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Abstract

Lorentz TEM observations of magnetic nanoparticles contain information on the mag-
netic and electrostatic potentials of the sample. These potentials can be extracted from
the electron wave phase shift by separating electrostatic and magnetic phase shifts, fol-
lowed by 3D tomographic reconstructions. In past, Vector Field Electron Tomography
(VFET) was utilized to perform the reconstruction. However, VFET is based on a con-
ventional tomography method called filtered back-projection (FBP). Consequently, the
VFET approach tends to produce inconsistencies that are prominent along the edges
of the sample. We propose a model-based iterative reconstruction (MBIR) approach to
improve the reconstruction of magnetic vector potential, A(r).

In the case of scalar tomography, the MBIR method is known to yield better recon-
structions than the conventional FBP approach, due to the fact that MBIR can incorpo-
rate prior knowledge about the system to be reconstructed. For the same reason, we seek
to use the MBIR approach to optimize vector field tomographic reconstructions via incor-
poration of prior knowledge. We combine a forward model for image formation in TEM
experiments with a prior model to formulate the tomographic problem as a maximum a
posteriori probability estimation problem (MAP). The MAP cost function is minimized
iteratively to deduce the vector potential. A detailed study of reconstructions from sim-
ulated as well as experimental data sets is provided to establish the superiority of the
MBIR approach over the VFET approach.
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Chapter 1

Introduction

1.1 Research motivation

The field of nanotechnology has garnered attention of scientists all over the world due
to its ability to synthesize materials with control down to the atomistic size level. Most
importantly, this attribute of nanotechnology has allowed researchers to manufacture
devices far more superior than the ones synthesized from its bulk counterpart [4]. It
has also allowed investigators to observe new phenomena and hence, develop devices
with novel properties that could not have been envisioned a few of decades ago. LED
TV (light-emitting diode television) is one particular example that stands out from our
daily experience as a direct consequence of the nanotechnology. LED screens, employing
the concept of quantum confinement, are brighter, clearer and more energy e�cient than
previously used LCD (liquid-crystal display) screens. In a similar manner, the principles of
nanoscience have been incorporated in di�erent types of materials resulting in application
in diverse fields ranging from biomolecules, medicine, to electronics, and magnetic storage.
One such class of nanomaterials that we are particularly interested in, is the magnetic
nanoparticles (MNPs).

To begin with, nanomaterials have at-least one of its dimensions less than 100 nm [5].
At such ultra-small scale a whole host of new properties - such as superparamagnetism,
high field reversibility, high saturation field, extra anisotropy contribution or shifted loops
after cooling - are seen which are not shown in their bulk counterparts [6]. These novel
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properties have carved out paths for the MNPs’ applications in future technologies such
as, localized drug delivery, optoelectronics, bit-patterned media etc. Also, there have been
many “proof of principle” type studies where the MNPs have clearly been demonstrated
as the alternative to materialize the aforementioned technologies [1]. However, there still
remain a significant numbers of problems that need to be solved, in order to translate the
theory based novel properties of the MNPs into fully functioning modern devices.

A particular field where the MNPs hold tremendous potential is in the area of biomedicine.
For instance, researchers are looking to use MNPs coated with a lipid bilayer as a vehi-
cle to deliver drugs to specific target cells or blood vessels. The transportation of the
MNPs is induced by an external magnetic field [1]. A major advantage of this type of
delivery medication over the conventional technique is that it can subdue the side e�ects
of medical treatments by reducing the required dose [7]. Although there have been a
significant number of successes of the MNPs driven drug treatments at the in vitro level
(also bolstering the benefits of the localized medical treatment [8]), a successful in vivo
targeted treatment using the MNPs still remains to be fully realized [1]. To this date the
challenge has been the precise control of the motion of nanoparticles (NPs) such that the
particles can overcome the opposing bodily fluid motions without forming toxic aggregates
[9]. A similar type of complications surfaced when researchers were trying to locally kill
tumorous cells by inducing hyperthermia with the aid of MNPs. In such applications, the
investigators exploit the superparamagnetic property of MNPs and pass current around
the vicinity of the NPs to induce heat, and thereby killing the cancerous cells [10, 11].
However, the magnetic field conditions that could be safely used with the human patient
do not produce the desired heat e�ects so far [1].

The di�culty in translating the novel theoretical properties of NPs into fully func-
tioning modern devices resides in the fact that a great deal of work still remains to be
uncovered in terms of the techniques to characterize the ultra-small MNPs. For instance,
the magnetic structure at the surface layer is di�erent from the core of the NP that
has strong e�ect in its properties [12, 13, 14]. Consequently, our calculations based on
the prevalent techniques like Magnetic field Microscopy (MFM), which provides only the
out of plane magnetic component analysis corresponding to the surface of NPs [15], may
not provide a precise degree of external magnetic field needed to overcome the barriers
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for domain wall motion in aforementioned applications like hyperthermia induced cancer
treatment [1].

Likewise, the current technology of hard disk drive (HDD) based on granular media
with perpendicular magnetic anisotropy is on the brink of reaching its limit, around 1000
Gbit/in2 [15, 16]. Therefore, alternative technology such as bit patterned media (BPM)
is being considered that is predicted to enable areal densities up to 20 ≠ 300 Tb/in2 [17].
In this technology, nanopillars (nanodots) are proposed to store the information. These
pillars have been shown to exhibit either vortex or flower state magnetic configuration.
In addition, there have been evidences from measurements as well as micro-magnetic sim-
ulations that magnetization state changes from in-plane to out-of-plane and vice-versa
as a function of the nanopillar’s aspect ratio, how these pillars are arranged in an array
and presence of external field. If we recall the history, the areal density increased from 1
Gbit/in2 (IBM, December 1989) to 35.3 Gbit/in2 (IBM, October 1999) to 610 Gbit/in2

(Hitachi, July 2008) only because we were able to increase our understanding of the
relation between thin film growth and processing the resulting microstructure via char-
acterizing the microstructural properties of magnetic particles [18]. In a similar manner,
decisive to the advent of bit-patterned media and other important nanotechnologies based
application such as field emission guns, quantitative MFM, and photovoltaic devices is
our ability to understand magneto-static interactions at nanoscale length [19, 20, 21, 22].
More specific, there is a necessity to spatially resolve 3D electromagnetic potentials in and
around the NPs which will provide us valuable information on the chemical composition,
electronic structure, magnetic field distribution and field emission process [23, 24]. Subse-
quently, with the aid of these information we will be able to pinpoint the cause of failure
in the aforementioned applications. Now, if we glance over the prevalent techniques used
for the magnetic characterization of the MNPs, we will find that it comprises of Vibrating
Sample Magnetometry (VSM), Superconducting Quantum Interference Device (SQUID)
magnetometry, Magnetic Force Microscopy (MFM), X-ray spectroscopy, Magneto-Optical
Kerr E�ect (MOKE), Spin-Polarized Scanning Tunneling Microscopy (SP-STM), X-ray
Magnetic Circular Dichroism (XMCD) and Transmission Electron Microscopy (TEM).
An important point to note here is that when it comes to 3D electromagnetic charac-
terization, almost all have limitations of one form or the other. First, VSM and SQUID



21

magnetometry measure only the sample’s net magnetization in the presence of an exter-
nal magnetic field [25]. Second, even when some of the microscopy techniques provide
the vectorial map of the magnetic field, the characterization pertains only to the spatial
regions near the sample surface as in the case of the MFM technique. Third, some have
limited spatial resolution. For instance, MOKE has a resolution close to 100 nm. Addi-
tionally, MOKE microscopy method gives either in-plane or out-of plane component of
the magnetic field corresponding to the surface of the MNP [26]. In the remaining cases,
like X-ray microspectroscopy method, the data acquired can only resolve the in-plane
components of magnetization directly as the out-of-plane component is invisible in its ex-
periments [27]. Finally, some also exhibit instrumentation and experimental di�culties.
For instance, tip preparation and the separation of artifacts from the measurements in
SP-STM continue to be great challenges [28]. In case of XMCD based characterization of
non-uniform magnetic states, one needs to record contrast in several projection axes. In
addition, the spatial resolution of magnetization texture deduced from the XMCD tech-
nique is limited by the fact that the lateral shift between two subsequent projections must
not exceed the domain size. Accordingly, one can reconstruct feature size of only 40 nm
with projection step size of 4¶ [29, 30].

An exception to the limitations of all the aforementioned characterization techniques
is the TEM analysis. TEM in combination with computational and numerical reconstruc-
tion procedure is capable of quantitatively characterizing the magnetic vector potential
in and around the MNPs [31]. Moreover, the resolution can be as high as 1 nm [32].
Having said this, an important point to note here is that there are di�erent modes to op-
erate a TEM experiment. Two such modes, which are specifically suitable for the purpose
of reconstruction, are electron holography and Lorentz modes [18]. Electron holography
requires extra instrumentation in terms of incorporation of bi-prism in the path of the
electron beam [33]. The micrographs acquired from the holography experiment can be
used to reconstruct highly resolved electromagnetic potentials. However, such quantifica-
tion corresponds mostly to the regions near to the edges and outside the sample [24]. On
the contrary, Lorentz TEM o�ers information that can be used to reconstruct a highly re-
solved electromagnetic potentials in and around the sample with measurements obtained
in just two tilt series (instead of several as in the case of XMCD). Consequently, we will
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be using the Lorentz based TEM to deduce the magnetic vector potential for our research
purpose.

As highlighted before, determination of the electromagnetic potentials consists of not
only the TEM experimental protocol but also the numerical reconstruction procedure.
In particular, tomography underpins the basis of our reconstruction technique. Initially,
TEM based tomography was limited to just scalar reconstruction. The first example
of TEM based reconstruction was published in 1968 to determine the structure of a
biological macromolecule [32]. In subsequent years, tomographic methods for vectorial
reconstruction of 2D and 3D fields were formalized. Accordingly, it became feasible to
retrieve electromagnetic potentials of MNPs from the Lorentz TEM micrographs.

In a TEM experiment, the propagating electron deflects due to the electrostatic and
the magnetic fields of the sample. The degree of the electron deflection is recorded in terms
of phase shift information in each of the micrographs. Then the vectorial tomographic re-
construction allows us to map the phase shift information to the sample’s electromagnetic
potentials. This application of tomography to reconstruct the electromagnetic potentials
in and around the nanoparticles is known as Vector Field Electron Tomography (VFET)
[31]. Phatak et al. [34] employed the VFET framework to reconstruct magnetic vector
potential of simulated as well as experimental MNPs. In case of simulated dataset, it was
found that the reconstructed vector potential, quantitatively and quantitatively, diverged
from its corresponding true values near the edge of NP sample. Similarly, the applica-
tion of VFET approach on phase shift measurements, acquired from TEM experiments,
determined vector potential that was plagued by ring artifacts, protrusions, blurriness
and streak artifacts. The authors attributed to incomplete measurement set as the pri-
mary source of error in reconstruction. In addition, the VFET approach incorporates
a mere filter based methodology called filtered back projection to perform reconstruc-
tion. Therefore, we propose to investigate further on the realms of the TEM based vector
field reconstruction. The research will try to find ways to optimize the current VFET
framework such that the new framework will compensate for the VFET method’s limi-
tations and subsequently, subdue the errors observed in the reconstruction. A successful
completion of this research work will allow us to accurately quantify three dimensional
field distribution in and around NPs; and so, this study can be pivotal to materialize the
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aforementioned nanotechnologies.

1.2 Hypothesis

We hypothesize that the model based iterative VFET approach reconstructs magnetic
vector potential in and around the edges of magnetic nanoparticles that agree more closely
with the theoretical potential of the sample. The claim is made on the basis of the fact
that the new model based method is centered on a statistical framework. The framework
allows us to incorporate valuable prior information about the imaging system and the
object being imaged. Similarly, it permits us to model experimental measurement in
accordance to its true statistical distribution. Most importantly, the entire framework
has an overhead of iterative procedure such that each iteration minimizes the error (until
a convergence is met) to deduce an estimate that is far more superior (supported by
root-mean-square type analysis) than the one derived from the old VFET approach.

1.3 Document Organization

Our discourse of magnetic vector characterization begins by laying out experimental
protocols in Chapter 2. Here, we elucidate on how Lorentz based TEM micrographs cap-
ture information on electrostatic potential and magnetic vector potential of a NP sample.
We show that the electromagnetic information is recorded in terms of the phase shift
of the wave function of the exiting electron from the sample. Accordingly, the chapter
describes on how the Transport-of-Intensity Equation (TIE) formalism is utilized to de-
duce the phase shift information from the modulus of the electron’s wave function. Thus
derived phase shift is the total phase shift and so, it has magnetic as well as electrostatic
contributions. Hence, the chapter concludes with how time reversal symmetry is employed
to separate the two phases.

In order to deduce the magnetic vector potential one has to perform tomographic
reconstruction of the separated magnetic phase shift. For this reason, Chapter 3 is devoted
to introduce the concept of tomography to the readers. We begin by delineating the basic
underlying principles of tomography. Next, we show a computational implementation
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of how a 2D scalar density can be resolved from its 1D projections. Subsequently, we
conclude the chapter by extending the 2D tomographic reconstruction analysis to a case
of 3D reconstruction and illustrate some of the results obtained from the 3D computational
implementations.

Having established the principles underpinning the technique of tomography, we then
move on to vector tomography in Chapter 4. We begin by outlining the theoretical frame-
work of 2D vector reconstruction. Subsequently, we make use of the VFET approach to
reconstruct the 3D magnetic vector potential in and around the sample. We, then, discuss
on di�erent shortcomings of the VFET approach in terms of how certain experimental
restrictions such as, incomplete tilt range, protrusion of the reconstruction from two tilt
series result in the impediment of proper reconstruction along the edges of the sample.

From Chapter 5 onwards, we investigate our initial claim of using the model based
iterative reconstruction (MBIR) technique to ameliorate the underdetermined magnetic
vector potential reconstructions obtained from the VFET approach. In particular, chapter
5 introduces Bayesian statistic that forms the basics of the MBIR method. The chapter
begins by delineating the Bayes’ theorem and its important aspects such as, prior mod-
eling and likelihood modeling. Subsequently, we illustrate how a posterior probability
is maximized to minimize a cost function. The advantage of minimization of the cost
function is demonstrated by iteratively de-noising/de-blurring a corrupted image.

Adhering to the Bayesian framework established in chapter 5, we proceed to employ
the same concept for the purpose of tomographic reconstruction in chapter 6. First, we
formulate the Bayesian framework catered towards the tomographic reconstruction i.e. the
MBIR approach. Again, the framework functions by minimizing a cost function, which
translates into a reconstruction that is quantitatively a close approximation of the ground
truth. Second, we illustrate some of the implementations using the MBIR methodology
by reconstructing a 2D scalar object as well as the solenoid part of a 2D vector field.
Here, we make direct comparisons of the results acquired from the new MBIR approach
with the ones obtained from the conventional technique as described in chapters 3 and
4. We also quantify the level of improvements. Finally, employ the MBIR approach to
reconstruct the vector potential of the simulated as well as the experimental datasets.
We compare the results between the MBIR approach and the VFET approach to make a
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final assessment of our starting hypothesis.
In the final Chapter 7, we give a brief account of how we seek to extend our MBIR

approach for the future works. In particular, it provides an outline of how we can de-
termine other important electromagnetism quantities such as the magnetic induction, B,
the magnetization, M, and the demagnetization field, H, of magnetic nanoparticles.
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Chapter 2

Lorentz Microscopy and
Electromagnetic Characterization

In the previous chapter, we established that the Transmission Electron Microscopy
(TEM) technique is the best alternative among a vast array of microscopy tools to as-
certain the electromagnetic information in and around magnetic nanoparticles (MNPs).
Accordingly, we have devoted this chapter to elucidate how electromagnetic information
can be deduced from Lorentz based TEM micrographs. Our methodology to determine
electromagnetic potentials is, basically, based on the theory of image formation in the
TEM. The details on this methodology are chronologically provided under headings be-
low. But, before divulging any further, it has to be noted that our interpretation of the
TEM analysis, here, primarily serves the purpose of deducing electromagnetic potentials
and skips several key aspects of the TEM. Thus, for an in-depth understanding of the
TEM technique, as a whole, we suggest readers to look into references [18], [35], [36] and
[37].

2.1 Image formation in Lorentz microscopy

The first step in the process of computing electromagnetic potentials of MNPs consists
of taking TEM images of the magnetic sample. TEM is a microscopy technique in which
a beam of electrons is transmitted through an ultra-thin specimen of about 30 ≠ 50 nm
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Figure 2.1: Schematic of the deflection of an incident electron beam [1].

thickness. The electron beam passing through the thin specimen experiences a Lorentz
force, FL, due to the electrostatic field, E, and the magnetic field, B of the magnetic
specimen [33]. This force contributes to the deflection of the electron and is given by [38]:

FL = ≠e(E + v ◊ B), (2.1)

where v is the velocity of the propagating electron, e. An illustration of the e�ect of the
Lorentz force on a propagating electron, with charge ≠e, is shown in figure 2.1. However,
this description of Lorentz based TEM is classical in nature. A more robust explanation
of beam-specimen interaction, useful for electromagnetic characterization, is provided in
the realms of quantum mechanics. It states that the sample modifies both the amplitude
and phase of the incident electron wave, and the resulting wave function becomes [18]:

Â(r‹) = a(r‹)eiÏ(r‹), (2.2)

where, a(r‹) is the amplitude and Ï(r‹) is the phase of the wave function at the in plane
position, r‹. Phase across the plane will change (Phase shift) with respect to the change
in magnetic induction of the sample across the plane. These phase shifts give rise to
the contrast features in TEM images, and hence it becomes possible to discern magnetic
domains across a plane.

Now, in order to define the phase term, Ï(r‹), in eq. 2.2 we resort to a ground breaking
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paper published in 1959 by Aharonov and Bohm [39]. In the paper, Aharonov and Bohm
uncovered a profound result (commonly known as A-B e�ect) in the quantum domain
that was not observed, earlier, in the realms of classical mechanics. In particular, they
showed that the potentials of charged particles change even in the region where all fields
(e.g.. electric, magnetic field) vanish. Thus alluring that the vector potential is even
more fundamental than the magnetic field. They argued the phase shift imparted on an
electron with relativistic wavelength, ⁄, in presence of the electrostatic potential, V , and
the magnetic vector potential, A, can be expressed as [18, 39]:

Ï(r‹) = fi

⁄Et

⁄

L

V (r‹, z)dz ≠ e

}

⁄

L

A(r‹, z) · dr, (2.3)

where } = h/2fi, Et is the total beam energy that depends on the acceleration voltage,
and integrals are carried out in the beam direction, L. In eq. 2.3 the two terms, one en-
compassing the electrostatic potential and the other incorporating the magnetic potential,
independently form electrostatic phase, Ïe, and magnetic phase, Ïm, such that:

Ïe(r‹) = fi

⁄Et

⁄

L

V (r‹, z)dz, (2.4)

Ïm(r‹) = ≠ e

}

⁄

L

A(r‹, z) · dr. (2.5)

Aside from the electron wave function, another important factor contributing to the
image acquired from a TEM experiment is the microscope transfer function, T . It modifies
the electron wave in the back focal plane of the objective lens such that [33]:

Â(q‹) = F [Â(r‹)]T (q‹), (2.6)

where F denotes the Fourier transform operator and q‹ represents the in-plane recipro-
cal space frequency vector. The microscope transfer function takes an account of various
aspects of the microscope build. Overall, the transfer function is composed of three im-
portant factors, aperture function, A(q‹), phase transfer function, e≠i‰(q‹), and damping
envelope, e≠g(q‹), such that [33, 40]:
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T (q‹) = A(q‹)e≠i‰(q‹)e≠g(q‹). (2.7)

Let us take a closer look at each of the variables used to define the transfer function:
first, aperture function is used to describe the hole for the aperture. It is considered to be
equal to 1 inside the aperture and 0 outside. Second, the phase transfer function modifies
the phase of the electron wave and depends on the microscope defocus �f . For a Lorentz
based TEM analysis, phase transfer function’s main contributing factor, ‰(q‹), can be
expressed as [33]:

‰(q‹) ¥ fi⁄�f. (2.8)

Third, the damping envelope is determined mostly by the stability of the lens current and
the accelerating voltage. Still, the main contributing factor in the damping envelope is
the beam divergence, ◊c, such that [33]:

g(q‹) ¥ (fi◊c�f)
ln 2 |q|2. (2.9)

Hence from eqs. 2.7, 2.8, and 2.9, microscope transfer function for the Lorentz microscopy
can be written as:

TL(q‹) = A(|q‹|)e≠ifi⁄�fe≠[ (fi◊

c

�f)
ln 2 |q|2]. (2.10)

Finally, the intensity seen in the Lorentz images is the modulus-squared of the aberrated
wave in the image plane such that:

I(r‹) = |F≠1[Â(q‹)]|2 = |Â(r‹) ¢ TL(r‹)|2, (2.11)

where ¢ denotes convolution operation and TL(r‹) is the point spread function.
A schematic of the image formation from a Lorentz Microscopy experiment is depicted

in figure 2.2. Based on the same figure as well as on eq. 2.2, it can be noted that phase
is not a directly observable quantity in the Lorentz image. However, our electromagnetic
characterization hinges upon the deduction of the phase to, ultimately, determine the
sample’s electromagnetic potentials. Consequently, we proceed to determine phase from
the Lorentz image in next section.
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Figure 2.2: Schematic showing the formation of an image in a Lorentz based TEM [1].

2.2 Acquisition and separation of phase shift

The previous section establishes that the information on electromagnetic potentials of
MNPs is encoded in the form of phase shifts in their Lorentz images. Now, we proceed to
retrieve the phase information from the image intensity. This task is accomplished with
the aid of the Transport-of-Intensity Equation (TIE) formalism. Paganin and Nugent [41]
have defined the TIE as:

Ò · [I¶ÒÏ] = ≠2fi

⁄

ˆI

ˆz
. (2.12)

The TIE formalism in eq. 2.12 relates the change in intensity of the image with defocus
(ˆI

ˆz
) to the derivative of the phase shift, Ï, of the sample. Here, I¶ denotes the intensity of

the in-focus image, 2fi
⁄

is the wave number and the z direction is parallel to the direction
of electron propagation. Likewise, Ò is the two dimensional di�erential operator that
operates in the plane normal to the z axis. Then the phase shift can be written as [42]:
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Ï(r‹, 0) = ≠2fi

⁄
Ò≠1.

A
1

I(r‹, 0)

I

Ò≠1

C
ˆI(r‹, 0)

ˆz

DJB

. (2.13)

The phase in eq. 2.13 is the total phase shift, Ï, that consists of contributions from the
magnetic phase, Ïm, as well as from the electrostatic phase, Ïe. Hence, in order to deduce
the electrostatic potential and the magnetic potential separately, one must separate Ïm

and Ïe. One of the approaches to separate the components of the total phase shift is to
employ time symmetry property. Here, time reversal is accomplished by physically flipping
the sample inside the microscope. More specifically, the technique comprises of taking two
sets of Fresnel images of the sample; one in the upright configuration [Ï(t) = Ïm + Ïe] and
the other in the flipped configuration [Ï(≠t) = ≠Ïm + Ïe]. Subsequently, the components
of the phase shift can be separated as:

Ïe = 1
2(Ï(t) + Ï(≠t)), (2.14)

Ïm = 1
2(Ï(t) ≠ Ï(≠t)). (2.15)

2.3 Determination of the electromagnetic potentials

Separation of the total phase in terms of its electrostatic phase and magnetic phase
completes the experimental part and some of the pre-processing steps required to deter-
mine electromagnetic potentials. Henceforth, we assume that these pre-processing step to
extract Ïm and Ïe from the TEM images have already been performed. This leads us to
the second part of the characterization process i.e. numerical reconstruction. The tomo-
graphic reconstruction of the electrostatic phase yields the electrostatic potential and that
of the magnetic phase yields the magnetic potential. Electrostatic potential is a scalar
quantity and hence, it is determine by employing scalar tomography. On the contrary,
determination of the magnetic vector potential requires implementation of vector tomog-
raphy. A flow chart summarizing the entire process of the deduction of electromagnetic
potentials is provided in figure 2.3.
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Figure 2.3: A flow chart illustrating the methodology to determine electromagnetic po-
tentials of a magnetic nanoparticle sample.

Our research interest primarily lies on the numerical reconstruction. Accordingly,
the rest of the documentation is devoted to decipher various aspects of reconstruction
procedures to determine magnetic vector potential. It has to be pointed out that a
great deal of work has been done in the field of scalar tomography due to its immense
application in the medical CT technology. However, there have not been many attempts
in the literature to reconstruct the 3D vector potential in and around the sample [34].
Consequently, we provide a detail outline on the formulation and implementation of vector
tomography.

Just to give a quick outlook of the rest of the document, we begin by briefly introducing
the general concept behind tomography. Then we proceed to the vector tomography
and the current state-of-art to determine the magnetic vector potential i.e. Vector Field
Electron Tomography (VFET) approach. Subsequently, we elucidate on how to seek to
optimize the VFET approach by incorporating the Model Based Iterative Reconstruction
(MBIR) methodology.
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Chapter 3

Tomography

As per Webster’s dictionary, the word “tomography” is composed of ancient greek
words – tomos, meaning slice/section, and graphio, meaning to write. Likewise, Wikipedia
defines tomography to be imaging by sections or sectioning through the use of penetrating
wave. Conventionally speaking, one invariably associates the word tomography with the
medical technique called CT - scan (computerized tomographic). The CT – scan method-
ology allows medical investigators to visualize the internal parts of human body such as,
brain matters, skull, lungs or kidney without performing any invasive surgical operations.
In the simplest possible manner of description of this procedure, it begins with a patient
lying down in a CT - scanner. Next, X-rays are passed across a selected section of his/her
body (under investigation) with the aid of a radiating source. Subsequently, detector,
which lies opposite to the radiating source, detects the final intensity of the radiation
after having penetrated through the human organelles. The process of emission and de-
tection of the radiation is repeated at di�erent angles of inclination. Finally, based on
the change in the intensity of the radiation at various inclinations a map of the internal
body parts is deduced.

In addition to the field of medicine, researchers from areas such as atmosphere sci-
ence, plasma physics, archeology, etc have also extensively used the concept of tomography
to perform 3D reconstruction from 2D projections. Similarly, our research work - Vec-
tor Field Electron Tomography (VFET) approach - aims to make use of tomography to
reconstruct magnetic vector potential using 2D micrographs obtained from TEM experi-
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ments. However, before divulging further into the matters pertaining to VFET in detail,
the next few sections will, first, delineate the theoretical framework underpinning the
notion of tomography. In the due course, a first hand glimpse of the computational im-
plementations of tomography for 2D and 3D platforms will be depicted using algorithms
such as, Back Projection (BP), Filter Back Projection (FBP), and Simultaneous Iterative
Reconstruction Technique(SIRT).

3.1 2D Tomography

The tomography method, in true essence, was introduced to solve 3D problems using
measurements that were 2D in nature [43]. In other words, tomography solves higher
dimension problem. Exploiting this fundamental understanding of tomography, we, first,
establish its mathematical framework for 2D reconstruction using 1D measurements. Sub-
sequently, we extend the concepts of 2D tomographic reconstruction to resolve 3D tomo-
graphic problems.

3.1.1 Forward Projection

As mentioned earlier, the tomography technique hinges upon the acquisition of pro-
jections. Mathematically, for a 2D case (like images), projection is just the line integral
across the plane. These line integrals can be obtained in a parallel beam fashion or in
a cone beam pattern. However, for all practical purposes during the discourse of this
tomography research work, it su�ces that the projections are measured in parallel beam
fashion. Henceforth, anytime acquisition of projection is mentioned, it is actually refer-
ring to parallel beam style of integration method. The projection profile, P◊ of an object,
f(x, y), across the x ≠ y plane at an inclination angle, ◊, is depicted in figure 3.1a and
can be expressed mathematically as:

P◊(t) =
Œ⁄

≠Œ

f(x, y)ds. (3.1)

Note that, (t, s) is a new coordinate system that is inclined at an angle, ◊, from the
initial coordinate system, (x, y). Moreover, if R◊ represents counter-clockwise rotation
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(a) (b)

Figure 3.1: (a) Projection profiles at di�erent inclination angles as the result of line
integration across the x≠y plane. (b) New coordinate system (t, s) obtained after rotating
the old coordinate system (x, y) by an angle ◊.
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matrix then the old coordinate system can be written in terms of the new coordinate
system as follow:

S

U x

y

T

V = R◊

S

U t

s

T

V , (3.2)

where, R◊ =
S

U cos(◊) ≠ sin(◊)
sin(◊) cos(◊)

T

V

Now, the projection integral in (3.1) can be re-written as:

P◊(t) = P (t, ◊)

=
Œ⁄

≠Œ

f(R◊

S

U t

s

T

V)ds (3.3)

=
Œ⁄

≠Œ

f(t cos(◊) ≠ s sin(◊), t sin(◊) + s sin(◊))ds. (3.4)

The line integral obtained in expression (3.4) is also known as the radon transform
of the function f(x, y) at an angle ◊. Moreover, it is the radon transform that provides
the mathematical basis to model the projections or measurement attenuations from the
experiments to implement the forward projection part of tomography. The final result of
the execution of multiple radon transforms on the 2D Shepp-Logan phantom [44], shown
in figure 3.2a, is depicted in figure 3.2b. It shows stacking of the consecutive projection
results, forming so-called sinogram.

On the whole, every tomography experiment results in the acquisition of multiple
projection measurements or sinogram. More importantly, notice that the measurements
are no longer in the form of Cartesian coordinates. Instead, they are now in the polar form,
(t, ◊). Thus, retrieving the initial object from the measurements also involves returning
back to the Cartesian plane. All the details of reconstruction from the measurements are
discussed in the next subsection.
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3.1.2 Backprojection

Implementation of backprojection enables one to reconstruct the initial object density
from the projections. Likewise, an important implication of the backprojection operator
is that, it transforms a function from polar to Cartesian coordinate. At the heart of the
backprojection algorithm lies the Fourier Slice Theorem. Therefore, it becomes imperative
to familiarize oneself with Fourier Slice Theorem in order to grasp the theoretical basis
of backprojection algorithm. Fourier Slice Theorem argues and simultaneously goes to
prove that the following two calculations are equivalent [45]:

• Taking a 2D function f(x, y), projecting it onto a line, and evaluating the Fourier
transform of that projection.

• Take that same function, but evaluate 2D Fourier transform first, and then slice it
through its origin, which is parallel to the projection line.

The proof of Fourier Slice Theorem can be found elsewhere in Appendix A. Making
use of this theorem, backprojection alorigthm can be formalized in the following manner:

f(x, y) =
Œ⁄

≠Œ

Œ⁄

≠Œ

F (u, v)e2fii(xu+yv)dudv

=
Œ⁄

0

2fi⁄

0

P (fl, ◊)e2fii(xfl cos(◊)+yfl sin(◊))fld◊dfl from AppendixA

=
2fi⁄

0

S

U
Œ⁄

0

P (fl, ◊)e2fiifl(x cos(◊)+y sin(◊))fldfl

T

V d◊

=
fi⁄

0

S

U
Œ⁄

0

P (fl, ◊)e2fiifl(x cos(◊)+y sin(◊))fldfl

T

V d◊+
fi⁄

0

S

U
Œ⁄

0

P (fl, ◊ + fi)e2fiifl(x cos(◊+fi)+y sin(◊+fi))fldfl

T

V d◊,

then using the following property in Fourier space

P (fl, ◊ + fi) = P (≠fl, ◊),

we get,
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f(x, y) =
fi⁄

0

S

U
Œ⁄

0

P (fl, ◊)e2fiifl(x cos(◊)+y sin(◊))fldfl

T

V d◊+
fi⁄

0

S

U
Œ⁄

0

P (≠fl, ◊)e≠2fiifl(x cos(◊)+y sin(◊))fldfl

T

V d◊

=
fi⁄

0

S

U
Œ⁄

0

P (fl, ◊)e2fiifl(x cos(◊)+y sin(◊))fldfl

T

V d◊+
fi⁄

0

S

U
0⁄

≠Œ

P (fl, ◊)e2fiifl(x cos(◊)+y sin(◊))(≠fl)dfl

T

V d◊

=
fi⁄

0

S

U
Œ⁄

≠Œ

P (fl, ◊)e2fiifl(x cos(◊)+y sin(◊))|fl|dfl

T

V d◊

=
fi⁄

0

b◊(x cos(◊) + y sin(◊))d◊, (3.5)

where,

b◊(x cos(◊) + y sin(◊)) =
Œ⁄

≠Œ

P◊(fl)e2fiifl(x cos(◊)+y sin(◊))|fl|dfl. (3.6)

Taking, |fl| = 1

b◊(x cos(◊) + y sin(◊)) =
Œ⁄

≠Œ

P◊(fl)e2fiifl(x cos(◊)+y sin(◊))dfl. (3.7)

Notice that b◊(.) is just the inverse Fourier transform of P◊(.). The outside integral
in eq. 3.5, “smears” the value b◊(t) as a function of a set of points (x, y) such that
t = x cos(◊) + y sin(◊). Finally, backprojection completes with the addition of each of the
smeared images generated in the angular range from 1¶ to 180¶. An implementation of
the backprojection algorithm on the projections acquired from the Shepp-Logan phantom
for angles ranging 1¶ to 180¶ at a step size of 1¶ is depicted in figure 3.2c.

To sum up this section, the process of tomographic reconstruction begins with the
acquisition of projection measurements from the experimental setup. These projections
are mathematically modeled via radon transform expression as depicted in eq. 3.4. With
this, it becomes evident that the problem of reconstruction exhibits itself as, how can one
re-design 2D f(x, y) while being provided with 1D values of P◊. The problem is tackled
by making use of Fourier Slice Theorem. Given the polar nature of P◊, Fourier Slice
Theorem is used to backproject these polar 1D values to Cartesian plane. Theoretically,
it is possible to exactly reconfigure f(x, y) from P◊, as show by the expression in eq. 3.5.
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(a)

(b) (c)

Figure 3.2: a) Image of a Shepp-Logan phantom. b) Sinogram of Shepp-Logan phantom
acquired at a range from1¶ to 180¶ at a step size of 1¶. c) Reconstruction obtained from
the implementation of backprojection algorithm on the sinogram from (b).
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However, in practice there is only a discrete set of projection data for a finite number of
angles [46]. For the same reason, it become impossible to exactly reconstruct the initial
f(x, y). Nonetheless, if there are enough projections, one for each angular view, they can
be inverted to arrive at an estimate of f(x, y) [47]. The next two subsections will elucidate
on the most commonly used methods of backprojection to acquire a good reconstruction
with the discrete set of projections.

Algorithm 3.1 Sinogram for 2D tomography
• for ◊ in 1¶ to 180¶

(a) Rotate f(x, y) at the angle ◊.

(b) Determine 1D projection for angle ◊ via summing f(x, ú).

(c) Store the 1D projection at the angle ◊ in the sinogram matrix

• end for

3.1.3 Filtered Backprojection (FBP)

The reconstruction depicted in figure 3.2 is obtained by using the backprojection
formula in eq. 3.7 where |fl| = 1. However, this is not usually the case. |fl| represents a
filtering operation and has values other than unity. A reconstruction obtained after using
a filter, as suggested by eq. 3.6, is called filtered backprojection. |fl| is convoluted with the
projection data. Hence, filtered backprojection is also called convolution backprojection.
Filtering operation is carried out in the frequency domain. This is owing to that fact that
the convolution in the real domain translates as a mere multiplicative operation in the
frequency domain.

In tomographic reconstruction, filters are used to eliminate a specific range of fre-
quency component of the projection data. As for instance, low-pass filter has cut-o�
frequency above which the frequencies are eliminated. Such removal can greatly improve
the resolution and limit the degradation of the reconstructed image. However, one needs
to be cautious while choosing the cut-o� frequency. A high cut-o� frequency will improve
the spatial resolution and therefore much detail can be seen but the image will remain
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noisy. Likewise, a low cut-o� frequency will increase smoothing but will degrade image
contrast in the final reconstruction [48]. Hence, depending upon the type of application
the reconstruction serves the purpose, one ascertains the type of filter to be applied to
the projection data. Some of the commonly used filters in medical tomography include
Butterworth, cosine, Shepp-Logan, Hanning, Hamming, and Wiener filters. A detailed
description about these filters can be found elsewhere in the references [48] and [49].

A particular filter that is used throughout the discourse of our research is the Ram-
Lak filter [2]. Ram-Lak filter is a low-pass filter and has the dimension same as that of
the projection data. The reason behind selecting this filter stems from the fact that it
facilitates a reconstruction with a higher degree of spatial resolution, less blurriness and
preserves the edges in final results as compared to the results acquired using other filters.
Mathematically, Ram-Lak filter is an absolute value function in the Fourier domain. Sup-
pose there are N data extensions for a projection, P◊ . Then the Ram-Lak filter extend
from ≠N

2

to (N
2

≠ 1) and is defined in following ways:
Let,

k = ≠N

2 , ≠N

2 ≠ 1, . . . , ≠1, 0, 1, . . . ,
N

2 ≠ 2,
N

2 ≠ 1.

Then,

|fl| = |k|
N

. (3.8)

A depiction of the Ram-Lak filter is presented in figure 3.3. Ram-Lak filter when
convoluted with the projection data, results in a filtered sinogram as shown in figure 3.4a.
When the filtered sinogram is backprojected, it gives a new reconstructed image as illus-
trated in figure 3.4b. Having used the filter, one can clearly observe that the blurriness
and the white noise in the reconstruction have been subdued to a larger extent when
compared to the corresponding filterless result in figure 3.2c. The superior nature of the
reconstruction from filtered backprojection over backprojection is not just limited to the
qualitative visualization. In fact, the level of improvement can be measured via a quan-
titative analysis tool called root mean square error (RMSE) analysis. Mathematically,
RMSE is defined as:
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Figure 3.3: Ram-Lak filter (Ramachandran and Lakshminarayanan, 1971) [2]

RMSE =

ı̂ııÙ
nq

i=1

(ŷi ≠ yi)2

n
,

where,
ŷ denotes theoretical values,
y denotes reconstructed values,
n is the total number of points.
Table 3.1 explicitly indicates a lower RMSE for the filtered backprojection result than

the backprojection result. Thus, substantiating the fact that the filtering operation im-
proves the tomographic reconstruction. Having said this, there is also a di�erent class
of reconstruction method called iterative method that can greatly improve the final re-
sults. In fact, in many cases it has been successfully demonstrated that iterative methods
are capable of capturing the minute details in the reconstruction at a higher precision
than the analytical methods like FBP [50, 51]. The only flaw with the iterative methods
is that, these methods are computationally intensive for they adopt various numerical
techniques in their algorithms. However, the advent of processors with higher comput-
ing power has made it possible to extensively use the iterative methods. For the same
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(a) (b)

Figure 3.4: a) Filtered sinogram obtained by convoluting each projection with the Ram-
Lak filter. b) Filter backprojected reconstruction of the Shepp-Logan phantom.

reasons, iterative methods have been slowly replacing the conventional FBP methods in
various fields. This is also the very reason as to why we are looking to move forward from
the vector field electron tomography (VFET), which is based on FBP, to Model Based
Iterative Reconstruction (MBIR), which is based on iterative method, for our research
work on electromagnetic characterization. An in-depth description of VFET and MBIR
will be covered in chapters 4, 5, and 6. Nonetheless, in order to acquaint the readers
about the tomographic iterative technique, one of the earliest forms of iterative methods
called Simultaneous Iterative Reconstruction Technique (SIRT) is briefly explained in the
next section.

3.1.4 Simultaneous Iterative Reconstruction Technique (SIRT)

SIRT is one of the commonly used iterative techniques to perform scalar tomogra-
phy [52]. Using the SIRT algorithm, one generally obtains smoother and better-looking
reconstructions at the expense of slower convergence. A pseudo code for the SIRT imple-
mentation is depicted in the algorithm 3.3. A thorough review of the SIRT algorithm will
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Algorithm 3.2 Filtered Backprojection
• for ◊ in 1¶ to 180¶

1. Perform the Fourier Transform of the 1D projection at the angle ◊.

2. Multiply Ram-Lak filter and 1D projection at the angle ◊.

3. Perform inverse Fourier Transform of the result from pervious step (say P◊).

4. Evaluate, f(x, y)+ = P◊(x cos ◊ + y sin ◊)

• end for

f(x, y) = fi
180

f(x, y)

reveal that it begins with filtered backprojection and iteratively updates the subsequent
reconstruction. However, the most important step in this approach is where it deter-
mines the error sinogram, a di�erence between the weighted first sinogram measurement
(⁄ ◊ Pf 0) and the subsequent sinogram (Pf i), for each iterations. Here, the weighting
factor/ relaxation parameter, ⁄, is chosen so as to attain the best possible reconstruction
in a reasonable amount of time. A direct implication of this step is the minimization of
the error sinogram. In particular, with the subsequent iteration, there will be less and
less di�erence between the first sinogram measurement and the newly evaluated sinogram;
thus, producing a better reconstruction.

A Shepp-Logan phantom reconstruction using the SIRT algorithm is illustrated in
figure 3.5. Here, the ⁄ value was chosen to be 0.25 and the result was obtained after
10 iterations. Other than the visual confirmation of a better reconstruction from the
SIRT method, RMSE values in table 3.1 also corroborate the same conclusion from the
quantitative point of view. All these results provide us with the incentive to adhere to
iterative methods, like SIRT, to perform reconstruction instead of analytic method, like
FBP.

Having said this, it has to be pointed out that there is no theoretical understanding
as to what value of ⁄ should be chosen for a particular reconstruction problem using the
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Algorithm 3.3 SIRT
• Perform FBP on the sinogram measurement, Pf 0, to evaluate the first estimate f 0.

• for i in 1 : N

1. Compute new sinogram, Pf i, for the object, f i≠1.

2. Update the reconstruction as, f i Ω f i≠1 + FBP (Pf i ≠ ⁄ ◊ Pf 0). Here, ⁄ is
a user input parameter and ⁄ ‘ (0, 1).

3. Compute the average update as q |f i≠f i≠1|
N

.

4. If average update < threshold, exit the loop.

• end for

Figure 3.5: SIRT implemented reconstruction of Shepp-Logan phantom after 8 iterations
using ⁄ = 0.25.
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SIRT method. This serious flaw in the SIRT approach arises from fact that it does not
have a framework that ensures the minimization of the error sinogram in the successive
iterations. Therefore, one needs to put flags at the di�erent steps of each iteration to
deduce a properly resolved reconstruction, f(x, y). Moreover, it might be that there
exists a di�erent reconstruction result, f Õ(x, y), even better than f(x, y) for a distinct
values of ⁄Õ and iteration number. These issues of the SIRT approach only get amplified
in the problems dealing with the reconstruction of vector fields. The reasoning being that a
vector reconstruction problem is much more complicated than a scalar reconstruction. The
output of the vector reconstruction is comprised of continuously varying values instead of
patches of fixed values as in the case of scalar reconstruction. Hence, it will be exceedingly
di�cult to guess a particular ⁄ that successfully will be able to minimize the error sinogram
for certain number of iterations to yield a reconstruction better than that from FBP
approach.

Overall, the cumbersome nature of SIRT to meet the convergence criteria does not
negate the fact that an iteratively converged reconstruction result is usually better than a
simple FBP result. Accordingly, we seek to adopt a more robust iterative technique than
SIRT whose algorithm incorporates a theoretical premise that ensures the minimization
of error sinogram in the successive iterations. One such technique is the Model Based It-
erative Reconstruction (MBIR). MBIR is based on the Bayesian interface. It encompasses
prior knowledge of the system and the convergence criterion is met via implementing a
theoretically proven recipe that minimizes the error sinogram in each iteration. An elabo-
rate description on the MBIR method will be laid out in chapter 6. For now, we continue
with the spirit of this chapter about the general tomography methods and move ahead
with the 3D tomography.

Method RMSE
Backprojection 0.46

Filtered Backprojection 0.16
SIRT 0.08

Table 3.1: RMSE



47

3.2 3D Tomography

As mentioned earlier, 3D tomography can in fact be extrapolated easily from the 2D
tomography. The only di�erence in 3D tomography when compared with 2D tomography
is that the projection measurements are 2D in nature. These 2D measurements are ac-
quired via simultaneously rotating a 3D object along a fixed axis and passing the radiation
along one of the other axes. For the purpose of computational implementation, we will
demonstrate 3D tomography with the aid of the filtered backprojection. The object in
concern is a cuboid that is defined to have a value of one everywhere within its boundary.

First, we determine the projection planes for the angles ranging from 1¶ to 180¶.
The cuboid is rotated along x axis. This rotation is depicted in the figure 3.6 for three
angles namely, 0¶, 45¶ and 90¶. Next, radon transform of the rotated cuboid is evaluated
along z direction. In other words, summation along the z direction of the tilted cuboid.
Accumulation of projection planes from angles 1¶ to 180¶ yields a 3D sinogram.

Algorithm 3.4 3D Filtered Backprojection
for ◊ in 1¶ to 180¶

• for x in 1 : N

1. Perform the 2D Fourier Transform of the projection plane at the angle ◊ as
P̂◊(ky, kz) = FFT (P◊(y, z)).

2. For ky in 1:N

– Perform the multiplication of Ram-Lak filter as P̂◊(ky, ú) Ω P̂◊(ky, ú)◊ |fl|.

3. Evaluate the 2D inverse Fourier Transform of the filtered planes as P◊(y, z) =
iFFT (P̂◊(ky, kz)).

4. Evaluate, f(x, y, z)+ = P◊(x, y cos ◊ + z sin ◊).

• end for

• f(x, y, z) Ω fi
180

f(x, y, z)

end for
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(a) (b) (c)

Figure 3.6: Illustration of x-tilted rotations of the cuboid for angles (a) 0¶ (b) 45¶ and (c)
90¶.

The second step of the implementation comprises of retrieving the cuboid from the
sinogram. Here, filtering operation will also be implemented to yield a more accurate
reconstruction. As in the case of 2D tomography, we again make use of Ram-Lak filter.
Ram-Lak filter is convoluted with each of the 1D - strip of each of the projection planes.
Finally, each of the filtered projection planes is backprojected and summed in the 3D
space. A pseudo code for the 3D filtered backprojection is illustrated in algorithm 3.4.
Likewise, the results from the filtered backprojection of the 2d projection planes is depicted
in figure 3.7. It shows some of the reconstructed planes of the cuboid. For the convenience
of the reader, red color has been used to highlight the parts that deviate away from the
true values, indicated by the black color. The more the red the further away is the
reconstructed value from the true value. Additionally, the RMSE value below each of the
planar plots provides a quantitative gauge over the reconstruction accuracy. A thorough
review of the planer plots will reveal that the RMSE values across the x planes are basically
the same; for the results were obtained via x tilt series. In contrast to this, planes in y

and z directions demonstrate di�erent levels of accuracy. Still, it is not di�cult to realize
that the y and z planes across the origin indicate higher levels of reconstruction accuracy
that the ones along and around the edges of the cuboid. This particular observation that
the level of reconstruction accuracy along/around edges is lesser than the accuracy of the
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other parts of the object will be a constantly reoccurring theme throughout the discourse
of our research work. We will provide more insight on this subject matter in chapter
4. For now, we proceed to discuss on the implication of limited tilt angles which is a
fundamental source of errors in tomographic reconstruction in the next section.

Figure 3.7: Some of the planes obtained from the 3D filtered backprojection of 2D pro-
jection planes of a cuboid (10, 30, 50) ranging from 0¶ to 179¶.

3.3 Limited tilt angles

This particular section may, initially, seem to be an outlier in a chapter that is primarily
devoted to the description of the basics of tomography. However, we will, regularly, come
across the phenomenon of limited tilt angles throughout the discourse of our vectorial
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tomography research. Hence, it was thought appropriate to discuss the e�ect of limited
tilt series in this early stage along with rest of the basics about tomography.

(a)

M
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Angular 
Sampling effect

(b)

Figure 3.8: Schematics representing (a) full tilt, (b) missing wedge of information and
e�ect of angular sampling in projection measurements for tomography.

Firstly, it has already been established that it not possible to exactly recover the initial
function, f(x, y), from the discrete set of projections, P◊. Nonetheless, one can deduce
a good approximation of f(x, y) if there are enough projections. In particular, one for
each angular view in the range of 180 degrees [46, 47]. For the same reason, it is not
di�cult to realize that the reconstruction becomes inaccurate when the tilt range is less
than the theoretically required 180 degrees. The situation arising due to limited tilt series
is technically termed as ‘missing wedge’ of information [32]. A schematic depicting the
concept of missing wedge is provided in figure 3.8.

In many practical applications, instruments do not allow the users to acquire a full
180 degree tilt series. This experimental limitation is especially true in the case of our
research. We rely on Transmission Electron Microscopy (TEM) to acquire the projection
measurements. TEM holders built specifically for the purpose of tomography, allows a
tilt series of ±70¶. In addition, these measurements are taken at a step size of 2¶ to 5¶ to
protect sample from beam damage [31] instead of 1¶ or 0.5¶ step size required for an ideal
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reconstruction. Thus resulting limited tilt series is referred as e�ect of angular sampling
[53] and it has a great implication in the quality of reconstruction. The diminishing
reconstruction quality can be inferred from figures 3.9 and 3.10. The former depicts
the angular sampling e�ect on tomographic reconstruction while the latter illustrates
reconstruction from a measurement that exhibits a missing angular range.

Figure 3.9: Shepp-Logan phantoms illustrating the increasing trend in the RMSE value
with the decrease in the number of projections for the tilt range of [0¶, 180¶). These
phantoms have values in the range 0 (corresponding to black) to 1 (corresponding to
white)

Accordingly, it becomes imperative to address the issue of missing wedge while con-
structing the model for electromagnetic characterization from tomographic measurements.
Recognizing this concern, we surmise that statistically sound methods like MBIR approach
will be able to mitigate the e�ects of missing wedge of information. The result of our
claim will be provided in chapter 6 after we have laid down the fundamentals of the MBIR
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approach and the thought process on why it might work for our problem.

Figure 3.10: A computational implementation of missing wedge phenomenon where the
left plot is deduced from a measurement with ±90¶ angular range at 1¶ deg stepsize
while the right plot is reconstructed from the one with ±70¶ angular range at 2¶ stepsize.
These phantoms have values in the range 0 (corresponding to black) to 1 (corresponding
to white)

This concludes our explanation of scalar tomography. Summing up, we have thor-
oughly explained the fundamentals of 2D and 3D tomography in this chapter. Likewise,
we have described some of the commonly used tomography methods like filtered back-
projection and SIRT. We have provided pseudo codes for computation implementations,
recognized sources of error in the reconstruction and have alluded to the techniques like
MBIR that can be adopted for a better reconstruction. The acceptance or rejection of our
initial claim to use the MBIR approach to deduce a good estimate of the object will be
made after its implementation in later chapters. For now, we proceed to explain vectorial
form of tomography.
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Chapter 4

Vector Tomography

The seventies and eighties saw an immense success in the use tomographic techniques
to reconstruct scalar objects, especially in the areas pertaining to clinical diagnosis. These
successes at the scalar interference led researchers to investigate if the concept of tomog-
raphy could be extended to reconstruct velocity vector fields. A proper incorporation of
vector tomography would open door for breakthroughs in areas such as oceanography,
photoelasticity, medical fluid flow imaging [54] where determining 3D fields from 2D mea-
surements is of immense importance. Accordingly, Norton, for the first time, outlined a
mathematical model to deduce the 2D fluid field from acoustic time travel measurements
in 1988. In subsequent years, 2D vector tomography was extended to the 3D cases. In
particular, Juhlin resolved the solenoidal part of a divergence free flow field using ultra-
sound Doppler measurements in 1992 [55]. Since then researchers in various areas have
adopted vector tomography to reconstruct the 3D solenoidal part of a vector field. Simi-
larly, we seek to make use of vector tomography to reconstruct magnetic vector potential
(solenoidal field) of nanoparticles from TEM micrographs.

This chapter outlines 2D and 3D vector tomography frameworks to reconstruct vector
fields. We begin with Norton’s article [56] as an introduction to the 2D vector tomography
by reconstructing solenoidal part of a field. Subsequently, we build upon the 2D vector
tomography to elucidate the details of 3D Vector Field Electron Tomography (VFET).
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4.1 2D Vector Tomography

In this section, we lay out the theoretical framework as well as the computation imple-
mentation to reconstruct the solenoidal part of a 2D vector field as detailed by Norton in
his paper, “Tomographic reconstruction of 2D vector fields: application to flow imaging”
[56].

4.1.1 Theoretical framework

The theoretical formulation of 2D vector tomography begins by considering a 2D vector
field, v(x, y), defined as:

v(x, y) = vx(x, y)x̂ + vy(x, y)ŷ. (4.1)

Here, (x, y) is the initial reference frame. Define a counter-clockwise rotation matrix,
R◊, as:

R◊ =
S

U cos(◊) ≠ sin(◊)
sin(◊) cos(◊)

T

V . (4.2)

Now, consider a new reference frame (fl, l) which is at an angle, ◊, from the old reference
frame, (x, y). Hence, every point in (fl, l) is at an angle ◊ from the initial reference frame
(x, y) such that:

S

U x

y

T

V = R◊

S

U fl

l

T

V . (4.3)

One can utilize eq. 4.3 to deduce the radon transform of the field v(x, y) at di�erent
angles. As noted before in chapter 3, radon transform is required to model the projections
for the tomographic reconstruction. Accordingly, the projection, T◊(fl), at an inclination,
◊, for the 2D field can be defined as:

T◊(fl) =
Œ⁄

≠Œ

v(x, y) · dl, (4.4)



55

Figure 4.1: Old reference frame,(x, y), in-terms of new reference frame, (fl, l).

where, dl is the element of the projection line L(fl, ◊) as shown in figure 4.1. Mathemati-
cally,

dl = x̂dl cos(90o ≠ ◊) + {≠ŷdl sin(90o ≠ ◊)}

= x̂ sin(◊)dl ≠ ŷ cos(◊)dl. (4.5)

Having defined a new reference frame and the line integrals for any given angle of
inclination, the projection expression in eq. 4.4 can be generalized as:
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T◊(fl) =
Œ⁄

≠Œ

v(x, y) · dl

=
Œ⁄

(
≠Œ

vx(x, y)x̂ + vy(x, y)ŷ).(x̂ sin(◊)dl ≠ ŷ cos(◊)dl)

=
Œ⁄

≠Œ

vx(x, y) sin(◊)dl ≠
Œ⁄

≠Œ

vy(x, y) cos(◊)dl

= sin(◊)
Œ⁄

≠Œ

vx({fl cos(◊) ≠ l sin(◊)}, {fl sin(◊) + l cos(◊)})dl

≠ cos(◊)
Œ⁄

≠Œ

vy({fl cos(◊) ≠ l sin(◊)}, {fl sin(◊) + l cos(◊)})dl. (4.6)

To put eq. 4.6 in words, it turns out that determining the projections of a field is
equivalent to rotating the field at the given angle, taking the line integrals of x and y

components of the field, multiplying the line integrals in the x component sine of the
angle and the y component by cosine of the angle, and taking the di�erence between the
line integrals of the two field components.

One can also use Fourier analysis to determine the projection in the Fourier space as:

T̃◊(k) =
Œ⁄

≠Œ

T (fl)e≠2fiikfldfl

= sin(◊)
Œ⁄

≠Œ

Œ⁄

≠Œ

vx(x, y)e≠2fii(xk cos(◊)+yk sin(◊))dxdy

≠ cos(◊)
Œ⁄

≠Œ

Œ⁄

≠Œ

vy(x, y)e≠2fii(xk cos(◊)+yk sin(◊))dxdy

= sin(◊)ṽx(k cos(◊), k sin(◊)) ≠ cos(◊)ṽy(k cos(◊), k sin(◊)). (4.7)

Before divulging any further, the 2D fluid field, v(x, y), is decomposed into its irrota-
tional, �, and solenoidal, �, part as follows:

v = ≠Ò� + Ò◊�, (4.8)

where,



57

Ò� = ≠x̂
ˆ�
ˆx

≠ ŷ
ˆ�
ˆy

, (4.9)

Ò ◊ � = x̂
ˆ�
ˆy

≠ ŷ
ˆ�
ˆx

. (4.10)

Again, from equations 4.1, 4.8, 4.9 and 4.10, each of the components of v can be written
as the linear combination of their respective irrotational and solenoid components as:

vx(x, y) = ≠ˆ�
ˆx

+ ˆ�
ˆy

, (4.11)

vy(x, y) = ≠ˆ�
ˆy

≠ ˆ�
ˆx

. (4.12)

Furthermore, performing the Fourier transforms of the expressions in eq. 4.11 and eq. 4.12,
one gets:

ṽx(x, y) = ≠2fiikx�̃(kx, ky) + 2fiiky�̃(kx, ky), (4.13)

ṽy(x, y) = ≠2fiiky�̃(kx, ky) ≠ 2fiikx�̃(kx, ky). (4.14)

With this, one can revisit the projection expression in eq. 4.7 and subsequently re-write
it as:

T̃◊(k) = sin(◊)ṽx(k cos(◊), k sin(◊)) ≠ cos(◊)ṽy(k cos(◊), k sin(◊))

= sin(◊){≠2fiik cos(◊)�̃(k cos(◊), k sin(◊)) + 2fiik sin(◊)�̃(k cos(◊), k sin(◊))}

≠ cos(◊){≠2fiik sin(◊)�̃(k cos(◊), k sin(◊)) ≠ 2fiik cos(◊)�̃(k cos(◊), k sin(◊))}

= ≠2fiik sin(◊) cos(◊)�̃(k cos(◊), k sin(◊)) + 2fiik sin2(◊)�̃(k cos(◊), k sin(◊))

+2fiik sin(◊) cos(◊)�̃(k cos(◊), k sin(◊)) + 2fiik cos2(◊)�̃(k cos(◊), k sin(◊))

= 2fiik�̃(k cos(◊), k sin(◊)). (4.15)

=∆ �̃◊(k) = T̃◊(k)
2fiik

= sin(◊)ṽx(k cos(◊), k sin(◊))
2fiik

≠ cos(◊)ṽy(k cos(◊), k sin(◊))
2fiik

(4.16)

= �̃◊,x + �̃◊,y.
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From eq. 4.15 it is clear that the irrotational part vanishes and does not contribute
to the projection measurements acquired from any of the components of the field, v.
Moreover, eq. 4.16 suggests that the central slice of the rotated field’s x component (in
the Fourier space) scaled by the factor sin(◊)

2fiik
yields solenoid projection for the x component,

�̃◊,x. Likewise, the central slice of the inclined y component scaled by the factor cos(◊)

2fiik

yields the solenoid projection for the y component, �̃◊,y.
Having formulated the forward model for the 2D vector field, we make use of the

Fourier Slice theorem to derive a backprojection recipe. Accordingly, the backprojection
formula to reconstruct each of the components of the solenoidal part of v is determined
to be:

�ú(x, y) =
Œ⁄

≠Œ

Œ⁄

≠Œ

�̃ú(kx, ky)e2fii(xk
x

+yk
y

)dkxdky

=
Œ⁄

≠Œ

fi⁄

0

�̃◊,ú(k)e2fii(xk cos(◊)+yk sin(◊))d◊dk

=
fi⁄

0

S

U
Œ⁄

≠Œ

�̃◊,ú(k)e2fiik(x cos(◊)+y sin(◊))dk

T

V d◊

=
fi⁄

0

�◊,ú(x cos(◊) + y sin(◊))d◊. (4.17)

�ú(x, y) denotes any of the two components (x or y) of the solenoid.
With this, we conclude the theoretical formulation of the reconstruction of the solenoid

part of the 2D vector field using tomographic reconstruction. In the next subsection, we
will elucidate on the computational aspects of the reconstruction of the solenoidal part of
the vector field, v, using its projections.

4.1.2 Computational Implementation

Consider a flow field, v, in x direction inside a circle of radius, R = 20, such that:

v(x, y) = vox̂, where, vo = 1.
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(a) (b)

Figure 4.2: (a) 2d fluid flow within a circle with v(x, y) = vox̂. (b) Theoretical solenoid
(�) of the field, v.
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The field’s solenoidal part is theoretically calculated [56] to be:

�(x, y) =
Y
]

[

v
o

y
2

, for r Æ R,
v

o

R2y
2r2 , for r > R.

Next, the solenoidal part of the field, v, is reconstructed from its projections using
filtered back projection (FBP). Each of the 1d solenoidal projection is convoluted with a
filter. As in the case of scalar reconstruction, we again use Ram-Lak as our filter [2] such
that:

�◊(r) = h(t) ¢ �◊(r)

= F≠1(|fl|�̃◊(k)).

Figure 4.3: Reconstructed solenoid (�) of the field, v, using filter backprojection approach.

Note that the projection acquired from the 2D field has contributions from only the
solenoidal part of the field, v, as indicated by eq. 4.15. Hence, the reconstruction from
the sinogram of v only yields the solenoidal part. However, one can make use of Green’s
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function as suggested by Norton to recover the irrotational part of the field. But in
the case of 3D vector reconstruction the irrotational part or the electrostatic potential is
recovered by simply performing a scalar tomography of the electrostatic phase. For the
same reason, the recovery of the irrotational part of the 2D field, v, is out of scope here.
Interested readers can follow Norton’s paper to deduce the irrotational part of v.

This concludes a basic review of 2D vector tomography. We now proceed to the 3D
vector tomography in the next section.

4.2 Vector Field Electron Tomography (VFET)

This subsection gives a thorough overview on the current state-of-art of tomographic
reconstruction of magnetic vector potential from a series of Lorentz TEM images. We use
the work of Phatak et al. [34] and Lade et al. [57, 58] to formulate a theoretical framework
for the magnetic vector potential, A(r), reconstruction. Based on the framework, we
outline pseudo codes to reconstruct A(r). We conclude this section with some of the
results from the VFET approach.

To begin with, the application of tomography to reconstruct the magnetic vector po-
tential of the nanoparticles using Lorentz TEM images is known as vector field electron
tomography (VFET) [59]. The basic premise of the VFET is analogous to that of the
scalar tomography, because the VFET approach, too, makes use of forward projection,
Fourier Slice Theorem and backprojection. Moreover, it incorporates the filtered back-
projection approach to perform the reconstruction. A major point of di�erence between
vector tomography and scalar tomography is the tilt acquisition aspect. The VFET ap-
proach requires sinograms from at least two di�erent tilt series to reconstruct all the
components of the magnetic vector potential. A more detailed analysis on the VFET
approach is provided in the following subsections:

4.2.1 Forward projection to determine the magnetic phase shift

Recall from scalar tomography that the forward projection approach enables us to
formulate mathematical model of projection measurements acquired from an experiment.
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This is true even in the case of vector tomography. In particular, the forward projection
methodology is utilized in the vector tomography to model the measurements acquired
from a Lorentz TEM experiment. However, there is a caveat. It has already been dis-
cussed in chapter 2 that the Lorentz TEM experiment does not directly output the mag-
netic phase information. Rather it provides the modulus of the electron wave that exits
the sample or, simply, the image intensity. For this reason, the Transport of Intensity
Equation (TIE) [41] formalism is used to retrieve phase shift from the TEM image. Thus
deduced phase shift has contributions from the electrostatic as well as the magnetic po-
tential of the sample. Time reversal symmetry [42] is, then, used to separate the magnetic
phase from the electrostatic phase. We assume that the pre-processing steps - the TIE
operation and the phase separation - have already been performed. Consequently, we
begin with the derivation of magnetic phase shift from a sample’s vector potential.

An important point to note here is that an electron propagates in the z direction in a
TEM experiment and images are obtained in the x–y plane. Therefore, integrals will be
taken along the z direction and tilts will be performed around the x and the y axes.

The forward projection of the vector potential, A(r), to yield the magnetic phase shift
measurements, Ïm(r‹), begins by considering the second term of the A-B phase shift, as
expressed in eq. 2.3 :

Ïm(r‹) =
Œ

≠
⁄

≠Œ

A(r) · dl. (4.18)

Unlike scalar tomography, the VFET approach requires projections from two tilt series
to reconstruct all the components of the vector potential. This statement will become
apparent in next subsection where we discuss on backprojection technique. Nonetheless,
acquisition of the projections in two di�erent directions means that one obtains two sets
of magnetic phase shift sinogram. One for the x tilt series, Ïm,x, and the other for the y

tilt series, Ïm,y. Let us begin by determining Ïm,x. Derivation of Ïm,x is analogous to the
derivation of T◊ in the 2D vector tomography. The only di�erence is that each Ïm,x is a
plane whereas each T◊ is a line.

First, define the counter-clockwise rotation matrix, R◊,x, for x tilt as :
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R◊,x =

S

WWWWU

1 0 0
0 cos(◊) ≠ sin(◊)
0 sin(◊) cos(◊)

T

XXXXV
.

Also, define a new co-ordinate system t = (u, v, w) such that:

r =

S

WWWWU

x

y

z

T

XXXXV
= R◊,x

S

WWWWU

u

v

w

T

XXXXV
= R◊,xt. (4.19)

!

y!

x=u!

z!

0!

sample!

(a)

z

y

w

v

θ

dl

(b)

Figure 4.4: (a) Initial reference frame for the acquisition of Ïm,x with the curved arrow
denoting the x tilt direction. (b) Old reference frame, (ú, y, z), in terms of the new
reference frame, (ú, v, w), for each plane in the x direction.

Here, dl is the vectorial element of the projection line L(v, ◊) as shown in figure 4.4b.
Mathematically, dl can be written as:

dl = ŷ sin(◊)dl ≠ ẑ cos(◊)dl.

Now, the projection integral for each (x, v) and ◊ is given by:
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Ïm,x(x, v) = ≠
Œ⁄

≠Œ

A(r) · dl

= ≠ sin(◊)
Œ⁄

≠Œ

Ay(r)dl + cos(◊)
Œ⁄

≠Œ

Az(r)dl

= ≠ sin(◊)
Œ⁄

≠Œ

Ay(R◊,xt)dl + cos(◊)
Œ⁄

≠Œ

Az(R◊,xt)dl

= ≠ sin(◊)
Œ⁄

≠Œ

Ay(cos(◊)v ≠ sin(◊)w, sin(◊)v + cos(◊)w)dl

+ cos(◊)
Œ⁄

≠Œ

Az(cos(◊)v ≠ sin(◊)w, sin(◊)v + cos(◊)w))dl. (4.20)

Eq. 4.20 represents the radon transform of the magnetic vector potential for the x tilt
series. It can also be expressed in the Fourier space by extending the Fourier Slice Theorem
in Appendix A to the 3D case in the following manner [60]:

Ï̃m,x(kx, kv) = Ï̃m,x(ku, kv)

=
Œ⁄

≠Œ

Ïm,x,◊(u, v)e≠2fii(k
u

u+k
v

v)dudv

= ≠
Œ⁄

≠Œ

sin(◊)
Œ⁄

≠Œ

Ay(R◊,xt)e≠2fii(k
u

u+k
v

v)dudvdl

+
Œ⁄

≠Œ

cos(◊)
Œ⁄

≠Œ

Az(R◊,xt)e≠2fii(k
u

u+k
v

v)dudvdl

= ≠
Œ⁄

≠Œ

sin(◊)
Œ⁄

≠Œ

Ay(x, y, z)e≠2fii(xk
u

+yk
v

cos(◊)+zk
v

sin(◊))dxdydz

+
Œ⁄

≠Œ

cos(◊)
Œ⁄

≠Œ

Ax(x, y, z)e≠2fii(xk
u

+yk
v

cos(◊)+zk
v

sin(◊))dxdydz

= ≠ sin(◊)Ãy(ku, kv cos(◊), kv sin(◊)) + cos(◊)Ãz(ku, kv cos(◊), kv sin(◊)). (4.21)

A similar analysis for the sample tilt in y direction, as shown in figure 4.5, will deduce
the magnetic phase shift, Ïm,y, in the Fourier space to be:
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Figure 4.5: (a) Initial reference frame for the acquisition of Ïm,y with the curved arrow
denoting the y tilt direction. (b) Old reference frame, (x, ú, z), in terms of the new
reference frame, (u, ú, w), for each plane in the y direction.
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Ï̃m,y(ku, kv) = ≠ sin(–)Ãx(ku cos(–), kv, ku sin(–))+cos(–)Ãz(ku cos(–), kv, ku sin(–)).
(4.22)

In order to show an implementation using the forward projection model of the magnetic
vector potential, we considered a spherical magnetic nanoparticle of radius, R = 30 nm. It
has magnetization direction, m̂ = (cos(fi

6

), sin(fi
6

), 0) and saturation induction, Bo = 1T.
Its theoretical magnetic vector potential in Fourier Space is given by [61]:

Ã(k) = iBo

k2

D̃(k)(m̂ ◊ k),

where D̃(k) denotes the shape amplitude of the sphere and k2 = k2

x + k2

y + k2

z .
The magnetic phase shift values of the spherical nanoparticle (NP) for the two tilts

are calculated using eqs. 4.21 and 4.22. Some of the results from the forward projection
of the spherical NP are depicted in figure 4.6.

This completes the forward projection of the vector potential to deduce the projec-
tion measurements, Ïm,x and Ïm,y. Now, our objective will be to reconstruct all three
components of the magnetic vector potential with the aid of Ïm,x and Ïm,y. This will be
completed by performing tomographic inversion which is covered in the next subsection.

4.2.2 Filtered Backprojection to reconstruct magnetic vector
potential

Similar to the cases of the reconstructions pertaining to the scalar tomography, the
reconstructions related to the vector tomography will also make use of the backprojection
methodology. However, the backprojection framework of the vector tomography di�ers
from that of the scalar tomography as backprojection of the vectorial projections should
resolve three components instead of one. Accordingly, we modify backprojection model
from chapter 3 to fully resolve A(r). In particular, the vector backprojection framework
will process sinograms from two di�erent tilt series to resolve two out of the three com-
ponents of A(r). Then the third component is retrieved by imposing the Coulomb gauge
condition Ò · A = 0, which in the Fourier space becomes [62]:
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Figure 4.6: Holographic contour plots of the magnetic phase shits, Ïm,x(x, y) and
Ïm,y(x, y), obtained from the forward projection of the nanoparticle through the x tilt
series and the y tilt series respectively. The angle of inclinations are ≠70¶, 10¶ and 70¶.
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kÕ.Ã = k
Õ

uÃx + k
Õ

vÃy + k
Õ

wÃz = 0. (4.23)

Now, the relation between A(r) and its projections, Ïm,x and Ïm,y, can be written in
the matrix form using eqs. 4.21, 4.22, and 4.23 as:

S

WWWWU

0 ≠ sin(◊) cos(◊)
≠ sin(◊) 0 cos(◊)

k
Õ
u k

Õ
v k

Õ
w

T

XXXXV

S

WWWWU

Ãx

Ãy

Ãz

T

XXXXV
=

S

WWWWU

Ï̃m,x

Ï̃m,y

0

T

XXXXV
. (4.24)

Eq. 4.24 also reveals as to why it was insisted to acquire projections from the two di�erent
tilt series. It is of the form MÃ = Ï̃m. Hence, solving for Ã requires inversion of matrix
M such that:

Ã = M≠1Ï̃m

= 1

—

S

WWWWU

k
Õ
v cos(–) ≠k

Õ
v cos(◊) ≠ k

Õ
w sin(◊) cos(–) sin(◊)

≠k
Õ
u cos(–) ≠ k

Õ
w sin(–) k

Õ
u cos(◊) cos(◊) sin(–)

k
Õ
v sin(–) k

Õ
u sin(◊) sin(–) sin(◊)

T

XXXXV

S

WWWWU

Ï̃m,x

Ï̃m,y

0

T

XXXXV
, (4.25)

where, — = sin(◊){k
Õ
u cos(–) + k

Õ
w sin(–)} + k

Õ
v sin(–) cos(◊).

Realizing the fact that k
Õ
u = ku; k

Õ
v = kv cos(◊); k

Õ
w = kv sin(◊) for the x tilt series,

k
Õ
u = ku cos(–); k

Õ
v = kv; k

Õ
w = ku sin(–) for the y tilt series and substituting these values

in eq. 4.25, one obtains:

Ãx = k
Õ
vk

Õ
ukvÏ̃m,x ≠ ku((kÕ

v)2 + (kÕ
w)2Ï̃m,y

kÕ
w((kÕ

u)2 + (kÕ
v)2 + (kÕ

w)2)

= cos(◊)kukv

sin(◊)(k2

u + k2

v) Ï̃m,x ≠ (k2

v + k2

u sin(–))
sin(–)(k2

u + k2

v) Ï̃m,y, (4.26)

Ãy = ≠((kÕ
u)2 + (kÕ

w)2)kvÏ̃m,x + kvk
Õ
uk

Õ
vÏ̃m,y

kÕ
w((kÕ

u)2 + (kÕ
v)2 + (kÕ

w)2)

= ≠(k2

u + k2

v sin2(◊))
sin(◊)(k2

u + k2

v) Ï̃m,x + kukv cos(–)
sin(–)(k2

u + k2

v) Ï̃m,y, (4.27)
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Ãz = k
Õ
vk

Õ
wkvÏ̃m,x ≠ kuk

Õ
uk

Õ
wÏ̃m,y

kÕ
w((kÕ

u)2 + (kÕ
v)2 + (kÕ

w)2)

= k2

v cos(◊)
(k2

u + k2

v) Ï̃m,x + k2

u cos(–)
(k2

u + k2

v) Ï̃m,y. (4.28)

Eqs. 4.26, 4.27, and 4.28 suggests that the angles for the projection acquisition for
the x tilt and the y tilt can be dissimilar. However, from the practical standpoint, the
final reconstruction is more accurate if the angles of projections are the same for the
two tilts and are properly aligned. For the same reason, we proceed by considering
– = ◊. Now, the only remaining part is to transform the projections, (x, y, ◊) , from
the polar space to the Cartesian space, (x, y, z). This task is completed by performing
the smearing/backprojection operation - as discussed in section 3.1.2 - in combination
with eqs. 4.26, 4.27, and 4.28. Additionally, absolute value functions |kv| and |ku| are
used to filter the projection data in the Fourier space for the x tilt series and the y tilt
series respectively. Considering all these details, the final filtered backprojection formulae
[47, 62, 34] to reconstruct A(r) results in (the asterisk subscript represent x, y, or z):

Aú(x, y, z) =
fi⁄

0

Ïm,x,ú(x, y cos(◊) + z sin(◊)) + Ïm,y,ú(x cos(◊) + z sin(◊), y)d◊, (4.29)

where,

Ïm,x,ú = F≠1

S

WWWWU

|kv|
sin(◊)(k2

u + k2

v)

S

WWWWU

kukv cos(◊)
≠(k2

u + k2

v sin(◊))
k2

v cos(◊) sin(◊)

T

XXXXV
Ï̃m,x(ku, kv)

T

XXXXV
=

S

WWWWU

Ïm,x,x

Ïm,x,y

Ïm,x,z

T

XXXXV
, (4.30)

Ïm,y,ú = F≠1

S

WWWWU

|ku|
sin(◊)(k2

u + k2

v)

S

WWWWU

≠(k2

v + k2

u sin(◊))
kukv cos(◊)

k2

u cos(◊) sin(◊)

T

XXXXV
Ï̃m,y(ku, kv)

T

XXXXV
=

S

WWWWU

Ïm,y,x

Ïm,y,y

Ïm,y,z

T

XXXXV
. (4.31)

A VFET based pseudo code to reconstruct Ax from Ïm,x and Ïm,y is provided in
algorithm 4.1. The same algorithm can be used to deduce Ay and Az.
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Algorithm 4.1 VFET approach to reconstruct Ax.
• For ◊ in angles

1. Fourier transform the projections, Ïm,x and Ïm,y, such that:
Ï̃m,x(ku, kv) = F(Ï̃m,x(x, y)),
Ï̃m,y(ku, kv) = F(Ï̃m,y(x, y)).

2. Multiply the Fourier transformed projections from (1) by the Ram-Lak filter
such that:
Ï̃m,x(ku, kv) = |kv|Ï̃m,x(ku, kv),
Ï̃m,y(ku, kv) = |ku|Ï̃m,y(ku, kv).

3. Retrieve the contribution of Ax in each of the tilts in the following manner:
Ï̃m,x,x(ku, kv) = k

u

k
v

cos(◊)

sin(◊)(k2
u

+k2
v

)

Ï̃m,x(ku, kv),
Ï̃m,y,x(ku, kv) = ≠ (k2

v

+k2
u

sin(◊))

sin(◊)(k2
u

+k2
v

)

Ï̃m,y(ku, kv).

4. Perform the inverse Fourier Transform of the result from the pervious step such
that:
Ïm,x,x(x, y) = F≠1(Ï̃m,x(ku, kv)),
Ïm,y,x(x, y) = F≠1(Ï̃m,y(ku, kv)).

5. Evaluate, Ax(x, y, z)+ = Ïm,x,x(x, y cos ◊+z sin ◊)+Ïm,y,x(x cos(◊)+z sin(◊), y).

• End

Ax(x, y, z) = fi
Nangles

Ax(x, y, z).
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(a) (b)

(c)

Figure 4.7: (a) Spherical Magnetic Nanoparticle (MNP) with diameter of 60 nm. (b)
Prismatic MNP with lateral dimensions of [50 ◊ 50] nm and thickness of 30 nm. (c)
Cylindrical MNP with diameter of 60 nm and thickness of 30 nm. (c)
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(a) (b)

(c)

Figure 4.8: Vector plot illustrating (a) uniform magnetization of each z plane of the
spherical MNP (4.7a) due to magnetization direction, m̂ = [cos fi

6

, sin fi
6

, 0], (b) uniform
magnetization of each z plane of the prismatic MNP (4.7b) due to magnetization direction,
m̂ = [cos fi

6

, sin fi
6

, 0], and (c) counter-clockwise magnetization direction of each z plane of
cylindrical MNP (4.7c).
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We move on to show numerical implementations from the VFET approach. We make
use of simulated/synthetic magnetic nanoparticles (MNPs) that are uniformly and non-
uniformly magnetized. In particular, we use sphere and prism as uniformly magnetized
and circular disk as non-uniformly magnetized particles. The spherical nanoparticle (NP)
has diameter of 60 nm and prismatic NP has dimensions of [50 ◊ 50 ◊ 30] nm. Both of
them have magnetization direction, m, of

Ë
cos fi

6

, sin fi
6

, 0
È

along each z plane. Likewise,
the circular disk has diameter of 60 nm, height of 30 nm, and exhibits counter clock wise
magnetization with sharp vortex [61, 63] along each z plane. All three have saturation
magnetization, Bo, of 1T. The three NP samples with their corresponding magnetizations
are depicted in figures 4.7 and 4.8 respectively.

Next, we determine projection measurements of vector potential of the NPs in x and y tilt
series using eqs. 4.21 and 4.22. Moreover, we calculate two sets of measurements for each
tilt series. First set, namely full range, comprises of projections in the range [≠90¶, +90¶]
at a 2¶ step size while second set, namely missing wedge, includes projections in the
range of [≠70¶, +70¶], again, at a 2¶ step size. Subsequently, we implement the VFET
approach to, separately, resolve vector potential from the two data sets and compare
the reconstructed results with their corresponding ground truths. These comparisons
were performed by the means of normalized root mean squared error (NRMSE) between
reconstructed result, ŷ, and ground truth, y, as [64]:

NRMSE = 1
ŷ

max

≠ ŷ
min

ı̂ııÙ
nq

i=1

(ŷi ≠ yi)2

n
,

where n is the total number of points.
Some of the results retrieved from the two projection data sets and their corresponding

ground truths are illustrated in figure 4.9. The main purpose of this implementation is
to provide readers with a firsthand glimpse of the e�ect of limited angular range - gently
broached in section 3.3 - on the level of reconstruction using the VFET approach. The
qualitative comparisons in figure 4.9. alludes that blurring of edges, protrusions and ring
artifacts are more prominent in the reconstruction determined from the missing wedge
set than the ones derived from the full range set. The diminishing e�ect of downsizing
the range of angular projection on the level of reconstruct is, further, corroborated by the



74

Figure 4.9: Reconstructed magnetic vector potential from full range [center column] and
missing wedge [rightmost column] projection data sets. The leftmost column depicts
ground truth or theoretical vector components. The top row plots correspond to plane
(x, 26, z) of spherical NP, the center row plots correspond to plane (x, 18, z) of prismatic
NP and bottom row plots correspond to plane (x, 15, z) of cylindrical NP.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10: Planar NRMSE plots of magnetic vector potential of spherical NP retrieved
using the VFET approach on the missing wedge projection set (line with circle) and the
full range projection set (line with diamond).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.11: Planar NRMSE plots of magnetic vector potential of Prismatic NP retrieved
using the VFET approach on the missing wedge projection set (line with circle) and the
full range projection set (line with diamond).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12: Planar NRMSE plots of magnetic vector potential of Cylindrical NP retrieved
using the VFET approach on the missing wedge projection set (line with circle) and the
full range projection set (line with diamond).
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NRMSE planar plot in figures 4.10 - 4.12. The NRMSE corresponds to x, y, and z planes
in the range [≠35, 35]. These plots indicate that the reconstruction deduced from the miss-
ing wedge projection set exhibits higher level deviation from the ground truth than its full
range counterpart by about 5≠30%. In addition, one can easily infer that the reconstruc-
tion deviates more from its theoretical values in case of the prismatic NP (figure 4.11) -
that consists of edges - than the spherical NP (figure 4.10). This discrepancy exacerbates,
further, for the reconstruction pertaining to NP that exhibit non-uniform magnetization
(figure 4.12) when compared to the ones with uniform magnetization (figures 4.10, 4.11).

The VFET approach is based on the conventional tomography method called filtered
backprojection (FBP) and only incorporates filter in its framework. Therefore, it is unable
to properly compensate for missing wedge phenomenon in experimental-type incomplete
measurements. Likewise, the VFET methodology does not account for the other impor-
tant factors such as, level of noise in the datasets, what particular type of statistical
distribution does the measurement exhibit. Also, its framework does not allow us to in-
corporate any prior knowledge of the system that we might know beforehand. All these
shortcomings of the VFET approach have motivated us to seek a more sophisticated
tomographic method model called Model Based Iterative Reconstruction (MBIR). The
MBIR approach is based on Bayesian inference and hence, we project that it will resolve
A(r) at a higher accuracy than that deduced from the VFET methodology.

The discourse of proving our claim about the MBIR approach to resolve A(r) begins
by first laying out the basics and the framework of this methodology in the next chapter.
Subsequently, we incorporate the MBIR technique to tomographically reconstruct vector
potential of simulated as well as experimental datasets and make valuable assertions about
our claim.
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Chapter 5

MAP estimate: A Bayesian Inference

Bayesian inference is a statistical method that is based on Bayes’ theorem. It allows
us to update the probability for a hypothesis as more information becomes available. It
is very e�ective in defining the notion of probability for an uncertain event that cannot
be repeated numerous times [65]. For instance, consider an uncertain event of whether
or not Real Madrid, last year’s winner, will win this year’s UEFA champions cup. At
the moment, two clubs (including Real Madrid) remain in this tournament. With this
information, one would guess that there is a fifty percent chance of Real Madrid winning
the cup. However, with the aid of Bayesian inference, one can consider the fact that
ever since the rebranding of UEFA champions league in 1992, no club has won the cup
in consecutive years to statistically come to a conclusion that it is most likely that Real
Madrid will not win this year’s cup. Here, in the light of new information, we used
Bayesian analysis to revise our initial uncertainty and subsequently attempted to give
a more optimal prediction [65, 66]. Such elegant interpretation of probability has made
Bayesian statistic a great tool to solve problems related to diverse areas such as, science,
philosophy, medicine, engineering etc.

In this chapter we elucidate on the statistical framework of maximum a posteriori
(MAP) estimate with the aid of the Bayesian probability. The implementation of this
framework is illustrated with the help of de-noising and de-blurring analysis.
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5.1 Bayes’ theorem

Bayes’ theorem, originally stated by Reverend Thomas Bayes, provides an equation to
update our belief of initial hypothesis when a new piece of evidence becomes available [67].
We incorporate our assumption, before observing the data, in the form of prior probability
as p(x). The e�ect of observed data is expressed through the conditional probability,
p(y/x). Then, using Bayes’ theorem, the uncertainty in x after having observed the data
is relayed in the form of posterior probability, p(x/y) as [68]:

p(x/y) = p(x) ◊ p(y/x)
p(y) . (5.1)

The quantity p(y/x) is also called likelihood function. It expresses how probable the
observed data, y, is for a particular setting of x. There are two fundamentally di�erent
approaches that one can adhere to from here onwards. These are, the frequentist route
and the Bayesian route. In the frequentist paradigm, probabilities represent long run fre-
quencies of events. The validation across the repeated trials forms the basis for modeling
the uncertainty in the frequentist approach [69]. A widely used frequentist estimator is
maximum likelihood, in which x is set such that the value of p(y/x) is maximized. In
various optimization procedures, maximizing the likelihood function equates as taking
negative log of the function. Accordingly, the negative log is determined to systematically
minimize error observed in our measurements.

However, if one were to perform fair coin toss three times and land head each time,
frequentist interpretation would imply that the future coin tosses would also land head.
It clearly shows the limitation of the frequentist viewpoint and this is where the Bayesian
viewpoint comes into play. In the bayesian paradigm, we only consider the observed
data and there is no notion of repeated trials [69]. Moreover, as stated before, prior
knowledge is incorporated and is revised as a posteriori in the light of new evidence. In
our interpretation of Bayes’ theorem, we take a mid way approach by incorporating the
idea of the Bayesian as well as the frequentist viewpoints. We determine a posteriori
for the likelihood function that has been maximized. In other words, we maximize the
a posteriori. This technique is called maximum a posteriori (MAP) estimate [70]. An
operation that guarantees the maximization of any function is taking logarithm. Hence,
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MAP can be mathematically expressed as:

MAP = arg max{p(x/y)},

= arg max{log p(y/x) + log p(x) ≠ log p(y)}.

Since the term p(y) does not depend on x or does not communicate any information on
prior, it is dropped from the optimization. Thus, the resulting MAP estimate expression
comes out to be:

MAP = arg max{log p(y/x) + log p(x)}

= arg min{≠ log p(y/x) ≠ log p(x)}. (5.2)

This concludes a general overview of the Bayes’ theorem and how we seek to utilize
the Bayesian analysis. In the next section, we implement the Bayesian inference to clean
up a noisy data set via deducing its MAP estimate.

5.2 MAP restoration from a noisy measurement

In this section we will explore the use of the MAP estimation to extract a clean data
from its correponding noisy data. The measured data, Y , has been corrupted by additive
Gaussian noise, W . Hence, the noiseless image, X, is related to the noisy image in the
following manner:

Y = X + W, (5.3)

where each random variable of the Gaussian noise is assumed to be independent and
identically distributed (i.i.d). Likewise, the parameters for the Gaussian noise consist of
the mean as 0 and the variance as ‡2

w.
Our aim is to deduce as close of an approximation of X as possible. The estimation of

X is completed by adhering to an analysis comprised of three parts. The first part is the
prior model formulation. Here, we model the distribution of the image before acquiring the
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data based on our prior information. In particular, quadratic and non-quadratic Gaussian
Markov Random Field (MRF) are incorporated in the prior model formulation. The
second part consists of the noise model. Here, we incorporate the probability distribution
of the noise exhibited by the image data. The final part comprises of the MAP estimate.
The MAP estimation part is completed by performing a coordinate descent minimization
of a cost function called iterative coordinate descent (ICD). A thorough account on each
of the aforementioned aspects to determine the MAP estimate is provided under the
following headings:

5.2.1 Prior model

We begin by considering a random field, X, defined on a set of N points. Each pixel Xs,
for s ‘ S, takes on a R+. Furthermore, X is assumed to be a Markov Random Field (MRF).
This assumption comes directly from widely observed application of MRF to solve similar
problems [71, 72, 73, 74]. In particular, MRF’s ability to preserve the intricacies of an
image through its local neighborhood operations makes it a powerful tool to estimate the
clean image [70]. Similarly, the noisy data is assumed to have positive valued measurement
as in the cases of various practical based application. With the assumption of X to be
MRF with strictly positive density, the Hammersley-Cli�ord theorem states that it must
have the form of a Gibbs distribution [75, 76]. Likewise, we assume that the Gibbs
distribution for X uses two nearest neighbor interactions or pairwise cliques [70] such
that:

C = {{i, j}|i ‘ ˆj for i, j ‘ S},

where ˆj denotes the neighbors of i. A depiction of MRF is shown in figure 5.1. The
Gibbs density of the MRF is assumed to have the following form [3]:

p(x) = 1
z

exp
I

≠
ÿ

c ‘ C
Vc(xc)

J

, (5.4)

where z is a normalizing constant known as the partition function, xc is the vector con-
taining values of x on the set of cliques c ‘ C, and Vc(xc) is any functions of xc. Sometimes
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Figure 5.1: An illustration of Markov Random field (MRF) of a pixel Xi in the neighbor-
hood of Xjú. Here, two nearest neighbors are taken into the consideration with Xj,1≠4

as
the first nearest neighbors and Xj,5≠8

as the second nearest neighbors.

the function Vc(xc) is also referred as a potential function. Here, we will use a class of
MRF known as generalized Gaussian MRF (GGMRF) to model the potential function
such that [77, 78, 79]:

p(x) = 1
z(g, p, ‡x) exp

Y
]

[≠ 1
p‡p

x

ÿ

{i,j} ‘ C
gi,j|xi ≠ xj|p

Z
^

\

= 1
z(g, p, 1)‡N

x

exp
Y
]

[≠ 1
p‡p

x

ÿ

{i,j} ‘ C
gi,j|xi ≠ xj|p

Z
^

\ (5.5)

In eq. 5.5, the potential function, |�|p, acts on pairs of pixels with 1 Æ p Æ 2. The choice
of p is critical in coping with the edges of images. When p = 2, the potential function
penalizes large di�erences in neighboring pixels, and so sharp edges are discouraged. On
the other hand, when p = 1 sharp edges are no more costly than smooth edges. Thus,
fine edges are preserved in the image [70]. We deduce the MAP estimates making use
of the Gaussian and the non-Gaussian MRF prior models to depict the aforementioned
e�ect on edges with the choice of a particular value of p. Likewise, ‡x is the variance of
the Gibbs distribution. Finally, gi,j is a noncausal weighing filter that is symmetric and
is normalized such that:
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ÿ

j‘ˆj

gi,j = 1.

5.2.2 Noise model

We use noise model to formulate the likelihood part while determining the MAP
estimate of the clean image. Given that W is i.i.d with 0 mean, the likelihood term for
N data points can be expressed as:

p(y/x) =
Ÿ

i ‘ S

1
(2fi‡2

w)1/2

exp
I

≠(yi ≠ xi)2

2‡2

w

J

= 1
(2fi‡2

w)N/2

exp
I

≠ 1
2‡2

w

ÿ

i ‘ S

(yi ≠ xi)2

J

. (5.6)

5.2.3 MAP estimate and cost function

The joint probability distribution of the prior and the likelihood parts formulate pos-
terior probability. The posterior probability can be maximized in accordance to eq. 5.2 to
determine the MAP estimate of x as:

x̂ = argmin
x

Y
]

[
1

2‡2

w

ÿ

i ‘ S

(yi ≠ xi)2 + 1
p‡p

x

ÿ

{i,j} ‘ C
gi,j|xi ≠ xj|p

Z
^

\ . (5.7)

Thus, the cost function to be minimized comes out to be:

c(x) = 1
2‡2

w

ÿ

i ‘ S

(yi ≠ xi)2 + 1
p‡p

x

ÿ

{i,j} ‘ C
gi,j|xi ≠ xj|p. (5.8)

From eq. 5.7 it is clear that the cost function has to be minimized to compute the
estimate. However, if the optimization does not achieve the exact global minimum, then
the resulting MAP estimate is unstable. Thus, compromising the quality of the solution.
One particular route to ensure a stable MAP estimate is to check if the cost function
is convex in nature or not. Convexity of the MAP cost function, c(x), will ensure the
existence, uniqueness, and stability of the MAP estimate. Moreover, a strictly convex
cost function for each xi in its neighborhood of MRF will ensure that its optimization will
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yield a global minimum that is unique [3, 80, 81]. With this in our mind, let us check if
our cost function in eq. 5.8 is truly a convex function. First, di�erentiating both sizes of
eq. 5.8, one gets:

ˆc(x)
ˆxi

= 1
‡2

w

ÿ

i ‘ S

(xi ≠ yi) + 1
‡p

x

ÿ

{i,j} ‘ C
gi,j|xi ≠ xj|p≠1sign(xi ≠ xj). (5.9)

Likewise, the second derivative of the cost function with respect to xi gives:

ˆ2c(x)
ˆx2

i

= 1
‡2

w

ÿ

i ‘ S

1 + 1
‡p

x

ÿ

{i,j} ‘ C
gi,j|xi ≠ xj|p≠2

> 0. (5.10)

The result in inequality 5.10 confirms that the cost function in eq. 5.8 is indeed strictly
convex in nature. Consequently, the minimization of the cost function yields a globally
minimum and a stable MAP solution. This concludes our analysis on the cost function.
We proceed to elucidate on a gradient decent method called iterative coordinate decent
(ICD) to minimize the cost function.

5.2.4 Iterative Coordinate Descent (ICD)

Let us consider the case of the Gaussian MRF prior (p = 2) such that the cost function
of each pixel can be expressed as:

c(xi) = 1
2‡2

w

ÿ

i ‘ S

(yi ≠ xi)2 + 1
2‡2

x

ÿ

{i,j} ‘ C
gi,j(xi ≠ xj)2. (5.11)

Now, the ICD [82] techique comes into the picture by sequentially minimizing the cost
function of 5.11 with respect to each pixel in each iteration. Accordingly, di�erentiating
the expression in eq. 5.11 and solving for the minimum xi yields:

ˆc(xi)
ˆxi

= yi ≠ xi

‡2

w

.(≠1) ≠ 1
‡2

x

ÿ
gi,j(xi ≠ xj) set= 0;

∆ xi + ‡2

w

‡2

x

ÿ
gi,jxi = yi + ‡2

w

‡2

x

ÿ
gi,jxj;
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∆ xi =
yi + ‡2

w

‡2
x

q
gxj

(1 + ‡2
w

‡2
x

)
. (5.12)

Eq. 5.12 determines how the ICD methodology updates each pixel for each iteration.
Additionally, the ICD updates form a monotone decrease sequence. This statement can
be proven by the method of induction. ’ i s.t. i ‘ S, xi,2 ≠ xi,1 = ≠‡2

w

‡2
x

q
gi,j(xi,2 + xi,1) <

0 ∆ xi,2 < xi,1. Here xi,1 and xi,2 are values of the pixel xi in the first and second iteration
respectively. Now, suppose that the monotone decreasing sequence of the ICD is true until
the kth iteration s.t. xi,k < xi,k≠1

. Next, for (k + 1)th iteration, one gets:

Figure 5.2: Schematic of determining minimum of a convex function using iterative coor-
dinate descent (ICD) technique.

xi,(k+1)

≠ xi,k = ‡2

w

‡2

x

{≠
ÿ

gi,j(xi,(k+1)

≠ xj) +
ÿ

gi,j(xi,k ≠ xj)}

= ‡2

w

‡2

x

{≠
ÿ

g(xi,k + xi,(k+1)

)}

< 0.
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(a) (b)

(c)

Figure 5.3: (a) Noisy image with additive Gaussian noise of ‡2

w = 162. (b) MAP estimate
of X using Gaussian prior model. (c) Illustration of minimization of the cost function
using the ICD technique.
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Hence, proving the fact that the ICD updates indeed form a monotonically decreasing
sequence while minimizing the cost function. This attribute of ICD is visually depicted
in figure 5.2. Finally, the ICD update is completed by imposing the constraint that each
pixel takes on only the positive values as elucidated in algorithm 5.2.

The only parameters that are yet to be declared to determine the MAP estimate are
the variances of the Gaussian and the Gibbs distributions. An experimentalist, usually,
has a good insight into the level of noise in the measurements. Accordingly, depending
upon the nature of the problem and the measurement, the variance for either prior or
noise model is assigned. Still, one may encounter cases where the variance of neither
of the two models be remotely known or could be gauged from the past measurements.
In such scenario, the joint posterior distribution can be optimized with respect to the
variance to deduce its estimate. For instance, the maximum likelihood estimator for the
scale parameter ‡x for the GGMRF comes out to be:

‡̂p
x = 1

N

ÿ

{i,j} ‘ C
gi,j|xi ≠ xj|p.

Having defined the statistical framework and the parameters required to determined
the MAP estimate of X, we now proceed to show the implementation of the framework.
For the same purpose, consider the variance of the Gaussian noise in the measurement,
Y , to be 162 (figure 5.3a). Next, following the pseudo codes to perform the ICD of the
cost function - delineated in algorithm 5.2 - we determine the MAP estimate of X. Thus
obtained result is depicted in figure 5.3b. Likewise, decay of the cost as the iteration
proceeds is depicted in figure 5.3c. The MAP estimate clearly shows that the initial
noise in figure 5.3a has been subdued. However, traces of coarseness are still event in the
estimate. For the same reason, we will now proceed to deduce the MAP estimate with
non-Gaussian prior model (i.e. p ”= 2) and verify that choosing the value of p closer to 1
indeed improves the quality of the estimate.

5.2.5 MAP estimate with non-Gaussian prior

A non-Gaussian MRF prior model requires us to minimize the quantity in eq. 5.8 for
values of p other than 2. In particular, it involves solving for xi in the eq. 5.9. This
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expression cannot be solved directly by means of analytical method. Consequently, we
have to make use of some numerical methods.

One particular technique that has been around to solve a problem of such nature is
the Newton-Raphson method or the line search method [3]. In this method, we numer-
ically estimate the minima of the convex function, c(xi), with respect to the pixel, xi,
within the pixel’s neighborhood of the MRF. In addition, we can adopt either half in-
terval line-search method or bisection method to solve for xi in the interval, [a, b] where,
a = minimum{xi, xj for j ‘ ˆj} and b = maximum{xi, xj for j ‘ ˆj}. A pseudo code to
implement the bisection method is provided in algorithm 5.1.

Algorithm 5.1 Bisection Method
• Initialize a and b so that cÕ(a) · cÕ(b) Æ 0.

• di� = abs(cÕ(b) ≠ cÕ(a)).

• While (di� > threshold) {

m Ω (a + b)/2.

If cÕ(m) Æ 0, then a Ω m.

If cÕ(m) > 0, then b Ω m.

di� = abs(cÕ(b) ≠ cÕ(a)).

}

It is not di�cult to infer that minimizing the cost function using the Newton-Raphson
method is computationally expensive to implement. For the same reason, we resort to a
di�erent method called majorization technique. The majorization technique allows non-
quadratic optimization problems to be converted into iterative quadratic optimization
[3, 83]. More specifically, we replace the potential function, fl(�) where, fl(�) = |�|p, by
a simpler quadratic surrogate/substitution function, fl(�; �Õ), such that the minimum of
both the functions corresponds to the same xi in their respective codomains [84, 85]. A
depiction of this procedure is shown in figure 5.4. A more detailed analysis on surrogate
functions and its derivations can be found elsewhere in reference [3]. Nonetheless, below
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Figure 5.4: A depiction of the intuition behind the formulation of the substitute function
of the non-quadratic potential function [3].

are the final results for the symmetric bound surrogate function:

fl(�; �Õ) =
Y
]

[

flÕ
(�

Õ
)

2�

Õ �2 if �Õ ”= 0,
flÕÕ

(0)

2

�2 if �Õ = 0.
(5.13)

Again referring to table 7.1 in reference [3], one finds the corresponding surrogate function
for q-Generalized Gaussian Markov Random Field (q-GGMRF) to be:

flÕ(�Õ)
2�Õ = |�|p≠2

2‡p
x

--- �

T ‡
x

---
q≠p

3
q
p

+
--- �

T ‡
x

---
q≠p

4

3
1 +

--- �

T ‡
x

---
q≠p

4
2

, (5.14)

flÕÕ(0)
2 = 1

p‡p
x

for q = 2.

Having determined the surrogate potential function, fl(�; �Õ), we can proceed to construct
a surrogate MAP cost function in the following manner [3]:
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c(x; xÕ) = 1
2‡2

w

.(yi ≠ xi)2 +
ÿ

gi,jfl(xi ≠ xj; xÕ
i ≠ xÕ

j)

= 1
2‡2

w

.(yi ≠ xi)2 +
ÿ

g̃i,j(xi ≠ xj)2, (5.15)

where,

g̃i,j Ω gi,j
|x

i

≠x
j

|p≠2

2‡p

x

--- x

i

≠x

j

T ‡

x

---
q≠p

3
q

p

+

--- x

i

≠x

j

T ‡

x

---
q≠p

4

3
1+

--- x

i

≠x

j

T ‡

x

---
q≠p

42 for — ”= 0,

g̃i,j Ω gi,j
1

p‡p

x

for — = 0, q = 2.

Thus derived surrogate cost function can, now, be analytically minimized with respect to
xi to deduce the MAP estimate for the non-Gaussian MFR prior as:

xi = yi + 2‡2

w

q
g̃ijxj

1 + 2‡2

w

q
g̃ij

. (5.16)

The pseudo code to determine the MAP estimate for the non-Gaussian prior model
has been jointly provided with the Gaussian one in algorithm 5.2. Following the same
algorithm, we minimize the cost function for p = 1.1 and evaluate the MAP estimate.
The result from this implementation is illustrated in figure 5.5. A thorough comparison
of the MAP estimates from the Gaussian and the non-Gaussian priors reveals that the
result from the later yields an estimate of superior quality. Thus, confirming our initial
claim on the choice of p. This confirmation is of great importance to gain an insight
for a better edge reconstruction while performing the tomographic reconstruction using
the Bayesian statistical framework. A more detailed analysis on the prior model for the
tomographic reconstruction will be provided in the next chapter. For now, we proceed to
the next section on the Bayesian Framework that is devoted to de-blurring.

5.3 MAP restoration from a blurry and noisy mea-
surement

In this section, we aim to restore a clean image, X, from a measurement that is blurry
as well as noisy. The relation between the clean image, and the blurry/noisy measurement
can be expressed as:
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Algorithm 5.2 ICD Algorithm to de-noise using Gaussian and non-Gaussian prior model
• For each i ‘ S

xi Ω yi.

• Select or estimate the values of ‡w and ‡x.

• For k in 1 to K

1. For each i ‘ S

if (Gaussian prior == TRUE){

xi Ω max
Y
]

[0,
y

i

+

‡

2
w

‡

2
x

q
g

i,j

x
j

(1+

‡

2
w

‡

2
x

)

Z
^

\

}

if (non-Gaussian prior == TRUE){

set 1 < p < 2 and q = 2,

call_g̃ij()
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• End

• call_g̃ij(){
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(a) (b)

(c)

Figure 5.5: (a) Noisy image with additive Gaussian noise with ‡2

w = 162. (b) MAP esti-
mate of X using non-Gaussian prior model with p = 1.1. (c) Illustration of minimization
of surrogate cost function using the ICD.
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Y = HX + W, (5.17)

where H is a circulant-block-circulant matrix that implements a 2D shift invariant filter
applied with circular boundary condition. A particular instance of such matrix could be
of the following impulse response [86]:

S

WWWWWWWWWWU

1/81 2/81 3/81 2/81 1/81
2/81 4/81 6/81 4/81 2/81
3/81 6/81 9/81 6/81 3/81
2/81 4/81 6/81 4/81 2/81
1/81 2/81 3/81 2/81 1/81

T

XXXXXXXXXXV

.

The main reason behind performing the MAP restoration from the blurry and noisy
image is due to the problem’s resemblance to the tomographic reconstruction problem.
More specifically, the set up of the tomography problem is also of the form Y = AfX,
where Af is the forward projection operator and Y is the sinogram measurements. A more
detailed description on the tomographic reconstruction using the MAP estimate will be
provided in the next chapter. For now, we proceed with the MAP restoration of X from
the blurry/noisy image.

First, the prior model for the blurry and noisy measurements is formulated in the
similar manner that for the noisy measurements with the aid of eq. 5.5. Moreover, we
incorporate the q-GGMRF surrogate potential function from eqs. 5.13 and 5.14 to model
the prior distribution such that the cost function can be analytically minimized for the
values of p in the range (1, 2). The part where the MAP estimate framework of the de-
blurring problem di�ers from the de-noising problem is the exponential term of the noise
model. Due to the blurring kernel, H, the x term of the Gaussian noise distribution in
eq. 5.6 gets replace by Hx. Accordingly, the MAP estimate of the blurry image has the
form:

x̂ = arg min
xØ0

Y
]

[
1

2‡2

w

||y ≠ Hx||2 +
ÿ

i,j‘C
g̃i,j(xi ≠ xj)2

Z
^

\ , (5.18)

where g̃i,j assumes the same values as in eq. 5.15. Likewise, x Ø 0 indicates that the
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optimization is performed adhering the fact that the measurements take only positive
values. Then the surrogate cost function to be minimized has the form:

c(x) = 1
2‡2

w

||y ≠ Hx||2 +
ÿ

i,j‘C
g̃i,j(xi ≠ xj)2. (5.19)

Because we iteratively minimizing the cost function, let us define new variables, u and v

that represent the updated value and the value from the previous iteration, respectively,
for each pixel. Next, define an error vector, e = y ≠ Hx, such that the cost function can
be written as:

c(u) = 1
2‡2

w

||e ≠ Hú,i(u ≠ v)||2 + 1
2‡2

x

ÿ

i,j‘C
g̃i,j(u ≠ xj)2

= 1
2‡2

w

||e ≠ Hú,i–||2 + 1
2‡2

x

ÿ

i,j‘C
g̃i,j(u ≠ xj)2, (5.20)

where Hú,i indicates the ith column of the matrix H and – = u ≠ v. Now, consider the
first term of the cost function, c(u), and perform the Taylor series expansion of the term
around the point – = 0 to get:

f(–) = constant + ≠etHú,i–

‡2

w

+ ||Hú,i||2–2

2‡2

w

. (5.21)

Substituting the f(–) term from eq. 5.21 back to eq. 5.20, one gets:

c(u) = constant + ◊
1

(u ≠ v) + 1
2◊

2

(u ≠ v)2 +
ÿ

i,j‘C
g̃i,j(u ≠ xj)2.

Di�erentiating the expression w.r.t u and solving for the minimum result, one gets:

u = ◊
2

v ≠ ◊
1

+ 2 q
g̃i,jxj

◊
2

+ 2 q
g̃i,j

, (5.22)

where ◊
1

= ≠etHú,i

‡2
w

, ◊
2

= ||Hú,i

||2
‡2

w

and g̃i,j assumes the same values as in eq. 5.15.
A summary of the MAP restoration of X from the burry and noisy measurement

with the aid of q-GGMRF prior model is elucidated in algorithm 5.3. Following the
same pseudo code, we performed the de-blurring analysis of the blurred and noisy image
depicted in figure 5.6a. The restored MAP estimate of X is delineated in figure 5.6b.
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Likewise, figure 5.6c depicts how the cost function sequentially decreases over the course
of the ICD updates.

Algorithm 5.3 ICD Algorithm to de-blurr an image using q-GGMRF surrogate prior
model

• For each i ‘ S

xi Ω yi

• Select the value for p in the range (1, 2] and set q = 2

• Select or estimate the values of ‡w and ‡x

• Initialize e Ω y ≠ Hx

• For k in 1 to K

1. For each i ‘ S

v Ω xi

◊
1

Ω ≠etHú,i
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◊
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• End

• call_g̃ij(){
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}
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(a) (b)

(c)

Figure 5.6: (a) Blurry image with additive Gaussian noise (‡2

w = 162). (b) MAP estimate
of X using q-GGMRF surrogate prior model with p = 1.1. (c) Illustration of minimization
of surrogate cost function using the ICD techinque.
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To sum up, this chapter delineates on how the Bayes’ theorem can be used to in-
corporate the prior information about a system from which the measurements are being
obtained. The Bayes’ theorem comprises of prior and likelihood terms. The prior part
allows us to incorporate valuable a-priori information about the object being studied.
Likewise, the likelihood term enables us to model the probability distribution of the ob-
served data conditioned under the assumed prior. The joint probability distribution of
the prior and the likelihood probabilities forms the posteriori probability. The posterior
probability is iteratively maximized to deduce a most probable estimate. This technique
is called maximum a posteriori (MAP) estimate. It turns out that the MAP estimation
is determined by minimizing the cost function. For the same reason, the convexity of the
cost function is crucial to ascertain the existence, uniqueness and stability of the MAP
estimate. Finally, choice of the value of parameter p in the prior model plays a significant
role in terms the quality of the MAP restoration. In particular, when the value of p is
1.1, 1.2 or closer to 1, it is observed that the MAP restoration is more e�cient in edge
preservation and boundary distinction. However, when the value of p ”= 2, the cost func-
tion cannot be minimized analytically by the usual calculations. Consequently, we make
use of the majorization technique to analytically solve the prior model in which the value
of p falls in the range of (1, 2).

This concludes our account on the Bayesian inference to deduce the MAP estimate.
In the next chapter, we implement the statistical framework of the MAP estimation
technique to resolve tomographic problems. It elucidates on the Bayesian framework for
scalar as well as vector reconstructions.
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Chapter 6

Tomographic Reconstruction Using
MBIR

In chapter 3, we concluded that it is not possible to reconstruct the initial density
with cent percent accuracy because of the availability of only a discrete set of projections.
Moreover, convectional tomography methods, such as the Filtered Back Projection (FBP)
approach, although yield a good estimate with a complete set of projections, the recon-
struction is severely underdetermined with an incomplete set of measurements. Likewise,
chapter 4 concludes that the reconstruction obtained from the Vector Field Electron To-
mography (VFET) approach significantly deviates from the theoretical values due to its
inability to compensate for missing wedge of information. In view of these findings, we
have resorted to adopt a more robust and statistical based tomographic reconstruction
framework called Model Based Iterative Reconstruction (MBIR) [3].

Over the years, the MBIR approach has been extensively explored for the scalar re-
construction. The results from the MBIR approach show that it substantially improves
the reconstruction quality [87, 88, 89]. Based on the success of the MBIR approach at the
scalar interface, we hypothesize that the MBIR technique can overcome the shortcomings
of the VFET methodology and resolve the vector reconstruction problem with a high
precision all across the spatial region.

In general, the MBIR approach seeks a tomographic solution that best matches the
probabilistic behavior of the data. This process is aided by introducing a prior distri-
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bution in the framework that reflects the knowledge or beliefs concerning the types of
values that are acceptable as estimates of the original sample [90]. The MBIR framework
achieves the aforementioned solution via minimizing a cost function dictated by the mea-
surements and the system’s prior information [3, 70]. In particular, MBIR updates each
pixel in each iteration by minimizing the pixel’s associated cost. Eventually, it leads to
the determination of a global minimum of the cost function and thereby, deducing the
most probable estimate [82].

In this chapter, we first derive a generic statistical framework for the MBIR approach.
Then we implement the MBIR technique to resolve a 2D scalar tomography problem.
Subsequently, we expand the MBIR method to reconstruct the solenoid part of a 2D
vector field. This portion serve as a proof-of-concept that the underdetermined vector
tomography results, like scalar tomography based densities, can be improved with the
MBIR approach. Finally, we implement the MBIR approach to resolve 3D vector potential
problems. Again, we employ the RMSE analysis - as explained in chapter 3 - to perform a
direct comparison of results obtained from the VFET approach with those deduced from
the MBIR approach. We show our results for simulated as well as experimental datasets.

6.1 Formulation of the MAP estimate for the tomo-
graphic reconstruction

Similar to the de-noising and the de-blurring analysis in chapter 5, statistical tomo-
graphic reconstruction requires optimization of the cost function derived from the joint
probability distribution of the likelihood function and the prior distribution. Accordingly,
we begin by assuming that the data measured from the experiment obeys Poisson’s dis-
tribution. In fact, measurements acquired from TEM experiments - for magnetic vector
potential reconstruction - observe Poisson’s distribution [35]. Likewise, let sample, x, be
of N -dimensional vector and projection data, y, be of M -dimensional vector. Also, define
Hij as the probability that an electron transmitted through pixel j is registered in the
ith detector. Then the measured data y, as per Poisson distribution with parameter Hiú,
gives the likelihood function as [88, 90]:
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P(Y = y|x) =
MŸ

i=1

(Hi,úx)y
ie≠H

i,úx

yi!
, (6.1)

where, Hiú is the ith row of the projection matrix. Using the convention, pi = Hiúx and
taking the log of the expression, we get:

log P(y/x) =
Mÿ

i=1

yi log(pi) ≠ pi ≠ log(yi!). (6.2)

Here, the log likelihood function is di�erentiable and is strictly convex. Accordingly, the
maximum likelihood (ML) estimation of x from y yields the optimization problem to take
the form:

x̂ml = arg min
x

Mÿ

i=1

(pi ≠ yi log pi).

= arg min
x

Mÿ

i=1

f(pi), (6.3)

where, f(pi) = pi ≠ yi log pi.

Next, we formulate prior model, p(x), and use Bayes’ theorem to determine posterior
probability. A particular prior model that has proven to be useful in image processing
as well as in tomographic reconstruction is the Markov Random Field (MRF) [71, 72,
73, 74]. The success of using MRF stems from the fact that it allows us to establish a
correlation between the neighboring pixels [91]. Furthermore, under some weak condition,
Hammersley-Cli�ord states that a random field is a MRF if and only if it forms a Gibbs
distribution. Hence, a general form of Gibbs MRF to incorporate the prior model can be
mathematically expressed as:

p(x) = 1
z

exp
Y
]

[≠
ÿ

{j,k}‘C

bjkfl(xj ≠ xk)
Z
^

\ , (6.4)

where C is the set of all neighboring pixel pairs, bjk is the element of the noncausal
predictor matrix b linking pixels j and k. Here, b is a symmetric matrix and is invariant
i.e. same for each pixel j [3, 88]. Likewise, fl(·) denotes potential function and is of
the form |�|p, as shown in expression 5.5 for the case of Generalized Gaussian Markov
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Random Field (GGMRF). Now, combining the log of the prior distribution with the
maximum likelihood expression in 6.3, we determine the maximum a posteriori (MAP)
estimate of the sample, x, in the following manner:

x̂
MAP

= argmin
x

Y
]

[

Mÿ

i=1

f(pi) +
ÿ

{j,k}‘C

bjkfl(xj ≠ xk)
Z
^

\ . (6.5)

The expression for the MAP estimate in eq. 6.5 gives the cost function to be:

c(x) =
Mÿ

i=1

f(pi) +
ÿ

{j,k}‘C

bjkfl(xj ≠ xk). (6.6)

It can easily be verified that the cost function in eq. 6.6 is strictly convex. The convexity of
the cost function allows us to perform Iterative Coordinate Descent (ICD), similar in the
manner described in chapter 5, to deduce a MAP estimate that is stable and is globally
minimum. Generally, the ICD procedure is initialized with the filtered backprojection
result as the starting low cost value for the MAP estimate [88]. This aids in a faster
convergence to the global minimum as oppose to initializing the cost function with a
random estimate. However, before proceeding straight into the cost minimization task,
we first simplify the log likelihood part to facilitate the optimization. In particular, we
compute the first two terms of the Taylor series expansion of the log likelihood. Then, the
first and the second partial derivatives of the log likelihood term are evaluated at p = p̃

(where, p̃ = Hx
FBP

) as:

f Õ(p̃i) = 1 ≠ yi

p̃i

; (6.7)

f ÕÕ(p̃i) = yi

(p̃i)2

. (6.8)

Next, assuming y > 0, the Taylor series expansion of f(p̃) at p̃ = y is evaluated to be:

f(p̃i) = f(yi) + f Õ(yi)(p̃i ≠ yi)
1! + f ÕÕ(yi)(p̃i ≠ yi)2

2!

= constant + 0 + (yi ≠ p̃i)2

2yi

. (6.9)
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Now we focus on the prior term of the cost function. It has already been established in
chapter 5 that the non-quadratic prior model are more equipped to preserve edges than
the quadratic prior model (with p = 2). However, minimization of the non-quadratic
cost function requires implementation of numerical method like Newton-Raphson tech-
nique. Since Newton-Raphson method is computationally expensive, we make use of the
majorization technique to substitute the non-quadratic cost function with a quadratic
function. One can take a look at figure 5.4 to get an insight of how the majorization
technique works. Subsequently, the substitute/surrogate cost function, to be minimized,
can be expressed as::

c(x; xÕ) =
Mÿ

i=1

f(p̃i) +
ÿ

{j,k}‘C

bjkfl(xj ≠ xk; xÕ
j ≠ xÕ

k). (6.10)

As in the case of image processing analysis performed in section 5.2.5, we model the po-
tential function, fl(�), using q-Generalized Gaussian Markov Random Field (q-GGMRF).
Accordingly, referring to table 7.1 in reference [3], the surrogate cost function using q-
GGMRF prior model can be expressed as:

c(x; xÕ) =
Mÿ

i=1

f(p̃i) +
ÿ

{j,k}‘C

b̃jk(xj ≠ xk)2, (6.11)

where,

b̃jk =

Y
________]

________[
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|xÕ
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Õ
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+
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Õ
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Õ
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B2 for � ”= 0

bjk
1

p‡p

x

for � = 0

. (6.12)

p, q, T, and ‡x are q-GGMRF parameters. In our implementation we set q = 2 and
p = 1.001 to facilitate edge preserving reconstructions. Similarly, ‡x is the variance of the
prior distribution and its value is set to achieve a balance between noise and resolution.
Finally, the constant T determines the approximate threshold of transition between low
and high contrast regions.

The cost function in eq. 6.11 can be minimized using either global or local techniques
[70]. For our implementation, we adhere to the ICD [82] approach that locally minimizes
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the cost function in each iteration. In view of the local based minimization, the cost
function for each pixel, xj, can be written as:

c(xj) = f(p̃i) +
ÿ

k‘ˆj

bjkfl(xj ≠ xk; xÕ
j ≠ xÕ

k)

= ||yi ≠ Hi,úxj||2

2yi

+
ÿ

k‘ˆj

b̃jk(xj ≠ xk)2

= ||yi ≠ Hi,úxj||2W +
ÿ

k‘ˆj

b̃jk(xj ≠ xk)2, (6.13)

where W = diag {1/y
1

, 1/y
2

, . . . , 1/yM} and is more popularly known as diagonal noise
weighing matrix in tomographic problems. For our implementation we set W as an
identity matrix. Subsequently, the cost function in eq. 6.13 can be simplified as:

c(x; xÕ) = 1
2 ||y ≠ Hx||2 +

ÿ

k‘ˆj

b̃jk(xj ≠ xk)2. (6.14)

The cost function in eq. 6.14 is quadratic and so its minimum can be expressed in closed
form. Accordingly, we proceed to di�erentiate the surrogate function and solve for mini-
mum xj to yield each pixel update as:

xj Ω
HT y + 2 q

k‘ˆj
b̃jkxk

1 + 2 q

k‘ˆj
b̃jk

. (6.15)

This concludes a general overview of tomographic reconstruction using the MAP based
framework or the MBIR approach. In the forthcoming sections, we make use of the MBIR
technique to perform the 2D and the 3D tomographic reconstruction.

6.2 On 2D interface

In order to computationally incorporate the MBIR approach, we first summarize the
theoretical framework of the approach in the form of a pseudo code. The pseudo code is
provided in algorithm 6.1. An important point to notice here is that the error sinogram,
e, is not updated after each pixel update. However, this is not the case in a typical
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Algorithm 6.1 Fourier Transform-based MBIR method for scalar tomography
• initialize u Ω FBP(y)

• v Ω HT y

• while not converged do

for j = 1 to N do

for k‘ˆj of uj determine b̃jk using eq. 6.12

uj Ω (vi + 2 q

k‘ˆj
b̃jkuj)/(1 + 2 q

k‘ˆj
b̃jk)

end for

end for

e Ω y ≠ Hu

u Ω u + HT e

• end while

MBIR based scalar reconstruction. Standard MBIR based tomographic reconstruction
incorporates forward projection that is entirely calculated in real space. Most importantly,
it performs forward projection of a single pixel or a voxel such that the error sinogram
can be updated after each pixel update [92]. On the contrary, our forward projection
model is based on the Fourier Slice Theorem that determines the forward projection of
an entire object. Hence, updating the error sinogram after each pixel update would mean
performing FFT and inverse FFT of an entire object, which would be computationally
infeasible. For the same reason, we update the error sinogram after all N pixels have been
updated namely batch process update. The Fourier based forward model is formulated
to make the framework compatible to impose Coulomb gauge constraint when we, later,
extend it for the reconstruction of the vector potential.

Adhering algorithm 6.1, we performed the tomographic reconstruction of the 2D
Shepp-Logan phantom. The q-GGMRF parameters parameters used in this implementa-
tion comprised of p = 1.1, T = 0.001 and ‡x = 0.8. We used a 3 ◊ 3 non-causal weighting
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Figure 6.1: Illustration of minimization of surrogate cost function using ICD technique
to deduce the MBIR estimate of Shepp-Logan phantom in fig. 6.2(e).

matrix, bjk, to incorporate the influence of two nearest neighbors for any given pixel. The
first nearest neighbors are weighted by a factor of 1/6 while the second nearest nearest
neighbors are weighted by a factor of 1/12. The decreasing trend of the surrogate cost
function over several iterations is shown in figure 6.1. Likewise, the corresponding MAP
estimate obtained after the cost minimization is depicted in figure 6.2(e). We have com-
piled the MBIR result along with the results from other tomography methods such as
Backprojection (BP), Filtered Backprojection (FBP), Simultaneous Iterative Reconstruc-
tion Technique (SIRT) - discussed in chapter 3 - for a direct comparison between di�erent
tomography methods. Also, we have changed the color scale from gray scale to red-blue
scale; so that the accuracy of the MBIR approach to resolve the initial density can be
realized even by a quick glance.

A thorough analysis of figure 6.2 reveals that the result obtained from the BP approach
(figure 6.2(b)) agrees the least with the true phantom. The RMSE value of the BP result
was calculated to be 0.4635. Such high RMSE value was expected as BP method is
the simplest form of reconstruction technique which does not incorporate any filter or
iterative technique in its model. Noise seen in the BP result is considerably subdued
in the FBP result (figure 6.2(c)). Similarly, the RMSE value decreased to about 0.1586
for the FBP result. Reconstruction from the SIRT method (figure 6.2(d)) shows further
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Figure 6.2: An illustration of reconstructed results of the (a) 2D Shepp-Logan phantom
from di�erent tomographic methods. The tomographic methods we have used comprises of
(b) Back Projection [BP], (c) Filtered Back Projection [FBP], (d) Simultaneous Iterative
Reconstruction Technique (SIRT), and (e) Model Based Iterative Technique (MBIR).
These images (a-e) have values in the range 0 (corresponding to blue) to 1 (corresponding
to red). The final plot, (f), consists of Root Mean Square Error (RMSE) analysis of the
results obtained from aforementioned tomographic methods.
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improvement as ring artifact, seen in the FBP result, is entirely diminished. The RMSE
value corresponding to the SIRT result was determined to be 0.0793. As explained in
section 3.1.4, the e�ectiveness of the SIRT approach over analytical method like the FBP
approach stems from the fact that the SIRT approach iteratively works to minimize error
sinogram. However, the ill poised nature of tomography problems restricts the SIRT
strategy to exhibit semi-convergence [93, 94]. Accordingly, improvements seen in the first
few SIRT iterates, start to deteriorate as the number of iterations increases due to noise
propagation. Finally, the reconstruction obtained from the MBIR approach (figure 6.2(e)),
visually, looks to be the most accurate reconstruction when compared to the results from
other methods. This result is obtained after minimizing its corresponding cost function
(figure 6.1), is globally minimum and is unique. Hence, the coarseness seen along the
inner region of the locally converged SIRT result is no longer visible in the MBIR result.
Also, the superiority of the MBIR approach over any of the other tomography methods
can be discerned from the RMSE analysis whereupon the MBIR result was deemed to
exhibited an error of only 0.0213.

We proceed to reconstruct the solenoid component of 2D fluid flow within a circle
(figure 4.2a) making use of the MBIR approach. Thus obtained MAP estimate of the
solenoid part is illustrated in figure 6.3(b) along with its theoretical, in figure 6.3(a), and
its FBP, in figure 6.3(c), based solenoid counterparts. We illustrate the results in terms of
contour plots. Accordingly, readers can qualitatively gauge how the irregularities in the
contours of the solenoid part of the field from the FBP result have been regularized with
the aid of the MBIR approach. Moreover, line plot comparison in figure 6.3(d) delineates
the accuracy of the MBIR approach over the FBP method to ascertain correct values of the
solenoid. In regards to the quantitative gain, the NRMSE of the FBP based reconstruction
was determined to be 4%, which decreased to about 3% with the MBIR approach. There
is not much of gain in terms of NRMSE analysis due to the fact that the FBP approach,
here, does a good job in estimating the true value at the first place. This is primarily owing
to the fact that the initial field has contribution from only the x component and is 2D
in nature. Nonetheless, the ability of the MBIR approach to regularize the reconstructed
solenoid part to deduce a close approximation of the theoretical values is a promising
result. It falls along the lines of our hypothesis that the MBIR approach resolves the 3D
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magnetic vector potential, A(r), more accurately than the one deduced from the VFET
approach. Accordingly, we move on from proof-of-concept type implementation of the
MBIR approach to, truly, reconstruct A(r) using the approach and test our claim in the
next section.

6.3 On 3D interface (Magnetic Vector Potential)

In this section, we provide a thorough outline on how to incorporate the MBIR frame-
work for the reconstruction of all three components of the magnetic vector potential,
A(r). Thus formulated framework is used to reconstruct A(r) from x tilt and y tilt series
of synthetic Nanoparticles (NPs). Next, the MBIR framework is used to deduce A(r)
of experimental datasets such as permalloy (Py) square island and Py lattice. Finally, a
detailed comparative study is performed on the reconstructions obtained from the MBIR
approach and the VFET approach. Based on the study, we give the final verdict on our
hypothesis.

6.3.1 MBIR framework for vector reconstruction

The MBIR framework for vector field reconstruction revolves around solving an op-
timization problem similar in form to the one expressed in eq. 5.2. Specifically, we seek
to formulate a framework that will iteratively work to minimize the sum of the squared
di�erences between the data and its estimated forward projection, in combination with a
regularizing prior function, P(x). However, in contrast to scalar reconstruction, we need
to resolve three di�erent components in a vector reconstruction. The projection measure-
ments of a vector potential encompass more than one component as shown by eqs. 4.21
and 4.22. Hence, it is not possible to take just one of the tilt series and minimize with
respect to one of the vector components to reconstruct the potential field. In fact, the
VFET approach in 4.2.2 section has shown us that the three components of the vector
potential can only be reconstructed if we have measurements from two di�erent tilt series
and if we impose the Coulomb gauge constraint [62]. Accordingly, our generic MBIR
framework from section 6.1 needs to be reformulated to account for input measurements
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Figure 6.3: Reconstruction of (a) solenoid part (Â) of a 2D vector field using (b) the
filtered backprojection (FBP) approach and (c) the MBIR approach. Plot (d) illustrates
line plot comparison of solenoid values at x = 0 from the two approaches.
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Figure 6.4: Flowchart illustrating the use of the MBIR technique to reconstruct the mag-
netic vector potential, A(r). First, the values for A(r) are initialized using the VFET
approach. Next, A(r) is forward projected in x and y tilt series (Ux and Uy). Thus deter-
mined tilt series is subtracted from the sinogram measurements (Ïm,x and Ïm,y) obtained
from experiments. Subsequently, the contribution of error sinogram to each component of
vector potential is evaluated by employing the coulomb gauge condition. The error sino-
gram is inverted and is added to initial A(r) value to update vector potential. Finally,
the updated A(r) is passed on to the forward projection interface and the loop continues
until the cost function in eq. 6.16 is minimized to yield A

MAP

.
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Figure 6.5: A 3D illustration of first (green ball), second (purple ball) and third (black
ball) nearest neighbors of a voxel (red ball), respectively.

from the two tilt series and imposition of the gauge constraint.
We begin MBIR based vector reconstruction by defining input data, Ïm = [Ïm,x, Ïm,y] ,

and subsequent estimates of magnetic vector potential, x = [xx, xy, xz]. Let H = [Hx, Hy]
where Hx and Hy are operators for forward projection of a vector in counter clockwise
direction for x tilt and y tilt series, in accordance to eqs. 4.21 and 4.22, respectively. Then
the forward projection of x yields, Hx = [Hx, Hy] x = [Ux, Uy]. We define a deconvolution
operator, D = [Dx, Dy, Dz], that will serve to evaluate contributions of magnetic phase
shift (as per eq. 4.30 and 4.31) and A(r) to each component of vector potential separately.
Hence, any of the components Dú of deconvolution operator applied on phase shift yields
DúÏm = [DúÏm,x, DúÏm,y] = [Ïm,x,ú, Ïm,x,ú] ; and its application on A(r) yields DúA(r) =
Aú.

Next, we define the prior model analogous to the one defined in section 6.1. We use
a q-GGMRF as the potential function that minimizes the cost function for a given voxel
based on the di�erence with its neighboring voxels. However, contrary to the 2D MBIR
approach, we incorporate the influence of three nearest neighbors (fig. 6.5) for any given
voxel while evaluating the potential function fl(·). Accordingly, the non-causal weighting
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matrix, bjk, now contains 3 ◊ 3 ◊ 3 values with first, second and third weighing factors
assigned as, 9/132, 9/264, and 9/396, respectively. Finally, we again make use of the
surrogate majorization technique such that the q-GGMRF potential function assumes a
quadratic form for p ”= 2.

Having defined all the pertinent variables, we can now express MBIR-based vector
reconstruction as the solution to the following optimization problem:

x̂ = argmin
x

Y
]

[
1
2 ÎDÏm ≠ D(Hx)Î2 +

ÿ

k‘ˆj

b̃jkD(x(j) ≠ x(k))2

Z
^

\ , (6.16)

where bjk is determined using eq. 6.12. In practice, we do not directly solve eq. 6.16.
Instead we make use of deconvolution operator, D, and de-convolve eq. 6.16 into three
MAP estimation problems as:

x̂x = argmin
x

Y
]

[
1
2 ÎDxÏm ≠ Dx(Hx)Î2 +

ÿ

k‘ˆj

b̃jkDx(x(j) ≠ x(k))2

Z
^

\ , (6.17)

x̂y = argmin
x

Y
]

[
1
2 ÎDyÏm ≠ Dy(Hx)Î2 +

ÿ

k‘ˆj

b̃jkDy(x(j) ≠ x(k))2

Z
^

\ , (6.18)

x̂z = argmin
x

Y
]

[
1
2 ÎDzÏm ≠ Dz(Hx)Î2 +

ÿ

k‘ˆj

b̃jkDz(x(j) ≠ x(k))2

Z
^

\ . (6.19)

Next, we identify cost function associated with each of the potential estimates in eq. 6.17,
6.18, and 6.19 as:

c(x, xx; xÕ
x) = 1

2 ÎDxÏm ≠ Dx(Hx)Î2 +
ÿ

k‘ˆj

b̃jkDx(x(j) ≠ x(k))2, (6.20)

c(x, xy; xÕ
y) = 1

2 ÎDyÏm ≠ Dy(Hx)Î2 +
ÿ

k‘ˆj

b̃jkDy(x(j) ≠ x(k))2, (6.21)

c(x, xz; xÕ
z) = 1

2 ÎDzÏm ≠ Dz(Hx)Î2 +
ÿ

k‘ˆj

b̃jkDz(x(j) ≠ x(k))2, (6.22)
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Algorithm 6.2 MBIR method to reconstruct magnetic vector potential
1. Evaluate A(r) Ω VFET

2. F(r) Ω VFET

3. while not converged do

(a) for i in 1 : N {

Determine corresponding b̃ij for {i, j} ‘ C of Ax(i) using eq. 6.12

Ax(i) Ω
F

x

(i)+2

q
{i,j}‘C

˜b
ij

A
x

(j)

1+2

q
{i,j}‘C

˜b
ij

}

end for

(b) Update Ay and Az in a manner similar to (a)

(c) Forward project A(r) using eqs. and to determine Ux and Uy eqs. 4.21 and
4.22 respectively

(d) Determine error sinogram for the two series as:

e_Ïm,x = Ïm,x ≠ Ux

e_Ïm,y = Ïm,y ≠ Uy

(e) Use the results of imposing gauge constraint from eq. on e_Ïm,x and e_Ïm,y

to determine e_Ïm,x,x, e_Ïm,x,y, e_Ïm,x,z, e_Ïm,y,x, e_Ïm,y,y and e_Ïm,y,z

(f) Update the components of vector potential as

Ax Ω Ax + HT (e_Ïm,x,x + e_Ïm,y,x)

Ay Ω Ay + HT (e_Ïm,x,y + e_Ïm,y,y)

Az Ω Az + HT (e_Ïm,x,z + e_Ïm,y,z)

end do
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We, again, employ the ICD technique to minimize the surrogate cost function in
eqs. 6.20 - 6.22. Accordingly, di�erentiating these equations with respect to x(j) and
setting the resultant equal to zero, we get:

xx(j) Ω

1
HT

x Ïm,x,x + HT
y Ïm,y,x

2
+ 2 q

ˆk‘j
b̃jkxx(k)

1 + 2 q

ˆk‘j
b̃jk

, (6.23)

xy(j) Ω

1
HT

x Ïm,x,y + HT
y Ïm,y,y

2
+ 2 q

ˆk‘j
b̃ijxy(k)

1 + 2 q

ˆk‘j
b̃jk

, (6.24)

xz(j) Ω

1
HT

x Ïm,x,z + HT
y Ïm,y,z

2
+ 2 q

ˆk‘j
b̃jkxz(k)

1 + 2 q

ˆk‘j
b̃jk

. (6.25)

Note that the MAP estimate of each component of vector potential, x̂ú, is determined
by performing element wise minimization of its associated cost function from eq. 6.17 - 6.19
with respect to overall magnetic vector potential, x(j), instead of individual component,
xú(j). This is primarily owing to the fact that each component is reconstructed with
the aid of two tilt series, Ïm,x and Ïm,y, which in turn has contributions from all three
components of vector potential, A(r). Hence, each iteration of ICD required to ascertain
A(r) comprises of simultaneously evaluating eq. 6.23 - 6.25 and then making use of forward
model and deconvolution operator to update estimates of vector component as:

Dx Ω Dx + HT (DÏm ≠ D(Hx)). (6.26)

Summaries of the MBIR based A(r) reconstruction are illustrated in the form of schematic
in figure 6.4 and in the form of pseudo code in Algorithm 6.2. In the next two subsections
we make use of the MBIR algorithm to reconstruct vector potential of simulated data set
as well an experimental data set.

6.3.2 MBIR on synthetic datasets

In this section, we apply the MBIR algorithm to reconstruct the A(r) of synthetic
magnetic nanoparticles (spherical, prismatic and cylindrical MNPs) discussed in section
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Figure 6.6: Reconstructed magnetic vector potential of the spherical NP deduced from
the VFET approach [center column] and the MBIR approach [right most column] with
the aid of projection in range [≠70¶, 70¶]. The leftmost column depicts the ground truth.
Plots in the top row correspond to the plane (x, 28, z) while the ones in the bottom row
correspond to the plane (x, 35, z).
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Figure 6.7: Reconstructed magnetic vector potential of the prismatic NP deduced from
the VFET approach [center column] and the MBIR approach [right most column] with
the aid of projection in range [≠70¶, 70¶]. The leftmost column depicts the ground truth.
Plots in the top row correspond to the plane (x, y, 20) while the ones in the bottom row
correspond to the plane (x, 22, z).
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Figure 6.8: Reconstructed magnetic vector potential of the cylindrical NP deduced from
the VFET approach [center column] and the MBIR approach [right most column] with
the aid of projection in range [≠70¶, 70¶]. The leftmost column depicts the ground truth.
Plots in the top row correspond to the plane (x, 24, z) while the ones in the bottom row
correspond to plane (x, y, 10).
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4.2.2. The reconstruction was performed making use of the missing wedge projection set
since this set replicates the limited angular scenario typical of TEM based experimen-
tal measurements. The q-GGMRF parameters used for the reconstruction comprised of
p = 1.001, T = 0.01 and ‡x = 0.8. Selected results retrieved from the MBIR approach are
depicted in Figures 6.6, 6.7 and 6.8. These figures also include corresponding plots from
the ground truth and the VFET approach for the purpose of qualitative comparison of
reconstruction accuracy between the two approaches. Additionally, we present quantita-
tive comparisons between the two methods in terms of NRMSE plots in Figures 6.9, 6.10
and 6.11 for the spherical, prismatic and cylindrical NPs respectively.

A review of the plots in figures 6.6, 6.7 and 6.8 reveals that the low spatial resolutions,
protrusions, ring artifacts and edge artifacts evident in the VFET reconstructions are
significantly suppressed in the MBIR-based reconstructions. In case of the spherical MNP,
we note that the quantitative gain in terms of decrease in the NRMSE values for the
MBIR-based reconstruction as compared to the ones from the VFET approach is relatively
low for Ax and Ay components (figures 6.9(a-b, d-e, g-h)). However, the NRMSE plots for
Az component show reduction in the error by about 10% all across the x, y and z planes
having employed the MBIR approach from the VFET approach (figures 6.9(c, f, i)). In
case of the prismatic MNP, the NRMSE plot in figure 6.10 delineates 2≠20% reduction in
error for the MBIR approach from the VFET approach. Finally, for the cylindrical MNP
the NRMSE values in figure 6.11 demonstrate a decrease in error by about 10 ≠ 40%,
all across the x, y and z planes, for the MBIR technique. We end this section with 3D
representation of magnetic vector potential of the three MNPs in figure 6.12. This plot is
produced with the aid of ParaView plotting tool [95].

6.3.3 MBIR on experimental datasets

This section elucidates on the use of real data sets to demonstrate the gain in recon-
struction quality from making use of the MBIR approach. More specifically, a Ni

80

Fe
20

(permalloy/py) square island and a 2D lattice of elongated Py islands (“stadia”) are used
for the comparative study of the MBIR and VFET techniques. First, Py island sample
was fabricated by depositing a 27 nm Py thin film on a square TEM grid with a SiO sup-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.9: Planar NRMSE plots of magnetic vector potential of spherical NP retrieved
using the VFET approach (line with circle) and the MBIR approach (line with asterisk).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.10: Planar NRMSE plots of magnetic vector potential of prismatic NP retrieved
using the VFET approach (line with circle) and the MBIR approach (line with asterisk).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.11: Planar NRMSE plots of magnetic vector potential of cylindrical NP retrieved
using the VFET approach (line with circle) and the MBIR approach (line with asterisk ).
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Figure 6.12: 3D illustration of vector potential reconstructed from the MBIR approach of
(a) Spherical MNP (b) Prismatic MNP (c) Cylindrical MNP.
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port membrane. Magnetron sputtering was used to deposit the thin film. Then a square
island was patterned using focused ion beam (FIB) milling. The grid was mounted in a
tomography holder and loaded into JOEL 2100F TEM equipped with a special low field
pole piece for magnetic characterization and a spherical aberration corrector. The TEM
experiment was operated at 200 kV and two tilt series about orthogonal axes, x & y,
were recorded for angles ranging from ≠70¶ to +70¶ at a 2¶ increment. A three-image
through-focus series was acquired for each tilt angle. This was followed by a sample flip
of 180¶ and two more tilt series were acquired under identical conditions [96]. The mag-
netic phase shift was then determined by employing the TIE formalism in combination
with time symmetry property (as described in chapter 2). Figures 6.13(a-c) depicts the
under-, in-, and over-focus Fresnel images of the Py island acquired at the 0¶ tilt for the
upright position. Likewise, figure 6.13(d) illustrates the corresponding holographic plot
[ at cos(Ïm)] of the magnetic phase shift of the Py square island deduced from the TIE
formalism for the 0¶ tilt. As noted in the figure, each phase map of Py sq. island has a
resolution of 256 ◊ 256 px with 1 px equal to 3.2 nm.

The second sample, Py lattice, was fabricated on a JEOL 9300 electron beam lithog-
raphy system. A single layer of ZEP resist of 100 nm thickness was coated on a Si/SiN
substrate, followed by patterning of a square lattice with element shape parameters of
2Lx = 290 nm, 2Ly = 130 nm, and a lattice spacing of a = 390 nm. A Py film of 20 nm
thickness was deposited on a seed layer of Cr (3 nm) using dc magnetron sputtering at 3
mTorr pressure and 50 W power. The pattern was transferred by a lift-o� process. This
was followed by optical lithography and wet-etching of Si to create electron transparent
windows on 3 mm square grids, which could be loaded directly into the TEM for obser-
vation. The microscopy was, again, performed using the JEOL 2100F TEM and through
focus series was recorded for upright and flipped positions for x as well as y tilt series [97].
Subsequently, magnetic phase shift was evaluated. Here the projection measurements
acquired in the two tilt series comprised of angles ranging from ≠50¶ to +50¶ at a step
size of 1¶. Figures 6.14(a-c) depicts the under-, in-, and over-focus Fresnel images of the
Py lattice acquired at the 0¶ tilt for the upright position. Correspondingly, figure 6.14(d)
depicts a holographic plot [at cos(100Ïm)] of the magnetic phase shift of the sample at 0¶

tilt from the TIE formalism. Each phase map has a resolution of 256 ◊ 256 pixels with 1
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px equal to 6 nm.
We implement our tomographic reconstruction on a 3D voxel grid with 2563 nodes

for both the samples. First, we employ the VFET approach (as discussed in section
4.2.2) to determine an estimate of A(r) of the Py island sample. The VFET result is
then used to initialize the MBIR algorithm. The q-GGMFR parameters used during the
discourse of MAP estimation of A(r) of the Py island comprised of q = 2.0, p = 1.001, T =
0.01, and ‡x = 0.8. The cost function in eq. 6.16 was then monotonically decreased over
35 iterations to determine a MAP estimate of A(r). The forward model calculation for
each iteration was distributed over 24 parallel threads using OpenMP and required about
14 minutes to complete the iteration. Some of the A(r) results obtained from the VFET
and MBIR approaches of the Py island are depicted in figures (6.15 - 6.17).

A thorough review of vector potential plots of the Py island sample from the two
approaches reveals that the MBIR approach yields higher quality reconstruction that its
VFET counterpart. First, streak and line artifacts that plague the VFET results (figures
6.15(a-c), 6.16(a-c) & 6.17(a-c)) are substantially minimized in the MBIR results (figures
6.15(d-f), 6.16(d-f) & 6.17(d-f)). Next, by comparing figures 6.15(g-i) with 6.15(j-l) and
6.16(g-i) with 6.16(j-l), we conclude that the MBIR technique more appropriately traces
the edges in the reconstruction than the VFET method. Furthermore, the VFET results
show faint to no distinctions between bright and dark regions. On the other hand, the
bright and dark contrasts are clearly distinguishable in the MBIR results. Finally, white
noise and blurriness, that degrade certain regions of the VFET results (figure 6.17 (g-i)),
are considerably subdued in the MBIR result (figure 6.17(j-l)).

Similarly, we proceed to reconstruct A(r) of the Py lattice sample. We employ the
same q-GGMRF parameters as in the case of the Py square island to determine the MAP
estimate of the vector potential of the Py lattice. Again the cost function in eq. 6.16 is
monotonically decreased over 35 iterations. The computational time for each iteration
was about 18 minutes. Some of the VFET and the MBIR results obtained for the Py
lattice sample is depicted in figures 6.18 through 6.20.

A methodical comparison of plots deduced from the two methods for the Py lattice
sample reveals that the MBIR results show a significant gain in spatial resolution. The
coarseness and noise artifacts seen in the VFET results (figures 6.18(g-i) & 6.19(g-i)) are
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(a) (b) (c)

(d)

Figure 6.13: (a) – (c) show under-, in-, and over-focus Fresnel images of the Permalloy
(Py) square island at 0¶ tilt. (d) Illustration of holographic contour map, „m, of the
magnetic phase shift, Ïm, of the square Py sample at 0¶ tilt, where „m = cos(Ïm) rad
and 1 px = 3.2 nm.
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(a)

(d)

(c)(b)

Figure 6.14: (a) – (c) show under-, in-, and over-focus Fresnel images of the Permalloy
(Py) lattice sample at 0¶ tilt. (d) Illustration of holographic contour map, „m, of the
magnetic phase shift, Ïm, of the Py lattice sample at 0¶ tilt, where „m = cos(100Ïm) rad
and 1 px = 6 nm.
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Figure 6.15: Reconstructed Ax of Py island from the VFET approach [first and third
column] and the MBIR approach [second and fourth column]. The unit for A(r) is T-px
where 1 px equals 3.2 nm.
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Figure 6.16: Reconstructed Ay of Py island from the VFET approach [first and third
column] and the MBIR approach [second and fourth column]. The unit for A(r) is T-px
where 1 px equals 3.2 nm.
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Figure 6.17: Reconstructed Az of Py island from the VFET approach [first and third
column] and the MBIR approach [second and fourth column]. The unit for A(r) is T-px
where 1 px equals 3.2 nm.
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Figure 6.18: Reconstructed Ax of Py lattice from the VFET approach [first and third
column] and the MBIR approach [second and fourth column]. The unit for Ax is T-px
where 1 px equals 6 nm.
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Figure 6.19: Reconstructed Ay of Py lattice from the VFET approach [first and third
column] and the MBIR approach [second and fourth column]. The unit for Ay is T-px
where 1 px equals 6 nm.
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Figure 6.20: Reconstructed Az of Py lattice from the VFET approach [first and third
column] and the MBIR approach [second and fourth column]. The unit for Az is T-px
where 1 px equals 6 nm.
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substantially reduced in the MBIR result (figures 6.18(j-l) & 6.19(j-l)). Furthermore, we
see appropriately segmented and smoothly transitioning A(r) values in the MBIR results.
The blurring artifacts observed in some of the VFET-based reconstructed regions (figures
6.20(g-i)) are considerably diminished in the MBIR results (figures 6.20(j-l)). Finally ring
and streak artifacts that plague the VFET results (figures 6.18(a-c), 6.19(a-c), 6.20(a-c))
are substantially minimized in the MBIR results (figures 6.18(d-f), 6.19(d-f), 6.20(d-f)).
These reconstruction gains in the MBIR-based A(r) results are observed throughout the
3D spatial region when compared to their VFET counterparts.

Since the reconstructed quantity is a 3D vector field, we conclude this section with a
3D rendering (figure 6.21) of the magnetic vector potential of Py lattice resulting from
the MBIR reconstruction approach. Figure 6.21(a) shows a color-coded integrated (along
the beam direction) magnetic induction map, derived from the magnetic phase shift by a
gradient operation. The white rectangle delineates the region used for the 3D rendering
of the vector field in figure 6.21(b). To reduce the complexity of the 3D rendering, the
field vectors (shown as small cones with the appropriate orientation) are only drawn
for the horizontal center plane going through the Py lattice islands and four vertical
planes corresponding to the dashed lines in Figure 6.21(a). The yellow arrow indicates
the viewing direction for the 3D rendering in Figure 6.21(b). The individual islands are
colored according to the in-plane direction of the integrated magnetic induction following
the color wheel in (a). Note that the induction directions, which are oriented along the
local curl of the magnetic vector potential, are properly oriented; i.e., the opposite rotation
of the vector field around the green and red islands is clearly visible, and application of
the right-hand rule for the curl results in the correct direction of the integrated magnetic
induction. Furthermore, the square of islands on the left front of the image, and the
two squares in the back, are all in a vortex state, i.e., the magnetization of the islands
circulates clockwise or counterclockwise. The corresponding section through the vector
field shows vectors which are all blue (A pointing down) or all orange (A pointing up).
For the square on the front right, however, two of the islands are blue, so that there is no
closed vortex and the vector field is much more complex in this area, reflecting the local
frustrated state of the magnetization pattern.
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(a) (b)

Figure 6.21: (a) Magnetic induction map of the 0¶ phase shift shown in Figure 6.14. (b)
Schematic of islands enclosed inside the solid white lines and 3D magnetic vector potential
corresponding to the dotted lines in (a).

6.4 Revisiting the hypothesis

We claimed that the MBIR framework can ameliorate the artifacts observed in the
magnetic vector reconstruction obtained from the VFET approach. Our claim was based
upon the fact that the MBIR approach incorporated important prior information about
both the imaging system and the object being imaged instead of a mere filter-based
approach such as in the case of the VFET technique. More specifically, we employed MRF
to incorporate a prior idea that similar inputs have similar outputs (the nearby pixels or
voxels have same values). In regards to imaging system, we formulated forward model
to replicate image formation step while recording data for tomographic reconstruction.
Then cost function was derived by finding a joint probability from the prior and forward
models. The cost function was iteratively minimized by employing ICD technique to
deduce a MAP estimate of a given reconstruction problem. Accordingly, MAP estimate of
2D Shepp-Logan phantom was determined to have 15% less error than the corresponding
FBP result.
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In case of vector field reconstruction, we extended the MBIR model to incorporate
Coulomb gauge constraint and, subsequently, reconstructed all three components of vector
potential from two tilt series. The NRMSE analysis illustrates that the MBIR approach
generally reconstructs A(r) of simulated nanoparticles at 10 ≠ 40% more accurately than
the VFET approach. Likewise, MBIR based vector potential of experimental datasets
shows highly resolved reconstruction when compared to the corresponding result from the
VFET approach. A major shortcoming of the VFET approach has been its inability to
deduce a proper reconstruction for incomplete experimental dataset. VFET based vector
potential determined from incomplete dataset is plagued with discrepancies such as ring
artifacts, line and streak artifacts, blurring of edges and protrusions. On the contrary, the
MBIR approach compensates for missing wedge of information due to its robust statistical
framework. Accordingly, the aforementioned artifacts are substantially mitigated in the
MBIR result. Finally, white noise, blur, and coarseness, ubiquitous in the VFET result,
are considerably minimized in the MBIR results. In view of all these findings, we uphold
our starting hypothesis and conclude the MBIR approach can overcome the shortcomings
of the VFET approach and can accurately reconstruct magnetic vector potential.
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Chapter 7

Future work

In this research work, a concerted e�ort was presented to determine the magnetic vec-
tor potential of nanoparticles (NPs). First we performed TEM experiments on these NPs
and recorded images at di�erent angles of inclination. Then we employed the Transport-
of-Intensity Equation (TIE) formalism to extract the magnetic phase shift from these
TEM images. Subsequently, we used vector tomography to reconstruct the magnetic po-
tential of the NPs all across the 3D space. Most importantly, we incorporated Bayesian
inference in our tomography model which has allowed us to ascertain the vector poten-
tial at 10 ≠ 40% more accurately than the reconstructions obtained from the previous
filter-based vector field electron tomography (VFET) methodology.

Having determined one of the fundamental quantities, A, in electrodynamics, we
seek to further our investigation by determining other important quantities in the same
paradigm such as the magnetic induction, B, and the demagnetization field, H. Mag-
netic induction is directly related to the vector potential by the mathematical relation,
B = Ò◊A [38]. Likewise, we can make use of the secondary/derived definition of the vec-
tor potential which states that A is given by the convolution of the magnetization, M(r),
with the dipolar kernel r/|r|3 to determine M [96]. Finally, the relation B = µo(M + H)
[98] can be used to ascertain the demagnetization field.

Many electrodynamics text books argue that the vector potential does not have any
physical meaning and is introduced solely for the purpose of mathematical simplification
of the equations while determining the electric field or magnetic field [99]. Although we
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��y�m,x �x�m,y

Figure 7.1: Illustration of projection data obtained as the gradient of phase shift of (a)
x tilt as Proj. of Bx and (b) y tilt as Proj of By of the spherical magnetic NP in figure
4.7a. The tilt angle is 0¶.

are not looking to establish the physical significance of the vector potential, we do want to
emphasize its significance for it shows up in di�erent calculations such as the Aharonov-
Bohm e�ect, the magnetic induction, and the magnetization. More information on how
we seek to utilize the vector potential to determine other important electrodynamical
quantities in the future can be found under the headings below:

7.1 Magnetic Induction

We make use of the Aharonov-Bohm relation [39] in eq. 2.3 and the fact that the curl
of A yields B [38] to obtain the following relations between the magnetic phase shift, Ïm,
and the magnetic induction, B [53]:

ˆ

ˆy
Ïm(x, y) = ≠

3
e

h

4 Œ⁄

≠Œ

Bx(x, y, z)dz, (7.1)

ˆ

ˆx
Ïm(x, y) =

3
e

h

4 Œ⁄

≠Œ

By(x, y, z)dz. (7.2)
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B(r)

A(r)

Figure 7.2: 3D representation of vector potential and magnetic induction of a spherical
MNP with 30 nm radius and magnetization direction of

Ë
cos fi

6

, sin fi
6

, 0
È
. Silver arrows

correspond to vector potential, A(r), and red arrows correspond to magnetic induction,
B(r).

It can be inferred from eqs. 7.1 and 7.2 that taking the partial derivative of the magnetic
phase shift w.r.t y yields projection measurements of Bx and that w.r.t x yields projection
measurements of By. Additionally, ÒyÏ is calculated on the x tilt series and ÒxÏ is carried
out on the y tilt series to determine the sinograms for Bx and By respectively. Figure
7.1 depicts the gradients of the phase shift at 0¶ projection in x and y directions of the
spherical magnetic nanoparticle (MNP) illustrated in figure 4.7a. Next, we employ the
MBIR algorithm to reconstruct Bx and By separately. Then the third component of
magnetic induction, Bz, is determined by utilizing Gauss’s law for the Magnetic field
(Ò · B = 0) as:

Bz = ≠
⁄ A

ˆBx

ˆx
+ ˆBy

ˆy

B

dz.

Now that we have determined the vector potential and the magnetic induction of the
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spherical NP, let us visualize how the vector field looks like in the 3D space. This 3D
vector visualization is, again, completed with the aid of the ParaView [95] plotting tool
and figure 7.2 illustrates the plot. In order to aid the visualization, we have considered
only 500 points while depicting the vector fields of B(r) and A(r). Accordingly, one
can observe that B(r) (red arrows) is pointing in the negative y direction and A(r)
(silver arrows) is rotating around the magnetic induction in accordance to the right hand
rule. This result adheres to the basics of electromagnetism that the curl of A yields B
and validates our tomography-based approach to resolve all the quantities involved in
magnetism at the nanoscale length. We aim to determine the magnetic induction of NPs
with non-uniform magnetization states in future. Futhermore, the next section provides
a sneak peek into how we aim to resolve magnetization and demagnetization fields using
the MBIR based vector tomography.

7.2 Some thoughts on resolving H and M

The magnetic vector potential, A(r), is related to the magnetization, M(r), by the
following mathematical relation [61]:

A(r) = µo

4fi

⁄
M(rÕ) ◊ r ≠ rÕ

|r ≠ rÕ|3 d3rÕ. (7.3)

Our collaborators at Purdue University have already carried out extensive work to to-
mographically invert eq. 7.3 and calculate M(r) from the reconstructed vector potential.
Thus, we aim to incorporate their tomography module to reconstruct the magnetization.
Once M(r) is determined, we can use the relation B = µo(M + H) to ascertain the de-
magnetization field, H(r). Since our approach is numerical in nature, we predict that this
approach should resolve the demagnetization field for arbitrary shape and non-uniform
magnetization. A good volume of work has, already, been done by M. Beleggia et al. [98]
and S. Tandon et al. [100, 101] to determine the demagnetization tensor field of arbitrary
shape with uniform magnetization. However, determination of the demagnetization field
of non-uniformly magnetized particles has still been elusive due to obvious limitation of
analytical computation. Thus, it will be quite fascinating to see on what level of accuracy
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our numerical based vector tomography will be able to deduce the demagnetization field
of known magnetization states.
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Appendix A

Proof of Fourier Slice Theorem

The Fourier Slice Theorem discussed in 3.1.2 and noted from reference [45] highlights that
if:

F (u, v) = F(f(x, y)) & P◊(fl) = F(P◊(t)) then P◊(fl) = F(fl cos(◊), fl sin(◊)).

Here, F(.) is a Fourier transform operator.
We begin the proof by noting that

P◊(t) =
Œ⁄

≠Œ

f(R◊ (t, s))ds. (A.1)

Likewise,

(x, y) = R◊ (t, s)

(t, s) = R≠1

◊ (x, y)

= R≠◊ (x, y)

=
S

U cos(◊) sin(◊)
≠ sin(◊) cos(◊)

T

V

S

U x

y

T

V

=
S

U x cos(◊) + y sin(◊)
≠x sin(◊) + y sin(◊)

T

V (A.2)



155

Also,

dsdt =
-----
ˆ(t, s)
ˆ(x, y)

----- dxdy

=
------

ˆt
ˆx

ˆt
ˆy

ˆt
ˆx

ˆt
ˆy

------
dxdy

=
------

ˆ(x cos(◊)+y sin(◊))

ˆx
ˆ(x cos(◊)+y sin(◊))

ˆy

ˆ(≠x sin(◊)+y sin(◊))

ˆx
ˆ(≠x sin(◊)+y sin(◊))

ˆy

------
dxdy

=
------

cos(◊) sin(◊)
≠ sin(◊) cos(◊)

------
dxdy

= dxdy (A.3)

Finally,

P◊(fl) =
Œ⁄

≠Œ

P (t)e≠2fiitfldt

=
Œ⁄

≠Œ

S

U
Œ⁄

≠Œ

f(R◊

S

U t

s

T

V)ds

T

V e≠2fiitfldt from (A.1)

=
Œ⁄

≠Œ

Œ⁄

≠Œ

f(x, y)e≠2fiifltdsdt

=
Œ⁄

≠Œ

Œ⁄

≠Œ

f(x, y)e≠2fiifl(x cos(◊)+y sin(◊))dxdy from (A.2) and (A.3)

= F(fl cos(◊), fl sin(◊)) ⇤
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Appendix B

Neural Net based Filtered
Backprojection

So far, we have described tomographic methods such as Backprojection (BP), Fil-
tered Backprojection (FBP), Simultaneous Iterative reconstruction technique (SIRT) and
Model based iterative technique (MBIR). Still there are other techniques to perform to-
mographic reconstruction. One such technique is Artificial Neural Network (ANN) based
tomographic reconstruction.

Over the years, ANN have garnered enormous attraction in the field of machine learn-
ing where researchers have used neural networks (NN) to solve wide variety of tasks in
computer vision [102], speech recognition [103], autonomous navigation system [104] etc.
The power of ANN resides in networks’ ability to learn di�cult functions or functional
relationships that are otherwise hard to evaluate [105]. Consequently, researchers have
started employing ANN image diagnostics, image filtering, and PET and SPECT based
tomographic image reconstruction [106, 107, 108, 109].

ANN based implementation is completed in two phases. The first phase is learning
phase or network training step and the second phase is classification or prediction phase.
The computational run time needed to train the network can be time consuming. How-
ever, once the network is trained, it can be re-applied to similar type of data set to yield
result at a relatively fast pace [110]. Accordingly, we seek to assist the FBP approach
by incorporating ANN to reduce artifacts and noise in reconstruction without the com-
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Figure B.1: An illustration of structure of a typical (a) neuron in our nervous system and
(b) perceptron for binary classification tasks.

putational or algorithmic complexity of iterative techniques such as MBIR or SIRT. A
detailed analysis of how we incorporate ANN to improve FBP results is provided under
the headings below.

B.1 Representation of Neural Networks

Neural networks, as the name suggests, inherit mathematical representation from bio-
logical system [65]. Our nervous system functions by rapid transmission of chemicals from
dendrites to cell body. The transmitted chemicals accumulate in the vicinity of the cell
body and once a critical value is reached, the cell body fires output signals. These signals
are transferred by axons to other cell bodies. The process of reception and transmission
of signals occurs repeatedly - millions to billions times per second - to perform di�erent
bodily functions [111]. In a similar manner, a neural networks framework incorporates
activation function that fires the summation of input signals once a certain threshold
is reached. An illustration of a simplest form of ANN setup called perceptron and its
similarity with the structure of a neuron in nervous system is provided in Figure B.1.

Typical neural networks (NN) used for tomography purposes are based on supervised,
feed-forward, fully connected, back propagation scheme. The feed-forward network is
analogous to forward projection part of tomography where information is learned from
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Figure B.2: A depiction of multilayer perceptron (feed forward network) with input,
hidden and output layers

a given dataset. It is also, sometimes, referred as multilayered perceptron as it is made
of layers of input, hidden and output units. A depiction of multilayered perceptron is
provided in figure B.2. Whereas there is just one layer of input units and one layer of
output units, number of hidden layers can be varied. There is no general theory on how
many hidden layers can be incorporated for a given problem [109]. Usually, one selects
number of hidden layers based on prior history of implementation on similar problems. In
case of tomography, a single hidden layer has been found to yield a better solution [110].
Accordingly, we employ single hidden layer in our NN based filtered back projection.

The overarching goal behind the use of NN is to learn information about the system
from the labeled data set and subsequently use the information to predict solution of
unknown dataset. This idea is incorporated in the NN architecture with the aid of weights.
In particular, we randomly assign weights between input-hidden layers and hidden-output
layers. Then based on the labeled dataset we update the weights to properly replicate
the behavior of the known data set. A detailed description on how we assign and update
weight in NN is provided under the subsections below.

B.1.1 Forward Propagation

Forward propagation begins with assigning weights whi between input nodes, xi, and
hidden nodes, ”h, and weights wkh between hidden nodes and output nodes, ok. The values
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Figure B.3: A depiction of forward propagation of weights whi and wkh from input to
hidden and hidden to output layers respectively.

for the weights are initialized using random number generator in the range (0.0, 0.5). Next,
we determine net sum between the input units and their corresponding weights to each
hidden unit. The net sum is transformed into output for each hidden unit using logistic
sigmoid function as:

”h = ‡(
ÿ

i

xiwhi) = ‡(neth), (B.1)

where

‡(y) = 1
1 + e≠y

. (B.2)

Similar calculations between hidden and output units yields:

ok = ‡(
ÿ

h

”hwkh) = ‡(netk). (B.3)

A schematic showing the forward propagation architecture is provided in figure B.3.

B.1.2 Error Backpropagation

In the backpropagation step, first we determine error between the network output and
the expected output [103, 65]. Next, based on the error values the interconnected weights
between the output-hidden layers and the hidden-input layers are adjusted.
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In this study, we employ gradient descent approach to minimize sum-of-squared error
function between the network output and the target values as:

E(w̨) = 1
2

ÿ

k‘outputs

(tk ≠ ok)2. (B.4)

Here tk is the target value and ok is the network output for the training example k. Note
that the weight wkh can influence the rest of the network through netk. Accordingly, the
gradient of the error function in eq. B.4 with respect to wkh can be written using chain
rule as:

ˆE

ˆwkh

= ˆE

ˆnetk

ˆnetk

ˆwkh

= ˆE

ˆnetk

”kh. (B.5)

Likewise, netk can influence the network only through ok. Therefore, we can again use
chain rule to write

ˆE

ˆnetk

= ˆE

ˆok

ˆok

ˆnetk

= ≠ok(1 ≠ ok)(ok ≠ tk)

= ek. (B.6)

Thus for each training example k, the weights in the outer layer can be updated as:

wkh Ω wkh + ÷
ˆE

ˆwkh

, (B.7)

where ÷ is the learning rate. It is usually chosen in the range (0, 1). Substituting eqs. B.5
and B.6 in eq. B.7 we get

wkh Ω wkh + ÷ek”kh. (B.8)

Similarly, the strategy to deduce the update expression for whi begins by noting the fact
that whi influences neth, which then influence hidden unit ”h and hence E. Accordingly,
the gradient of error function with respect to neth can easily be calculated to obtain:
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ˆE

ˆneth

= oh(1 ≠ oh)
ÿ

wkhek

= eh. (B.9)

Hence the update expression for whi can be written in the similar manner as eq. B.8 as:

whi Ω whi + ÷ehxhi.

B.2 Neural Networks based Filtered Backprojection

After a brief excursion into describing the architecture of the neural networks, we
now proceed to employ the technique for the tomographic reconstruction. We aim to use
this technique to reconstruct electrostatic potential once it is fully robust. Our initial
motivation to implement this method stems from the fact that we have a large repository
of electrostatic phase data of nanoparticles with varying shapes. Accordingly, we want
to check if and to what extent could we learn from the phase shift repository using the
NN approach and subsequently, to what degree the learned information could be used to
improve the FBP methodology.

In this initial testing stage of the NN approach for the tomographic reconstruction, we
employ it to reconstruct 2D phantoms. If the implementation shows gain in reconstruction
when directly compared to results from the conventional FBP approach, it will serve as
proof-of-concept step. Subsequently, we can expand the model for 3D NN based FBP
reconstruction.

Our NN based FBP implementation begins by formulating the training dataset. We
use Shepp-Logan phantom [44] of di�erent sizes while constructing the training dataset.
These phantoms are generated using the phantom function in Matlab. Hence, ground
truth will be known beforehand to perform error backpropagation procedure. Also, we
use phantoms whose sizes are in close proximity to the one we seek to reconstruct. Here,
we seek to reconstruct phantom 128. So, 14 di�erent sized phantoms – Phantom 76 to
Phantom 128 at a step size of 4 – are used to formulate the training set. A depiction of
some of these phantoms is provided in figure B.4.
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Figure B.4: Shepp-logan Phantoms of varying sizes - (a) Phantom 76 (b) Phantom 92
(c) Phantom 108 (d) Phantom 124 - generated using Matlab function phantom. These
phantoms have values in the range 0 (corresponding to blue) to 1 (corresponding to red).
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Figure B.5: An illustration of sinc filters corresponding to di�erent cuto� frequency, a.

Next, sinogram measurements are obtained by forward projecting the 14 phantoms
as described in section 3.1.1. Projections are determined at a step-size of 3¶ for angles
ranging from 1¶ to 180¶. Then the FBP methodology is employed to reconstruct the
phantoms. Here, we use sinc-filter as our filtering function which can be mathematically
expressed as [112]:

R̂(kx) =
-----
1
a

sin
A

akx

2

B-----

A

sinc
A

akx

2

BB
2

.

In addition, we employ the FBP approach making use of di�erent cuto� frequency -
[0.004, 0.04, 0.4, 1.4, 2.4, 3.4, 4.4, 5.4] - in the filtering domain to facilitate the NN to learn
weights that promote a reconstruction that is clean as well as highly resolved. An il-
lustration of sinc-filter for di�erent cuto� frequency is provided in figure B.5. Likewise,
figure B.6 provides a depiction of the FBP results obtained using varying degree of cuto�
frequency to yield reconstructions ranging from sharp to smooth resolutions.

Overall, convolution of sinogram - determined from the phantom, X, - with a range
of sinc-filters, R

1

, R
2

. . . , Rm, generate training files, X
1

, . . . , Xm. A schematic of this
procedure is illustrated in figure B.7. To be specific, we begin with 14 di�erent phantoms
that are forward projected and subsequently, each sinogram is back projected using 8
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Figure B.6: FBP reconstructions obtained using sinc-filter with cuto� frequency (a) a =
0.004 (highly sharp) (b) a = 0.04 (c) a = 1.4 (d) a = 5.4 (highly smooth).
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Figure B.7: An illustration data acquisition step for training .

di�erent cuto� frequency. Consequently, we generate 112 images for the training dataset.
Each FBP based reconstruction is treated as input unit, Xi. Further, we incorporate

8 hidden units and learning rate, ÷, is set as 0.1. The forward propagation and the
error backpropagation steps are repeated for 500 iterations to train the weights - whi and
wkh. Thus trained weights are used to forward propagate regular FBP phantom 128 and
consequently, we obtain NN based FBP (NN-FBP) result. Figure B.8 shows the NN based
FBP result along with the results from the BP and the FBP approaches.

A thorough review of figure B.8 reveals that the NN-FBP yields the best result when
compared to its counterparts from the BP and the FBP approaches. In particular, we
see that the BP result is plagued by lots of white noise and the FBP result shows ring
artifacts and coarseness inside the phantom. Such reconstruction flaws are ameliorated
to a considerable degree in the NN-FBP result. Also, the NN-FBP result demonstrates
a higher spatial resolution compared to the results from the BP method and the FBP
method. Quantitative analysis by means of root mean squared error (RMSE), too, reflects
the gain in reconstruction having used the NN-FBP approach. More precisely, the RMSE
value reduces to about 0.105 (for the NN-FBP result) from 0.213 (for FBP result).

On the whole, this appendix elucidates a framework to employ neural networks to
supplement the filtered backprojection method. We used 2D Shepp-Logan phantom to
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(a) BP (b) FBP 

(c) NN-FBP (d) RMSE comparison

Figure B.8: Illustration of reconstruction from di�erent tomographic methods - (a) Back
Projection (BP); (b) Filtered Back Projection (FBP); (c) Neural Networks Based Filtered
Back Projection (NN-FBP). The bottom left plot, (d), depicts root mean squared error
(RMSE) analysis of the tomographic methods.
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develop a training dataset and subsequently, trained weights were used while reconstruct-
ing an unknown phantom. We found qualitative and quantitative gain in reconstruction
having used the NN-FBP approach instead of a mere filter based FBP approach. Thereby,
providing us with a concrete evidence that Neural Networks based Filter back projection
can be used to learn information about target density from a set of measurements deduced
from relevant geometry or shapes. Hence, it will be a sagacious decision to explore the
use NN-FBP for electrostatic potential reconstruction in the future.
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