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Abstract 

In this thesis I present a mechanistic computational model of the cells and 

processes involved in bone remodeling.  Despite decades of progress uncovering the 

mysteries of bone biology and developing a wide base of information on the cells and 

processes involved in bone maintenance, the most popular hypotheses for how bone cells 

interact and orchestrate controlled remodeling remain controversial and unverified.  In 

order to leverage the primary literature towards testing the feasibility of two particular 

hypotheses, I created an agent-based model (ABM) structured on the known locations, 

properties, and behaviors of osteoclasts, osteocytes, and osteoblasts.   

Bone’s ability to minimize mass without jeopardizing mechanical integrity can be 

explained by a disuse signaling threshold, but the mechanics and source of this signaling 

pathway are still largely a mystery. The preliminary model presented here simulates the 

hypothesis that a simple osteocyte-released and osteoclast-received signal could 

maintain trabecular width at the minimum required to support the applied load.  Using a 

series of different initialization parameters, the initial simulation suggests that a 

mechanically stimulated osteocyte signal can dynamically maintain an optimized 

trabecular width. 

The second iteration of the ABM incorporated known information on osteoblasts 

and simulated the hypothesis that osteoclasts could be temporally and spatially coupled 

to osteoclasts via a diffusible signaling molecule released from the bone matrix during 

osteoclastic resorption.  This simulation shows that there exists a set of input 

parameters, within the range supported by literature, which will generate controlled 

remodeling.   These results support the hypothesis that osteoblasts could be spatially 

coupled to osteoclasts by a released signal.  However, the simulation raises some 

questions about this popular hypothesis’s ability to correctly account for the timing of 
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osteoblast activation and migration towards the remodeling compartment.  
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1. Introduction 

 The thesis presented here describes a computational method for studying the 

cellular actions and interactions that are required for controlled bone remodeling.  

Remodeling is the process by which bone tissue maintains itself--encompassing both the 

destruction and removal of old bone matrix as well as the replacement of new bone 

matrix.  A skeleton’s mass, shape, and health are all regulated through this remodeling, a 

process that occurs continuously throughout life.  

 

Our understanding of bone remodeling has made great progress in the past 

century as a consequence of the successive waves of seminal contributions by brilliant 

researchers: Frost35,38, Urist110, Parfitt84,85, Delaisse22, Martin69, Huiskes83, Villanueva114, 

and many others.  As a result of these contributions to basic fundamental bone biology 

and clinical disciplines, there is a large pool of data available that detail the different 

aspects of bone remodeling.  These include bone homeostasis, clinical effects of 

knockouts and imbalances, cellular characterizations, and biomechanics.  

 

However, this large pool of information is spread across multiple disciplines, is of 

disparate types, lacks a clear application, remains incomplete, and, regrettably, is 

sometimes unused, forgotten, and must be rediscovered.  In other words, that which has 

been discovered about the biology of bone is not being incorporated into a useful form.  

The current hypotheses for how cells interact are either assumed true or discounted out 

of hand without first being evaluated by additional means.   

 

1.1. Motivation 

In order for the clinical, pharmaceutical, or tissue engineering communities to be 
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able to effectively design treatments for patients with bone diseases or injuries, it is 

critical that those scientists understand how bones form and function.  Current 

therapeutics are often designed around gross estimates of what cells, growth factors, and 

material properties are required both spatially and temporally.  As the medical 

community has seen with long-term bisphosphonate side effects, misunderstandings 

about how each type of cell type impacts all the other cell types in bone can lead to 

therapeutics that are detrimental to skeletal health.  Osteoclast cells—the cells that 

resorb bone—were assumed to be detrimental to bone health when the bisphosphonates 

were being designed and selected for osteoporosis treatments.  In reality, osteoclasts 

promote bone health by stimulating osteoblastogenesis and osteoblast differentiation as 

well as creating tunnels for blood vessels.  Osteoblast cells, which make bone, require the 

osteoclasts’ simulation and removal of old bone in order to maintain new, strong bone.  

Instead of strengthening bones, bisphosphonates, by stopping osteoclasts, lead to a 

decrease in the entire cycle of bone renewal, leading to more fragile bones that cannot 

effectively fight infections. 

 

Effective design requires a thorough knowledge of the system for which it is being 

designed.  In the case of bone therapeutics, good design requires the utilization and 

integration of the data from primary literature.  This information needs to exist in a form 

that allows cross-checking of measured data, mechanistic descriptions of cellular 

activity, and ways to verify that the current hypotheses of the bone community are 

possible given the known spatiotemporal and physiological limits of bone cells. 

 

 Computational modeling offers a unique opportunity to build models that can 

simulate complex, dynamic systems39. Agent-base modeling (ABM), while more complex 
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and time-consuming than traditional systems-dynamics or mathematical modeling, 

provides a platform to more fully realize the potential of computational modeling to 

elucidate and critically test our understanding of bone biology10,48.   

 

Bone remodeling is difficult to research, for it cannot be replicated in vitro and is 

too dynamic to capture histologically.  There is a wealth of information, but it is all in 

disparate forms that sometimes conflict.  Coupling, defined as the interaction between 

osteoblasts and osteoclasts that creates the local, balanced removal and replacement of 

bone, is an area of bone biology that incorporates a large fraction of conflicting 

information.  Hypotheses for how coupling works exist, but none have yet to be 

rigorously verified.  The RANKL-OPG signaling hypothesis, generated by a 

cellular/molecular biology approach, is a common explanation for coupling, but it 

conflicts with histological findings.  The hypothesis that resting osteoblasts are the 

source of coupled osteoblasts is a favorite theory of histologists, but is contradicted by 

data from the cellular and molecular fields.  There are half a dozen disciplines all 

generating valuable pieces of information, but the hypotheses generated within each 

field tend to disregard information outside their discipline.   

 

Much of modern biology is, by necessity, reductionist; each experiment can only 

provide one piece of information.  Researchers in every field are only gathering one piece 

of the puzzle at a time.  The synthesis of these pieces of data into hypotheses often occurs 

only in mental models and diagrams—a daunting task for a subject with thousands of 

experimental papers.  These traditional thought-experiments and diagrams do a poor job 

of highlighting either missing components or checking the feasibility of a hypothesis.  A 

new way of unifiying vast amounts of information is needed to understand how all the 
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cells, signals, and structures come together as a whole in bone remodeling. 

 

 Computer simulations and biological experiments each have their own distinct 

advantages that compensate the other’s weaknesses.  Laboratory science focuses on one 

hypothesis at a time and computer models can control dozens of interacting variables 

within system.  Animal and clinical research has the advantage of in vivo veritas, and, as 

cleverly stated by George E.P. Box, ‘all models are wrong, but some are useful’.   

Computer models, in particular, offer the chance to combine vast amounts of 

quantitative and qualitative data from multiple sources, probe interactions in controlled, 

repeatable ways, and then clearly define the mechanisms occurring between the input 

parameters and the output parameters.  As an example, computer simulations have been 

used to demonstrate the feasibility of osteocyte signaling based on combined 

histological, in vitro, molecular, and fluid dynamic data.  Quantifying the discrepancies 

between simulation outputs and real world data can highlight deficiencies in a current 

theory.  A computer model both challenges and enables bone biologists to unify and 

understand experimental and clinical data.  A mechanistic simulation provides a working 

model that both researchers and clinicians can use to add speed and robustness to their 

own work. 

 

There are many different ways of simulating a biological system.  Graphical 

models (e.g. Bayesian networks) look at correlations and statistical relationships 

between events or interacting objects in order to understand the structure of a complex 

system.  Finite Element Models (FEM) divide complex systems or geometries into a 

mesh, lattice, or sets of voxels; this allows the tractable approximate calculations of 

properties (e.g. local strain) based on equations from material engineering, fluid 
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dynamics, and other engineering disciplines.  These types of models have proven very 

useful in the past; however, for studying the mechanistic, multi-scale interactions 

occurring both spatially and temporally during bone remodeling, I chose to create an 

agent-based model.  ABMs are well suited for embodying mechanistic information on the 

cellular level because, just like cells, the rule-based behaviors of the agents depend only 

on the local microenvironment, agent-type, and internal state.  The overarching behavior 

of the ABM system is a strong match for the biological tissue.  Both are based on small-

scaled, incremental changes, as well as spatiotemporal patterns propagating through 

time in order to direct the form and function of the tissue.  In addition, with every agent, 

variable and initial parameter corresponding to a real biological object or parameter, the 

ABM provides strong empirical grounding and a straightforward method to verify that all 

the rules within the simulation have been documented in literature. 

 

1.2. Background Bone Biology 

 Bone is one of the most complex organs in the body, for all its simplicity of 

function.  Bone’s function can be summed up into two tasks: structurally support soft 

tissue and maintain a mineral reserve.  Despite it being one of the longest studied tissue 

systems, our understanding of how bones accomplish these two tasks is still riddled with 

mysteries.  There are three main reasons why a better understanding of bone biology 

exceeds current scientific understanding.  First, while one component of bone—the 

mineral portion of the matrix—is easy to detect and study using x-rays, the other two 

components of bone—the organic matrix and the cells—are extremely difficult to 

observe.  The dense, mineral nature of bone effectively shields the cells from view.  

Osteocytes, the most abundant bone cells, are particularly difficult to study since they are 

completely encapsulated within mineralized matrix.  Due to the mineral content, a 
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histological slide of bone often takes at least one month to prepare, as compared to a few 

days for soft tissue, and there are often many of artifacts created in the process.  

Magnetic resonance imaging (MRI) and nano-indentation technologies now offer new 

insights into bone microstructure and composition, but MRI only provides vague 

assessments of the marrow’s status and nano-indentation only provides another 

assessment of mechanical strength.  Additionally, not all the cells are visible under light 

microscopy; bone-lining cells are so flat that they only show up as only a thin, faint line 

on most slides and frequently go unseen in the visually busy areas of the bone surface. 

 

 Secondly, bone remodeling also operates on longer time scales than other tissues.  

The complexity and toughness of bone means that remodeling and regular turnover 

takes months, as opposed to days like in most tissues.  Basic turnover requires more 

signals over a longer time and spatial scale than other tissues.  There is also a substantial 

delay between the start of bone pathologies and the moment symptoms appear, which 

usually results in most of the evidence of a disease’s mechanisms of action being gone 

before a biopsy can be taken. 

 

 A third reason why bone proves difficult to understand is the complex cellular 

interactions required for any change to the bone.  Bone remodeling relies heavily on 

spatio-temporal patterns to guide the function of its cells, possibly due to the long time-

spans of the remodeling process.  Also, since the function of bone is a balance between 

the release of calcium to maintain serum ion concentrations and the sequestering of 

calcium for bone strength, there are multiple physiological balances constantly 

interacting between a many different of cell types.  This complexity makes simple cause-

and-effect models imprecise and inaccurate in many cases, and the lack of accurate 
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models is a major problem plaguing in medical treatment and therapy design.   

 

 Because of these reasons, there is a pressing need to find novel ways to 

understand the actions and mechanisms taking place within bone.  Computational 

modeling offers a unique opportunity to build models that can simulate complex, 

dynamic systems. Agent-based modeling, while more complex and time-consuming than 

traditional graphical or mathematical modeling, provides a platform to more fully 

elucidate and critically test our understanding of the complex world of bone biology.   

 

1.2.1. Bone Tissue Structure 

Bones, on the supra-millimeter scale, have two main regions or types of osseous 

tissue: cortical and trabecular.  The cortical, or compact, bone is the dense shell of bone 

that provides the majority of the support and weight to the skeletal system.  It is 

primarily composed of cylindrical subunits called osteons (fig 1.1).  The trabecular or 

cancellous bone (fig 1.2) is the spongy network of thin rods and plates inside the cortical 

shell that hosts the marrow and provides much of the calcium that is taken from and 

stored back into the bone.  Both of these tissue regions are constantly being replaced and 

renewed by remodeling, usually within a span of seven years.  Both of these tissue 

regions will remodel to be stronger in the direction of applied force, and both of these 

types of bone are considered ‘lamellar’ since the collagen fibrils of each layer are parallel 

to each other, with regularly spaced bands formed by the resting lines.  
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Figure 1.1 A section of cortical bone, the mandible of a monkey, showing the three 
regions of cortical bone: the inner endosteum (E), the outer shell of periosteum (P), and 
the Haversian bone (H) in the center.  The Haversian bone is made up of both young 

primary osteons (1°) and the classic bull’s-eye shaped secondary osteons (2°).  
Reproduced from Roberts et al.95 

 

Trabecular, or spongy bone, is especially prone to remodeling; it has twice the 

surface area of dense cortical bone and, therefore, more contact with vascular tissue 

through which the body extracts and sequesters the flux of calcium ions needed and 

generated by other tissues51. 
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Figure 1.2 A micro-CT reconstruction of a section of trabecular bone. Red areas 
correspond to regions under the highest calculated local stresses that could be generated 
by a 1% compressive strain; blue areas experience the lowest stress. Each rod is 
approximately 100 microns in diameter.  From Burghardt et al.15  
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1.2.2. Cells 

 Within bone, there are three classic cell types involved in bone remodeling: the 

osteoblast, the osteoclast, and the osteocyte24.  The osteoblast deposits the organic 

matrix called osteoid that serves as the nucleation site for the hard calcium phosphate 

crystals.  The osteoclasts are the cells responsible for degrading bone.  The osteocyte cells 

reside within the bone, forming a syncytium of cells communicating through gap 

junctions. 

 

The most abundant cell in bone is the osteocyte. The osteocytes live trapped 

within the mineralized matrix; they are descended from osteoblasts and form a spidery 

network of canaliculi—very small channels—within the bone.  Canaliculi average around 

250 nm in diameter and each contain the cytoplasmic process of an osteocyte that 

averages 100 nm in width100.  While these cells are small and relatively quiescent, their 

canaliculi radiate out into the surrounding bone and connect via gap junctions to 

neighboring osteocytes and any cells on the bone surface100. 
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Figure 1.3. An individual osteocyte, cirlced  in red, is part of the larger network of 
osteocytes, each spreading out many thin dendritic processes through the mineralized 
matrix in order to communicate with their neighboring osteocytes. Photo courtesy of Tim 
Arnett. 

 

 Due largely to the osteocytes’ location, they are considered the most likely 

candidate for sensing mechanical forces, micro-damage, and other conditions within 

bone tissue. They could then report that information back to the osteoclasts and 

osteoblasts.  Osteocytes are the only cells within the bone matrix and are uniquely 

positioned to monitor the local forces and microfractures that occur within the 

mineralized matrix.  However, it is uncertain how they accomplish this or which cells 

they communicate this information to7.  

 

 The largest bone cell is the osteoclast, growing over 100 µm and having between 3 

to 10 nuclei49,88.  It is descended from the monocyte cells of the hematopoietic lineage, 
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allowing this cell to have the machinery needed to form into giant multinucleated cells 

that can seal onto bone surfaces and resorb the mineralized matrix. 

 

 
Figure 1.4.  The multinucleated osteoclast is actively attached to bone and resorbing a 
pit in the bone on its basal side.  Histology by Lutz Slominanka.102  

 

However, while osteoclasts do degrade bone, having an active osteoclast 

population should not be assumed to be detrimental for bone.  Bone naturally 

accumulates microfractures and becomes weaker with age.  Without osteoclasts to 

remove damaged, infected, or dead bone, new bone cannot take its place.  There is also 

evidence that the osteoclasts play an important role in stimulating osteoblast activity55.  

Therefore, in cases where bone mass is pathologically low, it is due to an incorrect 

balance between the relative osteoclastic and osteoblastic activities, not necessarily due 

to a pathological level of osteoclast activity. 

 

The osteoblast cells produce bone—specifically the organic osteoid and the 

proteins that facilitate its mineralization.  They originate from the mesenchymal stem 

cell line, either on the endosteal and periosteal surfaces of bone or from the marrow’s 
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stromal cells.  Once activated and situated on the surface of bone, osteoblasts build up a 

surface layer of osteoid.  Mineralizing enzymes, such as alkaline phosphatase, then cause 

hydroxyapatite crystals to form along the collagen strands within the new osteoid.  

Osteoid is normally formed at a rate of roughly 1-2 microns a day36,53,86,91,50, and will 

slowly mineralize for months afterwards68.  The osteoblasts usually form as part of a 

monolayer of other osteoblasts within resorption pits.  Over their lifetime, osteoblasts 

will shift from being plump and round to become smaller and thinner until their osteoid 

production ceases.  It is possible that some of these older osteoblasts then form the 

extremely thin cells that rest along the inner and outer surfaces of the bone—bone lining 

cells.  These bone-lining cells can also be called ‘resting osteoblasts’, though this term 

has also been used as a catch-all term for any cell that is too small to be an active 

osteoblasts but is still associated with a bony surface. 

 

 
Figure 1.5.  The osteoblast agents form a row along the surface of the surface of 
mineralized bone, producing a layer of osteoid that will slowly mineralize into bone.  
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Photo courtesy of Russ Turner and Susan Ott. 
 

 During the formation of a new layer of bone, a few active osteoblasts are selected 

to become entrapped within the mineralizing matrix as it is being laid down.  As these 

cells become trapped, they spread out long, thin cellular extensions in all directions and 

become metabolically quiescent.  At this point, these cells are called osteocytes. 

 

 There is also a fourth, less well-understood cell type in bone tissue—the bone 

lining cell. These extremely flat cells line the periosteum and endosteum, including the 

surfaces of the trabecular bone47.  BLCs spread out to be roughly 20-30 µm across and, 

apart from the soma, thin enough to be invisible using light microscopy31,66.   

 

 
Figure 1.6.  Two bone-lining cells resting flat against the surface of the bone.  The 
arrow point to their flat somas.  Reproduced from Miller and Jee.77   
 
 

Because this cell has the same mesenchymal lineage as osteoblasts, they share 

most of the same cell markers as osteoblasts and are identified as osteoblasts under the 

common informal definition of ‘a mononuclear cell contacting bone’.  They have also 

been called resting osteoblasts, pre-osteoblasts, surface osteoblasts, peri-osteoclasts, and 

may be the same cell type as the newly coined canopy cells 3,31,42,66,111.  The BLCs have 

been observed connecting to the osteocytes through gap junctions at the tips of their 
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dendritic processes, so it is possible that the BLCs are part of the osteocytes’ syncytium31.  

These tight junctions may also allow them to participate in the mechanotransduction of 

forces within bone78.  They, or a visually similar cell, have been identified as enwrapping 

and digesting remaining demineralized matrix that osteoclasts leave behind30 before a 

new layer of bone is deposited. 

 

Currently in bone biology there is a controversy about whether or not BLCs form 

a canopy of cells encapsulating a pocket of space around the remodeling site and 

amplifying the paracrine signaling that activates osteoblasts.  There is evidence of tight-

junctions between resting osteoblastic cells forming a layer a few microns above the 

surface of a Howship lacunae3,29,42,82.  The tight junctions may prevent diffusion of a 

signaling molecule from the remodeling site and may concentrate the signal in the 

location where a pre-osteoblast could contact it.  However, despite putative evidence for 

the existence canopy cells, universal concurrence has not been achieved81. 

  

1.2.3. Controlled Remodeling 

Bone remodeling has three primary goals.  The first is to maintain the quality of 

bone matrix via the general turnover of older bone with newer bone as well as the 

targeted replacement of damaged bone.  The second goal is to optimize the bone mass.  

Bone is a physiologically expensive organ to maintain and consequently, bone mass must 

be optimized to prevent both fractures and an undo metabolic burden.  The third goal of 

bone remodeling is the control of the serum levels of calcium, which can be alternately 

released or sequestered in the bone matrix51. 

 

All three of these goals represents a balance between two opposing needs that 
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must be maintained and each requires multiple sources of feedback affecting the cells 

participating in bone remodeling.  Some of these feedback signals systemically affect all 

bone surfaces, while others are paracrine or juxtacrine in nature.  Many of the identified 

signaling molecules have unknown ranges and cell targets.  This makes the cell signaling 

information from literature difficult to sort out. 

 

 What is known about bone is that it has the ability to adapt to changes in 

mechanical forces by optimizing its mass and shape.  Therefore, the remodeling process 

has to involve mechanosensory cells.  Patients who undergo long-term bed rest have less 

bone and increasing the forces applied to bone, such as through exercise, may increase 

bone density20.  This mechanical optimization is also a major cause of bone-loss in 

astronauts.   

 

 Dr. Wolff first formally proved that bone would strengthen itself in a direction 

parallel to the normal vector of applied load116.  It has been roughly calculated that 

human bone can shift any cubic millimeter of bone by up to two square millimeters a 

year.  Later, Dr. Frost, an orthopedic surgeon, played a major role in how bone 

remodeling is understood, generating the concepts and evidence for bone turnover and 

developing the mechanostat theory.  Based on what he saw in the clinic, Frost’s 

mechanostat theory includes four strain thresholds: one for remodeling, one more 

modeling, a pathologic threshold, and a fracture threshold52.  Being above or below one 

of these thresholds would be enough to change the response of the bone.  For example, 

being above the pathologic threshold would mean there was enough strain on the bone to 

cause microfractures—leading the bone to direct bone turnover in that area and 

replacing the injured bone with a larger quantity of new bone.  The lowest threshold is 
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the one that this paper is focusing on since this would have to be a pathway that is always 

running, unlike the upper pathological threshold, which would only activate if a 

microfracture or other cell damaging event took place.   

 

There are hundreds of genes and proteins known to increase or decrease bone in 

humans1,8,21,27,40,46,56,61,63,65,70–73,90,99,108,112.  For the purpose of this research I am focusing 

only on the characteristics of spatiotemporal paracrine signaling required to organize 

local remodeling on the micron scale.  This includes the mechanisms behind the 

optimization of a trabecula’s width and the mechanisms behind the coupling of 

osteoblasts to osteoclasts within a single bone remodeling site. 

 

1.3. Previous Models of Bone Remodeling 

There have been many computer simulations made of various aspects of bone 

remodeling, using a variety of techniques.  A large focus of this research has been geared 

towards understanding the mechanotransduction pathways that connect load bearing 

with bone growth along the principal axis of the applied stress7,34,74,93.  For example, one 

group looked at the fluid sheer along a long bone during tension and compression, 

providing evidence that small molecules can be transported through the forced 

convection flow103.   

 

On the cellular scale of the bone remodeling process, one group has simulated the 

theory that osteoclasts could cause trabecular perforations if they resorb bone based on 

local microdamage.  Using an finite element model and this hypothesis, their simulation 

suggested that a critical pathological resorption pit size, relative to trabecular width, 

could exist75.  With the FEM, they calculated the local mechanical behaviors of the tissue 
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and extrapolated the cellular behaviors based on a threshold response to that strain.  

This allowed both the mechanical forces and the cellular activity of osteoclasts to interact 

within the simulation.  However, the behavior of the cells is oversimplified and not 

strongly grounded in documented osteoclast responses, so cellular processes that may 

not even exist drive the simulation outcomes.   

 

A common theme in the simulation of bone remodeling is an over simplification 

of the biology or a mismatch in the real abilities of cells and their actions in the 

simulation.  Cells that have no known ability to sense force are simulated to responding 

to mechanical strain.  Biological responses, such as osteoclastic resorption, are normally 

the result of multiple cells working through multiple signaling pathways, each requiring 

their own signaling thresholds and complex geometries.  Most computer models use only 

one round cell and one signaling threshold in order to simulate the whole biological 

response.  An example of trend is the work done to test the hypothesis that osteocytes are 

capable of detecting applied force by the fluid shear in the canaliculi—part of the larger 

debate over the osteocytes’ proposed role as bone’s mechanosensor.  Early simulations 

modeled the osteocyte as a smooth oval stated that any applied load would be below the 

measured detectable range of osteocytes23,98, discrediting the osteocytes as the bones’ 

mechanosensors.  However, when a newer simulations took into account either the 

shaped of the canaliculi on the nanometer scale and incorporated a more detailed 

account of the anisotropy of the ECM around the osteocytes, the local sheer and local 

strain respectively increased by an order of magnitude and entered the measured 

detection range of osteocytes 5,13.  Only with thorough and precise representation of the 

osteocytes were the simulations capable of correctly predicting the feasibility of the 

osteocytes as mechanosensors. 
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In order to increase the chance that the simulation would accurately represent 

bone tissue, the models presented here have endeavored to represent the ECM, cell 

shapes, local forces, and cell locations at a sufficiently high resolution.  ‘Sufficiently high 

resolution’ is defined as a spatial resolution that is functionally equivalent to the amount 

of detail that cells use to direct their behavior.  In addition, to further increase the 

accuracy of the simulation past those previously created, all the rules for the agents are 

supported by primary literature documenting those behaviors.  

 

1.4. Overview of the two Remodeling Simulations  

Two different models are presented in this thesis in chapter 2 and chapter 3.  The 

first model is a simulation of osteocytes controlling remodeling via a diffusible signal.  

The second model is built upon the first model—adding osteoblast agents and simulating 

the full remodeling cycle—in order to examine the coupling between osteoblasts and 

osteoclasts.   

 

1.4.1. First Model – Osteocytic Signal for Controlling Resorption 

The hypothesis tested in the first model proposes that a simple osteocyte-

released/osteoclast-received signal can allow the optimization of bone mass according to 

the applied force placed on trabecula.  In other words, the osteoclasts should be able to 

resorb the bone that is not required based to support a mechanical load, but the bone 

should not be allowed to thin to the point where the mechanical load would cause a 

fracture.  Using a series of different initialization parameters, the virtual experiment 

using this simulation shows that a mechanically stimulated osteocyte signal can 

dynamically maintain a minimum trabecular width dependant on mechanical load. 
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The feasibility of this hypothesis serves as a reasonable preliminary question to 

address while creating the preliminary agent-based model.  It is a hypothesis that 

requires more rigorous examination.  Simulating this hypothesis also provides a scenario 

able to provide feedback on the ability of the model to accurately capture the behavior of 

three key cell types—the osteoclast, the osteocyte, and the bone lining cell.   

 

1.4.2. Second Model – Osteoclast/Osteoblast Coupling 

The hypothesis tested in the second ABM model states that within a physiological 

range of osteoclast resorption, osteoblast apposition, osteoclast life span, and osteoblast 

life span, there is a region within that parameter space that will generate stable 

remodeling.  Stable remodeling is defined by: 1) having older bone being replaced by 

newer bone and 2) having an average trabecular width that stays within a standard 

deviation of the observed average trabecular width of human vertebra.  

 

 The rational for this specific aim is to determine if remodeling can occur in a 

coupled fashion—as hypothesized by the current experts in the field of bone biology—

when the simulation is constrained by known rates of cell activity, cell locations, 

temporal patterns, each cell’s abilities, and signaling kinetics.  While the simulation 

cannot prove that this hypothesized mechanism for bone remodeling is correct, it will 

help determine whether or not it is reasonable.  In addition, the virtual experiment can 

show the relative effects of each of the independent variables on overall bone remodeling 

within the current hypothesized mechanisms of action.  Understanding the effect of 

individual and/or combinations of biological factors on the resultant shape of the 

trabecula in the simulation can aid in identifying which factors are critical for normal 
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maintenance of bone. 
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2.  First Model - Osteocytic Signal for Controlling Osteoclastic Resorption 

2.1. Introduction 

 The simulation starts with a biological model of osteoclasts able to dissolve 

mineralized matrix and osteocytes able to create a signal that stops osteoclasts when the 

osteocytes detect their microenvironment bearing a mechanical load.  The hypothesis is 

that this will enable the osteocytes to shield useful bone from being resorbed.  This 

simulation tests whether this one cellular interaction would be enough to explain how 

osteocytes can allow resorption and thinning of trabeculae when there is an excess of 

bony matrix, but not allow the trabeculae to become so thin that they risk pathologic 

fracture. 

 

 Dr. Frost’s mechanostat theory shows how bone matches the bone mass required 

to the applied forces.  It has remained well accepted through the years, likely due to it 

being based so heavily on the constant stream of clinical data that came through his 

hospital.  More recently, it has matured into the ‘Utah Paradigm’ (fig 2.1)37. 

 

 

 

 

 



 

23 

 
Figure 2.1.  The Utah Paradigm, created by Dr. Frost, can explain many of the non-
linear bone mass/strength changes that are dependent on applied strains.  The bone 
mass/strength is represented on the vertical axis.  The horizontal axis lists a series of 
strain thresholds, from small to large, with the MESy threshold being the minimum 
amount of strain needed to maintain bone remodeling with no net change in bone.  
MESm is the minimum strain needed to prompt gains in bone mass (modeling); MESp is 
the threshold above which microfractures occur; Fx is the strain needed to cause a 
fracture.  DW is the disuse window; AW is the adapted window where the bone is 
properly optimized to handle applied loads without damage or extra mass.  MOW is the 
mild overload window while POW is the pathological overload window.  In this 
simulation, the disuse threshold is the same as the Utah Paradigm’s MESy threshold, 
under which the strain is low enough that the bone is considered to be in a state of 
‘disuse’.  Reproduced from Frost37.   
 

 Most literature has focused on the mechanisms behind the modeling and 

pathologic strain thresholds, since there is compelling evidence that osteocytes can sense 

damage and send signaling molecules—such as NO or apoptotic bodies59,107—which will 

cause osteoclasts to home in on the damaged areas of bone.  However, the MESy 

threshold—the threshold below which the bone losses bone mass during remodeling—is 
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very important for all research involving the maintenance of bone mass in situations 

where the patient goes though a period of reduced activity.  This includes bed rest, space 

flight, or paralyzing damage.  In order to optimize the skeleton’s mass, bone that is larger 

than needed has to be resorbed until it is just large enough to support the range of 

applied loads used in normal activity.   

 

 It is very likely that osteocytes are the mediators of this mechanical threshold—

both sensing the mechanical forces and relaying this information to the remodeling cells.  

No other bone cell has demonstrated the ability to respond to fluid sheer or local strain 

to the degree the osteocyte has.  Also, the osteocytes are well positioned to relay 

information to osteoclasts since they exist everywhere in the bone where the osteoclasts 

attach; they extend dendritic processes out to the surface that would enable direct 

communication with cells attaching to the bone.  Therefore it is logical to assume that the 

osteocytes are sensing this threshold and relaying it to remodeling cells.  They could be 

relaying this information to osteoclasts, osteoblasts or both in order to either call for or 

permit bone remodeling with a net positive or net negative change in bone mass.   

 

This first model proposes that a simple osteocyte-released and osteoclast-

received signal could allow the optimization of bone mass according to the applied force 

placed on the trabecula.  The osteocytes should be able to sense when the trabecula is 

thinning to the point where that width of bone is necessary to support the applied force, 

at which point the osteocytes will protect that bone with a diffusible signal. Osteoclasts 

should be able to resorb the bone that is not required based to support a mechanical 

load, but the bone should not be allowed to thin to the point where the mechanical load 

would cause microfractures, and so will not resorb when they detect the osteocytes’ 
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signal. If the osteocytes die from microfracture or old age, the aged bone will still be 

resorbable.   

 

Using a series of different initialization parameters, the simulation shows that a 

mechanically stimulated osteocyte signal can dynamically maintain a minimal trabecular 

width dependant on by mechanical load. 

 

2.2  Methods  

2.2.1. Software 

 This ABM was built in NetLogo v4.0.5 freeware (from the Center for Connected 

Learning and Computer Based Modeling, Northwestern University)115.  NetLogo allows 

for the creation of multiple agents than can either be free-moving through geographical 

space or fixed into grid locations.   

 

2.2.2. Agent-based model  

 The agent-based model presented here is formed in NetLogo, out of a 2D grid 

composed of ‘extracellular’ (ECM) agents and mobile ‘cell’ agents.  The ‘extracellular’ 

agents represent the non-cellular components, such as mineralized bone or marrow.  The 

‘cell’ agents fall into three classes: osteoclasts, bone lining cells, and osteocytes.  One 

length of trabecular strut is being simulated in each run, and since they these struts are 

normally cylindrical and transversely isotropic, a simple 2D plane should be sufficient to 

capture the basic spatial dynamics.  

 

 The goal of the simulation is to better understand how varying different 

parameters can effect changes in trabecular width and the risk of breaks—as defined by 
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the trabecula being resorbed all the way through its whole width.  Breaking a trabecula in 

this manner is significant since there is no known way the bone can fix this when it 

occurs.  By matching the initial parameters to physiologic conditions and comparing the 

simulation’s outputs with observed behavior of real bone, the simulation can show the 

strengths and weaknesses of the osteocyte shielding-signal hypothesis to explain bone 

remodeling.  The simulation can provide evidence for whether the hypothesis can 

feasibly explain the disuse threshold. 

 

 The key variables that can be changed during initialization of the ABM are 

trabecular thickness, osteocyte density, force placed on the trabecula, and the threshold 

level of force required for the osteocytes to start producing their shielding signal.   

 

 The agent-based model presented here is formed in NetLogo, out of a 2D grid 

composed of ‘extracellular’ (ECM) agents and mobile ‘cell’ agents.  The ‘extracellular’ 

agents represent the non-cellular components, such as mineralized bone or marrow.  The 

‘cell’ agents fall into three classes: osteoclasts, bone lining cells, and osteocytes.  One 

length of trabecular strut is being simulated in each run, and since they these struts are 

normally cylindrical and transversely isotropic, a simple 2D plane should be sufficient to 

capture the basic spatial dynamics.  Once per cycle all the ECM and cell agents go 

through their particular rule set one time (fig 2.4). 

 

 Each ECM grid space has a mineral component and an organic component that 

is set on a scale from 0 to 10.  The marrow ECM agents are defined as having zero for 

both of these variables.  Fully mineralized bone has 10 for each variable.  Each ECM 

agent has a variable for the amount of force in that location and the amount of signaling 



 

27 

molecule in that area.  The ECM agents, since they represent inanimate material, only 

have a rule set for evenly diffusing the signaling molecule and calculating the estimated 

force passing through that location in the trabecula (fig 2.8).  The ECM agents start with 

an initial pattern of one column of ‘mineralized’ agents with a uniform, user-specified 

width in the middle of a torus of empty ‘marrow’ agents.  The collection of ‘mineralized’ 

ECM grids is considered the trabecular region.  The average trabecular width is 

calculated as the number of mineralized ECM grids in each row divided by the total 

number of rows in the simulation.  For the virtual experiment, the size of the trabecula 

was set to be equivalent to the width of human trabeculae, which ranges from around a 

dozen microns in cases of osteoporosis to 140-300 µm in the iliac crest83,87.  Width 

depends both on the health of the individual’s bones as well as location, so there is no 

one ‘normal’ average width (fig 2.2).  For the virtual experiments simulating just 

osteocytes and osteoclasts without bone lining cells, the widths correspond to a mildly 

osteoporotic trabecula, an average trabecula in a long bone, and a trabecula within the 

upper range of normal width.  The virtual experiments looking at the effects of bone 

lining cells use a trabecular width in the normal range of healthy long bone epiphyseal 

trabeculae. 
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Fig 2.2 A set of six different CT-scans of trabecular bone biopsies showing trabecular 
architecture differences among three different anatomical locations (iliac crest, femoral 
head, and lumbar spine), and between two differently aged men (37 vs. 84 yrs). 
Reproduced from Müller80. 
 

 The osteocyte agents are created when the model initializes.  They are distributed 

evenly on top of random mineralized ECM agents at a population density roughly in the 

mammalian range (fig 2.3).  As with trabecular width, this figure can vary drastically 

from location to location and subject to subject.  Studies have shown that osteocyte 

lacunae density is anywhere between 800 per mm2 and 60,000 per mm3 44,76.  This puts 

the densities used in the simulations in a similar range to that found in human bone, 

though erring on the higher end of the range.  It is also worth noting that since the 

osteocytes are placed using a pseudorandom algorithm, they are spaced out as if they 

would be in woven bone.  In normal lamellar bone, the osteocyte lacunae are spaced 

more evenly apart.   
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 For the osteocyte rule set, since real osteocytes cannot move through bone—they 

are literally cemented into place within bone—the osteocytes agents in the model have a 

geographical location but do not move.  During the simulation, they check the force 

variable of the ECM grids where they are located, and if the force is above a certain user-

defined threshold, they will “send out” a shielding signal by increasing the signaling 

variable in the nearest ECM grid by 20 units (fig 2.5).  If the osteocyte is located on an 

ECM grid that changes states from mineralized to marrow, it will die; this mirrors how 

an osteocyte released from the bone during resorption will apoptose.   

 

 (a)                   (b) 

Figure 2.3a and 2.3b. The ABM is initialized with a trabecular region composed of 
ECM agents that are in a ‘mineralized’ state (labeled white), surrounded by ‘marrow’ 
ECM agents.  Within the trabecular region, osteocyte agents are randomly distributed.  
The green agents represent the bone lining cells.  The figure on the right shows a 
magnified view of the initialized trabecula. 
 



 

30 

 The osteoclast agents are initially located in the middle of the marrow ECM area 

and are capable of randomly walking one step each cycle (fig 2.7).  They can have one of 

two states: inactive or active.  In the model without bone lining cell activity, the 

osteoclast agent is initialized as inactive and will only become active if they walk onto an 

ECM grid that is mineralized.  In the simulations where bone lining cells (BLC) are 

functional, the BLCs are required to lift off the surface of the bone before the osteoclast 

can pass through the layer of bone lining cells.  As strange as it sounds for a giant 

multinucleated cell to squeeze through a monolayer of cells, there is clear in vitro 

evidence of mature osteoclasts transmigrating through layers of osteoblastic cells98.  

While the simulation is running, if the population of inactive osteoclasts falls below a 

certain number, a new osteoclast is added to the simulation in order to preserve the pool 

of osteoclast agents.   

 

 If active, the osteoclast agent will first check for the shielding signal in the ECM 

grid at that location.  If this shielding signal variable is above zero, the osteoclast will 

die.  If not, the osteoclast agents will “release” cathepsin k and acid into the three ECM 

agents at the interface between the osteoclast agent and the mineralized ECM surface. 

The cathepsin k and acid variables are stored in the ECM agents the same way that the 

signaling molecule variable is stored.  When the cathepsin k or acid variables are non-

zero, these variables are allowed to diffuse to neighboring, non-mineralized ECM agents.  

The cathepsin k will decrease the amount of organic component in each ECM agent and 

the acid will decrease the amount of mineral in each ECM agent.  The cathepsin k 

variable reduces the organic variable at a different rate than the acid variable reduces 

the mineral component.  The parameters for this process have been set so the resorption 

pit is an average of 15 microns wide and 10 microns deep, with the histologically 
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observed blurred edge30,66,104.  The osteoclast was also given a short lifespan once 

activated, correlating with its average 16-day lifespan36. The osteoclasts are also unable 

to bind to bone well enough to release the cathepsin k and acid if there is a layer of non-

mineralized matrix under their bottom edges, as seen in the literature22. 

 

 The bone lining cells (BLCs) here are described by flat agents that rest on the 

surface of the trabecula.  It is uncertain what percentage of the surface they cover in real 

bone since they are thin enough to be effectively invisible under most microscopes66.  

They are sized at roughly 20 microns across and have the ability to communicate with 

nearby osteocytes<sup>31</sup>.  They do not produce a diffusible signaling molecule 

to halt osteoclasts, but if they detect a nearby osteocyte or neighboring BLC that is 

signaling for osteoclasts to halt, the bone lining cell will not lift off the surface of the bone 

to allow the osteoclasts to resorb (fig 2.6).  These cells also cannot sense mechanical 

forces in this simulation.  There is no compelling evidence for a mechanism that would 

allow BLCs to detect forces and previous simulations have shown that they would not be 

able to respond to changes in the direction of principal load as well as osteocytes78.  In 

this simulation, bone lining cells do have the ability to attach back onto the surface of the 

trabecula after the osteoclast agents leaves, as well as the ability to break down 

remaining demineralized organic components, since this is a relatively well-known 

behavior of bone lining cells30. 
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Figure 2.4. A flow diagram of the main body of the ABM code.  The double rectangles 
represent subroutines.  Each cycle represents one time through the loop shown above. 
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Figure 2.5. A flow diagram of the code run by all osteocyte agents. 
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Figure 2.6. A flow diagram of the code run by all active BLC agents.  If the BLC agents 
are not active, they only ask the question ‘Are there osteoclasts nearby?’.   
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Figure 2.7. A flow diagram of the code run by all osteoclast agents. 
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Figure 2.8 A flow diagram of the code run by all ECM patches. 
 

 

2.2.3. Simulation setup and initial conditions 

 The simulation was run until the average trabecular width stabilized or the 

column ‘broke’ by being resorbed completely through its width by osteoclasts.  In bone, 

when a trabecula develops a perforation, unless a micro-callus is initiated, it corresponds 

to failure of the trabecula since it would then bear no load.  This is a major problem for 

many osteoporotic patients where the number of trabeculae in their bones reduces and 
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the bones weaken.  The simulation’s average run time was 5000 cycles; the run time 

needed was largely dependent on the difference between initial and ending widths.  

When there were no bone lining cells, the run times could be as long as 25000 cycles 

before the average width stopped decreasing.  In the model, one grid square corresponds 

to one micron, which allows the outputs to be in units of microns.  The ending width of 

the trabecula, the percentage change of trabecular width, and the number of trabecular 

perforations are the three measured outcome variables for each simulation.  The 

standard deviation is calculated with the replicates with the same starting conditions.  

The minimum number of replicates was twelve, but in cases with higher variability in 

their outcomes, more replicates were added.  This was particularly important in order to 

calculate the percent chance of a perforation occurring. 

 

 The default parameters for the model were based on qualitative estimates from 

histological slides of healthy human trabecular bone (table 2.1).  The default population 

density of osteocytes in the trabecular region was 0.00379 per square micron.  The 

default threshold amount of force that the osteocytes needed to detect before releasing 

the shielding signal was 16, which if the trabecula were correctly reduced to the minimal 

width, would correspond to a 30% reduction in area.  The width of the trabeculae ranged 

from 20 microns to 100 microns.  Neither the time-scale nor the osteoclast count in the 

model were calibrated to any particular condition.  The osteocyte density and trabecular 

width were evenly spaced along a physiological range that incorporates normal values as 

well as high and low extremes.   

 

 Each set of initial conditions were run at least twelve times in order to create 

enough replicates and gauge the reproducibility of the results.  In the case of high 
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standard deviation, particularly in the percent chance of full-thickness resorption or 

ending width, the number of replicates was increased.  Only one key variable was varied 

at a time, and so a complete response surface was not mapped out.  The goal of this 

virtual experiment was not to optimize initial conditions, but instead to challenge the 

osteocyte-shielding hypothesis’s ability to maintain trabecular thickness given various 

initial conditions correlated to physiological conditions.  By varying the independent 

parameters, their influences on the output variables can be identified, similar to how an 

over-expression or under-expression of a gene illustrates the effect of that gene in vivo14. 

 
Table 2.1. Experimental Setup for Osteocyte Shielding virtual experiment, based on 
physiological measurements9,77,79. 

 

 

2.2.4.  Methods of Analysis 

 Both the initial trabecular width and the osteocyte density were varied at two 

different osteocyte mechanosensory thresholds.  The effect of BLC activity was also 

simulated across all five widths.  The dependant variables of average final width, the 
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number of trabecular perforations, and the time it takes the width to stabilize were 

collected with twelve replications each.   

 

 In trabecular bone, perforating the trabecula can lead to its complete resorption 

since without surface on which to adhere, osteoblast cells are much less likely to activate 

and deposit bone matrix.  Also, when the trabecula is perforated, it is mechanically 

unloaded, which tends to lead to the resorption of the remaining two halves.  For this 

reason, the simulations that ended with trabecular perforations were considered as 

having failed to properly control bone resorption.  Since the simulation is too 

preliminary to quantitatively match measured bone pathologies or normal remodeling, 

the model was analyzed based on trends in the effect of the independent variables on the 

dependant variables rather than a quantitative matching of the dependent variables to 

measured values in the literature. 

 

2.3. Results 

2.3.1 Osteoclast regulation through surface changes 

 Before the osteocytes could try to defend bone from osteoclastic resorption, the 

osteoclast resorption patterns had to be correctly simulated. In particular, it was 

important to generate the shape of the Howship’s lacunae rather than tunnels into the 

bone (fig 2.9).  The regulation of the shape of the resorption pit was caused by the 

presence of demineralized matrix accumulating during resorption, based on the different 

activity rates of the cathepsin k and acids.  It was previously theorized that broken-down 

bone products released from the bone would be required to halt the osteoclast’s progress 

down through the bone.  However, due to the location and relative surface area where 

osteoclasts release the enzymes versus where they attach to the surface of the bone, the 
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osteoclast agents were able to resorb a correctly shaped pit before literally breaking 

down the mineralized matrix to which they were attached.  This allows them to switch to 

a migratory state and move across the surface until they find a location that had enough 

mineral exposed to allow for re-binding to the surface. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9. A magnified view of the trabecular surface with the osteoclasts shown in 
red, the osteocytes in yellow, and demineralized matrix show in shades of grey and blue 
according to the degree of demineralization.  The classic scalloped shape can be seen on 
the edge where an osteoclast had started eating away at the surface. 
 

2.3.2 Ability of osteocytes to shield bone from resorption  

 As the simulation runs, the osteoclasts resorb bone until the trabecula reduces in 

size enough that the applied force is above the threshold that osteocyte agents can sense.  

When under sufficient force, the osteocytes produce a signal that prevents osteoclasts 

from activating.  When there are no longer any places for osteoclasts to attach, activate, 

and resorb, the value for the remaining width becomes constant and the simulation is 

finished (fig 2.10). 
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Figure 2.10. The average width will gradually decrease as osteoclasts resorb through 
the bone and will gradually stabilize at a finial width once all the osteocytes are sending a 
signal that prevents osteoclast activation. 
   

Each width of trabecula had a proportional amount of force placed on it, so the 

same osteocyte threshold should allow the same proportional amount of resorption.  The 

percent widths over time did overlap (fig. 2.11 and 2.12), and the rate at which the 

percent change in width reduced was the same across all the initial widths.  The most 

significant differences among the different plots of width over time were the standard 

deviations, which increased as the initial trabecula became thinner—particularly when 

the trabecular started out thinner than 40 microns (fig 2.12).   

 

 The virtual experiment found that the ending average percent change in width for 

all the simulations were statistically the same across almost all widths and osteocyte 

densities given the same osteocytic force threshold (fig 2.11).  The change in osteocyte 

population density did not change the relative time it took to stabilize at either 70% 

initial width (fig 2.11) or 50% initial width (fig 2.12).  The only exception to this was the 
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combination of very low osteocyte density and low starting widths.  The factors that were 

dependant on both width and osteocyte density were the standard deviation of the 

ending width and the number of times the trabeculae ‘broke’ by being resorbed all the 

way through the width—which was the source of the standard deviation (fig 2.15).   

 

 

 
Figure 2.11. The normalized change in width to overlap.  The smaller the initial width, 
the higher the standard deviation. 
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Figure 2.12. The change in average percent width occurs in the same pattern with less 
sensitive osteocytes as it does with osteocytes that more quickly signal.   
 

 The lower the initial width, the less room there was for error.  The destruction of 

one osteocyte before it could start producing the shielding molecule could leave an area 

of the trabeculae unprotected from resorption even through the local forces were high 

within the matrix.  Having a low osteocyte population density nearly guaranteed this 

failure, but with high osteocyte densities, there were enough osteocytes that even the 

thinnest initial widths had only a very slight chance of ‘breaking’ (fig 2.13).  
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Figure 2.13.  The number of times the trabeculae is resorbed all the way through the 
width is dependent both on osteocyte density and starting width. 
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Figure 2.14.  The blue and orange groups both have bone lining cells and can 
approximate both the 70% and 50% reduction in widths within a range of initial 
thicknesses.  The less sensitive osteocyte threshold created a higher standard deviation, 
but it did not compare to the standard deviation in the group without the bone-lining 
cells. 
 

 The lack of BLCs causes a larger amount of variability and instability in the 

remaining width than any other factor tested (fig 2.14).  Even at one hundred microns, 

the osteoclasts were able to resorb through the width of some locations along the 

trabeculae (fig 2.15, 2.16).  This causes an enormous increase in the standard deviations 

at each location and a significant increase in the percent of simulations where the 

trabeculae broke.  Without BLCs, the model stabilized into a final average width, but it 

was lower than anticipated since the osteocyte signaling threshold used was the one that 

would otherwise cause only a 70% reduction in size.  Instead of a 30% reduction, the size 

of the trabeculae stabilized at more than a 65% reduction (fig 2.14).   

 The complete set of tables summarizing the results of the virtiual experiment can 

be found in the appendix.  The calculated coefficient of variation for standard deviation 

of the average width shows a clear correlation with the initial width, reducing with the 



 

46 

increase of the initial width (tables 2.1A - . 

 

Figure 2.15. In both of the simulations with bone-lining cells, the chance of having a 
trabeculae break was proportional to the starting width.  The lower the starting width, 
the less room there was for error and the greater the chances of an osteoclast resorbing 
all the way through. 
 

 
Figure 2.16.  The simulations with BLCs and without BLCs show width dependant rates 
of breaking, but with bone-lining cells, that rate is zero past 40-60 microns wide. 
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Without bone-lining cells, it occurs so often at 40 microns that the 20 micron was not 
worth running. 
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2.4. Discussion 
 
2.4.1 The effectiveness of osteocyte signaling 

 The simulations shown here show that just two or three cell types and one 

diffusible signal are able to preserve a trabecula’s width above an optimized minimum 

based on load placed upon the bone.  The ability of the simulation to dynamically tailor 

the trabecular thickness based only on the osteocytes’ threshold level of force detection 

lends credence to the idea that one osteocyte-osteoclast signal could effectively safeguard 

the lower limit of trabecular thickness.  This hypothesis provides a feasible mechanistic 

explanation for the disuse, or MESy, threshold.  There is clear evidence in the medical 

literature that a small amount of stain on bone per day is enough to prevent resorption, 

even if it is not enough to trigger deposition of mineralized matrix41.  This model 

describes a mechanism that can mimic this effect while confined by the known ability 

and location of the cells.  It is also observed that trabeculae thin over the lifetime of the 

patients, and that bone cells—including osteocytes—decrease in activity and sensitivity 

with age.  The set of virtual experiments that changed the threshold signaling value of 

the osteocytes offers a mechanism for the correlation between decreased osteocyte 

sensitivity and thinning trabecular structures. 

 

 Looking at the standard deviations among the various osteocyte densities versus 

the other initial conditions, the model also shows that much of the randomness and 

variance in the simulation outcomes comes from the placement of the osteocytes within 

the trabecula, and not the randomly located activation of the osteoclasts.  This is a 

somewhat unexpected result, for while the osteocytes are in different locations each 

simulation run, they qualitatively appear well and evenly distributed across and along 

the trabecular region, even in the cases of lower population densities. 
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 It also appears from this model that bone can best use mechanical forces to 

greatly alter and optimize trabecular structure if there is a high density of osteocytes 

initially present, without needing the osteocytes to be any more sensitive to changes in 

strain.  This could explain why woven bone, which is meant to be temporary and 

drastically remodeled, has a much higher osteocytes density than regular lamellar bone. 

 

2.4.2. The kinetics of resorbing bone and its effects on Howship lacunae 

 The periodic resorptive and migratory behavior of the osteoclasts can be 

generated by the different activity rates of the cathepsin K and acid breaking down the 

organic and mineral components, respectively.  Osteoclasts’ preferred attachment to 

mineralized bone is well documented; they do not sufficiently seal onto collagenous 

surfaces18,98.  There have also been studies that show when cathepsin K activity is 

increased to match the rate of demineralization, e.g. under the influence of 

glucocorticoids, the resorption pits become unnaturally deep and the osteoclasts stop 

migrating normally98,105.  When the rule set for the osteoclast agents was first being 

developed, the rate of organic resorption and mineral resorption was the same, and the 

osteoclasts resorbed straight through the trabecula.  The osteoclast rule set underwent a 

series of iterative revisions, making the cell shape, size, and enzymatic activity more 

precisely constrained and matched to literature values.  The only literature-based 

adjustment of the osteoclast rule-set that produced morphologically accurate resorption 

pits was the calibration of the relative enzymatic rates of organic proteases and mineral 

breakdown, as well as the preferential resorptive binding to mineralized surfaces.  This 

result supports the theory of Delaisse’s group that the balance between the migratory 

and resorptive states of osteoclasts are regulated by the relative activity levels of the 
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different enzymes involved breaking down bone104.  When the ABM uses the more 

accurate and detailed enzymatic mechanism for resorption, the simulation unexpectedly 

created a resorption pit that mirrors the classic scalloped shaped edge typically observed 

in histological samples of resorptive pits.  

 

2.4.3. The relationship between osteocyte density and trabecular 

perforations 

  The behavior of the trabecula without the bone lining cell agents shows a critical 

dependence on osteocyte density.  In order to avoid the chance of perforations, the 

simulation requires more osteocytes than are typically found in adult human bone.  

Without the activity of bone lining cells, the simulation predicts that any space between 

in osteocytes that exceeds the width of a resorption cavity would be vulnerable to 

perforating resorption.   

 

In humans, as bones age the osteocytes within the lacunae occasionally apoptose 

with age. Consequently, even if a bone’s lacunar density is high enough to initially 

protect the bone, after a few years there might not be as many osteocytes left alive to 

protect the trabeculae.  While this could be used to explain how older bones are 

predispositioned for resorption, trabeculae cannot recover from being perforated and so 

apoptosis is too risky to be an optimal way to actively target older bone for resorption.   

 

2.4.4. The effect of bone-lining cells as signaling intermediaries 

There is a relationship between loss of cells in bone and a total loss of bone mass, 

for example, over-usage of cortical steroids that has been tied to the necrosis and 

collapse of bone as a result of osteocyte apoptosis.  A large or complete loss of cells in an 
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area of bone leads to classic osteonecrosis and bone degeneration.  Even this simple of an 

ABM simulation showed a tight dependence on the osteocyte density.  Therefore, it is 

likely that there is a missing component that would otherwise be mitigating this risk, 

possibly by distributing the osteocytes’ shielding signaling across the surface of the bone 

and/or throughout a larger area of the bone.  The most likely source of this signal-

distributing behavior would be the bone lining cells which cover the surface of all bone—

including the trabeculae—and are known to interact with the osteoclasts when they are 

in the initiation stage of bone remodeling25. 

 

 Indeed, when bone-lining cells are added as intermediary agents between the 

osteocytes and the osteoclasts, the strict dependence of trabecular perforations on the 

osteocyte density is sharply reduced.  The bone lining cells were able to prevent full-

width resorption under conditions where, without the bone lining cells, multiple breaks 

occurred in every run.  It was also observed that with the bone lining cells, there was an 

increase in the average width once the width had reached a final, stable value.  This is 

most likely due to the bone lining cells protecting surfaces from resorption sooner than 

the osteocytes alone would be able to.  

  

 Apart from BLC activity, another way this ABM model could lose its strict 

dependence on a high osteocyte population density would be to expand the 

communication network between neighboring osteocytes.  In the simulation, the 

osteocyte agents only signaled if they sensed a force above the threshold within the 

radius of their canaliculi.  In reality, all the osteocytes exist as a syncytium of cells 

connected via gap junctions, which are ideal for cell-cell communication.  If the osteocyte 

agents produced a shielding signal when their neighboring osteocyte agents sensed a 
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large local strain, it could expand the region under protection from the osteocytes’ signal, 

resulting in the more precisely optimized resorption seen with the BLCs’ signaling.  

 

There have been no studies comparing bone mass or trabecular width while 

restricting BLC or osteocyte signaling.  Therefore, it is impossible to quantitatively match 

how accurate the simulation comes to stabilizing the width as compared to in vivo.  

However, the model still shows how, by adding the BLC agents following known 

behaviors, the simulation can better match the overall behavior of bone in cases of low 

osteocyte density.   

 

2.4.5. Empirical comparison of the model with human trabecular 

parameters 

 The parameters for this model are close but not perfectly in alignment with the 

measurements from human trabecular bone.  The osteocyte population densities used 

are higher than those found in human trabeculae, at least compared to the average 

density of lacunae in human vertebral cancellous bone113.  The model’s ability to best 

optimize the bone mass at higher osteocyte densities may be an indicator that this 

preliminary model underestimates the effective interconnectivity of the osteocytes or 

that the model underestimates the diffusion of the molecular signals protecting healthy, 

loaded bone from resorption.  Either way, one of the future goals is to optimize the 

osteocyte density to more accurately represent adult trabecular bone. 

 

 This simulation also has focused on the first two steps of the remodeling cycle—

activation and resorption.  The long-term goals of this agent-based model will be to 

simulate current theories on the mechanics of the Reversal, Formation and Quiescence 
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steps as well, since these play an equally important role in the control of bone resorption. 

 

 Overall, this model shows the power of an agent-based model to take limited 

information from a wide variety of sources and apply it towards understanding a 

complex biological system.  This is especially useful in bone biology where there is a lack 

of key information and an abundance of conflicting data about even the most basic 

aspects of its regulation.  This early model supports the hypothesis that one signaling 

molecule diffused out from the osteocytes and received by the osteoclasts is sufficient to 

maintain a force-based disuse threshold that minimizes the required bone mass.  The 

simulation also shows the minimum requirements for regulating the osteoclast 

resorption: accurate enzymatic descriptions of osteoclast activity, an even osteocyte 

density, and the unexpectedly important relaying of signal by the bone lining cells.   
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3.  Second Model - Osteoclast/Osteoblast Coupling 

3.1 Introduction 

 Apart from the brain, every human tissue must undergo natural turnover. In 

bone this turnover is called bone remodeling.  However, whereas epidermal layers take 

only a month to form and be sloughed off, bones turnover exists on a much longer time 

scale.  On average, bone is replaced every seven years.  This is due both to the complex 

shapes that must be maintained as well as to the mineralized nature of the bone matrix 

itself.  In bone, instead of apoptosis, a large, multinucleated cell called the osteoclast is 

required to remove old or damaged bone.  Then, in order to maintain form and thereby 

function, a second cell—the osteoblast—fills the void with new bone.   

 

 Osteoclasts and osteoblasts are closely associated, both spatially and temporally, 

during bone remodeling.  Osteoclasts and osteoblasts do not randomly activate on 

different sections of bone.  Osteoclasts preferentially resorb damaged bone.  Osteoblasts 

will localize to the resorption pits that the osteoclasts leave behind, altering their bone 

production to match the volume of bone removed.  This close interaction between the 

osteoclasts and osteoblasts is called ‘coupling’.  If osteoclasts and osteoblasts are not 

correctly coupled, the bone formation and bone resorption will not be even, leading to 

pathologies such as osteoporosis and osteopetrosis.  In order to design effective 

treatments for these diseases, it is critical to understand the mechanisms behind 

coupling.   

 

 The most understood and canonical pathway for coupling osteoclasts and 

osteoblasts is the RANK/RANKL/OPG system. Osteoprotegerin (OPG) and Receptor 

Activator of Nuclear Factor kappa-B (RANK) are both receptors and receptor activator of 
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nuclear factor kappa-B ligand (RANKL) is a membrane-bound ligand.  The RANK 

receptor is found on preosteoclasts and RANK/RANKL binding is capable of activating 

osteoclasts if there are also low levels of macrophage-colony stimulating factor around 

(M-CSF).  RANKL is found on osteoblastic cells, allowing osteoblasts to upregulate 

osteoclast activity.  OPG, on the other hand, is a soluble decoy receptor for RANKL; it 

will cover the ligand on the osteoblastic cells, preventing them from activating RANK 

and thereby osteoclastogenesis.  It’s produced by a number of cell types but it is 

particularly used by osteoblasts to regulate the production of osteoclasts57.  Multiple 

signals act through the osteoblastic cells to up or down regulate the production of bone 

or serum calcium, including PTH, vitamin D, estrogen, TGF-β, and 

glucocorticoids45,58,62,97,106.  However, as versatile as this OPG/RANK/RANKL system is, 

it cannot account for all osteoclast/osteoblast coupling. 
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Figure 3.1. The RANKL protein stimulates osteoclast formation, function and thereby 
bone resorption.  This ligand is produced by stromal cells, immune cells, osteoblastic and 
preosteoblast cells.  Osteoblastic cells can additionally produce OPG which can 
competitively interfere with RANKL, thereby inhibiting osteoclastogenesis and bone 
resorption. Reproduced from Ferrari-Lacraz and Ferrari.33 
 

The problem with the RANKL/OPG system—excluding the debate about whether 

it is a more systemic versus local regulation—is the temporal nature of this pathway.  The 

timing of the cell signals is backwards.  In particular, with RANKL and OPG, osteoblasts 

are the cells affecting the activation of osteoclasts.  However, in the bone remodeling 

unit, the osteoclasts are the first of these two cell types at the remodeling site; only after 

they finish resorbing can the osteoblasts do their job.  The osteoblasts’ RANKL does not 

cause the osteoclasts to activate on the bone surface and the mechanism for how 

osteoblasts are recruited to the remodeling site is still unaccounted for.   
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Coupling is term for the way in which osteoclasts and osteoblasts are spatially, 

temporally, and functionally tethered during bone remodeling.  Active osteoblasts almost 

always deposit bone in the resorption pits that the osteoclasts had just left behind.  There 

has to be some set of signals passing between these cell types to orchestrate this 

interaction.  However, coupling is difficult to research; it cannot be replicated in vitro 

and is too dynamic to capture histologically.  There is a long list of possible signals that 

osteoclasts and osteoblasts can produce to influence the other’s activity levels, but the 

information gathered on each of these molecules is conflicting and no one signal has 

been proven to be important on the paracrine level.  Different hypotheses for how 

coupling occurs exist, but none have been rigorously verified.  

 

 Computer simulations offer a chance to test the feasibility of these coupling 

hypotheses in a way a diagram or mental picture is unable to.  A computer model can 

integrate large and disparate amounts of information across different scales and 

disciplines.  This allows much of what is known about coupling and bone cells to be 

included to more accurately describe the mechanisms involved in this complex system.  

An agent-based computer model also allows for each of the objects, cells, signals and 

locations to be directly, one-to-one matched to the biology.  This provides the advantage 

of constraining the model’s independent variables and control variables to all be 

bounded by the physiological range seen in human bone.  Similarly, the actions of the 

agents and the kinetics of all the signals are constrained to what is feasible and 

documented in literature.  This grounding and constraining provides a way for the 

computer simulation to show when a hypothesized mechanism of action would be 

impossible for cells in the bone to carry out.  At the minimum, the simulation can show 

that a hypothesis for coupling is feasible and a clear picture of where to look next to 
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better experimentally prove or disprove the proposed mechanisms. 

 

 The simulation described in this paper has osteoblast, osteoclast, osteocyte and 

bone lining cells, which are constrained with known parameters for size, location, and 

functionality. The agents’ rule sets are based on the current hypothesis that osteoclasts 

can functionally and temporally couple osteoblasts by releasing and activating a 

diffusible “factor” from the resorbed bone.  This hypothesis was constrained to simulate 

coupled remodeling, as defied by the localized replacement of bone and the maintenance 

of a stable trabecular width.  Moreover, the simulation was challenged to replicate 

coupled remodeling through the empirical known range of values for osteoclast 

resorption rate, osteoblast resorption rate, osteoclast life span, and osteoblast life span.   

 

3.2 Methods 

3.2.1 Software 

 The ABM was built in NetLogo v5.0.1 freeware (from the Center for Connected 

Learning and Computer Based Modeling, Northwestern University). NetLogo allows for 

the creation of multiple agents that either may be free-moving through geographical 

space or fixed into grid locations.   

 

 A cluster of Linux computers was employed to run the NetLogo simulation over 

the multiple cases with multiple iterations, totaling more than 972 simulations for the 

virtual experiment.  The data was collected and analyzed in Microsoft Excel and the R 

v2.15.1 statistical program. 

 

3.2.2 Agent-based model 
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 The agent-based model presented here is formed in NetLogo out of a 2D grid 

composed of ‘extracellular’ (ECM) agents and mobile ‘cell’ agents.  It is based on an ABM 

of cancellous bone that focused on controlled resorption and osteocyte-osteoclast 

interactions.  That simulation has been improved for this study by adjusting the cell 

sizes, bone lining cell shape, and population density to match adult human vertebral 

trabeculae.  Most significantly, this model also now includes osteoblast agents. 

 

 In the simulation, the agents for each cell type--osteoclasts, osteoblasts, bone 

lining cells, or osteocytes--have their own class and rule set.  The ‘extracellular’ agents 

represent the non-cellular components of mineralized bone, partially mineralized bone 

or marrow, as well as diffusible signals.  Each agent runs through its rule set once per 

cycle, allowing the simulated trabecula to gradually change over iterations of each of the 

cells carrying out their known cellular activities (fig 3.2).  One strut of trabecular bone is 

simulated in each run.  Struts are roughly cylindrical and transversely isotropic, 

consequently, a simple 2D plane was considered sufficient to capture the basic spatial 

dynamics.  
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Figure 3.2 An flow diagram of the overall code run by the agent based model. The 
RunOClasts and RunOcytes subroutines are the same as in the previous model.  (See Fig 
2.5 and Fig 2.7) 



 

61 

 

 

 Each ECM grid space has a mineral and an organic component (i.e., variables) 

that are set on a scale from 0 to 10.  The bone marrow is defined by having zero for both 

of these variables.  Fully mineralized bone has 10 for each variable.  Each ECM agent has 

variables for the amount of force in that location and the amount of signaling molecules 

in that area.  The ECM agents represent inanimate material and have a rule set for 

diffusing the signaling molecules and calculating the estimated force passing through 

that area of the trabecula (fig 3.3).   
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Figure 3.3 A flow diagram of the code run by all ECM patches.  

 

The ECM agents start with an initial pattern of one column of ‘mineralized’ 

agents of uniform, user-specified width in the middle of a torus of empty ‘marrow’ agents 

(fig 3.4).  The collection of ‘mineralized’ ECM grids is considered the trabecular region.  
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The average trabecular width is calculated as the number of mineralized ECM grids in 

each row divided by the total number of rows in the simulation.  For the experiments in 

this paper, the ‘normal’ size of the trabecula was based off the width of healthy human 

vertebral trabeculae, which was measured by Chen et al, to be 115 +/- 14 microns19.  

While stationary agents represent the ECM, movable agents represent the cells.  The 

code which creates the initial condition of the model—the setup of the trabecula’s ECM 

and initial cell positions—is available online at https://sourceforge.net/projects/bone-

abm-setup/.   

 



 

64 

 
Figure 3.4. The initial condition of the ABM simulation is a smooth column of 
mineralized ECM agents (white), lined with bone lining cells (green) residing between 
the matrix ECM agents an the marrow ECM agents (black).  The osteocytes are 
distributed evenly and randomly within the mineralized space (yellow dots within white 
area) and their initial placement is the greatest difference between the start conditions of 
each model.  The preosteoblast agents are located above the surface of the mineralize 
trabecula (yellow dots within the black area) and the preosteoclast agents are initially 
located in the middle of the torus of marrow ECM agents (red/green spots). 
 

 The most abundant cell in bone is the osteocyte.  These cells are the likely 

mechanosensors of the bone.  They are the only cell within the bone matrix and so are 

uniquely positioned to monitor the local forces and microfractures that occur within the 
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mineralized matrix.  While these cells are small and relatively quiescent, the have many 

long, thin—100 nm—dendritic processes that radiate out into the surrounding bone and 

connect via gap junctions to neighboring osteocytes100. 

 

 The osteocyte agents are created when the model initializes.  They are distributed 

evenly on top of random mineralized ECM agents at a population density within the 

physiological human range79.  It is also worth noting that since the osteocytes are placed 

using a pseudorandom algorithm, they are distributed as they would be in woven bone.  

In lamellar bone, the osteocyte lacunae are spaced more precisely and evenly.  They are 

also never distributed in the exact same position from run to run since they are placed 

randomly.  The osteocytes are set to be 5 microns in diameter to be consistent with 

literature6. 

 

 Osteocytes do not move through bone, so the osteocytes agents in the model have 

a geographical location and do not move.  During the simulation, osteocyte agents 

‘check’ the force variable of the ECM grids where they are located109.  If the force is above 

a certain threshold, the osteocyte agents will ‘send out’ a shielding signal by increasing 

the shielding signal in their ECM grid by 20 units60.  If the osteocyte is located on an 

ECM grid that changes states from mineralized to marrow, it will die; this mirrors how 

an osteocyte released from the bone during resorption will apoptose28.  This osteocyte 

rule set is adopted from the previous model simulating osteoclast/osteocyte interactions 

(fig 2.5). 

 

The second most common bone cell—particularly on quiescent bone surfaces—is 

the bone lining cell (BLC), sometimes called a resting osteoblast or a surface 
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osteoblast4,42. These extremely flat cells line the periosteum and endosteum, including 

the surfaces of the trabecular bone47, spreading out to be roughly 20-30 µm across and 

thin enough to typically be invisible apart from the soma when using light 

microscopy31,66.  The BLCs have been observed connecting to the osteocytes through gap 

junctions at the tips of their dendritic processes, so it is possible that the BLCs are part of 

the osteocytes’ syncytium31. 

 

 The BLC agents in this simulation lie along both surfaces of the strut of 

mineralized matrix; they are 25 microns across and one micron thick, approximating the 

average measured proportions31. The bone lining cell (BLC) agents are required to ‘lift 

off’ the bone surface before the osteoclast can pass through the BLC layer. Contact with 

an osteoclast will cause a BLC agent to lift unless that BLC agent is detecting (e.g., by a 

mechanotransduction) a protective signal from contiguous osteocytes16,17,77.  In the 

literature, there is debate over whether BLCs would normally apoptose, become active 

osteoblasts, or turn into canopy cells when no longer connected to the bone surface.  To 

keep the model simple, the BLCs lift 10 µm off the surface without interfering with any 

processes until the osteoclasts and/or osteoblasts have left the bone surface and then 

reattach (fig 3.5).  
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Figure 3.5 A flow diagram of the code run by all BLC patches.  
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 The largest bone cell is the osteoclast, growing over 100 µm and having between 3 

and 10 nuclei49,89.  It is descended from the monocyte cells of the hematopoietic lineage, 

allowing the cell to have the machinery needed to form into giant multinucleated cells 

that can seal onto bone surfaces and resorb the mineralized matrix.  

  

The osteoclast agents in the model are initially located in the middle of the empty 

‘marrow’ ECM area and are capable of randomly ‘walking’ one step per each cycle.  They 

have two states: inactive or active.  Once active, they are set to a width of 30 microns. 

The BLCs will lift off the surface of the bone when they come in contact with an 

osteoclast unless they are within 30 µm of an osteocyte sending out a shielding signal; 

this allows the osteoclasts to attach to a bare surface of mineralized matrix.  There is in 

vitro evidence that osteoclasts transmigrate through osteoblastic cells98.  While the 

simulation is running, if the population of inactive osteoclasts falls below a certain 

number, a new osteoclast is added to the simulation to preserve the pool of osteoclast 

agents.   

 

If active, the osteoclast agent first will check for the shielding signal in the ECM 

grid below it.  If the shielding signal is above zero, the cell will die.  If not, the osteoclast 

will either attach onto mineralized bone or migrate along the demineralized surface. The 

osteoclasts agents are unable to bind to bone to resorb if there is a layer of non-

mineralized matrix under their bottom edges22.  It has been reported that this migratory 

aspect of osteoclasts is important for replicating the scalloped shape of the resorption 

pits.   

 

 If the osteoclast attaches to the bone, it will release cathepsin k and acid (i.e., a 
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proton: H+) into three ECM agents spaced evenly on the surface of the bone between the 

agent and the surface of the attached bone below22,64.  The amounts of these two 

variables—cathepsin k and acid—are stored in the ECM agents in the same way as the 

signaling molecule and they will diffuse through any ECM square without an amount of 

mineralized matrix less than 1.  The cathepsin k decreases the amount of organic 

component in each ECM agent and the acid decreases the amount of mineral component 

in each ECM agent. The cathepsin k works at a different rate than the acid.  The 

parameters for this process were set to produce a resorption pit (define) that is an 

average of 25 microns wide and 8 microns deep.  The resorption pit has histologically 

observed blurred edges formed from partially demineralized matrix30,66,104, which are 

replicated in the model.  Each ECM agent being resorbed releases an osteoblast 

chemoattractant signal that is allows to diffuse through non-mineralized ECM 

agents11,12,96.  The osteoclast agents are given a ‘short lifespan’ once activated, correlating 

with osteoclasts’ average 16-day lifespan67,36.  As with the osteocyte agents, the osteoclast 

rule set is adopted from the previous model simulating osteoclast/osteocyte interactions 

(fig 2.7). 

 

 The last cell included in the model is the osteoblast.  This cell type is responsible 

for creating new osteoid that will mineralize into bone matrix.  In the simulation, the 

inactive osteoblast agents, which correspond to preosteoblasts in the stroma of the bone 

marrow, randomly walk 22.5 +/- 2.5 µm away from the bone surface9.  If they detect the 

signaling molecule released by the osteoclasts at their location, they will partially 

activate, switching into a migratory mode (fig 3.6).  While in the migratory mode, the 

osteoblasts migrate up the concentration gradient of released signaling molecule until 

they reach a mineralized surface where they complete their activation12,43.  Activated 
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osteoblast agents orient towards the bone surface; if there are osteoclasts at that location 

they wait on the bone surface, otherwise they will produce bone101.  The osteoblast agents 

produce bone by, once a cycle, setting the organic component and mineralized matrix 

variables to 10 in the a set of ECM agents in front of them, taking a micron step 

backwards and setting their age plus one.  If the osteoblast age is greater than their 

lifespan, the osteoblast agent dies.   
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Figure 3.6 A flow diagram of the code run by all osteoblast agents.  
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3.2.3 Simulation setup and initial conditions 

 The simulation ran until the trabecula was fenestrated by osteoclasts, the 

trabecula expanded to the edge of the screen, or else when the simulation reached the 

12,001st cycle.  If the trabecula is fenestrated, the output is considered pathologic since 

the whole trabecula is then likely to be destroyed94.  When there is a fenestration in the 

trabecula, the osteoblasts lack the template for the new bone, no new bone is added, no 

force is transmitted through the bone, and osteoclasts do not receive inhibitory signals to 

prevent them from resorbing the rest of the unloaded strut.  12,000 cycles was found to 

be long enough for the simulation to develop a constant rate of bone formation or 

resorption, even in the most extreme cases. 

 

 The simulation was also run at least twelve times for each test case of input 

parameters.  The standard number of replicates required to gauge the variance and 

reproducibility of an ABM is traditionally 25.  However, recent work by Ju-Sung Lee has 

show that five is the minimum number of replicates required.  This is similar to how n = 

3 is the minimum number of replicates required in cell biology.  Since this ABM 

simulation is particularly time consuming and the replicates did not have a high variance 

nor a bifurcation in the generated outcomes, twelve replicates was deemed sufficient to 

characterize the behavior of the simulation for each of the 81 cases. 

 

 The default parameters are set to mirror average values for human vertebral 

trabeculae, and constrained to within empirically measured values where possible (table 

3.1).  The three chosen values are the estimated average, low extreme, and high extreme 

for each independent variable. 
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 A full-factorial analysis of the four independent variables at three different levels 

was simulated.  The dependant variables are: average final width, trabecular 

smoothness, the number of trabecular perforations, rate of change in trabecular width, 

and the time it takes the width to stabilize.  Each independent variable was collected 

from all 81 experimental conditions with twelve replicates each.   

 

Table 3.1 Experimental Setup for the Osteoclast/Osteoblast Coupling Virtual 
Experiment, using values for variables based on literature9,19,76,77,79,105. 

 
 
 
3.2.4.  Methods of Analysis 

 The average trabecular width, plus or minus a standard deviation, is known for 

normal human vertebral trabeculae and can be compared to the ending widths of the 

simulations to estimate how much of the parameter space within the known ranges of 
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the input variables can successfully simulate normal remodeling.  An estimated upper 

and lower bounds for the physiologically expected smoothness, rate of change of width, 

and number of trabecular perforations is also known and can be combined into a 

measure of the Z-score Euclidian distance to evaluate the ability of the model to correctly 

simulate multiple aspects of bone remodeling. 

 

 The specific effects of these independent variables on the size and health of the 

trabeculae is unknown (e.g. there is currently no literature on the effect of a 30% 

decrease in osteoclast life span and its impact on the trabecular width in vivo).  However, 

the general effects of reducing or increasing the input parameters can be matched 

against a generally agreed upon expected direction of change in the trabecular width.  

For example, increasing osteoblast activity is known to increase bone production and 

mass, even if the amount bone increases has not been quantified.  Additionally, the 

simulation’s independent variables cover a broad range, allowing the simulation to 

address how extreme values for osteoclastic resorption or osteoblastic apposition could 

impact bone remodeling, within the assumption that this hypothesis for coupling is 

correct.   

 
 The simulations were evaluated in terms of their ability to recapitulate coupled 

remodeling as defined by average width, smoothness, trabecular perforations, time to 

reach equilibrium, and rate of change of the trabecular width.  The simulation results 

were also assessed by the length of time required to reach a minimum width, which was 

the inflection point in the plot of the change of width over time.  The rate of change in 

the trabecular width only reaches a constant rate after this inflection point.  The 

simulations were also evaluated by the qualitative observations of the osteoblasts’ ability 

to spatially and temporally fill the resorption pits left by the osteoclasts, as compared to 
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histological samples of mammalian bone remodeling. 

  

 The average width is calculated as the average number of patches along the x-axis 

with a mineral value >=4 at the end of the simulation.  The standard deviation of the 

average width is equal to the standard deviation of the average width for each of the 12 

simulations per case.  The expected value for the standard deviation is based off the 

experimentally measured values for human vertebra in adult premenopausal women—

115 +/- 14 microns19.   

 

The smoothness was calculated as the standard deviation of the width along the 

trabecula within each replicate.  The higher the value for ‘smoothness’ is, the more its 

width varied along the length of the trabecula and the less smooth the ending trabecula 

actually was.  Normal trabecular bone is very smooth, with only gradually varying by 

around 10-30% along the entire length26.  It is technically possible to calculate the 

standard deviation of the smoothness just as it was done for the average width, but as it 

would only be useable to gauge the stochasticity of the simulation, it was not analyzed.  

The number of trabecular perforations was calculated as the number of instances per 

row where there were no ECM patches with a mineralization value greater or equal to 4.   

 

3.2.5  Validation of model and results 

 The ABM model described here underwent two different types of validation—first 

the validation of the code and, second, validation of the results.  In validating the code, 

the goal was to ensure that the model’s behavior was an accurate representation of the 

information given by the subject experts.  This includes empirically constraining the 

initial conditions, quantifiable parameters, and the spatial aspects of the simulation, as 
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well as constraining the rules that govern the behavior of the agents to behaviors that are 

documented in the literature. 

 

In ABM studies, this is often referred to as ‘empirically grounding’ the model, or 

‘validation by inputs’.  The validation of the code employed here can also qualify as 

validation by the subroutines.   Each agent’s sub-routines are qualitatively checked to 

assure that they generate behavior matching their represented cells.   

 

 The ABM simulation was also validated by the generated results; the output 

parameters were compared to values known and reported in the literature.  For example, 

the trabecular width and the ability to reach—or fail to reach—a stable width was 

compared against the data for healthy adult trabeculae in human vertebrae.   

 

3.3 Results  

Since the model initializes with only preosteoblasts and preosteoclasts, and the 

osteoblasts only activate upon the osteoclast activity, there is a delay in bone formation 

at the start of each simulation.  This causes an initial condition of bone loss that 

stabilizes and then gives way to the stable, typically linear, rate of change in trabecular 

width (fig 3.7).  Surprisingly, the time required for the simulation to reach the minimum 

width was not constant between cases (fig 3.9).  Sometimes it took quite a while for the 

osteoblasts to functionally ‘catch-up’.  Consequently, this value has been added to the 

panel of output variables used to analyze the model.   

 

The rate of change of the width ranged from positive to negative given the 

different input conditions, showing that there exists a set of independent variables 
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within the range simulated in the virtual experiment that allow for the balanced (net 

zero) maintenance of trabecular width (fig 3.7-3.8).  Since the independent variables 

were within literature values, the model suggests that this hypothesis for coupling 

osteoclasts and osteoblasts is feasible.    

 

This hypothesis explains a normal pattern of bone remodeling, both in balanced 

formation and resorption, and in the correct pattern of cellular activity throughout the 

whole sequence of the remodeling process.  However, this model is also more sensitive to 

perturbations in the independent variables than is observed in normal bone remodeling, 

particularly at the upper level of osteoblast activity, which caused the simulated 

trabeculae to dramatically increase in width (fig 3.12-3.13).  This oversensitivity was 

expected since this ABM is still just a preliminary simulation—having only one signal to 

balance all of the cellular activities.  There is evidence for dozens of signaling molecules 

necessary to orchestrate this balanced remodeling in mammalian bone.  In terms of 

creating the spatial-temporal pattern of coupling while bounded by physiologically 

constrained parameters, the simulation was able to correctly simulate coupled 

remodeling using the ‘osteoclastic resorption released coupling signal’ hypothesis.   
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Figure 3.7. Four representative plots of the average width changing over time during 
the simulation.  Top two graphs show an example of the width increasing, without or 
with the cell populations (red is the number of osteoclasts, green is the number of 
osteoblasts).  The bottom left plot is an example of the rate change close to zero.  The 
bottom right plot is an example of the average width’s rate change being negative.  If the 
plot had a time of minimum width less than 12000 cycles, the rate of change in width 
was calculated from the time between the minimum width and the end of the simulation.  
The complete set of plots can be found in the appendix.  
 
 

Across the 81 cases, the simulation’s time of minimum width is correlated with 

the rate of the width change (fig 3.8).  The higher the rate, the faster the simulation stops 

reducing in width before expanding again.  The few cases where the rate never becomes 
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positive, there are no specific times of ‘minimum width’, but the cases with the slowest 

increasing width have the highest time of minimum width (fig 3.9).  However, plotting 

the rate as a function of the minimum time shows a non-linear relationship between the 

two outcome variables (A3.2).   

 

Out of all the independent variables, the osteoclast lifespan has the smallest 

influence on any of the output variables. Osteoclast lifespan has no visual impact on the 

rate change (fig 3.10) and most of the slopes of its effect on the output parameters are 

close to zero, with a low R2 (fig 3.15, 3.16).  The largest impact the osteoclast lifespan has 

on anything is the time of minimum width (fig 3.14).  It is to be expected that increasing 

the lifespan would increase the time of minimum width since the longer the osteoclasts 

persist, the more time passes before the osteoblasts can start depositing bone.  Overall, 

the osteoclast’s lifespan does the most to positively increase the time of minimum width 

while both of the osteoblast’s independent parameters equally decrease the minimum 

width (fig 3.14, A3.6).   

 

The osteoclastic rate of resorption has an impact on the ending width of the 

trabeculae, but it is a small influence that is overwhelmed by the osteoblast’s two 

independent parameters (fig 3.11).  The range of plot shapes for the different levels of 

each of the osteoclast’s parameters is very diverse (fig 3.10, fig 3.11).  The combination of 

the other three independent variables linear effects lead to a wide variety of outcome 

patterns for each osteoclast input.  The osteoclast rate and the osteoblast lifespan have 

equal but opposite effects on the width rate change; longer-lived osteoblasts increase the 

rate of bone formation to the same extent that more active osteoclasts reduce rate of 

bone formation (fig 3.15).  The greatest impact on the rate of width change is generated 
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by the different levels of osteoblast activity (fig 3.15). 

 
Figure 3.8. The plots of all 81 cases in the virtual experiment, showing the change of 
width over time.  The width of the trabecula changes over time, either increasing, 
decreasing, or staying close to constant depending on levels of the four independent 
variables.  
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Figure 3.9. The 81 plots of the virtual experiment, focused on the range of 100 to 200 
microns in width to show the details of the minimum width that occurs at the start of the 
simulation before the osteoblast activity can match or exceed the osteoclast activity. 
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Figure 3.10. The effect of osteoclast’s lifespan on the shape of 81 cases’ plots is shown 
by coloring the simulations red, orange, and yellow based on whether they had a long, 
normal, or short osteoclast lifespan.  The change in osteoclast lifespan does not have a 
large influence on the change in width over time. 
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Figure 3.11.  The effect of the Osteoclast Rate on the change of width over time with red 
coloring the plots with the most active osteoclasts and yellow coloring the plots with the 
least active osteoclasts.  The change in osteoclast rate—like the osteoclast lifespan—does 
not have a large influence on the change in width over time. 
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 The osteoblast rate and osteoblast lifespan have a significant impact on the 

change of width over time (fig 3.15), but the outcome is still a combination of all four 

independent variables together and so the outcomes are still very diverse (fig 3.12, 3.13).  

High osteoblate rates forced all 27 of their plots to increase the trabecular width over 

time (fig 3.12).  Only one of the 27 high osteoblast lifespan plots had a large, postivite 

rate of increase (fig 3.13).   

 
Figure 3.12. The effect of Osteoblast Rate on the change in the width of the simulated 
trabecula over time.  Red marks the simulations with the most active osteoblast, orange 
the ‘normal’ amount of osteoblast activity, and yellow the simulations with the least 
active osteoblasts. 
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Figure 3.13.  The effect of Osteoblast Lifespan on the change in the width of the 
trabecula over time.  The longer-lived osteoblast simulations are red, the ‘normal’ 
osteoblast lifespan simulations are orange and the short-lived osteoblast simulations are 
colored yellow.   
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Figure 3.14. The effect of the independent variables on the time of minimum width. 
 
 
 

 
Figure 3.15. The effect of the independent variables on the rate of width change. 
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Figure 3.16.  The effect of the four independent variables on the trabecular smoothness 
and the average ending width, both measured in microns.  Smoothness is measured as 
the standard deviation of the width along each trabecula at the end of the simulations, so 
the higher the value, the less uniformly ‘smooth’ the trabeculae was at the end of the 
simulation. 
 
 
 

The smoothness of the trabeculae is not strongly influenced by most of the 

independent variables, though the two osteoblast parameters increase the roughness of 

the trabecula’s ending widths (fig A3.5) and the osteoblasts’ rate of bone formation has a 

high R2 correlation with the roughness of the trabecula (fig 3.16). 

 

Normal bone should have a near zero change in trabecular width despite a 

constant level of bone turnover.  Throughout all 81 cases of the virtual experiment, even 

though the width was not always kept constant (A3.10-A3.12), there was an observed 

constant bone turnover in the trabeculae across all simulations. Functionally, in terms of 

reducing the age of the bone, the simulation is mimicking bone remodeling.   
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3.4    Analysis of Results  

 The Z-score was calculated for each simulation, using the known expected values 

for average width, trabecular smoothness, and the range for the possible rates of change 

in bone mass.  The width of healthy human female vertebral trabeculae is an average of 

115 microns wide with a standard deviation of +/- 14 microns19.  The value for trabecular 

smoothness is based on the expected range of 0-30 microns26, and the standard 

deviation was approximated at 1/4th the range.  The average rate for the change in width 

should be zero, but the standard deviation was more complicated to estimate.  Using 

drugs like Alendronate can lead to an 8.8% increase in bone mineral density in the 

lumbar region over one year, and at perimenopause, the yearly decrease in bone mineral 

density for women’s spines is 2.77%2,92. Since the simulation is of an older pre-

menopausal woman's lumbar spine, the rate of bone should be staying steady or slightly 

decreasing, not drastically reducing, so I used a 3% reduction as the lower bound for the 

rate of bone loss, and used a quarter of this range as the standard deviation (0.0025%). 

 

 The Z-score is a measure of how far the results of the simulation from the 

measured biology in units of standard deviation.  The Z-score can also combine multiple 

outcome measures into one score by treating them as orthogonal and taking the square 

root of the sum of each of the outcomes' squared Z-scores.  This hypotenuse describes 

how far the set of outcome variables are from the empirically measured biology.   

 

 The Z-score for each of the 81 cases was calculated twice—once for average width, 

rate of width change, and smoothness, and once for just the rate and smoothness, since 

the edge effect that generates the time of minimum width also artificially reduces the 
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width, skewing the Z-scores, for the simulations with the stable near-zero rates of change 

(table 3.2). 

 

Table 3.2.  The Z-score for each simulation, calculated from the comparison of the 
simulations’ results and corresponding measured parameters in the literature. 
Cell in 
the 
Design 

Z-score 
 

Z-score 
(w/o ending 
width) 

osteoclast 
rate 

osteoclast 
lifespan 

osteoblast 
rate 

osteoblast 
lifespan 

SA76 3.816 0.022 8 240 0.3 8 
SA55 1.522 0.092 8 120 0.1 8 
SA65 3.069 0.105 8 180 0.1 11 
SA74 4.872 0.123 8 240 0.1 11 
SA64 3.674 0.193 8 180 0.1 8 
SA28 0.621 0.232 4 120 0.1 8 
SA46 2.938 0.234 4 240 0.1 8 
SA56 1.142 0.282 8 120 0.1 11 
SA73 4.972 0.379 8 240 0.1 8 
SA1 1.440 0.400 2 120 0.1 8 
SA47 2.222 0.416 4 240 0.1 11 
SA67 1.249 0.454 8 180 0.3 8 
SA2 2.114 0.482 2 120 0.1 11 
SA29 1.114 0.512 4 120 0.1 11 
SA38 0.884 0.531 4 180 0.1 11 
SA77 1.834 0.585 8 240 0.3 11 
SA75 1.723 0.602 8 240 0.1 33 
SA37 1.282 0.623 4 180 0.1 8 
SA10 1.346 0.629 2 180 0.1 8 
SA11 2.152 0.683 2 180 0.1 11 
SA19 1.153 0.852 2 240 0.1 8 
SA31 3.095 0.926 4 120 0.3 8 
SA4 5.141 1.033 2 120 0.3 8 
SA58 1.814 1.083 8 120 0.3 8 
SA20 1.877 1.242 2 240 0.1 11 
SA49 1.835 1.286 4 240 0.3 8 
SA68 2.479 1.509 8 180 0.3 11 
SA59 3.820 1.512 8 120 0.3 11 
SA5 7.190 1.561 2 120 0.3 11 
SA13 5.027 1.582 2 180 0.3 8 
SA40 3.043 1.591 4 180 0.3 8 
SA57 4.033 1.636 8 120 0.1 33 
SA66 2.696 1.680 8 180 0.1 33 
SA79 1.939 1.755 8 240 0.5 8 
SA32 5.605 1.774 4 120 0.3 11 
SA3 7.691 2.071 2 120 0.1 33 
SA30 6.137 2.148 4 120 0.1 33 
SA50 4.249 2.305 4 240 0.3 11 
SA41 5.422 2.469 4 180 0.3 11 
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SA22 4.838 2.470 2 240 0.3 8 
SA61 5.865 2.553 8 120 0.5 8 
SA7 8.614 2.568 2 120 0.5 8 
SA34 7.388 2.580 4 120 0.5 8 
SA48 4.191 2.627 4 240 0.1 33 
SA39 6.148 2.641 4 180 0.1 33 
SA70 4.900 2.818 8 180 0.5 8 
SA12 8.173 3.089 2 180 0.1 33 
SA14 8.012 3.235 2 180 0.3 11 
SA36 17.881 3.648 4 120 0.5 33 
SA21 7.043 3.673 2 240 0.1 33 
SA23 7.406 3.718 2 240 0.3 11 
SA63 18.062 3.852 8 120 0.5 33 
SA9 17.095 3.874 2 120 0.5 33 
SA80 6.064 3.918 8 240 0.5 11 
SA33 13.300 4.030 4 120 0.3 33 
SA52 6.971 4.063 4 240 0.5 8 
SA43 7.990 4.078 4 180 0.5 8 
SA16 9.696 4.174 2 180 0.5 8 
SA35 10.411 4.393 4 120 0.5 11 
SA6 14.480 4.475 2 120 0.3 33 
SA62 9.507 4.494 8 120 0.5 11 
SA18 20.180 4.561 2 180 0.5 33 
SA45 19.200 4.783 4 180 0.5 33 
SA72 18.939 4.820 8 180 0.5 33 
SA8 11.683 4.892 2 120 0.5 11 
SA25 9.474 5.150 2 240 0.5 8 
SA60 13.683 5.162 8 120 0.3 33 
SA27 18.023 5.293 2 240 0.5 33 
SA71 9.489 5.362 8 180 0.5 11 
SA54 17.345 5.611 4 240 0.5 33 
SA42 14.411 5.788 4 180 0.3 33 
SA15 15.767 5.849 2 180 0.3 33 
SA81 16.157 6.244 8 240 0.5 33 
SA69 14.007 6.297 8 180 0.3 33 
SA17 12.784 6.335 2 180 0.5 11 
SA44 11.533 6.339 4 180 0.5 11 
SA53 10.321 6.363 4 240 0.5 11 
SA24 14.720 6.776 2 240 0.3 33 
SA51 14.209 6.877 4 240 0.3 33 
SA26 12.237 6.973 2 240 0.5 11 
SA78 12.518 7.240 8 240 0.3 33 

 

 The first Z-score had only two simulations that fell within one standard deviation, 

SA28 and SA38 (table 3.2).  Those simulations had a normal osteoclast rate, low or 

medium osteoclast lifespan, a low osteoblast rate, and either a low or medium 
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osteoblast lifespan.  However, while these two cases did particularly well in both Z-score 

calculations, they likely rose to the top of the first Z-score calculation because they had 

the combination of matching low or matching medium levels of osteoclast lifespan and 

osteoblast activity along with low osteoclast activity and medium osteoclast activity.  

These two values would allow for the shortest time of minimum width without forcing 

the trabecula to grow wider or thinner than normal.   

 

 Using the second Z-score calculation, there are 22 simulations that fall within one 

standard deviation of the documented literature values (table 3.2), roughly 27% of the 

simulations.   The closest to zero is SA76, which had a high osteoclast rate and lifespan 

with a medium osteoblast rate and low osteoblast lifespan.  All three values of the 

osteoclast rate and osteoclast lifespan were represented by multiple simulation cases.  All 

three values for osteoblast lifespan were present, but in that case, the osteoblast rate had 

to be at its lowest value and the two osteoclast variables at their highest level.  Almost all 

of the 22 simulations are at the lowest value for the osteoblast rate, though there are four 

cases—including the one with the lowest Z-score—with the medium level of osteoblast 

activity.   

 

 There were thirteen cases that fell within one standard deviation of both the 

expected rate of change and the smoothness, five of which also fell within one standard 

deviation of the expected ending width, despite the initial edge effect that depressed all 

the ending widths (table 3.3).  All thirteen cases are in the lower range of osteoblast rate, 

and all but one have a normal or short osteoblast lifespan.  However, the whole range of 

osteoclast rate and osteoclast lifespan is represented in the cases that correctly fall within 

expected outcomes.  In order to correctly simulate bone remodeling, it is much more 



 

92 

important to stay at the low end of the osteoblast range; this is explained more in the 

discussion.   

 

Table 3.3.  The Z-scores for the 22 cases with an average Z-score below one σ, in order 
of the summed individual Z-scores.  The first five cells are within one standard deviation 
in each of the three output measures.  The first thirteen cells (not in italics) are within 
one standard deviation of the literature values for Smoothness and Rate change. 
Cell in 
the 
Design 

Average 
Ending 
Width 

Z-score 
for 
Average Smoothness 

Z-score for 
Smoothness 

Rate 
change 

Z-score 
for Rate 
change 

SA28 117.404 0.172 17.739 0.232 0.00138 0.550 
SA38 108.296 -0.479 19.981 0.531 0.00130 0.520 
SA19 117.582 0.184 22.392 0.852 0.00189 0.754 
SA29 124.147 0.653 19.839 0.512 0.00186 0.742 
SA10 127.165 0.869 20.717 0.629 0.00203 0.813 
SA56 100.061 -1.067 18.114 0.282 0.00074 0.295 
SA55 93.923 -1.505 16.692 0.092 0.00051 0.205 
SA67 99.294 -1.122 19.401 0.454 0.00078 0.310 
SA37 99.970 -1.074 20.675 0.623 0.00080 0.319 
SA1 130.899 1.136 18.998 0.400 0.00198 0.790 
SA75 94.522 -1.463 20.513 0.602 -0.00171 -0.683 
SA77 92.954 -1.575 20.388 0.585 -0.00184 -0.735 
SA47 87.313 -1.978 19.123 0.416 -0.00231 -0.923 
SA79 118.417 0.244 29.159 1.755 0.00197 0.789 
SA49 123.725 0.623 25.648 1.286 0.00288 1.151 
SA58 130.808 1.129 24.121 1.083 0.00230 0.919 
SA20 128.464 0.962 25.311 1.242 0.00257 1.027 
SA2 139.781 1.770 19.614 0.482 0.00263 1.051 
SA11 138.582 1.684 21.123 0.683 0.00288 1.152 
SA46 77.849 -2.654 17.756 0.234 -0.00310 -1.238 
SA65 76.088 -2.779 15.216 -0.105 -0.00324 -1.297 
SA31 151.221 2.587 22.942 0.926 0.00356 1.424 
 

Table 3.4.  The initial conditions of the four independent variables for the thirteen 
cases that fell within one standard deviation of expected values. 
Cell in the 
Design osteoclast rate 

osteoclast 
lifespan osteoblast rate 

osteoblast 
lifespan 

SA28 4 120 0.1 8 
SA38 4 180 0.1 11 
SA19 2 240 0.1 8 
SA29 4 120 0.1 11 
SA10 2 180 0.1 8 
SA56 8 120 0.1 11 
SA55 8 120 0.1 8 
SA67 8 180 0.3 8 
SA37 4 180 0.1 8 
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SA1 2 120 0.1 8 
SA75 8 240 0.1 33 
SA77 8 240 0.3 11 
SA47 4 240 0.1 11 
 

 

 A MANOVA and a set of ANOVA analyses were run on the simulation to 

determine how significant the independent values were on the dependent variables 

(table A3.2-A.3.8).  The MANOVA found that all four independent variables had a 

significant effect on the output measures (table A3.2).  The rest of the ANOVA analysis 

between each combination of independent and dependent variables found a statistically 

significant p value (table A3.3), including the osteoclasts’ two parameters.  The osteoclast 

lifespan’s effect on the rate of width change had the lowest p value at 0.00757 (table 

A3.8).  The majority of the p-values were equivalent to zero.   

 

A linear regression analysis was run on the data just an exploratory measure.  The 

results are still preliminary, but they show the independent variables to have a mostly 

linear effect on the output measures (table 3.5).  The regression analyses also shows that 

the model has significant interaction effects, particularly in respect to the osteoblast and 

osteoclast lifespans.  With just the main effects, the R2 value was 0.8174, explaining 82% 

of the variance.  When the interaction effects are added into the linear regression, the R2 

jumps up to 0.9649, explaining all but 4% of the outcome variance.   

   

 Table 3.5.  Multiple linear regression analysis of the main effects of the independent 
variables on the rate of trabecular width change.  
 Coefficient Standard Error t value P > |t| 
(Intercept) - 7.470E-03     7.843E-04 - 9.525 < 2E-16 
Osteoblast Rate 4.008E-02  9.846E-04 40.705 < 2E-16 
Osteoblast 
Lifespan 

7.217E-04  1.443E-05 50.027 < 2E-16 

Osteoclast Rate - 7.352E-04   6.446E-05 - 11.406 < 2E-16 
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Osteoclast 
Lifespan 

- 2.020E-05  3.282E-06 - 6.154 1.1E-09 
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Table 3.6.  Multiple linear regression analysis of the main and interaction effects of the 
independent variables on the rate of trabecular width change.  
 Coefficient Standard Error t value P > |t| 
(Intercept)  1.122E-03 9.427E-04 1.190  0.234335 
Osteoblast Rate 
(OBR) 

- 6.550E-03 1.957E-03 - 3.347 0.000847  

Osteoblast 
Lifespan (OBL) 

- 4.597E-05 2.933E-05 - 1.567 0.117433 

Osteoclast Rate 
(OCR) 

  1.991E-04 1.277E-04    1.559 0.119288 

Osteoclast 
Lifespan (OCL) 

  1.175E-05 4.631e06 2.537  0.011346 

OBR x OBL 2.408E-03 3.885E-05 61.969   < 2E-16  
OCR x OBL 1.169E-05 2.544E-06 4.594  4.92E-06 
OCR x OBR 6.261E-04 1.736E-04 3.606  0.000327 
OCL x OBL - 5.126E-08 1.295E-07 - 0.396  0.692354 
OCL x OBR 1.096E-05 8.840E-06 1.239  0.215514 
OCL x OCR - 7.359E-06 5.787E-07 - 12.717 < 2E-16 
 

 When the interaction effects are included, the main effects of the osteoblast and 

osteoclast lifespan are negligible; the lifespan only is significant in combination with 

their respective cell’s rate of activity (table 3.6).  The only independent variable that 

maintains a main effect is the osteoblast rate, whose coefficient switches from positive to 

negative, amending the effects of the combined osteoblast rate and lifespan (fig 3.17).  

The two most significant coefficients in the regression analysis looking at interaction 

effects were the osteoblasts’ lifespan and rate combined and the osteoclasts’ combined 

lifespan and rate.  Each of these inputs has an opposite effect to respectively increase or 

decrease the rate of width change (fig 3.18). 

 



 

96 

 
Figure 3.17. The combined effects of the osteoblast rate and the (osteoblast rate * 
osteoblast lifespan) on the rate of the change in trabecular width. 

 
Figure 3.18. The combined effects of the osteoblasts’ lifespan and rate with the 
osteoblasts’ lifespan and rate on the rate of change in trabecular width.    
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3.5.  Discussion 

 

Overall, the independent variables simulated the expected impact on the output 

variables (table 3.7).  The average ending width increased with increased osteoblast rate 

and lifespan and decreased with increased osteoclast rate and lifespan.  The rate of 

change was increased by an increased osteoblast lifespan and rate, decreased by 

osteoclast rate, and relatively unaffected by osteoclast lifespan.  The trabecula became 

smoother—measured as a decrease in the standard deviation of ending widths—when 

osteoclast activity increased, and became rougher when the osteoblast lifespan and bone 

production increased (table 3.7).  The time of minimum width takes longer with a larger 

osteoclast rate and lifespan and takes less time with a larger osteoblast rate and lifespan.   

 

The effect of osteoclast lifespan was very minimal compared to expected trends 

(table 3.7).  In the simulation, the longer the osteoclasts lived and resorbed, the more 

bone they resorbed, the more signal they released, and therefore the greater number of 

osteoblast agents they activated.  The number of activated osteoblasts was limited to the 

number that could form a monolayer on the resorption pit, but the osteoclast agents 

were still able to couple the osteoblast activity functionally, as well as spatially and 

temporally.  The coupling signal was not encoded with the intent to increase the number 

of osteoblasts whenever the osteoclasts lived longer or resorbed more bone—it was 

merely a way to signal to osteoblasts as to when and where they should activate.  While it 

is interesting that the osteoclast lifespan had this effect, canceling out any large 

difference that would have resulted from an extra wide resorption cavity, there are likely 

other pathways used by bone to regulate the relative activity level of the osteoblasts and 

osteoclasts.  The osteoclast’s lifespan and activity levels having minimal effect on the 
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relative bone formation/resorption balance may show a way in which the paracrine 

coupling of these two cells to the same location can be done in a neutral manner that will 

not off-balance the signaling networks that adjust the relatively activity of bone 

formation and resorption.   

 

 Most of the independent variables have a linear effect on the outcomes.  The 

exceptions to this include: the osteoclast lifespan’s effect on the rate of change, 

smoothness and ending width (fig 3.15, fig 3.16); the osteoblast lifespan’s effect on time 

of minimum width and smoothness (fig 3.14, 3.16).  In most cases, the non-linearity is 

likely due to there being no strong effect on the dependent variables by the independent 

variables—especially in the case of osteoclast lifespan.   
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Table 3.7. The positive or negative correlation between the independent variables and 
the outcome variables, both in the simulation and the expected correlation in bone.  In 
cases with a green arrow, the simulation followed the expected biological outcome.  In 
cases with a red ‘x’, there was a discrepancy in the simulation and the expected biological 
response.  The effect of osteoblast or osteoclast activity on the smoothness of the 
trabeculae is largely unknown, and so cannot be as well correlated to the behavior of the 
simulation. 
 Avg Width Rate change of 

Width 
Smoothness 

Osteoblast 
Lifespan 

���� in simulation 
���� in bone 

���� 

� in simulation 
� in bone 

���� 

���� in simulation 
unkown in bone 

? 

Osteoclast  
Lifespan 

���� in simulation 
���� in bone 

� 

���� in simulation 
���� in bone 

� 

���� in simulation 
unkown in bone 

? 

Osteoblast 
Activity 

���� in simulation 
� in bone 

���� 

� in simulation 
� in bone 

���� 

���� in simulation 
unkown in bone 

? 

Osteoclast  
Activity 

����in simulation 
���� in bone 

� 

���� in simulation 
���� in bone 

���� 

���� in simulation 
���� in bone (Paget’s 

disease) 

� 

  
 

Paget’s disease is a case where the smoothness of the trabeculae—or lack there 

of—is correlated to cellular activity32.  There is not much data on what else effects the 

smoothness.  In Paget’s disease, the increased osteoclast rates lead to the mosaic, 

disordered bone structure, which was not captured when the osteoclasts increased their 

activity in the model.  There are two main reasons why there was a discrepancy in this 

expected roughness and the osteoclast activity level (table 3.7).  First, in Paget’s disease, 

the osteoclast activity is increased far beyond a normal range and in the simulation; the 

range for the osteoclast activity only went up to a ‘high normal’ level of activity—a 

fraction of what is seen in Paget’s.  Secondly, Paget’s disease is characterized by woven 

bone formation—a malformation in the organization and amount of bone produced by 

the osteoblasts.  It is very likely that the lack of smooth bone formation can be equally 

caused by the osteoblasts’ dysfunction, rather than the osteoclasts.  The simulation, 



 

100 

lacking dysfunctional osteoblasts, would not be able to respond to the odd osteoclast 

behavior with the roughly formed bone and so the simulation would not be capable of 

matching the pathology of Paget’s disease even if the osteoclast agents were perfectly 

matched to their cellular counterparts. 

 

Overall the osteoblast parameters have a much larger influence than the 

osteoclast parameters.  It is important for the simulation to stay within the lower ranges 

in order to have the model simulate correct remodeling.  The osteoblast activity was most 

likely overestimated when translating from bone production per day to bone production 

per cycle.  There is an order of magnitude difference between the speed of osteoblast 

bone production and osteoclast bone resorption, and the osteoblast parameters had a 

much larger percent change in range than the osteoclasts.   Essentially, the two agent 

types are on two different relative timeframes, which could explain why the faster 

osteoblasts have a much larger effect than the osteoclasts.   

 

In addition, the osteoblast agents create new bone immediately after the 

osteoclasts finish resorbing; this could negate any lasting effects of independent 

variables like the osteoclast lifespan.  Therefore, the next step towards improving this 

ABM is to emperically ground the resorption and deposition rates—setting all rates of 

activity to be in units of days or weeks rather than arbitrary time units.  This will better 

constrain the model, allow it to be more precisely validated by a wider range of clinical 

data, and will allow a better estimation of the relative impact of the osteoclast and 

kinetics on the overall remodeling process. 

 

It is interesting that the osteoblast lifespan also needed to stay in the lower range 
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of what was estimated from literature.  In more recent literature the lifespan has been 

calculaed at an average of ~12 days, but it is largely based on mouse biology which may 

or may not correlate to human osteoblasts54,91.  The older literature, which is still 

commonly cited, estimated that osteoblasts lived more on the order of three months84.  

This research was done in humans, but were not done with as invasive and accurate a 

technique.  The range of the osteoblast lifespan was relatively large in order to simulate 

both high and low estimates.  From this preliminary model, it appears that the lower 

range of the osteoblast lifespan is more reasonable.  The simulation will be better 

equiped to more definitiely provide support for the lower osteoblast lifespan in the future 

version of the model when the rates and lifespans are in units of days and can be more 

accuretely constrained and verified. 

 

 The smoothness and solidity of the remodeled trabecula also shows room for 

improvement.  None of the simulations’ trabeculae were as smooth as actual bone, which 

only gradually changes its width.  The osteoblast agents tended to create very rough-

edged patches of new bone that did not smoothly follow the original surface of the bone 

or resorption pit.  This is due to the code for osteoblastic bone formation being overly 

simplistic.  The subroutine for bone formation did not use any of the necessary pieces of 

information that real osteoblasts use to deposit organized sheets of organic matrix.  As a 

result, the edges of the trabecula are very choppy and holes were left behind in the 

middle of the new bone (fig A3.8, A3.10).  Therefore, along with setting all the cellular 

kinetics to be in units of days, a second future aim is to encode more precise descriptions 

of osteoblast matrix production in order to improve the morphology of the new bone.  

 

The results of the model show that a single, osteoclastic resorption released 
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signal can activate and attract osteoblasts to the remodeling site.  Normal coupling, 

defined as coupling that generates trabecular morphology within a standard deviation of 

expected values, was generated while using only documented cell behaviors within the 

estimated ranges of cell activity.   

 

There were four general outcome patterns generated by this model: increasing 

width, decreasing width, nearly stable increasing width and nearly stable decreasing 

width (table A3.1).  None of the widths have a completely zero rate of width change, but 

the ‘nearly stable’ patterns are within one standard deviation of the estimated bone mass 

changes seen in healthy human adults.  The expected change of width is zero, with a 

range of +/- 3% mass change per year, as estimated from the literature.  From this we 

calculated one standard deviation of the expected rate of width change to be 0.0025 

microns/cycle.  

 

There were only six cases (7%) that generated decreasing width patterns.  This 

would represent a pathologic condition, e.g. osteoporosis.  The highest osteoclast 

variables were expected to cause at least a third of the cases to fall into the decreasing 

width category, being at the extremes of their estimated ranges.  Instead, the osteoblast 

agents’ bone production completely overwhelmed the osteoclasts’ effects.  When the 

osteoclast agents scaled up the amount of bone they resorbed, it scaled up the amount of 

released signal, leading to more osteoblast agents present. 

 

The vast majority of the cases—60 cases—generated the pattern of increasing 

width.  This is due to an overestimation of the osteoblasts’ independent variables, and 

potentially due to the lack of information on the exact timing of the activation and 
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migration of osteoblast cells.  The model correctly simulates the activation and homing 

of the osteoblast agents, but it has not been grounded to measurements for how far, how 

fast, and how many osteoblast cells will migrate to a resorption pit.  The model may be 

overestimating the number of osteoblast agents that would activate at a resorption pit, 

causing the osteoblasts to create too much bone even with a short lifespan or a sluggish 

bone production.  Many of these properties can only be vaguely estimated based on in 

vitro work and there are multiple theories for the origin and state of the preosteoblasts at 

the time of activation; possible future work may involve simulating multiple hypothesis 

for the timing of osteoblastogenesis and how that maybe impact bone remodeling and 

bone healing.   

 

There were only three cases that had the pattern of just slightly decreasing in 

width, but twelve cases that slightly increased in width.  Together they make up for 15 

cases.  The Z-score only had thirteen ‘successful simulations of remodeling’ since two of 

these fifteen fell outside of the expected range of smoothness.  Overall, though, 18.5% of 

the simulations generated by this model showed a relatively stable simulated width 

throughout the remodeling simulations.  This is due to the model having multiple 

independent variables that can increase or decrease to compensate for the effects of a 

low or high value in the other independent variables. 

 

 Along with oversimplifying the osteoblast activation, the initial shape of the 

trabecula was a simple, straight column of mineralized ECM agents.  However, starting 

with a more realistically variable width or starting with a wishbone shaped trabecula 

would likely only add noise to the simulation.  The osteoclasts activate randomly on the 

surface of the bone, activating at the first bone surface they random walk to, and so 
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would not specifically target thicker or thinner sections of the trabecula.   

 

The osteocytes are distributed at a set osteocyte density, and would not cluster in 

a thicker or thinner section.  They would, however, be sparser along the length of a 

thinner region of trabecula, potentially leaving that length more vulnerable to 

fenestrations due to a lack of osteocyte shielding.  If the osteocytes were sufficiently 

dense enough to protect an overly thin region of trabecula, that region would have no 

osteoclast resorption and therefore no osteoblast deposition, effectively just reducing the 

length of trabecula being simulated in each case.  In reality, bone that is too thin will 

microfracture and cause osteocytes to signal for osteoclast resorption followed by a large 

amount of osteoblast bone deposition.  This will lead to a new and stronger section of 

bone in place of the cracking, thin bone.  However, this osteoclast chemotactic signal is 

beyond the scope of this simulation.   
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4. Conclusions and Future Directions 

4.1.  Motivations  

There are multiple areas of science and medicine that can be directly impacted by 

an agent-based model (ABM) of bone remodeling, including our knowledge of basic bone 

biology, drug development, and patient-specific care.  Medicine and basic biology are 

both making steady progress towards improving our understanding of the human body 

and its mechanisms of healing, but the process is too slow, current treatments fail, and 

the process of drug development grows longer and ever more expensive.  Even with the 

advent of bioinformatics and systems biology, the integration and utilization of the sheer 

amount of multi-level data being collected has reached a bottleneck.  Only limited 

progress can be made if these puzzle pieces of information are not fitted together into a 

clear, accessible whole.  This ABM of bone remodeling is still in the beginning stages and  

has not incorporated enough of these pieces to currently predict outcomes based on 

patient-specific care, but it has already shown progress in organizing and utilizing data 

from decades of literature. 

 

 ABMs represent a computational method to intelligently represent, integrate, and 

simulate the human body from the molecular and cellular level up to the tissue and 

patient level.  Because ABMs are fundamentally structured differently from traditional 

mathematical, systems dynamics, and statistical models, they have the special ability to 

represent heterogeneous, spatio-temporal systems.  This is critical for representing the 

behavior of cellular processes that are entirely based on the local microenvironment as it 

evolves through time.  An ABM will also solve the stalemates that exist between models 

of different scales by its ability to integrate information from any size and time scale.  

Cell level information is entered one-to-one into the agents and the tissue-level behavior 
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is the direct emergent behavior of the simulation.  Patient and clinical databases of 

medical data empirically ground, calibrate, and validate the model while sub-cellular and 

molecular models can be inserted into, or interfaced with, the simulation’s subroutines.   

 

 This ability to absorb and naturally combine this wide disparity of information—

across fields, across time and size scales, and within each discipline’s own complex 

behaviors—can free biology from the confines of the reductionist approach.  As 

information is pooled into the model the ABM will literally become a replicate of tissue 

within the computer.  All the components will be alterable and any property of the 

system can be monitored.  Scientists will be able to run virtual experiments on the 

computer and test hypothesized biological mechanisms against what is known about 

bone in corresponding disciplines.  Researchers will also gain a clearer picture of what is 

yet unknown, where there are variables missing, and which assumptions do not prove 

true in the light of the more current research.   

 

 Having this functional, interactive representation of human tissue will not just 

benefit the academic labs, but will radically empower drug developers and bioengineers 

working on new therapeutics.  It can provide a way to rapidly and cost-effectively proto-

type, test and modify designs for efficacy and safety.  Also, since the ABM is based on 

systems biology and generates emergent behavior, unexpected side effects—even those 

that would take years to develop—can be generated when the simulation is left to run 

through longer time periods.   

 

 While medicine will be improved any time basic science and the biotech industry 

are integrated together, there is one particular quirk of ABMs that can have profound 
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implications on patient treatment.  ABMs are dynamically initiated.  Each time a 

simulation starts, the first step is to populate the model with the location and starting 

statuses of the cells; the simulation can start with any configuration of cells and ECM.   

 

An academic researcher might only study the model initiated with the parameters 

for an average male bone, the model will function correctly according to whatever the 

simulation is initialed to.  All a physician needs to do to create a patient-specific model is 

to change the average starting parameters to reflect that patient.  Defects, diseases, drug 

interactions, genetic predispositions, age and gender differences, current blood tests, 

and more can all be inputted from any available source to create a predictive model for 

that patient in their current state.  This will quickly allow the physician to tailor the 

treatment plan accordingly and have warning against otherwise unexpected 

complications.  The ABM can even be run multiple times to produce the percent 

likelihood of complications, give comparisons among multiple treatment options, and 

generate a list of any early warning signs to monitor for in each patient’s case using the 

most up to date research from multiple disciplines.   

 

In order to use the results of the ABM on a repeated basis, e.g. if a physician 

wanted to use it to predict the effectiveness of a drug he would like to prescribe, a 

regression analysis can be preformed on the outputs of the simulation that had 

previously been validated to correctly simulate that drug mechanisms of action.  The 

regression analysis will fit an equation that will map a set of inputs to the predicted 

outputs.  The equation can be run at a fraction of the time and generate predictions that 

are still be tailored to specific characteristics of that patient.  The regression analysis 

would not be mechanistically based, so any new factors, e.g. any new drug or disease, 
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would have to be added to the ABM and a new regression model created before any new 

emergent behaviors could be predicted. 

 

4.2  Contributions to the Field  

4.2.1 Techniques 

Previous computational models of bone have focused largely on describing the 

mechanical environment of bone—mapping the stresses, strains, fluid sheers, and 

microfractures that occur under different loading conditions.  The few simulations that 

have modeling cellular behaviors have approximated their behaviors based on general 

equations.  This simulation models the cells and tissue in a much more biomimetic way—

using if/then responses to the local microenvironment, thresholds, and recapitulating 

the spatiotemporal signaling patterns.  While the ABM is still in the early stages, it has 

been able to incorporate the whole remodeling process with only those behaviors 

documented in literature.  There was a risk that not enough would be known about the 

behaviors of bone cells to generate a working remodeling cycle constrained to observed 

cellular reactions.  

 

In addition, previous simulations of remodeling focused on cortical bone 

remodeling14.  These models have many more spatial constraints, which can lead the 

simulation to predict the shape of the cutting cone or osteon without any of the cellular 

mechanisms.  If the same rules were applied to a trabecular remodeling site, the model 

would not be able to predict the shape or order of trabecular remodeling.  The generation 

of an organized bone remodeling complex is more difficult for trabecular remodeling 

since the spatial constraints that might be used to explain the shape of the cutting cone 

do not exist.  It is unlikely that the processes controlling remodeling in cortical and 
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trabecular bone are significantly different since both processes require the same cells 

carrying out the same actions in the same order.  For this reason, simulating the 

trabecular bone remodeling was considered a better way challenge our hypotheses of 

bone remodeling. 

 

4.2.2 Validation of Hypotheses 

 The simulations show that both hypotheses are feasible, and were also able to 

sketch out the general effect the major independent variables will have on the overall 

system within those hypotheses.   

 

 The hypothesis that osteocytes shield the healthy bone from osteoclastic 

resorption with a diffusible signal is not the only explanation for how a disuse threshold 

could be generated.  The classic examples of osteocyte signaling are generated above the 

microfracture threshold and can be anything from proteins to apoptotic bodies.  There 

are two well documented mechanical thresholds on either side of a range of applied force 

that calls for no net changes in bone mass during remodeling.  Above the upper 

threshold there are the amounts of stress that will lead to increased bone mass.  Below 

the lower threshold are the amounts of stress which will decrease the bone mass.   

 

However, the lower stress threshold might not need to be mediated by a released 

signal.  Potentially the mere presence of a healthy osteocyte cell could reduce osteoclastic 

activity in that area.  There is evidence that osteocytes will apoptose if they are not 

mechanically stimulated, so apoptosis could lead to osteoclastic activity above and below 

both thresholds.  The disadvantage of this system would be the lack of guidance from 

osteocytes; for example, if a woman were on bed rest and the majority of all her 
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osteocytes apoptosed, there would be no cells left to guide the remodeling of bone once 

she was mobile again and started accruing microfractures.  To better theorize about the 

osteocytes’ mechanism of mediating the lower threshold, the change in osteocyte 

morphology and activity on both sides of the disuse threshold should be experimentally 

observed. 

 

The hypothesis that osteoclasts and osteoblasts can couple with a single released 

signal from resorbed bone matrix preformed well in the second ABM.  The hypothesis 

did create a mechanistic simulation generating a balanced and coupled remodeling 

process.  The hypothesis is far from being proven true, but a continued refinement of the 

ABM will be able to either challenge or affirm the likelihood that this released signal 

drives the chemotaxis of the osteoblasts.  Overall, the simulation was more robust in 

generating the spatial patterns seen in remodeling than in orchestrating the timing seen 

in the remodeling cycle.  This is at least partially due to the absence of detailed 

information on the timing of osteoblast differentiation.  The exact source of osteoblasts 

and the level of differentiation of the preosteoblasts are at when they detect the 

chemotactic signal is still under debate.  This information might constrain the simulation 

enough that correct coupling would not be feasible with this one signal, or a more 

accurate delay in osteoblast activation, representing differentiation and migration, could 

improve the simulation’s overall timing.   

   

4.3  Future Directions 

 A future aim for the ABM of bone is to make the temporal pace of osteoblast and 

osteoclasts quantifiably accurate, rather than based on relative numbers of cycles.  This 

would significantly ground many of the control variables to their documented values, 
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would further constrain the model, and would allow the outputs to be compared to a 

wider range of experiments—including literature on pathologies such as osteoporosis.   

 

 The ability of the ABM to simulate remodeling when the kinetics are adjusted to 

match literature will likely guide the necessary future additions to the model that will be 

needed to make the simulation better match the biology.  If the simulation is capable of 

simulating bone remodeling on an accurate time scale, the next step would be to 

challenge the simulation to predict the pathology of bone diseases using just the 

hypothesized mechanism of action for the disease.  When the model is able to predict 

those morphologic changes and clinical manifestations, then the input and control 

variables can be altered to match particular patient populations to begin predicting 

patient-specific outcomes.   

 

 Much more likely, the simulation will slip out of alignment with the expected 

outcomes as more detailed information is added.  This will highlight and characterize 

deficiencies in our understanding of the mechanisms taking place in bone and will point 

to the next simplest hypothesis able to explain the behaviors of bone.  Proving that a 

hypothesis is insufficient or incapable to explain an observed biological behavior is way 

to justify adding extra complexity, e.g. variables and reactions, to the model.  Unless the 

simulation disproves the simpler explanation, the ABM should only improve the 

accuracy and precision of its representation of the cells, signals, and processes.  Real 

bone remodeling is known to be extremely complex; in order to incorporate its structure, 

many iterations of constraining and adjusting, all based on well documented behaviors, 

will be required to incorporate all the information needed to create a predictive system. 
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4.4  Concluding Remarks 

 Overall, the work presented in this thesis is an examination of the feasibility of a 

mechanistic agent-based model to incorporate a biological system on the cellular scale 

and represent the data in a meaningful way.  The creation of such a simulation is largely 

a test of one’s breadth and depth of knowledge of the system, and therefore should be 

undertaken with the input of as many subject experts as are interested in participating.   

 

An ABM is also not the optimal model for all biological questions.  Finite-element 

models (FEM) are better suited to quantify the distribution of stress, strain, and fluid 

sheer.  Regression analysis of clinical data can more quickly find and predict correlations 

between key factors and patient outcomes.   Bayesian networks are better suited to 

reconstruct complex signaling pathways and the genetic systems level information, since 

those models can organize massive amounts of information even with minimal 

knowledge of the underlying structure or mechanisms.   

 

If detailed mapping of the mechanical forces or a complete network of the bone-

related genes is required to mechanistically simulate a biological system, it may be more 

effective to use an FEM or graphical model to manage that information, and feed their 

outputs into the ABM.  However, the ABM is arguably the best way to simulate the 

emergent effects of autonomous cells as they propagate the spatiotemporal patterns that 

orchestrate complex tissue dynamics. 
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