory functional units.
This does come at a trade off with the addition of more integer operations.
Fortunately, most processors have a large number of integer units.

In addition to combining sequential load operations into bulk load opera-
tions, we employ static instruction scheduling and loop unrolling. In previous
chapters, we demonstrated the importance of static instruction scheduling on
modern out-of-order architecture. By performing this optimization on our
generated kernels we can insure that the kernel sustains a high rate of com-
putation while the inputs are in the cache. By including loop unrolling we
minimize a significant amount of loop overhead. These combined transfor-
mations allow us to produce high-performance spMV kernels over arbitrary
semirings. In the following sections, we will demonstrate how this general-
ization enables the implementation of high-performance graph operations.
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a. Example Graph and Adjacency Matrix b. Iterative MatrixVector Product on Adjacency Matrix

c. Matrix Representation of Iterative MatrixVector Product

Figure 7.9: a. We show a small graph and its adjacency matrix. b. We
represent an iterative sparse matrix-vector in terms of matrices and vectors.
c. We represent the same operation in terms of data movement through a
graph.

7.3.5 A High Performance Graph Library

Earlier, we described a method by which we can cast a graph algorithm in
terms of an iterative matrix vector product (spMV). This achieved by re-
placing the underlying semiring with a graph computation. In this formula-
tion, the performance of the graph operation is dependent on the underlying
spMV. Therefore, we build our graph framework on an iterative spMV which
in turn is based on the high-performance spMV described in the previous sub-
section. In this section, we will develop our baseline implementation of the
iterative spMV graph framework. Then we will discuss our improvements
over this approach using stencil-like time-tiling optimizations.

The iterative spMV successively applies a sparse matrix on the result of
the previous matrix-vector operation until a stopping condition is met. In
our case this halting condition is when the output of one iteration is the
same as the previous. I.e. we are solving x(k+1) = Axk until x(k+1) = xk.
In Figure 7.9 we capture this process on example graph in several different
views. An important feature of this approach is that each iteration processes
the entire graph before proceeding to the next iteration.

In the following pseudo code snippet, we express this iterative spMV
operation. We can express this in pseudo code as follows:
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iter_spmv(A,x,y)

{

xk[0] = x;

do

{

spmv(A,xk[k+1],xk[k])

}while(xk[k] != xk[k+1])

y = xk[k]

}

In the next section we will discuss cache improvements to this approach.

7.3.6 Time Tiling for Graph Algorithms

At each iteration the entire spMV is computed before proceeding to the next.
This is noteworthy because if the vector x(k) exceeds the size of the cache
then at each iteration everything there is no reuse.

To alleviate this, we borrow the time-tiling technique utilized in stencil
computations. The general idea is to iterate over small a sub-graph until the
convergence condition is reached. This continues with the next sub-graph is
processed until the entire graph is processed. We illustrate this process in
Figure 7.10. After all sub-graphs are computed in this fashion the process
repeats for the entire graph until the stopping condition is met. In Figure 7.11
we show how time-tiling applies to a graph operation. The following listing
we show how we implement time-tiling in our graph library.

spmv_rec_iter(A,x,y)

{

for( i = 0 .. mb-1 )

for( j = 0 .. nb-1 )

Ab = A[i:i+mb][j:j+mb]

yb = y[i:i+mb]

xb = x[j:j+nb]

iter_spmv_rec( Ab,xb,yb )

}

In the previous listing we sketched a blocked spMV-like operation that
computes a time-tiled spMV on each block. This is described in the next
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b. Global iteration 
phase ( within graph)

a. Local iteration phase 
(within cluster)

Figure 7.10: Here we show an iterative matrix vector-like operation where
the computation is computed within clusters before the computation occurs
between clusters. The red lines represent global communication. This process
insures that a local solution is computed before moving to a global solution.

First Iteration Second Iteration Third Iteration Fourth Iteration

Figure 7.11: We show our time-tiled implementation in Figure 7.10 across
multiple global iterations. Between each global iteration, the local iterations
in each cluster are computed first. The rational is that the most communi-
cation occurs within a cluster, so focusing on the cluster first should lead to
faster convergence.
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listing:

iter_spmv_rec(A,x,y)

{

z[0] = x;

do

{

spmv_rec_iter(A,z[k+1],z[k])

}while(z[k] != z[k+1])

y = z[k]

}

In the basic iterative spMV graph algorithm implementation, our per-
formance is limited by the performance of the spMV for the entire graph.
However, we can achieve high-performance by apply time-tiling. This tech-
niques makes effective of the cache by reusing sub-graphs before proceeding
to the rest of the graph. Thus our performance depends mostly on the per-
formance of the kernels which we have already provided an efficient solution.

7.3.7 Putting This All Together

We started this chapter with the goal of implementing a high performance
graph library. By expressing our target graph operations in terms of linear
algebra we are able to use the standard optimization of blocking and time-
tiling. We implement these optimization using recursive spMV and iterative
spMV-like operations over a data structure that is designed for scale-free
graphs. This approach allows us to effectively store the working sub-graphs
in cache. By taking this layered approach we can apply efficient generated
computational graph kernels. This allows us to sustain a high rate of compu-
tation that is only limited by how quickly the next working sub-graph can be
brought into cache. The combined approach of a data structure – that stores
the graph in a data layout determined by the algorithm – and an efficient
generated kernel gives us a high performance graph framework which will
demonstrate in the next section.
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7.4 Experimental Evaluation

The primary objective of our experiments is to demonstrate that the opti-
mizations which require structure – such as blocking, time-tiling and data
layout transformations – do enable high performance for graph operations
over scale-free networks. We want show that scale-free networks have a struc-
ture that can be exploited for performance in the same way that we approach
dense linear algebra and structured mesh operations. Our secondary objec-
tive for these experiments is to provide a high-performance multi-threaded
implementation of an spMV and Graph Operation library.

The rest of this section is organized as follows: First, we explain our
experimental setup. Next, we describe our target data set, why we selected
it and how we store it in our GERMV Object. Next, we discuss our target
systems and why we selected them. Last, we analyze the results of our spMV
and graph experiments.

7.4.1 Experimental Setup

At the core of each of our experiments we are simply evaluating and compar-
ing the performance of our implementation against the current state-of-the-
art for a range of graphs. We run each operation on representative sub-graphs
ranging in size from small cache resident sub-graphs to entire graphs that ex-
ceeds the size of the cache. This allows to characterize the performance of
our implementations as a function of the problem size.

7.4.2 Target Data Set

For our experiments, we used a graph from the Stanford WebBase [109]. The
graph is a web crawl of Berkeley and Stanford websites called web-BerkStan.
Each vertex represents a page and an edge represents a hyperlink from one
page to the other. The graph itself has 685, 230 vertices and 7, 600, 595 edges
and its adjacency matrix is shown in Figure 7.12. We selected this graph as a
representative of real-world scale-free networks because it has been analyzed
in many papers including [80].

In order to show a trend over a range of graph sizes with same overall
graph behavior, we created ten graphs from the original web-BerkStan, G =
(V,E). Assuming we label all of the vertices vi ∈ V where 0 ≤ i < |V | this is
done by creating ten sub graphs Gi = (Vi, Ei) where Vi = vj ∈ V |j ≤ i and
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Figure 7.12: The graph used for our experiments is a web crawl of the
Berkeley and Stanford networks. Each non-zero entry represents a hyper-
link between two pages and the two distinct blocks correspond to the two
networks. We chose this graph because it is representative of real-world
scale-free networks.

Ei = E ∩ Vi × Vi. By using sub-graphs of a range of sizes we can examine
the behavior of our library as the graph size changes, but the underlying
structure stays the same.

7.4.3 Storing the Graph in the GERMV Object

For all of the experiments we pack the target graph in a GERMV object
and perform the spMV and SSSP operations over this packed object. The
partition size and number of partitions is dependent on the organization of
the cache hierarchy and the size of each cache.

For example, in the graph G720896 we partition and store the graph hi-
erarchically according to the blocking dimensions listed in Table 7.1. To
illustrate how the graph is captured, we show views of the adjacency matrix
at various granularity of the GERMV object in Table 7.2. At each depth
of this table we provide spy-plot of the non-zero blocks at that depth, along
with a histogram of the density of each of those blocks. Two key observations
are that the distribution of block densities follows a power law distribution,
and the non-zero blocks are fairly dense despite the graph being very sparse.
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Depth Row Block Size (mb) Col Block Size (nb)

1 720896 720896

2 65536 65536

3 16384 16384

4 4096 4096

5 1024 1024

6 256 256

Table 7.1: These are the GERMV data structure blocking dimensions used
in our experiments.

7.4.4 Target Systems

For our experiments we focused on two systems: a large Symmetric Multi
Processor (SMP) machine which we will call the Xeon, and small desktop
processor which we will call Kaby Lake. The large Xeon machine consists
of four Intel Xeon E7-4850 v3 with 14 cores each with 2 threads running at
2.2GHz. The VMWare ESX hypervisor runs on top of this hardware layer
and we run our experiments on a virtual machine with 22 cores. The smaller
desktop Kaby Lake is an Intel Core i7-7700K with four cores, each running
two hardware threads running at 4.2GHz.

We selected these two machines for the following reason: First, they
represent two distinct microarchitectures which we have evaluated for other
operations. Second, they span a wide range of memory hierarchies, from
single processor to SMP. Last, one machine represents large memory and
caches whereas the other is representative of small memories and caches.
What we want to show is that our graph library is applicable at the ends of
each of these spectra.

7.4.5 Analysis of spMV

The spMV implementation is at the core of our graph framework which is
why in these series of experiments we evaluate the efficiency of our imple-
mentation. We expect that this implementation is efficient for three distinct
reasons and we should see a corresponding behavior in the results for each
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reason when the dataset is small, medium and large. Firstly, we generated
and tuned our spMV kernels to be efficient when the input vectors are cache
resident. In the performance results, our implementation will be efficient for
small sizes. Secondly – in order to efficiently use the cache – we pack the
graph in a GERMV object in a blocked hierarchical fashion. Thus, we expect
our spMV to perform the most efficiently when the vectors are small enough
to fill the cache. Once the vectors leave the cache then the performance be-
havior is dependent on how much computation our implementation does with
the given memory bandwidth. Lastly, our implementation aims to minimize
the amount of indexing overhead needed and compactly packs the GERMV
objects. This insures that we minimize the number of loads from memory
needed to perform a computation. Therefore, for problems exceeding the size
of the cache should perform near the peak that the memory bandwidth will
allow.

Overall Performance. In the Figure 7.13 and Figure 7.14 we show the
results for our overall multi-threaded performance experiment. In this exper-
iment, we compare our performance against the CSB [51] and MKL’s COO
implementation of spMV. The MKL COO implementation is selected as
reference implementation and the CSB implementation is the current state-
of-the-art. On both machines we used the maximum number of threads
available.

Our spMV GERMV efficiently uses the system cache, multiple threads
and the memory bandwidth. In both results, our performance is significantly
greater than CSB. In particular on the Kaby Lake when the vector is small
enough to fit in the cache the performance is 30% greater than CSB. This
we attribute to our efficient use of the data cache. It is worth noting that
the CSB implementation was not designed for NUMA systems which is why
on the Xeon our performance is substantially higher than CSB.

Parallel Scaling. In the experiments shown in Figure 7.15 and Fig-
ure 7.16 we compare the performance of our GERMV spMV implementation
for various thread counts. The idea is show that our implementation scales
as we add additional threads. On the Kaby Lake Figure 7.15 we can divide
the results into two parts, in cache and out of cache. For the out of cache
behavior our speedup is linear with respect to the number of threads. When
the problem size in the cache we get super linear speedup because as we add

162



0

1

2

3

4

5

6

7

2048 4096 8192 16384 32768 65536 131072 262144 524288 720896
Vertices

SPMV (1B Index) on Power Law Data on Kaby Lake
Performance [GFLOP/s]

1 Thread MKL
8 Threads CSB
8 Threads RMV

Figure 7.13: In this plot we compare the performance of our spMV imple-
mentation against the CSB implementation. In both cases we use all the
available threads on the system and for a baseline we show MKL’s COO
implementation. As we can see our implementation takes advantage of the
cache and peaks in performance when the problem size fits in the cache.
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Figure 7.14: Again we compare against CSB but on a much larger system.
Our implementation is optimized for SMP systems and therefore performs
better.
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Figure 7.15: Here we compare the scaling performance of our implemen-
tation on the Kaby Lake system. When we are using all 8 threads our
implementation is able to make the most effective use of the cache on that
particular system.

threads our implementation has access to more cache and therefore can have
greater reuse. On the Xeon Figure 7.16 we see a more linear speedup as we
increase the thread count. The takeaway is that our implementation scales
across multiple threads and multiple sockets.

Compact Indexing. Our GERMV implementation allows us to use arbi-
trary indexing format. This feature allows us to use an indexing format that
minimizes the amount of overhead needed for indexing. Because the indices
we use will always be smaller than the block sizes selected we only need to
use enough bytes to encode those indices. In the experiment in Figure 7.17
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Figure 7.16: Even on larger SMP systems our spMV implementation scales
well as we increase the number of threads.
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Figure 7.17: We compare the performance of our implementation using 1
Byte indices versus 2B indices which perform better as we leave cache.

we compare the use of 1 Byte indexing versus 2 Bytes for indexing. When
the number of vertices fit in the cache there is no difference in performance.
However, the moment our implementation needs to access main memory the
extra overhead reduces performance.

7.4.6 Analysis of SSSP

In our first SSSP experiment (Figure 7.18) we compare the behavior our
spMV implementation, y = Ax, versus our iterative matrix-vector approach
y = Akx. When the graph exceeds the size of the cache for both implemen-
tations the performance starts to decrease. In the spMV case there is no
opportunity to reuse however in the iterative case we can reuse the graph
data and gain benefits from cache locality.
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In the next experiment in we test this idea of reusing the graph across
multiple iterations through time-tiling. We compare our standard iterative
matrix vector approach to a recursive iterative –time tiled – implementation
of SSSP. In Figure 7.19, we compare the throughput of both implementations
and we see that the time tiled version (recursive iteration) has a higher
throughput than the standard iterative approach. In the Figure 7.20 we
show the run-time and by time-tiling we are able to reduce the run-time of
our implementation. This is because we are reusing the graph within the
cache.

Our next experiments (Figure 7.21) we show that our recursive iterative
approach scales as we increase the number of threads. As we increase the
number of threads the performance improves proportionally. This empiri-
cally demonstrate that for SMP machines our time-tiled approach does not
preclude the use parallelism.

Finally in Figure 7.22 we compare our implementation against Ligra for
SSSP. When the graph is in the cache, we significantly outperform Ligra.
However, as we leave cache they perform better by 6×. This is because
between iterations only a small amount of data needs to be read and written.
However the use of dense vectors for intermediate results does not confer
with that need. If we were to use sparse vectors to reduce the bandwidth
requirements for intermediate results then we should be able to reduce that
overhead significantly.

7.4.7 Analysis of Pagerank

In our final experiment, we look at PageRank which would not benefit from
the use of sparse vectors for intermediates. In Figure 7.23 we show a compar-
ison between our implementation and that of Ligra’s. For all problem sizes
and thread counts we outperform their implementation using the standard
iterative approach. We suspect that by adding time-tiling to our implemen-
tation we should see even greater gains in performance because performance
peaks when the problem size fills the cache (|V | = 32768).

7.5 Chapter Summary

In this chapter, we used graph analytics of scale-free real-world graphs as an
example to demonstrate our thesis that if there is a structure in the prob-
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Figure 7.18: In this experiment we compare the performance behavior of our
spMV implementation again our iterative matrix-vector SSSP implementa-
tion. As we can see the performance of this standard iterative approach
decrease substantially once the problem is no longer in the cache.
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Figure 7.19: In this plot we compare the throughput of the standard iterative
SSSP implementation against a time-tiled version.
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Figure 7.20: We compare the run-time of the standard iterative SSSP im-
plementation against the recursive iterative –time-tiled– implementation.
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recursive iteration implementation improves proportionally.
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Figure 7.22: As the graph is in the cache our implementation outperforms
Ligra for SSSP. However once we leave cache our advantage for this problem
disappears. This is because we use dense vectors to store intermediate results
which consumes a great deal of bandwidth. We could recover the advantage
if we were to use sparse vectors to store intermediate results.
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results and fits naturally in our framework.
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lem then we can develop a high performance operation using data layout
transformations and kernel code generation. We found that we could use the
hierarchical clustering behavior of real-world graphs to guide how we par-
titioned the graph which in turn determined how we transformed the data
layout. This gave us the benefit that neighboring vertices, which communi-
cated frequently with each other, would be cache adjacent. Because these
small sub-graphs are cache resident we can use tuned kernels to process them.
Thus we use the same techniques from our Matrix-Matrix Multiplication and
Stencil examples to generate high performance graph kernels. By combin-
ing these two pieces, efficient layout and kernels, our spMV and PageRank
outperform the state of the art.

Our implementation assumes the input graph is efficiently ordered such
that the diagonal blocks represent clustered communities. What we found is
that for most datasets where the elements are stored in the order they are
collected that ordering is sufficient. We can improve the ordering using graph
partitioning at the expense of an additional preprocessing step. Alternatively,
we want to focus on how the data is collected and how we can modify this
step to improve the ordering of the resulting data. The rationale is to match
the traversal of the desired graph algorithm to the traversal. This essentially
integrates the data layout transformation in the collection and insure that
data arrives and is stored in the order that it will be computed.

We only focused on two graph operations in this chapter, SSSP and
PageRank, because they are representative of many other graph algorithms
that can be implemented in terms of an iterative spMV over an operation
specific semiring. In future work we would like to push the frontier on these
other graph operations such as other classical graph operations (Minimum
Spanning Tree and All Pairs Shortest Path), centrality (Betweenness and
Page Rank), clustering (Triangle counting) and inference (belief propaga-
tion). We believe that these operations can be cast in terms of linear algebra
and that the techniques developed here will extend.
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Table 7.2: We store our target data set – web-BerkStan – hierarchically in
our GERMV object. In this table we show the density of the data stored at
each depth of this hierarchy. On the left we provide a heatmap that shows
the density of each block, and on the right we have a histogram comparing
the densities of these blocks.
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Chapter 8

Summary

In this thesis we discussed a systematic approach for producing high perfor-
mance implementations for several classes of Linear Algebra-like operations.
This process entails using the structure of the target dataset to determine
both an efficient access pattern and an efficient kernel to couple with that
access pattern. We illustrate this process in Figure 8.1 where we show that
structure determines how we apply divide-and-conquer algorithms for our
operation, which in turn determines how we arrange our data in memory.
We can extract the kernel from the access pattern and generate a specialized
kernel tuned to the structure of the problem. The result is a tuned compu-
tational kernel being fed data from an efficiently packed data container.

We started this thesis by showing that this premise holds for Matrix-
Matrix Multiplication. Existing work gave us the requisite access pattern
and packed data, we finished this approach by automating the generation
of high performance kernels. For problems outside of Dense Linear Algebra
(DLA) this performance hinges on the problem containing a usable structure
and we show that indeed these structures fall out naturally in several large
domains. We used stencils – structured mesh – computations to demon-
strate how we can use this mechanical process on problems with extremely
regular structure, namely problems that arise from the application of Finite
Difference Methods. We took this a step further by examining the imple-
mentation of high performance Sparse Matrix-Vector Multiplication (spMV)
over synthetic scale-free graphs. To achieve this we developed a hierarchical
data storage format for packing these extremely sparse graphs in a locality
preserving manner. This storage format allowed us to implement efficient al-
gorithms and generate kernels tuned to the scale-free structure. We extended

179



Algorithm Selection

Operation

Fully Tuned  Implementation

A Systematic Approach to High Performance:

Structure

Access Pattern

Packed Data Structure

Operation Template

Operation Structure

SIMD Instruction Selection

Optimization

Access Pattern and DLT Kernel Code Generation

Figure 8.1: This is the mechanical process that we use to implement high
performance operations. We split the problem in two halves, a data access
and a kernel generation portion. Both halves are implemented and optimized
separately and combined to produce a high performance piece of code.

our format to accommodate real-world scale-free data. Finally, we built a
graph framework over this data structure to demonstrate that the same level
of performance seen in DLA, stencil computation and spMV is achievable
for graph analytics. In each of these four cases our implementations outper-
formed the state-of-the-art. It is in our understanding of the structure of the
problem that enabled a systematic approach for obtaining performance.

In this section, we discussed where we are, in the following section we will
discuss the various paths that this work is leading and in the final section we
will discuss where we want to go.

8.1 Next Steps

Each of our four targeted domains open the door to many of their own
questions. In this section we will look at a few of the key next steps towards
answering those questions. In the following section, we will look at these
domains as a whole and discuss the far reaching questions that we want to
explore.
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Matrix Multiply and Dense Linear Algebra. For dense Matrix-Matrix
Multiply we devised an analytical approach for determining SIMD instruc-
tions and a corresponding code generator for implementing expert level ker-
nels with these instructions. We focused on traditional out-of-order and
in-order processors, however we can extend our techniques to more esoteric
devices and accelerators. Additionally, the GEMM kernel we implement rep-
resents only one of six different algorithms which are optimal for different
input shapes. While each of these algorithms will present their own unique
challenges, we are confident that once we understand those challenges that we
can generate their kernel code. Lastly, we want to extend our Matrix-Matrix
Multiply kernel generation system to accommodate arbitrary semirings. This
would easily allow us to generate mixed precision implementations, along
with specialized kernels for graph analytics, computationally biology, statis-
tic and machine learning. We would see this type of generic high performance
kernel generator as the basis for all of kernels in the other domains that we
have discussed.

Stencil Computations. For stencil computations we developed a mechan-
ical process for generating efficient stencil code. This entailed the use of a
polyhedral compiler to produce an efficient loop structure and coupling that
with highly tuned generated SIMD kernels. Once again we would like to ex-
tend this approach to different target architectures as well as different stencil
operations. Additionally, we want to create a hierarchical data structure
for storing intermediate data during stencil computation. Such a structure
should allow us to produce even more efficient code by simplifying index
computation and insuring contiguous memory access. Most importantly, we
want to change how we implement these operations. Currently, we take a
compiler-like approach to a simple C implementation of the desired stencil.
However, we would like to raise this level of abstraction. For example, if
we take a library approach then notions such as spacial blocking and time-
tiling would be viewed as algorithms and not loop transformations. We could
imagine this as a BLAS or LAPACK like library for stencil computations.
Ideally, we would like to raise this abstraction even further and focus on the
differential operators as written in a Domain Specific Language (DSL). At
this level we could decide which approximation scheme would work best with
respect to both the problem and the hardware.
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Graph Analytics and Sparse Matrix Computations. For spMV and
Graph Analytics we provided a data structure for storing real-world and
synthetic scale-free data in a manner that permitted the use of the same
techniques used for Matrix-Matrix Multiplication and Stencil Computations.
This depended on our understanding of our target data set had a hierarchical
clustering structure which appears in scale-free data. Using our data struc-
ture along with the appropriate divide and conquer algorithms and efficient
kernels we are able to produce efficient spMV and Graph Analytic code. One
our challenges was in dealing with intermediate sparse data which appear in
certain graph operations like Single Source Shortest Path (SSSP). An ideal
solution will most likely involve a further understanding of how the opera-
tions evolves during computation and how to leverage that knowledge in our
data format. Following this, we need to examine more real-world datasets to
see how far our understanding takes us or if modifications are needed for our
data structure. Currently, we use search to determine blocking sizes for our
structure, but if we can approximate our target graph using a graph model
then we could analytically determine our blocking parameters. Lastly, how
datasets are collected and stored impact the performance of the operations
performed on them. We would like to integrate our storage format with the
collection process. Doing so would give us greater control over the perfor-
mance in the later stages of the analytic pipeline without the overhead of
partitioning and repacking. We suspect that operating at the beginning of
the pipeline may give us a greater understanding of the data we are ultimately
computing on.

8.2 Future

Implementations. One of the most immediate but far reaching extension
of this thesis is a generalized kernel generator. The techniques used for
producing kernels in the four domains we discussed were all similar. The
differences resulted from the problem structure which opens up two questions.
The first question, is if we can formally express this structure, which we will
discuss later in the section. The second question, can we create a generalized
kernel code generation framework that takes this structure and produces
efficient code.
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Algorithms. Earlier we touched on the idea that we can express spacial
and temporal blocking at the algorithmic level instead of at the implementa-
tion level, which requires analysis. Therefore, if blocking for graphs is acces-
sible at the algorithmic level, then can we express operations like PageRank
or SSSP in terms of blocked – or divide-and-conquer – algorithms, as op-
posed to implementing the traditional scalar operations and performing loop
transformations to obtain space and time blocking? We suspect that this
would require us to defining these graph algorithms in terms of hierarchi-
cally partitioned graphs. Thus we may need to describe our input graphs in
terms of hierarchical partitions.

Operations. When we briefly reviewed the stencil operations, we hinted
at the idea of expressing these operations as a DSL of difference equations.
We could imagine a system like Spiral where we can express our operation in
mathematical terms and the system would enumerate and select the optimal
nesting of algorithms. Stencil operations naturally lend themselves to math-
ematical expression, but what would the DSL for graph operations look like?
We suspect there will be analogs to the differential operators which charac-
terize the behavior of the graph. Regardless of what this language would look
like we can say with certainty that it is at the intersection of the operation
and the dataset where we decide the optimal nesting of algorithms. Once
again this would require knowledge of the particular graph and its structure.

Structure. In this discussion of future work we stated the need for a lan-
guage to express structure in graphs. Because we target machines with deep
memory hierarchies which require divide-and-conquer algorithms, we would
want this language to capture the hierarchical structure in the graph. Addi-
tionally, we want this language to capture the locality of neighboring elements
because we want this locality realized in the cache. Lastly, graphs are domain
specific and we expect that the scientist collecting these graphs are domain
experts. We want this scientist to be able to easily convey her knowledge of
this dataset in this structural language.

What we propose is a language for expressing the data in terms of a metric
space and a set of hierarchical partitions which we illustrate in Figure 8.2.
First, the domain expert would define a metric d such that d(a, b) < d(a, c) if
the elements a and b communicate important information to each other more
often than a and c. This notion of communication would be context specific

183



…
𝑎

𝑏

𝑐

𝑷(𝟎)

𝑷𝟎
(𝟏)

𝑷𝒌−𝟏
(𝟏)

A Hierarchical View of Structure Provided by the Domain Expert:

Figure 8.2: We envision a metric space language for capturing the structure
of graphs and similar datasets. The domain expert captures the importance
of neighboring elements in terms of a distance metric d(a, b) where proximity
conveys significant communication. Additionally, the domain expert provides
a hierarchical partitioning of the dataset where elements within a cluster are
closer than elements outside. i.e. d(a, b) < d(a, c) if a, b ∈ P and c /∈ P . This
structural description is sufficient for us to apply our mechanical process for
high performance.

and entirely determined by the domain expert. Second, the expert would
define a hierarchical partitioning P on their dataset S such that P (n−1) =�

i P
(n)
i , ∅ =

�
i P

(n)
i . Additionally, we would add the constraint that these

partitions capture neighborhoods such that if and only if a, b ∈ P (n) and
c /∈ P (n) then d(a, b) < d(a, c). The depth n would also be determined
by the expert as the number of hierarchical cluster and P 0 = S. While
this partitioning could be determined numerically once the distance metric
is given, we suspect that the expert would have greater insight into the
structure of their problem.

With these two details of the data we can apply the mechanical process
described in this thesis for producing high performance code. The partition-
ing allows us to express and select algorithms in terms of said partitions.
With this algorithm nest and the expert provided distance metric we can lay
the graph data in memory such that neighboring elements – as determined by
the expert – will be closer in memory than non-neighboring elements. Lastly,
the distance metric would allow us to generate kernels which are tuned to the
structure of the data. Therefore, from this structural information we could
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mechanically generate an efficient implementation.

8.3 Closing Thoughts

Today we observe big data, we rely on existing data and collection techniques
and the current view on big data states that these datasets lack structure and
organization. This assumption governs what operations we select, how we
design our algorithms how we implement our code and even how we design
our hardware. In this thesis we demonstrated that performance comes from
the application of our understanding of the problem and its structure. We
show that even for graph analytics that usable structure indeed exists and it
enables the same optimizations necessary for high performance. In the future,
our ability to conduct larger and more expensive computational social sci-
ence experiments will continue to grow. Thus in order to order to efficiently
conduct these computational experiments it will become increasingly impor-
tant to characterizing the structure of the data we collect. Ultimately, our
understanding of the underlying phenomena will drive this characterization
and in turn our ability to achieve high performance for these experiments.
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