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Abstract

Recognizing and reasoning about the objects found in an image is one of the key

problems in computer vision. This thesis is based on the idea that in order to understand

a novel object, it is often not enough to recognize the object category it belongs to (i.e.,

answering “What is this?”). We argue that a more meaningful interpretation can be

obtained by linking the input object with a similar representation in memory (i.e., asking

“What is this like?”). In this thesis, we present a memory-based system for recognizing

and interpreting objects in images by establishing visual associations between an input

image and a large database of object exemplars. These visual associations can then

be used to predict properties of the novel object which cannot be deduced solely from

category membership (e.g., which way is it facing? what is its segmentation? is there a

person sitting on it?).

Part I of this thesis is dedicated to exemplar representations and algorithms for

creating visual associations. We propose Local Distance Functions and Exemplar-SVMs,

which are trained separately for each exemplar and allow an instance-specific notion of

visual similarity. We show that an ensemble of Exemplar-SVMs performs competitively

to state-of-the-art on the PASCAL VOC object detection task. In Part II, we focus on

the advantages of using exemplars over a purely category-based approach. Because

Exemplar-SVMs show good alignment between detection windows and their associated

exemplars, we show that it is possible to transfer any available exemplar meta-data

(segmentation, geometric structure, 3D model, etc.) directly onto the detections, which

can then be used as part of overall scene understanding. Finally, we construct a Visual

Memex, a vast graph over exemplars encoding both visual as well as spatial relationships,

and apply it to an object prediction task. Our results show that exemplars provide a

better notion of object context than category-based approaches.
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Chapter 1

Introduction

“Our ineptitude in getting at the record is largely caused by the artificiality of

systems of indexing. When data of any sort are placed in storage, they are filed

alphabetically or numerically, and information is found (when it is) by tracing it

down from subclass to subclass... The human mind does not work that way. It

operates by association. With one item in its grasp, it snaps instantly to the next

that is suggested by the association of thoughts, in accordance with some intricate

web of trails carried by the cells of the brain... Selection by association, rather than

by indexing, may yet be mechanized. One cannot hope thus to equal the speed and

flexibility with which the mind follows an associative trail, but it should be possible

to beat the mind decisively in regard to the permanence and clarity of the items

resurrected from storage. Consider a future device for individual use, which is a

sort of mechanized private file and library. It needs a name, and to coin one at

random, “memex” will do. A memex is a device in which an individual stores all

his books, records, and communications, and which is mechanized so that it may

be consulted with exceeding speed and flexibility. It is an enlarged intimate

supplement to his memory.

Vannevar Bush, As We May Think (1945)
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Vannevar Bush’s vision, as expounded in the above excerpt from his seminal 1945

essay, “As we may think” [Bush, 1945], stems from the realization that there is a great

mismatch between the way in which information is typically organized and they way in

which the human mind works (i.e., categorical indexing versus association). Concerned

with the transmission and accessibility of scientific ideas, Bush faulted the “artificiality of

systems of indexing” and proposed the Memex1, a physical device which would be used

to retrieve information based on associative links instead of strict categorical indexing.

The associative links were to be entered manually by the user and could be of several

different types. Chains of links would form into longer associative trails, creating new

narratives in the concept space. Bush believed that the Memex would be invaluable to a

scientist, acting as an extended smart memory which would not only store the associative

trails established during routine research, but could also automatically suggest novel

associations which might not be obvious to a human operator.

Motivated by the idea that “the process of tying two items together is the important

thing,” Bush believed the Memex would revolutionize the way we organize and retrieve

information. Bush’s Memex, much like Alan Turing’s Turing Machine, was an attempt to

model what it means to be a cognitive agent; however, while Turing proposed the Turing

Machine in an attempt to mechanise arbitrary reasoning (algorithm execution), Bush

tried to mechanise the associative processes which are analogous to using memory [Sk-

agestad, 1996]. While the Turing Machine became the basis of modern computation,

the Memex was seen decades later as pioneering hypertext and the World Wide Web.

Considering the key role of the internet in modern life, it is safe to say that many of

Bush’s ideas are quite alive today. The way in which we find information on the internet

today is more similar to Bush’s Memex than the way in which a scientist used to find

relevant information at the library (back in 1945).

1A portmanteau of memory and index, or memory extender.
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The success of the internet has dramatically changed the way we think about

knowledge. In his book, “Everything is Miscellaneous: The Power of the New Digital

Disorder” [Weinberger, 2007], David Weinberger expounds the view that we, as a society,

should embrace digital knowledge (e.g., Wikipedia, Google) because once information

is placed online, it becomes significantly more useful. Unlike books and other physical

entities which must be physically organized in 3D space (e.g., on bookshelves), digital

and hyper-linked knowledge is much more versatile because there is no need to explicitly

assign items to a single subject/category. Like Weinberger, Clay Shirky, a prominent

thinker who writes about the internet and other decentralized technologies, argues

elegantly against categories in his article, “Ontology is Overrated: Categories, Links,

and Tags” [Shirky, 2005]. Shirky believes in the power of two powerful building blocks

which can be used to organize information: 1) links, which can point to anything, and

2) tags, which are a way of attaching labels to links. Providing multiple arguments

against traditional categorization schemes, Shirky argues that “what we’re seeing when

we see the Web is actually a radical break with previous categorization strategies, rather

than an extension of them.” Links imply that there will generally exist multiple paths

which we could traverse to find that one crucial bit of information we are looking for.

Not all branches of science have fully felt the wrath of this new digital disorder.

One might argue that the problem of object recognition, as typically found in the field

of computer vision and robotics, faces many problems which, using Bush’s words, are

“largely caused by the artificiality of systems of indexing.” The use of categories (classes)

to represent visual concepts is so prevalent in computer vision and machine learning

that most researchers do not give it a second thought. Faced with a new task, one simply

carves up the solution space into classes (e.g., cars, people, buildings), assigns class

labels to training examples and applies one of the many popular machine learning tools

to obtain a classifier.
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In this work, we are advocating a different way of thinking about recognition — not

as object naming, but rather as object association. The idea, suggested by evidence from

cognitive science, is that the central question of recognition might not be “What is it?”

but rather “What is it like?” [Bar, 2007]. The etymology of the very word “re-cognize”

(to know again) supports the view that association plays a key role in recognition.

Under this model, when faced with a novel object, the task is to associate it with the

most similar objects in one’s memory. These remembered objects, in turn, provide the

meta-data (e.g., object name, geometry, associated actions) needed to interpret the

novel object. This allows for a dynamic definition of categories based on data availability

and task (e.g., an object can be a vehicle, a car, a Volvo, or Bob’s Volvo).

An important benefit of object association over object naming is that there is no need

to divide the world up into rigid, pre-defined categories a priori. Instead, each object

instance uses its nearest neighbors (in some feature space) to infer its own identity, as

general or as specific as the available data allows. For example, if our dataset does not

contain many cars, then the best that we can say about a new car instance is that it can

be matched to another “car”. But as the number of different cars in the dataset grows,

we should be able to find very specific car matches which will allow us to recognize the

same object instance as “red Honda Accord”.

1.1 Background on Categorization Theories

“Restricting the representations derived from scenes to being conceptual amounts

to imposing a severe handicap on the visual system”

Shimon Edelman

To understand an image is to recognize its constituents objects where object “recog-

nition” is usually assumed to mean object naming — given an image, the goal is to
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name the depicted objects (and possibly show the objects’ spatial extent). But since our

language does not have a name for every possible object instance, this requires that

object categories be used for naming purposes. However, going from objects to object

categories is an extremely noisy and lossy process: “a picture is worth a thousand words”

— not one or two typically used for categorization. Before discussing the contributions of

this thesis, it is worthwhile going back in time to better understand the role categories

have played in vision and related disciplines.

Theories of categorization date back to the ancient Greeks. Aristotle defined cat-

egories as discrete entities characterized by a set of properties shared by all their

members [Aristotle, ]. His categories are mutually exclusive, and every member of

a category is equal. This classical view is still the most widely accepted way of rea-

soning about categories and taxonomies in hard sciences.2 However, as pointed out

by Ludwig Wittgenstein, this is almost certainly not the way most of our everyday

concepts work (e.g., what is the set of properties that define the concept “game” and

nothing else? [Wittgenstein, 1953]). Empirical evidence for typicality (e.g., a robin

is a more commonly cited example of “bird” than a chicken) and multiple category

memberships (e.g., chicken is both “bird” and “food”) further complicate the Aristotelian

view. Wittgenstein argued that things referred to by the same name are not necessarily

connected by one essential feature — instances belonging to a single concept might be

connected by overlapping similarities, under the idea known as family resemblances.

Motivated by Wittgenstein’s notion of family resemblances, the ground-breaking

work of cognitive psychologist Eleanor Rosch [Rosch and Mervis, 1975,Rosch, 1978]

demonstrated that humans do not cut up the world into neat categories defined by

shared properties, but instead use similarity as the basis of categorization. Rosch’s

prototype theory postulates that an object’s category is determined by its similarity to

2This is the reason why the debate regarding Pluto’s status as a planet has been so vicious.
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(a set of) prototypes which define each category, allowing for varying (graded) degree

of membership. Such prototype models have been successfully used for object recogni-

tion [Basri, 1992,Edelman, 1995]. Going even further, exemplar theory [Medin and

Schaffer, 1978,Nosofsky, 1986] rejects the need for an explicit category representation,

arguing instead that a concept can be implicitly formed via all its observed instances. In

exemplar theory, there is no need to form an explicit abstraction such as a prototype —

categorization is performed by matching a novel input to a large set of training instances.

For a great introduction to theories categorization (including prototype and exemplar

theories), we refer the reader to Gregory Murphy’s Big Book of Concepts [Murphy,

2002].

There is also abundant contemporary evidence in the field of cognitive science which

suggests that there is more to visual understanding than can be captured by rigid

categories. By studying human subjects, Aude Oliva and colleagues [Brady et al., 2009]

have shown that visual memory has a massive storage capacity for object details. Their

findings suggest that visual long-term representations are more detailed than previously

thought, and show that “visual long-term memory representations can contain not only

gist information by also details sufficient to discriminate between exemplars.” [Brady

et al., 2009] This suggests that humans do not simply abstract-away object details by

placing them into neat and distinct categories.

Guided by intuition from theories of human visual perception and evidence from

cognitive neuroscience, Moshe Bar outlines the importance of analogies, associations,

and predictions in the human brain [Bar, 2009]. He argues that the goal of visual

perception is not to recognize an object in the traditional sense of categorizing it (i.e.,

asking “What is this?”), but instead linking the input with an analogous representation

in memory (i.e,. asking “What is this like?”).3 Once a novel input is linked with

3Bar uses the term “analogy” for the process of establishing a link between a previously seen object
and a novel one, while we simply refer to these links as visual associations.
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analogous representations, associated representations are activated rapidly and predict

the representations of what is most likely to occur next. Bar suggests that the principle

of prediction is a strong candidate for a universal principle that can explain a majority of

the brain’s operation [Bar, 2009]. But prediction, as argued by Bar, relies on the ability

to establish meaningful analogies (or using our terminology, visual associations).

1.1.1 Problems With Visual Categories

We refer to objects by the categories they belong to so effortlessly in our daily lives that

it is not clear why machines should have such a hard time performing the same task.

However, it is unclear whether categorization is useful for computer vision. For example,

many object categories are functional. These categories often exhibit visual polysemy

— object instances that have visually nothing to do with each other (e.g., “chair”).

Moreover, categories are language dependent — an object category in one language

might not exist in another [Lakoff, 1987]. Yet another source of visual polysemy

particular to 2D image sets is view-dependence. Taken on its own, a side-view of a car

has visually nothing in common with a frontal view of a car (Figure 1.1 right). Therefore,

trying hard to make a single car concept detector fire on both seems counterproductive

— by learning category-specific models, we might actually be trying to solve a more

difficult problem than is necessary.

In addition, visual object categorization is not even consistent across individuals.

Consider, for instance, the LabelMe dataset [Russell et al., 2008] where human labelers

can choose any English word/phrase they like for object annotation. Figure 1.1 (left)

shows a typical example of visual synonyms — two visually similar objects that have

been arbitrarily assigned different labels (“building” vs. “house”).
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House Car CarBuilding

Figure 1.1: Typical examples of visual synonyms and visual polysemy that are common in LabelMe [Russell
et al., 2008] annotations. Visual synonyms: two objects that are visually quite similar but have different
class labels (left). Visual polysemy: two objects that have nothing in common visually but are labeled to
be the same class (right).

1.1.2 Why Categorize?

But it might not be too productive to concentrate on the various categorization theories

without considering the final aim — what do we need categories for? One argument is

that categorization is a tool to facilitate knowledge transfer. E.g., having been attacked

once by a tiger, it is critically important to determine if a newly observed object belongs

to the tiger category so as to utilize the information from the previous encounter. Note

that here recognizing the explicit category is unimportant, as long as the two tigers

could be associated with each other. Another argument for using categories is they

enable communication. If two agents share a common linguistic vocabulary, then they

can effectively exchange information about the world.

But what if there is no single hierarchical organizational scheme that is suitable

for organizing the visual world? As argued by Alon Halevy in “The Unreasonable

Effectiveness of Data,” [Halevy et al., 2009], a part of the world is explained well by

parametric/mathematical models, and a part of the world is better explained by data.

We argue that the visual world can be sufficiently explained by data, and the search for

a single organizational scheme for the visual world might be futile.
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1.2 Related Work

Of course, the idea of associating a new instance with something seen in the past has

a long and rich history, starting with the British Empiricists [Locke, 1689, Berkeley,

1710,Hume, 1739], and continuing as exemplar theory in cognitive psychology [Medin

and Schaffer, 1978,Nosofsky, 1986], case-based reasoning in AI [Schank, 1983], instance-

based methods in machine learning [Aha et al., 1991], data-driven transfer in graph-

ics [Ren et al., 2005], etc. In computer vision, this type of non-parametric technique

has been quite successful at a variety of tasks including: object alignment [Belongie

et al., 2002, Berg et al., 2005], scene recognition [Torralba et al., 2008, Xiao et al.,

2010], image parsing [Liu et al., 2009], among others. However, for object detection,

data-driven methods such as [Russell et al., 2007,Malisiewicz and Efros, 2008], have

not been competitive against discriminative approaches (though the hybrid method

of [Chum and Zisserman, 2007] comes close). Why is this? In our view, the primary

difficulty stems from the massive amounts of negative data that must be considered in

the detection problem. In image classification, where dataset sizes typically range from a

few thousands to a million, using the k Nearest Neighbors (k-NN) algorithm to compute

distances to all training images is still quite feasible. In object detection, however, the

number of negative windows can go as high as hundreds of millions, performing k-NN

using both positives and negatives is prohibitively expensive. Using heuristics, such as

subsampling or ignoring the negative set, results in a substantial drop in performance.

In contrast, current state-of-the-art methods in object detection ( [Dalal and Triggs,

2005], [Felzenszwalb et al., 2010], and their derivatives) are particularly well-suited for

handling large amounts of negative data. They employ “data-mining” to iteratively sift

through millions of negatives and find the “hard” ones which are then used to train a

discriminative classifier. Because the classifier is a linear SVM, even the hard negatives
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do not need to be explicitly stored but are represented parametrically, in terms of a

decision boundary.

However, the parametric nature of these classifiers, while a blessing for handling

negative data, becomes more problematic when representing the positives. Typically,

all positive examples of a given object category are represented as a whole, implic-

itly assuming that they are all related to each other visually. Unfortunately, most

standard semantic categories (e.g., “car”, “chair”, “train”) do not form coherent visual

categories [Malisiewicz and Efros, 2008], thus treating them parametrically results in

weak and overly-generic detectors. To address this problem, a number of approaches

have used semi-parametric mixture models, grouping the positives into clusters based

on meta-data such as bounding box aspect ratio [Felzenszwalb et al., 2010], object

scale [Park et al., 2010], object viewpoint [Gu and Ren, 2010], part labels [Bourdev

et al., 2010], etc. But the low number of mixture components used in practice means

that there is still considerable variation within each cluster. As a result, the alignment, or

visual correspondence, between the learned model and a detected instance is too coarse

to be usable for object association and label transfer. While part-based models [Felzen-

szwalb et al., 2010] allow different localizations of parts within distinct detections, the

requirement that they must be shared across all members of a category means that these

“parts” are also extremely vague and the resulting correspondences are unintuitive. In

general, it might be better to think of these parts as soft, deformable sub-templates. The

Poselets approach [Bourdev et al., 2010] attempts to address this problem by manually

labeling parts and using them to train a set of pose-specific part detectors. While very

encouraging, the heavy manual labeling burden is a big limitation of this method.

Meta-data transfer has also been used in a “recognize-then-transfer” setting (e.g.,

[Thomas et al., 2009,Li et al., 2011]). The approach of [Thomas et al., 2009] adds a

meta-data reasoning stage to the recognition system of [Leibe et al., 2004], but since
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object categories are represented parametrically, a non-trivial meta-data propagation

step must be included. It is also worthwhile mentioning the approach of [Savarese

and Fei-Fei, 2007], which outperforms [Thomas et al., 2009] and provides a more

compact representation of the object category. However both [Thomas et al., 2009]

and [Savarese and Fei-Fei, 2007] are category-based and must cope with the problems

inherent in dealing with visual categories (see discussion in Section 1.1.1). The approach

of [Li et al., 2011] first uses a collection of pose-sensitive object detectors to produce

detections in the image and then performs a landmark-based alignment using an iterative

algorithm. As will be seen in Chapter 4, our approach does not require any additional

alignment steps after detection, nor does it require training separate category-based

object detectors to create initial detections.
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1.3 Thesis Overview

Part I of this thesis is dedicated to learning exemplar representations for object category

detection. Chapter 2 motivates the problem of learning exemplar-specific similarity

measures and presents Local Distance Functions and how they can be used with Multiple

Segmentation algorithms for localizing exemplars in images [Malisiewicz and Efros,

2008]. Chapter 3 is about Exemplar-SVMs [Malisiewicz et al., 2011], which are a

marriage of the exemplar-based methodology with discriminative training found in

approaches such as [Felzenszwalb et al., 2010]. Part I shows that by exploiting large

amounts of visual data, we can learn exemplar-specific similarity measures, which are

superior to learning-free nearest-neighbor approaches. We conclude Part I by showing

that with an ensemble of Exemplar-SVMs, we can achieve performance on the PASCAL

VOC detection task that is on par with the much more complex latent part-based model

of [Felzenszwalb et al., 2010], at only a modest computational cost increase.

Part II is dedicated to the power of exemplar associations — we show results on tasks

which go beyond object category detection. We evaluate the Exemplar-SVM approach

on a diverse set of meta-data transfer tasks [Malisiewicz et al., 2011] (segmentation

transfer, qualitative geometry transfer, and related object priming) as well as visualize

the Exemplar-SVM’s induced exemplar-exemplar similarity structure on PASCAL. We

conclude with a contextual object prediction task [Malisiewicz and Efros, 2009], which

requires the formation of a graph over exemplars, which we call the Visual Memex, and

show an improvement over category-based baselines. In the Appendix, we overview

an application of the Exemplar-SVM algorithm to the problem of cross-domain image

matching [Shrivastava et al., 2011] (e.g., matching paintings to photos and matching

sketches to photos) as well as discuss our contributions in the form of an open source

Exemplar-SVM object detection library.
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Part I: Learning Exemplar

Representations

“Represent all the data with a nonparametric model rather than trying to

summarize it with a parametric model, because with very large data sources, the

data holds a lot of detail... Now go out and gather some data, and see what it can

do.”
Alon Halevy, Peter Norvig, and Fernando Pereira,

“The Unreasonable Effectiveness of Data” (Google, 2009)
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Despite the benefits, posing recognition as exemplar association is not an easy

task. One requirement is a very large dataset, rich enough to contain many different

objects and many instances. Recently, with the appearance of large image collections,

several systems have shown that simple k-nearest-neighbor (k-NN) approaches can often

perform surprisingly well [Torralba et al., 2008, Hays and Efros, 2007, Russell et al.,

2007]. However, all these methods match the image as a whole, which effectively limits

them to operating on the coarse scene level (there is simply not enough data in the

world to observe all possible objects in all possible configurations). To match individual

objects within scenes, we must partition the image into chunks which are small enough

to be matchable in a reasonably-sized database, but large enough to encode specific

objects, not generic “visual words” [Sivic and Zisserman, 2003]. One approach is to

allow partial scene matches instead of matching entire scenes [Russell et al., 2009];

however, since we are interested in detecting entire objects, we focus on matching

object-sized image chunks (for which we use either multiple segmentations and sliding

windows).

In addition to a training dataset, exemplar-based approaches require a suitable

notion of visual similarity. In order to make our approach work on a moderately-sized

training set, we show that learning visual similarity functions is superior to using a

single hand-crafted metric, as is common in nearest-neighbor approaches. We propose

two types of similarity functions, Local Distance Functions and Exemplar-SVMs, as well

as algorithms for learning them from data. While the number of learning problems we

solve scales linearly with the number of exemplars, per-exemplar learning problems are

much easier to deal with because each exemplar’s learning problem is simpler than a

global category-wise problem. More importantly, per-exemplar similarity functions give

us a variable and object-dependent notion of similarity, allowing us to reason about a

diverse set of object types.
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Chapter 2

Local Distance Functions

When we look at the world around us, we notice that similarity is defined differently

for different types of objects in the world. Worse yet, objects can exhibit similarity

on many different, often contradictory, levels: shape, size, color, texture, etc. For

example, Adelson divides the world into “things” (such as cars, people) and “stuff”

(grass, pavement, ice cream, etc.) [Adelson, 2001]. For “things”, like cars, object shape

is an important cue whereas object color is usually not. But for “stuff”, like grass, which

does not own its boundaries, shape is useless (in fact, detrimental) but color and texture

are extremely important. Therefore, to find what a given object instance is similar

to, it is imperative that the right distance metric for that instance be used. But, of

course, to know the right distance metric requires knowing what that object is! As is

often the case in vision, we are faced with a difficult chicken and egg problem. In the

case of distance functions, we tackle this problem by learning a separate combination

of elementary distances (such as color, texture and shape) for each exemplar in our

database. To make things difficult, typical human object labels (which are generally the

basic-level categories to which an object belongs to) are not good enough to make the

assumption that an exemplar should be similar to all other exemplars with the same
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label (see Figure 1.1 and discussion in section 1.1.1). We instead propose a largely

data-driven approach which weakly uses the object labels to automatically learn for each

exemplar a distance function and a small set of exemplars which are visually similar to

the exemplar.

The distance functions defined in this section are positive linear combinations of

elementary distances. We use one common distance function parameterization for

all exemplars, but learn instance-specific parameters by solving a different supervised

learning problem for each exemplar. Each exemplar has its own distance function — we

denote exemplar e’s distance function as De(xi) = D(xi|xe,we), which takes as input

some query features xi ∈ <F and returns the similarity between the exemplar, xe ∈ <F

and the input xi based on the notion of similarity encoded by we ∈ <F+.

We use a popular class of distance functions which are also called diagonal Maha-

lanobis distance metrics. The decision boundary of each distance function is an ellipsoid

centered at xe, where each component of we denotes the elongation of the ellipse

along that particular dimension. Since we keep each distance function anchored at the

exemplar, we can think of any new point xi, not in its raw feature space, but in the

distance-to-exemplar-e space (see Figure 2.1). Let us define dei to be the F dimensional

non-negative “distance squared vector” between xe and the input xi, and dei[k] the

k-th component of this vector. We we can thus write exemplar e’s distance function as

follows:

De(xi) = (xe − xi)
TWe(xe − xi) (2.1)

De(xi) = wT
e dei (2.2)

we = diag(We) (2.3)

dei[k] = (xe[k]− xi[k])2 (2.4)
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Figure 2.1: Learning a distance-function in “distance-to-exemplar” vector space. Instead of perform-
ing learning in the raw feature space (where the decision boundary is non-linear), we map the problem
to a distance-to-exemplar space (where the decision boundary is linear). The exemplar, indicated by e,
is now placed at the origin, because its own distance-to-exemplar will be 0. Any data point xi can be
mapped to the positive point dei in the distance-to-exemplar space as indicated by Equation 2.4.

Formulating the problem in a “distance-to-exemplar” vector space, we can see

that an application of the distance function is simply a dot product in the new space

(Equation 2.2). An immediate advantage is that it allows us to use one of the many

well-understood tools geared towards learning linear decision boundaries.

2.1 Learning Distance Functions With Friends

For each exemplar we learn we by forming a supervised-learning problem from the

labels associated with training examples. However, since there is a great deal of visual

diversity within a single object category (as argued in Section 1.1.1), we want to avoid

forcing an exemplar to be similar to all in-class instances. Instead of using all other
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object instances with the small class as e’s positives, we let the learning process choose

which examples e is actually similar to (referred to as e’s friends). For this purpose,

we use an exemplar-specific binary vector αe (whose length is equal to the number of

exemplars with the same label as e), where the non-zero elements of αe indicate which

examples are e’s friends. Since we do not know which exemplars are visually similar

to each other, we are faced with a chicken-and-egg problem and must learn we and αe

jointly. Also, as is common in imbalanced classification problems, we learn a bias term

be in addition to the orientation of the hyper-plane we.

For learning, we start out with a large annotated set of object exemplars {(xi, yi)}Ni=1,

where yi ∈ {1, . . . ,M} indicates the class that each example belongs to. We indepen-

dently learn a separate distance function for each exemplar, thus our approach scales

linearly with the number of exemplars N . Because for each exemplar’s learning problem,

we solve a two-class problem, our approach is not sensitive to the overall number of

object classes, M . Given a single example, we partition all other objects into the in-class

examples set, Ce = {j : yj = ye}, and its complement, the out-class set.

The output of per-exemplar learning is a single weight vector, a scalar bias, and the

exemplar’s friend indicator vector:

[w∗e , b
∗
e,α

∗
e] = argmin

w,b,α
Ω(w, b,α) (2.5)

Learning the distance function is performed by optimizing the following objective

function for each exemplar (since we independently learn each exemplar’s distance

function, we drop the e subscript for clarity):

Ω(w, b,α) =
λ

2
||w||2 +

∑
i∈C

αi L(−(wTdi + b)) +
∑
i/∈C

L(wTdi + b)− σ||α ||2 (2.6)
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w ≥ 0

α ∈ {0, 1}|C|

In our formulation, let L(x) be a loss function, such as the hinge-loss Lhinge(x) =

max(1− x, 0) or the squared hinge-loss Lhinge−sq(x) = max(1− x, 0)2, and let C be the

set of exemplars that have the same label as the focal exemplar (i.e., the exemplar whose

distance function we are learning). We initially used the constraint that
∑

i αi = K,

where K is the target number of exemplars we force to be similar to e [Malisiewicz and

Efros, 2008], but later found that using a term which allows each exemplar to select

a variable number of friends makes more sense (this is the last term, modulated by

σ) [Malisiewicz and Efros, 2009]. On one hand, by optimizing the distance function

learning objective function we strive to maintain a max-margin separation between the

exemplar plus its set of friends and the set of negative examples. One the other hand,

we try to select the friends such that they allow for a large separation, preferring to

choose a large number of friends.

Without the α parameter and with no constraint on w, Equation 2.6 is just the

primal form of many convex statistical learning techniques (such as Logistic Regression

and Support Vector Machines). In our case we use the convention that smaller values of

wTdi imply a greater degree of similarity to exemplar e (the semantics of a distance),

so the positivity constraint on w is meant to ensure that a large elementary distance

can never imply a very small (potentially negative) distance. This also ensures that

the exemplar has maximal similarity with itself. Since the presence of the binary α’s

renders the problem non-convex (as is common in latent variable models), we proceed

iteratively estimating α given w and estimating w given α. During each iteration, we
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are guaranteed to never increase the value of our objective function (Equation 2.6) and

thus efficiently find a local minimum. We start with an initial distance function w0 and

break down Equation 2.6 by iteratively solving the following two convex sub-problems:

αk = argmin
α

∑
i∈C

αiL(−wk · di)− σ||α ||2 (2.7)

[wk+1, bk+1] = argmin
(w,b)

λ

2
||w||2 +

∑
i:αk

i =1

L(−(w · di) + b) +
∑
i/∈C

L(w · di + b) (2.8)

Given wk, it is trivial to solve for αk (Equation 2.7) because each αk
i can be solved

for independently:

αk = argmin
α

∑
i∈C

αiL(−wk · di)− σ||α ||2 (2.9)

αk = argmin
α

∑
i∈C

αi(L(−wk · di)− σ) (2.10)

αki = argmin
αi

αi(L(−wk · di)− σ) (2.11)

αki =


0, if L(−wk · di) ≥ σ

1, if L(−wk · di) < σ

(2.12)

The sub-problem of learning wk+1 given αk (Equation 2.8) takes the form of a

classical convex supervised learning problem. Because we use a hinge-loss, we use the

publicly available primal SVM solver from [Chapelle, 2007] (with a slight modification

to handle the positivity constraint). The entire procedure converges when αk+1 = αk,

since this implies that wk+1 = wk. After solving each exemplar’s learning problem,

we scale the resulting distance function such that a distance value of 1 (instead of 0)

corresponds to the decision boundary and a value of 0 (instead of −wNF
) corresponds

to perfect similarity.
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2.2 Related Work

Local learning has a long history — techniques based on locally weighted linear regres-

sion [Atkeson et al., 1997] have been successfully applied to other domains such as

robot control. In vision, the work of Frome et al. [Frome and Malik, 2006,Frome et al.,

2007] deals with a large number of object categories and performs exemplar-matching

for the task of image classification (on Caltech 101). Frome’s work, which was the first

to propose learning per-exemplar similarity measures, has been very influential in the

development of our work. It is perhaps not surprising that Frome’s work on learning

local-distance functions (like ours) is also heavily influenced by Wittgenstein’s idea of

family resemblances [Frome, 2007].

However, it is worth highlighting the biggest difference between our work and that

of [Frome et al., 2007]: while we address the problem of object localization, [Frome

et al., 2007] only considered image classification. At the representational level, [Frome

et al., 2007] used local feature matching, allowing different views of the same object

to potentially be matched, while we used much more rigid assemblies of features

ensuring that drastically different views of an object will not be confused (even if some

transformation of local features could place then in correspondence). Additionally, we

use the best matching exemplars for interpretation which means that it is much more

important in our framework to obtain visually similar matches, while [Frome et al.,

2007] only evaluated their approach on category prediction.

Connection to non-convex learning. There is also an important connection be-

tween our use of friend indicator variables in Equation 2.6 and the Robust Support

Vector Machine training algorithm of [Xu et al., 2006]. They show that the use of

indicator variables is equivalent to using the Ramp-Loss, a truncated variant of the hinge

loss which returns a constant loss for data points sufficiently far from the margin.
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Lramp(x) = min(1, Lhinge(x))

Lhinge(x) = max(0, 1− x)

What this means is our distance function formulation could be re-written without

any binary variables — the same effect could be obtained by replacing the convex loss

function on the positives with the non-convex Lramp. [Xu et al., 2006] also showed that

when using an alternating optimization algorithm, it does not matter whether we force

αi to be binary or in the range [0, 1] since the solution will always be either 0 or 1.

2.3 Evaluating Local Distance Functions on LabelMe

We are ultimately interested in parsing a scene into its constituent objects — understand-

ing as much as we can about an input image. Doing so for a reasonably general class

of images requires handling a large number of different objects that occur in everyday

life. Therefore, the choice of the right training data is of the utmost importance. Of all

the currently available datasets, the only one containing a large number of real-world

scenes, with a wide variety of everyday objects that are not only labeled but also seg-

mented, is the LabelMe dataset [Russell et al., 2008]. LabelMe is an ongoing online

image-annotation effort involving many labelers. As a result, not only are the images

user-contributed, spanning a wide range of scenes, but users are free to label each object

with any English text string they like, providing a good sampling of the distribution of

object names “in the wild”.

As a source of exemplars, we use a subset of LabelMe which consists of over 5000

images. After ignoring tiny objects, we clean up the object annotations by discarding
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auxiliary words from the labels (using the function provided in LabelMe toolkit), and

keep all objects whose unique label occurs at least 5 times. This gives us a total of

12, 905 objects spanning 171 unique labels.

2.3.1 Segment-based Features

We represent each object by NF = 14 different features. The features capture different

aspects of shape, texture, color, and image location for an image segment (see Table

2.1). To capture information about shape we compute: the centered object mask in

a canonical 32 × 32 frame, the size of the region, and the size of region’s bounding

box. To capture texture we compute normalized texton histograms in the interior of

the object, and, separately, along the boundaries of the object. For color we compute

the mean RGB-value, its standard deviation, as well as a color histogram. Finally, to

capture knowledge about the position of the segment in an image, we compute a coarse

(blurred) 8 × 8 absolute segmentation mask as well as the normalized height of the

top-most and bottom-most pixel in the region.

2.3.2 Distance Function Learning Details

We define each of our distance functions as a linear combination of elementary distances.

We use 14 color, shape, texture, and location features to represent exemplars. Instead of

performing learning in one joint feature space created by concatenating the 14 different

features, we perform learning in the reduced 14D elementary-distance space. Thus

the di in Equation 2.6 is the vector of 14 Euclidean distances between the exemplar

whose similarity we are learning (the focal exemplar) and the i-th example. We use

L(x) = max(1− x, 0)2, the hinge-squared loss function, for learning which allows us to

use a second order SVM solver [Chapelle, 2007].
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Type Name Dimension

Shape
Centered Mask 32x32=1024
BB Extent 2
Pixel Area 1

Texture

Right Boundary Tex-Hist 100
Top Boundary Tex-Hist 100
Left Boundary Tex-Hist 100
Bottom Boundary Tex-Hist 100
Interior Tex-Hist 100

Color
Mean Color 3
Color std 3
Color Histogram 33

Location
Absolute Mask 8x8=64
Top Height 1
Bot Height 1

Table 2.1: Segment Descriptor: 14 Elementary Features used to represent objects. Elementary
distances are simply the L2 distances between corresponding feature vectors.

For every exemplar we initialize the distance function learning process with w0 =

wtexton, where wtexton has zeros along all elementary distance dimensions except the in-

terior texton histogram feature (a bag-of-words feature). From the diverse combinations

of heuristically defined distances/weights we experimented with, wtexton performed

the best for a wide array of object types, and we use it as the baseline “learning-free”

nearest-neighbor method.

36



car

car car suv car car

car car car car

car

car cars car car

car car car car

car

car car car car

car car car car

tree forest tree vegetation

person person personstanding woman personperson

Centered Mask

BB Extent

Top Textons

Right Textons

Color std

Mean Color

Interior Textons

Bot Textons

Left Textons

Pixel Area

Top Height

Color Hist

Absolute Mask

Bot Height

Centered Mask

BB Extent

Top Textons

Right Textons

Color std

Mean Color

Interior Textons

Bot Textons

Left Textons

Pixel Area

Top Height

Color Hist

Absolute Mask

Bot Height

Centered Mask

BB Extent

Top Textons

Right Textons

Color std

Mean Color

Interior Textons

Bot Textons

Left Textons

Pixel Area

Top Height

Color Hist

Absolute Mask

Bot Height

Centered Mask

BB Extent

Top Textons

Right Textons

Color std

Mean Color

Interior Textons

Bot Textons

Left Textons

Pixel Area

Top Height

Color Hist

Absolute Mask

Bot Height

Figure 2.2: Exemplar Association in the LabelMe Training Set 1/2. Given an exemplar on the top
left, the remaining row shows the top 4 most similar objects after learning a distance function. The
distance function is visualized as a distribution over elementary distances and shown in the bottom left.
The 4 exemplars on the bottom right are the 4 most similar objects with respect to the texton histogram
distance.
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Figure 2.3: Exemplar Association in the LabelMe Training Set 2/2. Given an exemplar on the top
left, the remaining row shows the top 4 most similar objects after learning a distance function. The
distance function is visualized as a distribution over elementary distances and shown in the bottom left.
The 4 exemplars on the bottom right are the 4 most similar objects with respect to the texton histogram
distance.
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Interpreting Learned Distance Functions. After learning the distance functions,

we apply each exemplar’s distance function to all of the other exemplars seen during

training and define the support set of each exemplar as the exemplars which returned a

score below 1.0.

z ∈ Supp(e)↔ De(xz) < 1.0 (2.13)

In practice the resulting support sets wildly vary in size. For exemplars from generic

classes such as “sky” where we expect many skies to be rather similar, the support set is

large. The support set can also be very small — which happens when its corresponding

exemplar is either not visually distinctive or ambiguously/incorrectly labeled. We prune

away the exemplars with an empty support set. Several learned distance functions

and the top elements in their support sets are shown and compared to the neighbors

given a simple texton-histogram distance in Figure 2.2 and Figure 2.3. The learned

distance functions are doing a good job at combining elementary distances to measure

similarity. Notice that an exemplar’s support does not always contain exemplars with

the same label. In particular an exemplar with the label “standing person woman” was

deemed similar to the target exemplar with label “person” even though they are distinct

labels. We measure how often this happens and show the top few elements of the label

confusion matrix in Table 2.2. Notice that most of these confusions correspond to visual

stop sign sign 7.8% road highway road 3.4%
pole streetlight 6.7% painting picture 3.4%
motorcycle motorbike 6.2% sidewalk road 3.2%
mountains mountain 6.2% cloud sky 3.1%
ground grass sidewalk 3.7% grass ground grass 3.1%
grass lawn 3.6% mountain mountains 2.7%

Table 2.2: Label confusion after distance function learning. We show the top 12 label confusions
discovered after distance function learning. For example, 7.8% of the time a “stop sign” exemplar
associated with a “sign” exemplars. This suggests that visual similarity can alleviate some of the problems
with ambiguous labels.
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synonyms.

2.3.3 Segment Labeling

In order to determine if the distance functions are over-fitting, we consider a segment-

labeling task on a held-out subset of LabelMe. Our evaluation uses a test set of 147

outdoor images all coming from one specific subfolder in LabelMe (to minimize the

chances of similar data being used for training and testing). This testing subset contains

a total of 1, 146 objects. For the segment-labeling task, we represent both exemplars

and testing regions by segment-based features (as described in Section 2.3.1) extracted

from the ground-truth segmentation masks. The more difficult problem of automatically

extracting objects from images when no ground-truth segmentations are given is delayed

until Section 2.3.4. We label the testing segment by the label from the single most

visually similar exemplar using the learned distances. We consider a set of distance

thresholds and compute the precision versus recall curve. Precision measures the

probability that a returned label is identical to the ground truth label and in our case

recall measures the fraction of segments that get labeled. As a baseline, we compare the

performance of our learned distance functions to a nearest-neighbor classifier using a

texton histogram distance. The precision-recall curve can be seen in Figure 2.4. If we

only interpret the distance functions that return a value below 1.0 (what our learning

formulation suggests is the best thing to do), we obtain labels for 60% of objects with a

precision of 91%. This suggests that the learned distance functions are providing a very

meaningful distance for recognition.
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Figure 2.4: LabelMe segment labeling: Per-Exemplar Distance Functions vs. Texton Histograms.
We learn a different distance function for each exemplar and apply them to a held-out set of objects
from LabelMe. Segment features are obtained from ground-truth segmentations. Note that the Distance
Functions are significantly better than Texton histograms in the high-precision, low-recall regime.

2.3.4 Parsing Images via Multiple Segmentations

We already saw in Section 2.3 that exemplar-specific distance functions can be used to

determine the identity of a ground-truth segment, but how can we use them to segment

out objects inside novel, unlabeled images? We tackle this problem in two steps. We use

the multiple segmentation approach [Hoiem et al., 2005,Russell et al., 2006,Malisiewicz

and Efros, 2007], which was shown to provide good spatial support for many different

object types, to generate a large collection of candidate segments. We then keep the

non-redundant subset of segments which generated well-scoring visual associations

with the set of exemplars.

In [Malisiewicz and Efros, 2007], we argued at great length that using multiple

segmentations is better than one — the key insight is that while no single segmentation is

likely to produce all good segments, some of the segments in some of the segmentations

are very good. We use a variant of the multiple segmentation approach [Russell et al.,

2006,Malisiewicz and Efros, 2007], to generate a “soup of segments” in a purely bottom-
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up fashion (no object knowledge is provided). In particular, we vary the parameters of

two segmentation engines — Mean-Shift based EDISON [Comaniciu and Meer, 2002]

and Normalized Cuts [Shi and Malik, 2000] — to generate multiple image segmentations

for every input image. Since we have shown in [Malisiewicz and Efros, 2007] that some

composite objects are very unlikely to come out as a single segment in any segmentation,

but can be well approximated by a merge of a few adjacent segments. Therefore, we

augment our initial soup of segments by considering the merges of 2 or 3 adjacent

segments as discussed in [Malisiewicz and Efros, 2007]. The resulting bottom-up

segment representation can provide regions with good spatial support for both shape-

free “stuff” objects such as grass, road, and sky as well as fixed-extent “things” such as

cars, bicycles, and people. An additional advantage of using a bottom-up mechanism

to generate candidate regions is that it is independent of the number of exemplars or

object categories used in further processing stages.

The distance functions learned so far are not very good at recognizing bad segments

— they never saw any in training! We thus augment the data used in distance function

learning to contain a large number (over 30, 000) of bad segments which capture the

appearance of patterns that do not correspond to any objects.

After we generate the soup of bottom-up segments, we compute the full matrix of

distances between all exemplars and segments. We only consider the distances below

1.0 and the resulting associations are very sparse. On average, less than .2% of the

potential associations are active. Qualitative examples of exemplar association in the

soup of bottom-up segments can be seen in Figure 2.5. Quite often, a single segment

will associate with many exemplars and we construct a recognition score out of the list

of associating distances. Letting E be the list of exemplars associating with segment S
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the recognition confidence s(S,E) is constructed as follows:

s(S,E) = 1/
∑
e∈E

1

De(S)
(2.14)

For evaluation purposes, we use the held-out subset of LabelMe defined in Section 2.3.

We label each object hypothesis with the most frequently occurring label among its

associations. We also retain all segments that associate with at least one exemplar, and

thus have multiple (potentially all correct) overlapping object hypotheses. Since we do

not want to penalize for these alternative associations we define detection precision

as follows: we consider an object hypothesis to be correct if it has a segment overlap

score (defined as in [Malisiewicz and Efros, 2007]) of at least 0.5 with a ground truth

region that has the same identical label as the hypothesis. We consider all objects in

tandem and do not penalize for multiple correct overlapping associations. We vary the

recognition confidence to create the precision versus recall curve in Figure 2.6.

In order to quantify how well we segment objects, for each correct detection we

measure the overlap score between the associated ground truth regions and the object

hypotheses. We show the average overlap score as we vary the recognition confidence

and compare that to the average overlap score of the best segment in our soup of

segments. The corresponding plot can be seen on the right side of Figure 2.6.

The ability to return a small number of object hypotheses with high quality segmen-

tation masks is crucial for image understanding. Even though the interplay between

objects (e.g., [Rabinovich et al., 2007]) is certainly a crucial component for determining

the identity of all the scene’s visual elements, we can still create meaningful (partial)

parses using our local distance functions alone. We create an image parse from our

overlapping object hypotheses as follows: given a list of object hypotheses in a single

image sorted by their recognition confidence and an initially empty list of objects in the
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from multiple segmentations along with its top 4 exemplar associations.
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Figure 2.6: Detecting and Segmenting objects in LabelMe. Both curves are created by varying the
recognition confidence (Equation 2.14). The first plot shows the precision-recall curve for the task of
object detection. A detection is deemed correct if it returns the same label as well as has an overlap score
(OS) greater than .5 with a ground-truth segment. The second plot shows the average segmentation
quality of correct detections and compares that to the mean best overlap score of the input multiple
segmentations.

parse, we greedily place the current best object hypotheses into the list of objects in the

parse while removing all hypotheses that overlap with a score of 0.5 or more. This is

equivalent to the typical non-maximum suppression algorithm (as used in [Felzenszwalb

et al., 2008]), but applied to free-form segments instead of bounding boxes. Two

resulting image parsing examples can be seen in Figure 2.7.

This chapter has demonstrated that multiple segmentations and Local Distance

Functions allow us to perform detection and segmentation for a large number of

different objects. In addition, we have shown that the integral component of such a

segment-then-recognize approach is the learning of exemplar-specific distance functions.

2.3.5 Follow-up Work

Since its publication in 2008, several related approaches have been published and it

is worthwhile mentioned them in this thesis. Regarding the “segment-then-recognize”

approach, the approach of [Li et al., 2010] has become quite popular. [Li et al., 2010]

use graph-cuts to generate a soup of figure-ground segmentations and rank them to

perform object recognition. Our local distance function framework has been extended
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to the problem of recognition from both color and depth sensors [Lai et al., 2011]. In

addition, there has been rising interest in local distance functions and many different

formulations have been extensively analyzed by Ramanan and Baker [Ramanan and

Baker, 2011].
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created by performing segment-based non-maximum suppression after scoring segments with Local
Distance Functions.
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Chapter 3

Exemplar-SVMs

A mere decade ago, automatically recognizing everyday objects in images (such as the

bus in Figure 3.1) was thought to be an almost unsolvable task. Yet today, a number of

methods can do just that with reasonable accuracy. But let us consider the output of a

typical object detector — a rough bounding box around the object and a category label

(Figure 3.1 left). While this might be sufficient for a retrieval task (“find all buses in

the database”), it seems rather lacking for any sort of deeper reasoning about the scene.

How is the bus oriented? Is it a mini-bus or a double-decker? Which pixels actually

belong to the bus? What is its rough geometry? These are all very hard questions for

a typical object detector. But what if, in addition to the bounding box, we are able to

obtain an association with a very similar exemplar from the training set (Figure 3.1

right), which can provide a high degree of correspondence. Suddenly, any kind of

meta-data provided with the training sample (a pixel-wise annotation or label such as

viewpoint, segmentation, coarse geometry, a 3D model, attributes, etc.) can be simply

transferred to the new instance.
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Figure 3.1: Object Category Detector vs. Ensemble of Exemplar Detectors. Output of a typical object
detector is just a bounding box and a category label (left). But our ensemble of Exemplar-SVMs is able to
associate each detection with a visually similar training exemplar (right), allowing for direct transfer of
meta-data such as segmentation, geometry, even a 3D model (bottom).
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Figure 3.2: Category SVM vs. Exemplar-SVMs. Instead of training a single per-category classifier, we
train a separate linear SVM classifier for each exemplar in our dataset with a single positive example and
millions of negative windows. Negatives come from images not containing any instances of the exemplar’s
category.

What seems desirable is an approach that has all the strengths of a Dalal-Triggs [Dalal

and Triggs, 2005] / Felzenszwalb et al. [Felzenszwalb et al., 2010] detector – powerful

descriptor, efficient discriminative framework, clever mining of hard-negatives, etc. –

but without the drawbacks imposed by a rigid, category-based representation of the

positives. To put it another way, what we want is a method that is non-parametric

when representing the positives, but parametric (or at least semi-parametric) when

representing the negatives. This is the key motivation behind our Exemplar-SVM

approach. What we propose is a marriage of the exemplar-based methodology, which

allows us to propagate rich annotations from exemplars onto detection windows, with

discriminative training, which allows us to learn powerful exemplar-based classifiers

from vast amounts of positive and negative data.

Our object detector is based on a very simple idea: to learn a separate classifier for

each exemplar in the dataset (see Figure 3.2). We represent each exemplar using a rigid

HOG template [Dalal and Triggs, 2005]. Since we use a linear SVM, each classifier

can be interpreted as a learned exemplar-specific HOG weight vector. As a result,

instead of a single complex category detector, we have a large collection of simpler

individual Exemplar-SVM detectors of various shapes and sizes, each highly tuned to the

exemplar’s appearance. But, unlike a standard nearest-neighbor scheme, each detector

is discriminatively trained. So we are able to generalize much better without requiring
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Figure 3.3: HOG-matching comparison. Given a bicycle training sample from PASCAL (represented with
a HOG weight vector w), we show the top 6 matches from the PASCAL test-set using three methods. Row
1: naive nearest neighbor (using raw normalized HOG). Row 2: Trained Exemplar-SVM (notice how w
focuses on bike-specific edges). Row 3: Learned distance function – an Exemplar-SVM but trained in the
“distance-to-exemplar” vector space, with the exemplar being placed at the origin (loosely corresponding
to [Frome and Malik, 2006,Malisiewicz and Efros, 2008]).

an enormous dataset of exemplars, allowing us to perform surprisingly well even on a

moderately-sized training dataset such as the PASCAL VOC 2007 [Everingham et al.,

2010].

The similarity functions we propose in this Chapter take the form of a dot product

between an exemplar’s learned weight vector we (also referred to as an exemplar-specific

template) and xi, the raw features representing an input object (plus a bias be).

De(xi) = wT
e xi + be (3.1)

The output of such a similarity function can be interpreted as the signed distance

from the hyperplane represented by wT
e x + be = 0. The use of a hyperplane pa-

rameterization is motivated by the great success of templates in the object detection

community (e.g., many of the best-performing approaches are the HOG-based Dalal-

Triggs/Felzenszwalb et al. family of monolithic detectors). However, unlike monolithic

approaches which learn category-specific templates (e.g., wdog, wcar, wchair, etc), our

templates are exemplar-specific (e.g., we1 ,we2 , . . . ,weN ) and trained in a per-exemplar

fashion. In order to maintain the specificity of the learned template to a single exemplar
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Exemplar Learned w

Figure 3.4: Learning an Exemplar-specific HOG Template. Since we use linear classifiers, the resulting
decision boundary can be interpreted as an exemplar-specific HOG template. The visualization is the
positive part of the learned hyperplane.

xe, we learn the template we with a single positive instance. The resulting weight

vector can then be interpreted as a template highly tuned to the input exemplar (see

Figure 3.4). Since we use the same linear Support Vector Machine (SVM) approach

as [Dalal and Triggs, 2005] to learn we, but are able to produce a template highly tuned

to the exemplar xe, we dub this approach the Exemplar-SVM.

3.1 Who Needs friends? Learning With a Single Positive

Instance

One would imagine that training an SVM with a single positive example will badly

over-fit. But note that we require far less from a per-exemplar classifier as compared to

a per-category classifier – each of our detectors only needs to perform well on visually

similar examples. Since each classifier is solving a much simpler problem than in the

full-category case, we can use a simple regularized linear SVM to prevent over-fitting.

Another crucial component is that, while we only have a single positive example, we
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have millions of negative examples that we mine from the training set (i.e., from images

that do not contain any instances of the exemplar’s category). As a result, the exemplar’s

decision boundary is defined, in large part, by what it is not. One of the key contributions

of our approach is that we show generalization is possible from a single positive example

and a vast set of negatives.

At test-time, we independently run each classifier on the input image (see the sliding

window discussion in Appendix section B.2) and use simple non-maximum suppression

to create a final set of detections, where each detection is associated with a single

exemplar. However, since our independently-trained classifiers might not output directly

comparable scores, we must perform calibration on a validation set. The intuition

captured by this calibration step is that different exemplars will offer drastically different

generalization potential. A heavily occluded or truncated object instance will have

poorer generalization than a cleaner exemplar, thus robustness against even a single

bad classifier is imperative to obtaining good overall performance. Since our classifiers

are trained without seeing any other positive instances but itself, we can use them for

calibration in a “leave-all-but-one-out” fashion.

It is worthwhile pointing out some of the key differences between our approach and

other related SVM-based techniques such as one-class SVMs [Schlkopf et al., 2001,Chen

et al., 2001], multi-class kernel SVMs, kernel-learning approaches [Vedaldi et al., 2009],

and the kNN-SVM algorithm [Zhang et al., 2006]. All of these approaches require

mapping the exemplars into a common feature space over which a similarity kernel

can be computed (which we avoid), but more importantly, kernel methods lose the

semantics of single-exemplar associations which are necessary for high quality meta-data

transfer.

Given a set of training exemplars, we represent each exemplar E via a rigid HOG

template, xE. We create a descriptor from the ground-truth bounding box of each

53



Figure 3.5: Exemplar-SVMs. A few “train” exemplars with their top detections on the PASCAL VOC
test-set. Note that each exemplar’s HOG has its own dimensions. Note also how each detector is specific
not just to the train’s orientation, but even to the type of train.

exemplar with a cell size of 8 pixels using a sizing heuristic which attempts to represent

each exemplar with roughly 100 cells. Instead of warping each exemplar to a canonical

frame, we let each exemplar define its own HOG dimensions respecting the aspect ratio

of its bounding box (see the description of this process in Appendix section B.2). We

create negative samples of the same dimensions as xE by extracting negative windows,

NE, from images not containing any objects from the exemplar’s category.

Each Exemplar-SVM, (wE, bE), tries to separate xE from all windows in NE by the

largest possible margin in the HOG feature space. Learning the weight vector wE

amounts to optimizing the following convex objective:

ΩE(w, b) = ||w||2 + C1h(wTxE + b) + C2

∑
x∈NE

h(−wTx− b) (3.2)

We use the hinge loss function h(x) = max(0, 1 − x), which allows us to use the

hard-negative mining approach to cope with millions of negative windows because the

solution only depends on a small set of negative support vectors.

Figure 3.3 offers a visual comparison of the proposed Exemplar-SVM method against

two alternatives for the task of detecting test-set matches for a single exemplar, a snow-
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covered bicycle. The first row shows a simple nearest-neighbor approach. The second

row shows the output of our proposed Exemplar-SVM. Note the subtle changes in the

learned HOG vector w, making it focus more on the bicycle. The third row shows the

output of learning a distance function, rather than a linear classifier. For this, we applied

the single-positive Exemplar-SVM framework in the “distance-to-exemplar” vector space,

with the exemplar being placed at the origin (this is conceptually similar to [Malisiewicz

and Efros, 2008,Frome and Malik, 2006]). We observed that the centered-at-exemplar

constraint made the distance function less powerful than the linear classifier (see Results

section). Figure 3.5 shows a few Exemplar-SVMs from the “train” category along with

their top detections on the test-set. Note how specific each detector is – not just to the

train’s orientation, but even the type of train.

3.1.1 Relationship to Local Distance Functions

Since Exemplar-SVMs are trained in a per-exemplar fashion, they bear a strong re-

semblance to the Local Distance Functions defined in Chapter 2. However, there are

some key differences which are worthwhile to explain in detail. Unlike distance func-

tions [Frome and Malik, 2006, Malisiewicz and Efros, 2008], which require a set of

positive examples during learning, Exemplar-SVMs only require a single positive in-

stance. We additionally use millions of image windows as the negatives used to train

we. The shift towards using less positive data and more negative data is a notable

change in philosophy for learning per-exemplar similarity measures. By virtue of being

a hyperplane, the Exemplar-SVM similarity function is not required to be centered at

the exemplar and allows us to better adapt to the training data. Using a single positive

instance, we abandon the need for any latent variables (which were used to encode

a variable number of friends during distance function learning in Section 2), and the

resulting problem is convex. This means that the optimization problem involved is much
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faster to solve (by using highly optimized SVM packages tuned for large-scale problems)

and we do not have to worry about local minima (a hallmark of convexity). More

importantly, requiring a single positive instance means that our dependence on category

labels is much lower than the distance functions in Section 2 (which required the use

of categories to define the positive class). This is an important step in the direction of

completely moving away from categories during learning.

Because Exemplar-SVMs can be interpreted as exemplar-specific similarity measures,

our framework shares some similarities with distance-learning approaches, in particular

those that learn per-exemplar distance functions (e.g., [Frome and Malik, 2006,Mal-

isiewicz and Efros, 2008]). However, the crucial difference between a per-exemplar

classifier and a per-exemplar distance function is that the latter forces the exemplar

itself to have the maximally attainable similarity. An Exemplar-SVM has much more

freedom in defining the decision boundary, and is better able to incorporate input from

the negative samples (see Figure 3.3 for a comparison, to be discussed later).

3.1.2 Interpreting SVMs trained with a single positive instance

The Representer Theorem [Wahba, 1973] tells us that the solution to an SVM problem

(a type of L2-regularized learning problem) will take the following form:

we = αexe +
∑
i∈Ne

αixi (3.3)

Here, αe is the dual variable associated with the single positive instance, and αi is a dual

variable associated with the negatives. We have observed that all of our Exemplar-SVMs

are able to separate the single positive from the negatives, and that the support vectors

roughly fall on their respective margin. xe is one support vector with αe ≈ 1, and we

get a small set of negative support vectors with αi ≈ −1. All non-supporting vectors
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have αi = 0. Indicating the set of negative support vectors (also called hard negatives)

as NSV, we get:

we ≈ xe −
∑
i∈NSV

xi (3.4)

It now becomes clear that the Exemplar-SVM learns a template whose positive part

will resemble the exemplar and the negative part is a sum over negative support vectors.

3.2 Calibration

Using the procedure above, we train an ensemble of Exemplar-SVM, one for each positive

instance in the training set. However, due to the independent training procedure, their

outputs are not necessarily compatible. A common strategy to reconcile the outputs

of multiple classifiers is to perform calibration by fitting a probability distribution to a

held-out set of negative and positive samples [Platt, 1999,Frome and Malik, 2006]. This

procedure is often called Platt’s Scaling Algorithm, and generally applied to a held-out

set which has the same distribution of samples as the training-data. However, in our

case, since each exemplar-SVM is supposed to fire only on visually similar examples, we

cannot say for sure which of the held-out samples should be considered as positives a

priori. For example, for a frontal view of an train, only other frontal views of similar

trains should be considered as positives. Fortunately, just like during training, what we

can be sure about is that the classifier should not fire on negative windows. Therefore,

we let each exemplar select its own positives and then use the SVM output scores on

these positives, in addition to lots of held-out negatives, to calibrate the Exemplar-SVM.

To obtain each exemplar’s calibration positives, we run the Exemplar-SVM on the

validation set, create a set of non-redundant detections using non-maximum suppression,
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and compute the overlap score between resulting detections and ground-truth bounding-

boxes. We treat all detections which overlap by more than 0.5 with ground-truth boxes

as positives (this is the standard PASCAL VOC criterion for a successful detection).

All detections with an overlap lower than 0.2 are treated as negatives, and we fit a

logistic function to these scores. Note that, although we cannot guarantee that highly

overlapping correct detections will indeed be visually similar to the exemplar, with very

high probability they will be, since they were highly ranked by the exemplar-SVM in the

first place.

Our calibration step can be interpreted as a simple re-scaling and shifting of the

decision boundary (see Figure 3.6) – poorly performing exemplars will be suppressed

by having their decision boundary move towards the exemplar and well-performing

exemplars will be boosted by having their decision boundary move away from the

exemplar. While the resulting decision boundary is no longer an optimal solution for

the local-SVM problem, empirically we found this procedure greatly improves the inter-

exemplar ordering. Given a detection x and the learned sigmoid parameters (αE, βE),

the calibrated detection score for exemplar E is as follows:

f(x|wE, αE, βE) =
1

1 + e−αE(wT
Ex−βE)

While the logistic fitting is performed independently for each exemplar, we found

that it gives us a considerable boost in detection performance over using raw SVM

output scores. At test-time, we create detections from each classifier by thresholding the

raw SVM output score at −1 (the negative margin) and then rescale them using each

exemplar’s learned sigmoid parameters.
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Figure 3.6: Exemplar-SVM calibration. The calibration step rescales the SVM scores but does not affect
the ordering of the matches, allowing us to compare the outputs of multiple independently-trained
Exemplar-SVMs.

3.3 Exemplar Co-occurrence Matrices

After calibration, we can create detection windows for each exemplar in a sliding-

window fashion. A common and simple mechanism for suppressing redundant responses

is non-maximum suppression (NMS); however, using NMS directly on exemplars means

that multiple exemplars will be competing for detections windows. However, easy to

recognize objects will often have many visual associations created around the object

of interest — information which competitive NMS completely disregards. Instead of

just using the raw association score, we propose to augment each detection with an

exemplar context score which uses the identities and scores of nearby detections to

boost the raw detection score. For each detection we generate a context feature similar

to [Bourdev et al., 2010,Felzenszwalb et al., 2010] which pools in association scores of

nearby (overlapping) detections and generates the final detection score by a weighted

sum of the local association score and the context score. A set of K detections D is

produced by applying a set of N exemplars to a single image and performing NMS

across detections with the same exemplar id. While NMS makes sure that we throw

away redundant detections from the same exemplar, we will still be left with many
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overlapping detections because many exemplar are similar to each other.

We can think of each detection as a triplet consists of a rectangular detection region

Ri, the exemplar id ei, and the exemplar’s visual association score si.

D = {(Ri, ei, si)}Ki=1 (3.5)

Ri ∈ <4 (3.6)

ei ∈ {1, . . . , N} (3.7)

si = wT
ei
xRi

+ bei + 1.0 (3.8)

Because we thresholded detections at −1.0, adding 1.0 to each Exemplar-SVM’s

raw output score guarantees that si ≥ 0. We now define the exemplar context feature

f(Ri) ∈ <N+, associated with detection region Ri, as follows:

f(Ri) = [f1 f2 . . . fN ] (3.9)

fj = max
(ek=j)∩(Rk∈Fi)

sk (3.10)

Fi = {R : OS(R,Ri) > .5} (3.11)

Simply put, for a detection region Ri, we only consider other exemplar detections

in the set Fi (the set of regions which overlap with Ri by more than 0.5). The j-th

component of the exemplar context feature is then the maximum score of a detection

with exemplar id ej. The final score for region Ri is then:

ŝi = mT
ei
f(Ri) (3.12)

M = [me1 me2 . . . meN ] (3.13)

60



where M is the N × N exemplar co-occurrence matrix which encodes how often

exemplars ei and ej simultaneously created a correct detection on the trainval set. We

essentially loop over all detections in the trainval set, and count how often exemplars

ei and ej produced a correct detection. Once we obtain the final association score ŝi

using the co-occurrence matrix, we use standard non-maximum suppression to create a

final, sparse set of detections per image.

3.4 Evaluation of Exemplar-SVMs

We evaluate the Exemplar-SVM framework two different ways. First, we compare the

learned per-exemplar templates against templates computed directly from the positive

instance, without the use of any negatives. Second, we compare the functional form

of Exemplar-SVMs, against a distance function centered around the exemplar (see

Section 2). We use the same exact per-exemplar feature representation in all three cases,

and perform training with the same parameters for the two learning-based approaches.

Normalized HOG: To study the effect of learning, we need a way of creating visual

similarities without any learning. We found that a simple dot product with a normalized

template works well as a nearest-neighbor baseline. The learning-free ŵe is obtained by

creating the 0-mean, normalized HOG descriptor directly from the exemplar’s features

(xe ∈ <F+) as follows:

ŵe = xe − µx1F (3.14)

µx =
xTe 1F
F

(3.15)

In this equation 1F is the F dimensional vector of ones, and in order to be 0-mean
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the final template has both positive and negative parts. The idea behind using the

normalized HOG template comes from our observation that the templates obtained from

the Exemplar-SVM algorithm are mean 0 and the positive part looks very much like

the original raw HOG features. One interpretation of the normalized HOG template

is the solution of a “virtual” SVM learning process where negative support vectors are

uniformly distributed gradient templates. In other words, the normalized HOG template

implicitly assumes that all gradients in the negative world are equally likely, while the

Exemplar-SVM approach does not make any assumptions about the negative world (and

explicitly mines the negatives from a large set).

HOG Distance Functions: To compare the template dot-product representation of

similarity functions against our earlier “centered-at-exemplar” philosophy, we performed

experiments on learning using the diagonal Mahalanobis functional form of Equation 2.1.

To make sure that the only difference in learning is the change of the functional form,

we performed learning using the same single-positive-instance objective function as the

Exemplar-SVM, as well as the same strategy for mining negative windows. The only

difference is that instead of applying the learned weight vector in raw feature space

wT
e xi, we apply it in the distance-to-exemplar space, wT

e dei.

The full PASCAL VOC detection challenge results will be discussed later, but we

summarize the results here for completeness. Using the same calibration step (which

will be described in Section 3.2) for all 3 methods, we see that Normalized HOG obtains

a mAP of .110, Local Distance Functions obtain a mAP of .157, and Exemplar-SVMs

obtain a mAP of .198. The full set of results can be seen in Table 3.1.

3.4.1 PASCAL VOC Object Detection Task

We evaluate our Exemplar-SVM framework on the well-established PASCAL VOC bench-

mark task of object detection. For our experiments, we use a single source of exemplars:
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Figure 3.7: Object Detection and Appearance Transfer. Each example shows a detection from our
ensemble of Exemplar-SVMs along with the appearance transferred directly from the source exemplar, to
demonstrate the high quality of visual alignment. Bottom row shows object category detection failures.

the PASCAL VOC 2007 dataset [Everingham et al., 2010] – a popular dataset used to

benchmark object detection algorithms. During training, we learn a separate classifier w

for each of the 12, 608 exemplars from the 20 categories in 5, 011 trainval images. We

mine hard negatives from out-of-class images in the train set and perform calibration

using all positive and negative images in trainval (See Section 3.2).

At test time, each Exemplar-SVM creates detection windows in a sliding-window

fashion, but instead of using a standard non-maxima-suppression we use an exemplar

co-occurence based mechanism for suppressing redundant responses. For each detection

we generate a context feature similar to [Bourdev et al., 2010,Felzenszwalb et al., 2010]

which pools in the SVM scores of nearby (overlapping) detections and generates the

final detection score by a weighted sum of the local SVM score and the context score.

Once we obtain the final detection score, we use standard non-maximum suppression to

create a final, sparse set of detections per image.

We report results on the 20-category PASCAL VOC 2007 comp3 object detection
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Exemplar Methods Global
Type NN NN+Cal DFUN DFUN+Cal ESVM ESVM+Cal ESVM+Co CZ DT LDPM
aeroplane 0.006 0.056 0.044 0.162 0.062 0.204 0.208 0.262 0.127 0.287
bicycle 0.094 0.293 0.299 0.364 0.333 0.407 0.480 0.409 0.253 0.510
bird 0.000 0.012 0.006 0.008 0.092 0.093 0.077 x 0.005 0.006
boat 0.005 0.034 0.093 0.096 0.099 0.100 0.143 x 0.015 0.145
bottle 0.000 0.009 0.005 0.097 0.025 0.103 0.131 x 0.107 0.265
bus 0.006 0.207 0.153 0.316 0.236 0.310 0.397 0.393 0.205 0.397
car 0.010 0.261 0.202 0.366 0.329 0.401 0.411 0.432 0.230 0.502
cat 0.092 0.017 0.092 0.092 0.095 0.096 0.052 x 0.005 0.163
chair 0.001 0.094 0.095 0.098 0.095 0.104 0.116 x 0.021 0.165
cow 0.092 0.111 0.097 0.107 0.118 0.147 0.186 x 0.128 0.166
diningtable 0.001 0.004 0.003 0.002 0.016 0.023 0.111 x 0.014 0.245
dog 0.004 0.033 0.092 0.093 0.094 0.097 0.031 x 0.004 0.050
horse 0.096 0.243 0.253 0.234 0.340 0.384 0.447 x 0.122 0.452
motorbike 0.094 0.188 0.196 0.223 0.287 0.320 0.394 0.375 0.103 0.383
person 0.005 0.114 0.097 0.120 0.124 0.192 0.169 x 0.101 0.362
pottedplant 0.018 0.020 0.012 0.037 0.020 0.096 0.112 x 0.022 0.090
sheep 0.009 0.129 0.040 0.117 0.117 0.167 0.226 x 0.056 0.174
sofa 0.008 0.003 0.047 0.016 0.098 0.110 0.170 x 0.050 0.228
train 0.096 0.183 0.180 0.271 0.205 0.291 0.369 0.334 0.120 0.341
tvmonitor 0.144 0.195 0.229 0.293 0.221 0.315 0.300 x 0.248 0.384
mAP 0.039 0.110 0.112 0.155 0.150 0.198 0.227 x 0.097 0.266

Table 3.1: Exemplar-SVM Object Detection Results on PASCAL VOC 2007. The 3 different local
similarity functions we compare against are: NN (Normalized Hog Nearest Neighbor), DFUN (learning a
diagonal Mahalanobis distance function), and ESVM (Exemplar-SVM). For each method we also perform
calibration, as indicated with a +Cal, and apply the contextual co-occurrence matrix (+Co) to the best
performing ESVM method. The two global methods are our implementation of Dalal-Triggs (learning a
single global template), and LDPM (Latent deformable part model). Our method beats out the Dalal-Triggs
baseline across all categories. Our approach obtains a mAP of 22.7 rivaling the mAP of 26.7 obtained from
Felzenszwalb et al [Felzenszwalb et al., 2010] discriminatively trained part-based mixture model. CZ
stands for [Chum and Zisserman, 2007] and LDPM stands for the Latent Deformable Part-based Model
of [Felzenszwalb et al., 2010]. Due to computational reasons, we computed the NN baselines on the
person category with 1250 exemplars.
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challenge. Figure 3.7 shows several detections (green boxes) produced by our Exemplar-

SVM framework. We also show the super-imposed exemplar (yellow boxes) associated

with each detection. Following the protocol of the VOC Challenge, we evaluate our

system on a per-category basis on the test set, consisting of 4, 952 images. We compare

the performance of our approach (ESVM+Co-oc) to several exemplar baselines apart

from the VOC results reported in [Felzenszwalb et al., 2010, Chum and Zisserman,

2007]. These results have been summarized in Table 3.1 as Average Precision per class.

Our results show that standard Nearest Neighbor 1 (NN) does not work at all. While

the performance improves after calibration (NN+Cal), it is still not comparable to other

approaches due to its lack of modeling negative data. We also compared against a

distance function formulation similar to the one proposed in [Malisiewicz and Efros,

2008] but learned using a single positive instance. The results clearly indicate that

the extra constraint due to a distance function parameterization is worse than using a

hyperplane. To highlight the importance of using the co-occurence mechanism above,

we also report our results using calibration (ESVM+Cal).

On the PASCAL test set, our full system obtains a mean Average Precision (mAP)

of .227, which is competitive with with Felzenszwalb’s state-of-the-art deformable part-

based mixture model. Note however, that our system does not use parts (though they

could be easily added) so the comparison is not entirely fair. Therefore, we also compare

our performance to Dalal/Triggs baseline, which uses a single category-wise linear

SVM with no parts, and attains a mAP of .097, which is less than half of ours. We also

compared against the PASCAL VOC 2007 winning entry, the exemplar-based method

of Chum et al. [Chum and Zisserman, 2007], and found that our system beats it on 4

out of 6 categories for which they submitted results. In [Chum and Zisserman, 2007],

1We experimented with multiple similarity metrics and found that a dot product with a normalized
HOG template worked the best. The normalized HOG template is created by subtracting a constant from
the positive HOG features to make them 0-mean.
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the winning entry for many of the categories in PASCAL 2007, object categories are

represented by storing exemplars, but the underlying assumption is that all exemplars

from the same class share a common distribution of features. Thus, Chum et al.

require class-wise and aspect-wise labeling of training data to break up broad basic-level

object categories such as cars into finer visual sub-categories (e.g., car-left, car-front).

Unfortunately this type of labeling is tedious and difficult to obtain for datasets of

significant size. Moreover, for some objects (e.g., bottles, soccer balls, grass) it is not

clear if aspect-wise labeling is even well-defined.

3.5 Exemplar-SVM Analysis

In this section, we analyze in detail some properties of our Exemplar-SVM object

detection system. In particular, we study object detection performance when using

different negative sets (by varying their content as well as their size) as well as different

positive sets (by varying the number of exemplars to be used at test-time).

3.5.1 Including Same-Category Instances in the Negative Set

In the last section, we showed that the Exemplar-SVM training procedure works with a

single positive instance and millions of negatives. We also discussed that this implies that

the exemplar’s decision boundary is defined, in large part, by what it is not. Because the

negative set was created by eliminating images containing same-category (or, in-class)

instances, it depends on the positive’s category. To determine how the performance of

our system depends on eliminating same-category instances from the negative set, we

repeat the PASCAL VOC 2007 experiments from section 3.4.1, but this time we allow

the negatives to come from any image, including in-class images. For each exemplar in

trainval, we use all of the images from the train set (excluding the exemplar’s own
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Type ESVM* ESVM*+Cal ESVM*+Co ESVM+Co
aeroplane 0.043 0.121 0.114 0.208
bicycle 0.216 0.310 0.392 0.480
bird 0.092 0.032 0.095 0.077
boat 0.094 0.098 0.143 0.143
bottle 0.010 0.036 0.124 0.131
bus 0.155 0.202 0.323 0.397
car 0.185 0.264 0.343 0.411
cat 0.093 0.093 0.035 0.052
chair 0.049 0.077 0.114 0.116
cow 0.117 0.128 0.193 0.186
diningtable 0.011 0.012 0.096 0.111
dog 0.094 0.095 0.053 0.031
horse 0.265 0.258 0.381 0.447
motorbike 0.224 0.235 0.360 0.394
person 0.102 0.128 0.162 0.169
pottedplant 0.016 0.093 0.065 0.112
sheep 0.065 0.159 0.210 0.226
sofa 0.094 0.023 0.121 0.170
train 0.150 0.212 0.302 0.369
tvmonitor 0.185 0.267 0.281 0.300
mAP 0.113 0.142 0.195 0.227

Table 3.2: Exemplar-SVM results when mining negatives from both out-class and in-class images.
We augment the Exemplar-SVM approach by allowing the negatives to come from any image, including
in-class images (indicated by ESVM*). For comparison, the rightmost column (ESVM+Co) is the original
method (taken from Table 3.1) where in-class images are eliminated from the negative set.

image) to define the negative set. After learning the w’s, we perform calibration (see

Section 3.2) and co-occurrence matrix estimation (see Section 3.3) the same way as

before (i.e., utilizing the exemplar’s category).

As can be seen from the results in Table 3.2, the final mAP is 0.195, which is only

slightly below the 0.227 mAP from the original method. This suggests that once the

negative set is large enough, the few potentially confusing “positives” in the negative

set are not fatal to our system. The percentage drop seems to be fairly consistent for

the well-performing categories. Notice that for 4 categories (bird, boat, cow, dog), the

ESVM*+Co results were equal to or better than the original ESVM+Co method. The

results for cow, a reasonably-performing category, even improved from 0.186 to 0.194.
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3.5.2 Size of Negative Set

Because Exemplar-SVMs must be trained with lots of negatives, each exemplar’s data-

mining step requires approximately 30 minutes of work on a single CPU. While it is easy

to parallelize this procedure using a cluster of computer, it is beneficial to further reduce

the time of mining. Reducing the number of negatives is one easy way to speed-up the

training procedure; therefore, in this section we ask the natural question: how does

object detection performance depend on the size of the negative set? We perform this

evaluation on 6 VOC categories: bus, cow, diningtable, motorbike, sheep, and train while

considering different negative set sizes: 25, 250, 1000, and the original 2500. Figure 3.8

shows the summarized results for the three methods: ESVM, ESVM+Cal, and ESVM+Co.

Detailed numbers can be seen in Table 3.3, Table 3.4, Table 3.5, and Table 3.6. We note

that increasing the negative set size from 25 to 250 negatives images gives us a much

higher boost than increasing it from 1000 to the full 2500 images. This suggests that

once each exemplar has seen a sufficient number of negatives, its performance will not

significantly improve with more negatives.
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Figure 3.8: Varying negative set sizes. We compute the performance of the Exemplar-SVM algorithm as
a mAP over 6 PASCAL categories: bus, cow, diningtable, motorbike, sheep, and train. The x-axis indicates
the number of negative images used and the y-axis is the PASCAL VOC 2007 resulting mAP score for each
of the 3 methods.
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Type ESVM ESVM+B ESVM+M
bus 0.103 0.269 0.248
cow 0.100 0.122 0.149
diningtable 0.001 0.048 0.096
motorbike 0.164 0.232 0.253
sheep 0.098 0.154 0.164
train 0.101 0.196 0.256
mAP 0.094 0.170 0.194

Table 3.3: Exemplar-SVM results with 25 negatives.

Type ESVM ESVM+B ESVM+M
bus 0.185 0.296 0.348
cow 0.121 0.156 0.164
diningtable 0.005 0.018 0.112
motorbike 0.248 0.284 0.338
sheep 0.053 0.163 0.198
train 0.124 0.258 0.315
mAP 0.123 0.196 0.246

Table 3.4: Exemplar-SVM results with 250 negatives.

Type ESVM ESVM+B ESVM+M
bus 0.216 0.304 0.384
cow 0.130 0.148 0.178
diningtable 0.012 0.019 0.118
motorbike 0.269 0.302 0.377
sheep 0.074 0.172 0.239
train 0.184 0.305 0.361
mAP 0.147 0.208 0.276

Table 3.5: Exemplar-SVM results with 1000 negatives

Type ESVM ESVM+B ESVM+M
bus 0.236 0.310 0.397
cow 0.118 0.147 0.186
diningtable 0.016 0.023 0.111
motorbike 0.287 0.320 0.394
sheep 0.117 0.167 0.226
train 0.205 0.291 0.369
mAP 0.163 0.210 0.281

Table 3.6: Exemplar-SVM results with 2500 negatives. This is the same as the main result in the main
Table 3.1
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3.5.3 Dependence On the Number of Exemplars

Since the complexity of our Ensemble of Exemplar-SVMs scales linearly with the number

of exemplars, it is valuable to study the object detection performance of ensembles of

varying sizes. We ask: it possible to obtain really good object detection results with

a small number of exemplars? For each object category in VOC, we train all of the

exemplars using our full approach, and then sort them using the output of calibration

(see Section refsec:calibration). Calibration scores each exemplar independently and

thus the exemplars which produce the largest number of good matches (on held-out

validation data) will come first in the sorting. Given this ordering of exemplars, we

consider ensembles of increasing size, starting with the single best exemplar, and

incrementally adding the next-best one, until we have all exemplars in the ensemble.

We report the PASCAL VOC performance for varying numbers of exemplars using the

per-exemplar calibration strategy, and not the full co-occurrence matrix. The PASCAL

VOC AP versus number of exemplars plots can be seen in Figure 3.9. We show the results

in two different ways: AP vs. log number of exemplars, and AP vs. percent of exemplars

in the category. We note that this curve is for the most part monotonically increasing. As

can be seen from this curve, the performance saturates for these categories when about

half the exemplars are chosen. The flat tail of each curve suggests that adding the last

half of exemplars (many of which are bad) doesn’t make our performance drop. This

suggests that our calibration step works well at suppressing bad exemplars. Since the

run-time complexity is directly proportional to the number of exemplars in the ensemble,

this result suggests that we can get much faster object category detectors by constructing

an ensemble with no more than half the number of exemplars in each category.
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Figure 3.9: PASCAL VOC Results vs. Number of Exemplars. We report the VOC AP for ensembles of
increasing size. For each category, a sorted list is created from the output of calibration, and ensembles
of size 1 through N (N is the number of exemplars in a category) are evaluated on the detection task.
The top plot shows performance versus the raw number of exemplars. The bottom plot shows the same
information, but using a linear scale, and expressed as a percent of the total number of exemplars within
the category.
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3.5.4 The Role of Feature Dimensionality

Another important design decision in our Exemplar-SVM framework is the dimensional-

ity of features representing each exemplar. In this section, we vary the feature dimension

by varying each exemplar’s HOG template size. We repeat the PASCAL VOC experiments

with larger-sized templates as well as with smaller-sized templates. Our default template

size is roughly 100 cells, with the large templates being roughly 200 cells, small templates

being roughly 50 cells, and tiny ones with 25 cells. The HOG initialization/framing

procedure is fully described in Appendix B.2. A summary of the results averaged across

6 categories can be seen in Figure 3.10. The full result tables are in Table 3.7, Table 3.8,

Table 3.9, and Table 3.10. We note that larger templates slightly improve results for the

raw ESVM method and ESVM+Cal; however, a template size of 100 is the best when

using the co-occurrence matrix. However, the advantage of using small templates over

larger ones is that training small templates as well as evaluating them on test-images is

in general much faster.
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Figure 3.10: PASCAL VOC Results for Varying HOG Template Sizes. We compute the performance of
the Exemplar-SVM algorithm as a mAP over 6 PASCAL categories: bus, cow, diningtable, motorbike,
sheep, and train. The x-axis indicates the size of the HOG templates used and the y-axis is the PASCAL
VOC 2007 resulting mAP score for each of the 3 methods.
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Type ESVM ESVM+Cal ESVM+Co
bus 0.100 0.125 0.184
cow 0.137 0.129 0.218
diningtable 0.001 0.001 0.006
motorbike 0.180 0.176 0.256
sheep 0.103 0.120 0.204
train 0.093 0.096 0.114
mAP 0.102 0.108 0.164

Table 3.7: Exemplar-SVM results with tiny HOG templates (goalsize: 25, maxdim: 5).

Type ESVM ESVM+Cal ESVM+Co
bus 0.172 0.215 0.316
cow 0.149 0.166 0.223
diningtable 0.007 0.093 0.053
motorbike 0.259 0.269 0.376
sheep 0.113 0.157 0.232
train 0.111 0.117 0.133
mAP 0.135 0.170 0.222

Table 3.8: Exemplar-SVM results with smaller HOG templates (goalsize: 50, maxdim: 8).

Type ESVM ESVM+Cal ESVM+Co
bus 0.236 0.310 0.397
cow 0.118 0.147 0.186
diningtable 0.016 0.023 0.111
motorbike 0.287 0.320 0.394
sheep 0.117 0.167 0.226
train 0.205 0.291 0.369
mAP 0.163 0.210 0.281

Table 3.9: Exemplar-SVM results with default-sized HOG templates (goalsize: 100, maxdim: 12).

Type ESVM ESVM+Cal ESVM+Co
bus 0.232 0.352 0.394
cow 0.132 0.155 0.164
diningtable 0.093 0.096 0.102
motorbike 0.308 0.310 0.373
sheep 0.071 0.180 0.217
train 0.206 0.308 0.337
mAP 0.174 0.233 0.264

Table 3.10: Exemplar-SVM results with large HOG templates (goalsize: 200, maxdim: 15).
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Part II: Beyond Object Detection

It affords an immediate step, however, to associative indexing, the basic idea of

which is a provision whereby any item may be caused at will to select immediately

and automatically another. This is the essential feature of the memex. The process

of tying two items together is the important thing.

Vannevar Bush, As We May Think (1945)
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We have, up until now, devoted our attention to creating visual associations, or in

the words of Vannevar Bush, “tying two items together.” We demonstrated that the

visual associations produced by the Exemplar-SVM algorithm can be used for object

category detection, much like other category-based detection systems [Dalal and Triggs,

2005, Felzenszwalb et al., 2010, Chum and Zisserman, 2007]. However, the central

benefit of our approach is that we are able to establish a direct link between a detection

and a single training exemplars. In Chapter 4, we showcase the quality of our visual

associations and demonstrate that the alignment between most detections and their

associated exemplar is good enough to let us transfer any available exemplar meta-data

(e.g., segmentation, geometry, 3D model) directly onto the detection. We perform an

evaluation on the PASCAL VOC 2007 dataset, consider the three transfer-tasks (i.e.,

segmentation transfer, geometry transfer, and related object priming), and visualize the

exemplar-exemplar similarity structure as a graph. Our meta-data transfer goes beyond

what is required in most object detection tasks (i.e., a category-labeled bounding box),

and the resulting interpretations (e.g., object pose, object geometry, object attributes)

can then be used as part of overall scene understanding.

In Chapter 5 we consider a contextual object prediction task [Malisiewicz and Efros,

2009] which we tackle by forming a graph over exemplars and their spatial relationships,

which we call the Visual Memex Model. We apply our “category-free” Visual Memex

Model to a variant of Antonio Torralba’s Context Challenge, where the goal is to predict

the appearance of a hidden object solely based on the hidden region’s spatial relationship

to a set of visible objects in the scene. We evaluate our Visual Memex Model on the

Context Challenge task and show an improvement over category-based baselines.
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Chapter 4

Association and Meta-data Transfer

We have already shown that Exemplar-SVMs are highly-tuned to the appearance of the

source exemplar and that we are able to obtain high quality correspondences between

exemplars and detection windows. Such high quality alignment means that Exemplar-

SVMs can be used for more than bounding box prediction — any meta-data associated

with exemplars can be transferred onto the detection window. The hallmark of our

approach is that we do not require a complex image alignment process (unlike [Berg

et al., 2005, Liu et al., 2009]) — the exemplar-specific detector already does all the

work! We consider meta-data in the form of a pixel-wise labeling such as a segmentation

or a geometric labeling and we simply transfer the exemplar-aligned meta-data onto

the detection using the transformation estimated between the source exemplar and the

detection window (a scalar scale and a 2D translation).

In this chapter we present results on applying an ensemble of Exemplar-SVMs

(as defined in Chapter 3) to a set of meta-data transfer tasks: segmentation transfer,

geometry transfer, 3D model transfer, as well as related object priming. For the transfer

applications we use the Exemplar-SVM method with calibration because even though

using the exemplar co-occurence matrix boosts object detection performance, it uses
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Figure 4.1: Segmentation Transfer. Object segmentations are transferred from the exemplar directly
onto the detection window.

multiple overlapping exemplars to score windows (at the cost of forgetting which single

association is the best). Calibration produces much higher quality alignments because

detections are scored independently.

4.1 Segmentation and Geometry Transfer

For the task of segmentation, the goal is to estimate which pixels belong to a given

object and which do not. Figure 4.1 shows some qualitative segmentation transfer

examples on a wide variety of object classes. For quantitative evaluation, we asked

labelers to segment and geometrically annotate all of the instances in the “bus” category

in the PASCAL VOC 2007 dataset. For the segmentation task, our method performs at

a pixelwise accuracy of 90.6%. For geometry estimation, the goal is to assign labels to

pixels indicating membership to one of 3 “left,” “front,” and “right” dominant orientation

classes [Hoiem et al., 2005]. We compare our Exemplar-SVM system against two

baselines: (a) Hoiem’s pre-trained generic geometric class estimation algorithm [Hoiem

et al., 2005]; (b) Using [Felzenszwalb et al., 2010] to detect objects followed by simple

NN to create associations. We obtain a 62.3% pixelwise labeling accuracy using our

Exemplar-SVM approach as compared to the 43.0% obtained using [Hoiem et al., 2005]
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Figure 4.2: Qualitative Geometry Transfer. We transfer geometric labeling from bus exemplars onto
corresponding detections.

and 51.0% using [Felzenszwalb et al., 2010]+NN. This clearly shows that while our

transfer is simple, it is definitely not trivial as it relies on obtaining strong alignment

between the exemplar and the detection (see qualitative results in Figure 4.2). Global

methods fail to generate such alignments, leading to much lower performance.

4.2 3D Model Transfer

We annotated a subset of chair exemplars with 3D models from Google’s 3D Warehouse

(and aligned with Google Sketch-Up 3D model-to-image alignment tool). Given a

single exemplar, labelers were asked to find the most visually similar model in the 3D

Warehouse for that instance and perform the alignment. Due to the high quality of our

automatically-generated associations, we were able to simply transfer the exemplar-

aligned 3D model directly onto the detection window without any additional alignment,

see Figure 4.3.
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Figure 4.3: 3D Model transfer. In each of these 3 examples, the green box in the top image shows the
detection window, and the bottom shows the automatically transferred 3D model.
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Meta-dataPerson

Person
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Figure 4.4: Related Object Priming. A bicycle/motorbike/horse exemplar is used to predict bounding
box for “person”.

4.3 Related Object Priming

Exemplars often show an interplay of multiple objects, thus any other objects which

sufficiently overlap with the exemplar can be viewed as additional meta-data belonging

to the exemplar. This suggests using detectors of one category to help “prime” objects

of another category. We look at the following task: predicting a bounding box for

“person” given a detection of category X, where X is either a horse, motorbike, or

bicycle (see Figure 4.4 for qualitative results). We say that a person is “riding” an X if

its overlap with the X bounding box sufficient (OS > .1). We quantitatively evaluated

the person prediction performance and compared against a baseline which predicts a

person presence based on majority voting. Our method considerably outperforms the

baseline (72.46% as compared to 58.67% for the baseline), suggesting that our exemplar

associations provide good alignment of exemplars as well as their related objects. The

results can be seen in Table 4.1.
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Category Majority Voting [Malisiewicz et al., 2011]
bicycle 63.4% 72.8%
motorbike 50.0% 67.4%
horse 62.6% 77.2%

Table 4.1: Is there a person riding this horse? We predict from our bicycle, motorbike, and horse
detectors whether there is a person riding the object. Our approach is better than the majority vote
baseline, suggesting that exemplars are useful at predicting nearby, related objects.

4.4 Exemplar In-painting

When the dataset does not come equipped with any meta-data beyond object labels

and bounding boxes, it is not possible to perform any kind of transfer. In such a case,

we create an “interpretation” via a simple object in-painting using the exemplar’s raw

appearance, as shown Figure 4.5 and Figure 4.6. In each example we show the source

exemplar along with its learned template we on the left, and the detection window and

exemplar in-painting on the right. Note how our exemplar in-painting results showcase

the quality of our automatic associations, yet again. Some failures of our in-painting can

be seen in Figure 4.7 and Figure 4.8. Note that quite often when we produce a failure

(defined by category mismatch), are mistakes are often between semantically relevant

categories (e.g., a cow mistaken as a sheep, or a horse mistaken as a dog). Even when

we estimate the wrong object category, we can still often predict the object’s pose quite

well.
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w118

Detection In-painting

w22

Detection In-painting

w150 Detection In-painting

w395 Detection In-painting

Figure 4.5: Successful Exemplar Transfers 1. We some of the top exemplar transfers from the PASCAL
VOC 2007 testset. Each example shows: learned exemplar template we and exemplar appearance,
detection window in test image, exemplar appearance overlay.
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w204

Detection In-painting

w230

Detection In-painting

w828
Detection In-painting

w165
Detection In-painting

Figure 4.6: Successful Exemplar Transfers 2. We some of the top exemplar transfers from the PASCAL
VOC 2007 testset. Each example shows: learned exemplar template we and exemplar appearance,
detection window in test image, exemplar appearance overlay.
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w107 Detection In-painting

Figure 4.7: Exemplar Transfer Failures 1. We some of the top failed exemplar transfers from the PASCAL
VOC 2007 testset. Each example shows: learned exemplar template we and exemplar appearance,
detection window in test image, exemplar appearance overlay.
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Figure 4.8: Exemplar Transfer Failures 2. We some of the top failed exemplar transfers from the PASCAL
VOC 2007 testset. Each example shows: learned exemplar template we and exemplar appearance,
detection window in test image, exemplar appearance overlay.
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4.5 Visualizing Exemplar-Exemplar Associations

“...we see a complicated network of similarities overlapping and criss-crossing”

Ludwig Wittgenstein

In this section, we create a visualization of the exemplar-exemplar visual association

structure induced by the Exemplar-SVM algorithm on the PASCAL VOC 2007 dataset.

Our visualization is a sort of “Visual Memex” graph, which we visualize using the popular

open source graph visualization library Graphviz [Ellson et al., 2001]. We also zoom

into portions of this graph to analyze the “visual trail” similarity structure around a

particular exemplar.

While the concept of a network of overlapping similarities comes from Wittgenstein’s

family resemblances [Wittgenstein, 1953], the idea of a visual trail is directly taken from

Bush’s “As We May Think.” The advantage of thinking about exemplars in terms of visual

trails is that a trail allows for a single object instance to participate in multiple visual

trails. To create a graph, we connect two exemplars with an edge if both exemplars fire

on each other with a calibrated score greater than 0.7 and if their bounding box overlap

is greater than 0.5. While this is a rather strict requirement for creating exemplar-

exemplar edges, weaker constraints create graphs which are hard to visualize in two

dimensions. For the sake of clarity, we chose these parameters even though they do not

always result in a connected graph. We display graphs for several PASCAL VOC object

categories using the Exemplar-SVM algorithm. These “Visual Memexes” can be seen in

the following pages: train (see Figure 4.9), motorbike (see Figure 4.10), and aeroplane

(see Figure 4.11).

It is also important to note that many of the ideas behind Bush’s memex are slowly

starting to appear in computer vision. One highly relevant approach is the Photobios

algorithm [Kemelmacher-Shlizerman et al., 2011] for navigating a large collection of
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images of the same person. By creating links between visually similar photos of the same

person’s face, it is possible to render a movie which summarizes the visual evolution

of a single person, even creating compelling animations of the face as it transitions

from different states (e.g., a movie which transitions from a person smiling to the same

person frowning). While this approach has made its way into the popular Face Movies

feature of Google’s Picasa photo-sharing software, it is important to realize that it draws

its success from the maturity of face detection and face recognition technology. The key

challenge is in extending these ideas to non-face domains.
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Train Visual Memex Graph

10x zoom

Figure 4.9: Train Concept Visual Memex. The similarity graph is created by applying each Exemplar-
SVM to in-class images.
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Motorbike Visual Memex Graph

10x zoom 10x zoom

Figure 4.10: Motorbike Concept Visual Memex. The similarity graph is created by applying each
Exemplar-SVM to in-class images.
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10x zoom
10x zoom

Aeroplane Visual Memex Graph

Figure 4.11: Aeroplane Concept Visual Memex. The similarity graph is created by applying each
Exemplar-SVM to in-class images.

92



Chapter 5

Contextual Object Prediction

How far can you go before running an object detector?

Antonio Torralba

In real scenes composed of many different objects, the spatial configuration of one

object can facilitate recognition of related objects [Bar and Ullman, 1996], and quite

often ambiguities in recognition cannot be resolved without looking beyond the spatial

extent of the object in question. Thus, algorithms which jointly recognize many objects

at once by taking account of contextual relationships have been quite popular. While

early systems relied on hand-coded rules for inter-object context (e.g., [Hanson and

Riseman, 1978,Strat and Fischler, 1991]), more modern approaches typically perform

inference in a probabilistic graphical model with respect to categories where object

interactions are modeled as higher order potentials [He et al., 2004,Kumar and Hebert,

2005,Shotton et al., 2006,Rabinovich et al., 2007,Galleguillos et al., 2008,Parikh et al.,

2008,Russell et al., 2007]. One important implicit assumption made by all such models

is that interactions between object instances can be adequately modeled as relationships

between human-defined object categories.

In this chapter we challenge this “category assumption” for object-object interactions
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and propose a novel category-free approach for modeling object relationships. We

propose a new framework, the Visual Memex Model, for representing and reasoning about

object identities and their contextual relationships in an exemplar-based, non-parametric

way. We evaluate our model on Antonio Torralba’s proposed Context Challenge [Torralba,

2003a] against a baseline category-based system.

Our starting point is Vannevar Bush’s observation that strict categorical indexing of

concepts has severe limitations [Bush, 1945] (see discussion in Chapter 1). Another

motivation is Moshe Bar who believes that prediction plays a key role in the human

brain [Bar, 2009]. Abandoning rigid object categories, we embrace Bush’s and Bar’s

belief in the primary role of associations, but unlike Bush, we aim to discover these

associations automatically from the data. At the core of our model is an exemplar-

based representation of objects [Nosofsky, 1986, Malisiewicz and Efros, 2008]. The

Visual Memex can then be thought of as a vast graph, with nodes representing all the

object instances in the dataset, and arcs representing the different types of associations

between them (Figure 5.1). There are two types of arcs in our model, encoding two

different relationships between objects: 1) visual similarity (e.g. this car looks like that

car), and 2) contextual associations (e.g. this car is next to this building).

Once the graph is built, it can be used to interpret a novel image (Figure 5.1, left) by

first connecting segments within the image with similar exemplars, and then propagating

contextual information between these exemplars through the graph. When an exemplar

gets activated, visually similar exemplars as well as other contextually relevant objects

get activated as well. This way, exemplar-to-exemplar similarity in the Memex graph can

serve as Bush’s “trails” to link concepts together in a non-parametric, query-dependent

way, without the use of predefined categories. For example, in Figure 5.1, we should be

able to infer that a car seen from the rear often co-occurs with an oblique building wall

(but not a frontal wall) – something which category-based models would be hard-pressed
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Figure 5.1: The Visual Memex graph encodes object similarity (solid black edge) and spatial context
(dotted red edge) between pairs of object exemplars. A spatial context feature is stored for each context
edge. The Memex graph can be used to interpret a new image by associating image segments with
exemplars in the graph (orange edges) and propagating the information. Figure best viewed in color.

to achieve.

Formally, we define the Visual Memex Model as a graph G = (V,ES, EC , {D}, {f})

consisting of N object exemplar nodes V , similarity edges ES, context edges EC , N

per-exemplar similarity functions {D}, and the spatial features {f} associated with each

context edge.

5.1 Building a LabelMe Visual Memex Graph

We extract a large database of exemplar objects and their ground-truth segmentation

masks from the LabelMe [Russell et al., 2008] dataset and learn the structure of the

Visual Memex in an offline setting. We use objects from the 30 most frequently occurring

categories in LabelMe. Similarity edges are created using the per-exemplar distance

function learning framework of [Malisiewicz and Efros, 2008], and context edges are

created each time two exemplars are observed in the same image. We have a total

of N = 87, 802 exemplars in the Visual Memex, |ES| = 276, 782 similarity edges, and

|EC | = 989, 106 context edges.

We use the per-exemplar distance-function learning algorithm of [Malisiewicz and
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Figure 5.2: Torralba’s Context Challenge: “How far can you go without running a local object
detector?” The task is to reason about the identity of the hidden object (denoted by a “?”) without local
information. In our category-free Visual Memex model, object predictions are generated in the form of
exemplar associations for the hidden object. In a category-based model, the category of the hidden object
is directly estimated.

Efros, 2008], as described in Chapter 2, to learn the object similarity edges. We create

a similarity edge between two exemplars if they are deemed similar by each others’

distance functions. We use a fixed λ = .00001 and σ = 100 for all exemplars (see

Equation 2.6).

When two objects occur inside a single image, we encode their 2-D spatial relation-

ship into a context feature vector f ∈ <10 (visualized as red dotted edges in Figure 5.1).

The context feature vector encodes relative overlap, relative displacement, relative scale,

and relative height of the bottom-most pixel between two exemplar regions in a single

image. This feature captures the spatial relationship between two regions and does

not take into account any appearance information — it is a generalization of the spatial

features used in [Galleguillos et al., 2008]. We measure the similarity between two

context features using a Gaussian kernel: K(f , f ′) = e−α1|| f − f ′ ||2 with α1 = 1.0.

5.2 Torralba’s Context Challenge

The intuition that we would like to evaluate is that many useful regularities of the visual

world are lost when dealing solely with categories (e.g., the side view of a building

should associate more with a side view of a car than a frontal view of a car). The key
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motivation behind the Visual Memex is that context should depend on the appearance of

an object and not just the category it belongs to. In order to test this hypothesis against

the commonly held practice of abstracting away appearance into categories, we need a

rich evaluation dataset as well as a meaningful evaluation task.

We found that the Context Challenge [Torralba, 2003a] recently proposed by Antonio

Torralba fits our needs perfectly. The evaluation task is inspired by the question:

“How far can you go without running an object detector?” The goal is to recognize a

single object in the image without peeking at pixels belonging to that object. Torralba

presented an algorithm for predicting the category and scale of an object using only

contextual information [Torralba, 2003b], but his notion of context is scene-centered

(i.e, the appearance of the entire image is used for prediction). Since the context we

wish study is object-centered, we use an object-centered formulation of the Context

Challenge. While it is not clear if the absolute performance numbers on the Context

Challenge are very meaningful in themselves, we feel that it is an ideal task for studying

object-centered context and the role of categorization assumptions in such models.

In our variant of the Context Challenge, the goal is to predict the category of a

hidden object yi solely based on its spatial relationships to some provided objects —

without using the pixels belonging to the hidden object at all. For our study, we use

manually provided regions and category labels of K supporting objects inside a single

image. We refer to the identities of the K supporting objects in the image as {y1, . . . , yK}

(where y ∈ {1, . . . , |C|}) and the set of K 2D spatial relationship features between each

supporting object and the hidden object as {f i1, . . . , f iK}.
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5.3 Inference in the Visual Memex Model

In this section, we explain how to use the Visual Memex graph (automatically con-

structed from data) to perform inference for the Context Challenge hidden-object

prediction task. Not making the “category assumption,” the model is defined with

respect to exemplar associations for the hidden object. Inference in the model returns a

compatibility score between every exemplar and the hidden object, and can be though

of as returning an ordered list of exemplar associations. Due to the nature of exemplar

associations as opposed to category assignments, a supporting object can be associated

with multiple exemplars as opposed to a single category. We create soft exemplar associ-

ations between each of the supporting objects and the exemplars in the Visual Memex

using the similarity functions {D} (see Section 5.1).

{S1, . . . , SK} are the appearance features for the K supporting objects. Aaj is the

affinity between exemplar a in the Visual Memex and the j-th supporting object and is

created by evaluating Sj under a’s distance function Aaj = e−Da(Sj). Ψ(ei, ej, f ij) is the

pairwise compatibility between exemplar ei and ej under the spatial feature f ij. Let Wab

be the adjacency matrix representation of the similarity edges (Wuv = [(u, v) ∈ ES]).

Inference in the Visual Memex Model is done by optimizing the following conditional

distribution which scores the assignment of an arbitrary exemplar ei to the hidden object

based on contextual relations:

p(ei|A1, . . . , AK , f i1, . . . , f iK) ∝
K∏
j=1

N∑
a=1

AajΨ(ei, ea, f ij) (5.1)

log Ψ(ei, ej, f ij) =

∑
(u,v)∈EC

WiuWjvK(f ij, fuv)∑
(u,v)∈EC

WiuWjv

(5.2)
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The reason for the summation inside Equation 5.2 is that it aggregates contextual in-

teractions from similar exemplars. By doing this, we effectively “densify” the contextual

interactions in the Visual Memex. An interpretation of this densification procedure is that

we are creating a kernel density estimator for an arbitrary pair of exemplars (ei, ej) via

a weighted sum of kernels placed at context features in the data set {fuv} : (u, v) ∈ EC

where the weights WiuWjv measure visual similarity between pairs (ei, ej) and (eu, ev) .

We experimented with using a single kernel, Ψ(ei, ej| f ij) = K(f ij, f ei,ej), and found

that the integration of multiple features via the densification described above is a key

ingredient for successful Visual Memex inference.

Finally, after performing inference in the Visual Memex Model, we are left with a

score for each exemplar. At this stage, as far as our model is concerned, the recognition

has already been performed. However, since the task we are evaluated on is category-

based, we combine the returned exemplars into a vote for categories using Luce’s

Axiom of Choice [Medin and Schaffer, 1978] which averages the exemplar responses

per-category.

CoLA-based Parametric Model

We would like to evaluate the Visual Memex model against a more traditional, category-

based framework with parametric inter-category relationships. One of the most recent

and successful approaches is the CoLA model [Galleguillos et al., 2008]. CoLA learns a

set of parameters for each pair of categories which correspond to relative strengths of

the four different top,above,below,inside spatial relationships. In the case of dealing

with categories directly we consider a conditional distribution over the category of the

hidden object yi that factors as a star graph with K leaves (with the hidden object

being connected to all the supporting objects). θ are model parameters, Ψ is a pairwise

potential that measures the compatibility of two categories with a specified spatial
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relationship, and Z is a normalization constant such that the conditional distribution

sums to 1.

p(yi|y1, . . . , yK , f i1, . . . , f iK ,θ) =
1

Z

K∏
j=1

Ψ(yi, yj, f ij,θ) (5.3)

Following [Galleguillos et al., 2008], we use a feature function h(f) that computes

the affinity between feature f and a set of prototypical spatial relationships. We automat-

ically find P prototypical spatial relationships by clustering all spatial feature vectors {f}

in the training set via the popular K-means algorithm. Let h(f) ∈ <P be the normalized

vector of affinities to cluster centers {c1, . . . , cP}. θ is the set of all parameters in this

model, with θ(yi, yj) ∈ <P being the parameters associated with the pair of categories

(yi, yj).

log Ψ(yi, yj, f ij,θ) = [h(f ij)
T ]θ(yi, yj) (5.4)

hi(f) ∝ e−α|| f −ci||
2

(5.5)

We tried using the four prototypical relationships corresponding to above, below,

inside, and outside as in [Galleguillos et al., 2008], but found that using K-means with

significantly larger number of prototypes P = 30 produced superior results. For learning

θ, we found the maximum likelihood θ using gradient descent. The training objective

function was optimized to mimic what happens during testing on the Context Challenge

task. Since the distributions for the Context Challenge task are defined with respect to a

single category variable (see Equation 5.3), we could compute the partition function

directly and did not require any approximations as in [Galleguillos et al., 2008] (which

required training in a loopy graph).
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Reduced KDE Memex Model

Since the Visual Memex Model and the CoLA-inspired model make different assumptions

with respect to objects (category-based vs. exemplar-based) and context (parametric

vs. nonparametric), we feel it would also be useful to examine a hybrid model, dubbed

the Reduced KDE Memex Model, which uses a nonparametric model of context based

on Kernel Density Estimation(KDE) but operates on object categories. The Reduced

KDE Memex Model is created by collapsing all exemplars belonging to a single category

into fully-connected components which can be thought of as adding categories into the

Visual Memex graph. Identities between individual exemplars are lost, and thus we

lose the fine details of a spatial context. By forming categories, we can no longer say a

particular spatial relationship is between a blue side view of a car and an oblique brick

building, we can only say it is a relationship between a car and a building. Now that

we are left with an unordered bag of spatial relationships {f} between two categories,

we need a way to measure compatibility between a newly observed f and the stored

relationships.

We use the same form of the Context Challenge conditional distribution as in

Equation 5.3. We use a Kernel Density Estimator(KDE) for every pair of categories,

and the potential Ψ can be thought of as a matrix of such estimators. The use of

nonparametric potentials in graphical models has been already explored in the domain

of texture analysis [Paget and Longstaff, 1998]. δij is the Kronecker delta function.

log Ψ(yi, yj, f ij) =

∑
(u,v)∈EC

δyiyuδyjyvK(f ij, fuv)∑
(u,v)∈EC

δyiyuδyjyv
(5.6)

The Reduced Memex model, being category-based and nonparametric, aggregates the

spatial relationships across many different pairs of exemplars from two categories. While

we used a fixed kernel K which measures distance isotropically across the dimensions
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Figure 5.3: Context Challenge Evaluation a.) Context Challenge confusion matrices for the 3 methods:
Visual Memex, KDE, and CoLA. b.) Recognition Precision versus Recall when thresholding output based
on confidence. c) Side by side comparison of the 3 methods’ accuracies for 30 categories.

of f , the advantage of such a nonparametric approach is that with enough data the

particularities of K do not matter. We also experimented with a Nearest Neighbor based

model, but found the Kernel Density Estimation approach to be superior.

5.4 Context Challenge Evaluation: Visual Memex versus

Categories

For the Context Challenge evaluation, we use 200 randomly selected densely labeled

images from LabelMe [Russell et al., 2008]. Our testset contains 3048 total objects from

30 different categories. For an image with K objects, we solve K Context Challenge

problems with one hidden object and K-1 supporting objects. Qualitative results on this

prediction task can be seen in Figure 5.4.

We evaluate the performance of our Visual Memex model, the Reduced Memex

KDE model, and the CoLA-inspired model with respect to categorization performance

(confusion matrices can be seen in top left of Figure 5.3). The overall recognition
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Figure 5.4: Qualitative Results on the Context Challenge. Exemplar predictions are from the Visual
Memex model and categorization results are from the Visual Memex model, the KDE Model, and
CoLA [Galleguillos et al., 2008].
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accuracy of the Visual Memex Model, Reduced Memex Model, and CoLA are .527,

.430, and .457 respectively. Note that the Visual Memex Model performs significantly

better than the baselines. Taking a closer look at the per-category accuracies of the

three methods (see bottom of Figure 5.3), we see that the CoLA-based method fails on

many categories. The average per-category recognition accuracies of the three methods

are: .534, .454, and .213. The Visual Memex Model still performs the best, but we

see a significant drop in performance for the category-based CoLA method. CoLA is

biased towards the popular categories, returning the most frequently occurring category

(window) quite often. Overall, the Visual Memex Model achieves the best performance

for 21 out of the 30 categories.

In addition, we plot precision recall curves for each of the three methods to determine

if high confidence returned by each model is correlated with high recognition rates (top

right of Figure 5.3). The Visual Memex model has the most significant high-precision

low-recall regime, suggesting that its confidence is a good measure of success. The

relatively flat curve for the CoLA method is related to the problem of overcompensation

for popular classes as mentioned above. The distributions returned by CoLA tend to

degenerate to a single non-zero value (most often on one of the popular categories

such as window). This is why the maximum probability returned by CoLA is not a good

measure of confidence.

We also demonstrate the power of the Visual Memex to predict appearance solely

based on contextual interactions with other objects and their visual appearance. The

middle row of Figure 5.4 demonstrates some of these associations. Note how in row 1,

a plausible viewpoint is selected rather than just a random car. In row 3 we see that the

appearance of snow on one mountain suggests that the other portion of the image also

contains a snowy mountain. In summary, we presented a category-free Visual Memex

Model and applied it to the task of contextual object recognition within the experimental

104



framework of the Context Challenge. Our experiments confirm our intuition that moving

beyond categories is beneficial for improved modeling of relationships between objects.

5.4.1 Follow-up Work

Since its initial publication in 2009, several interesting approaches have been published

which are either influenced by our Visual Memex work, or are very relevant. Pietro

Perona’s effort to organize visual knowledge in the form of a Visipedia [Perona, 2010]

is more akin to a visual encyclopedia than a visual web of concepts; however, it is

nevertheless motivated by Vannevar Bush’s ideas regarding the memex and thus highly

relevant to our approach.

Regarding the use of object-graphs in vision, the work of [Fisher and Hanrahan,

2010] uses a similar category-free model but applies it to the problem of 3D model

search when given the appearances of a small set of supporting 3D objects. [Lee and

Grauman, 2010] have successfully used object graphs and graph-based descriptors for

unsupervised object category discovery.
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Chapter 6

Conclusion: Toward the Visual Memex

In his dissertation, we demonstrated the many advantages of posing the recognition

problem as object association as opposed to the typical category-based object naming

paradigm. We presented an exemplar-based object recognition framework, showcased

the power of per-exemplar similarity measures for creating high-quality visual associ-

ations, as well as evaluated our ensemble of Exemplar-SVM approach on the popular

PASCAL VOC object detection benchmark task. Not only does our method perform

competitively with state-of-the-art methods, but it can be applied to meta-data transfer

tasks which are hard to tackle with category-based models. Below we outline several

key advantages of our framework over category-based approaches:

1. Conceptual simplicity: Instead of learning one complex category-specific model,

we learn a separate simple template-based detector for each exemplar in our

dataset. Each of our learning problems involves a single positive instance and is

convex, thus allowing us to use efficient optimization libraries during learning.

2. Meta-data transfer: Our detections produce high quality alignments which allow

us to transfer any meta-data associated with the exemplar directly onto the

detection window, without an additional iterative alignment step. This shows
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that once we cast the recognition problem in terms of association, we are able to

produce much more than just a category-labeled bounding box. Problems such as

segmentation and geometry transfer can be easily handled by our exemplar-based

approach.

3. Parallelizability/Easily extendable: Because our exemplars are trained inde-

pendently, it is possible to distribute learning across a cluster and then simply

concatenate the resulting Exemplar-SVMs to create one large ensemble. Because

of the minimal interaction across exemplars, we can “inject knowledge” into our

ensemble of Exemplar-SVMs by augmenting it with additional exemplars, without

having to re-train every exemplar.

4. Image/object matching: We have shown our framework can be used for matching

objects as well as cross-domain image matching, suggesting that other applications,

requiring their own notion of visual similarity, could benefit from our exemplar-

based approach.

Given the power of exemplar-based visual associations, coupled with both increased

computing speeds and improved access to large-scale computational resources, it is

perhaps the right time for vision researchers to seriously consider Vannevar Bush’s ideas

regarding a memory-based model of thought: “It operates by association. With one item

in its grasp, it snaps instantly to the next that is suggested by the association of thoughts,

in accordance with some intricate web of trails carried by the cells of the brain.” [Bush,

1945] Our work on the exemplar-based Visual Memex Model suggests that there is

merit to the idea of an intricate web of visual trails. As we have shown in Chapter 5,

it is possible to create such a visual network, with exemplars as nodes and exemplar

relationships as edges. By applying our Visual Memex Model to a contextual object

prediction task, we were able to predict the appearance of a hidden object solely based
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on its spatial relationships to a set of observed objects in the image. Thus embracing

a memex-based way of thinking about the visual world entails thinking about visual

knowledge as hyper-linked visual knowledge rather than as category-based knowledge.

Such a category-free view of the world has the chance to change the way we address

the problem of image understanding, much like the way Google and Wikipedia changed

the way we think about knowledge.

Finally, there is growing evidence that the ideas regarding visual associations are here

to stay. Given the role which analogies, associations and predictions play in cognitive

neuroscience [Bar, 2009], the recent scientific findings which suggest that humans’

visual memory is larger than previously thought [Brady et al., 2009], as well as the

success of knowledge going digital (e.g., Wikipedia, Facebook, Google), we feel that

the time is right to start embracing the power of visual associations. We hope that

our thesis makes a strong case for exemplar-based representations and the strength of

per-exemplar similarity functions — we hope that the success of our Exemplar-SVM

framework and Visual Memex Model will motivate the next generation of researchers to

question the necessity of relying on object categories for object/scene interpretation.
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Appendix A

Cross-Domain Image Matching

Figure A.1: Cross-Domain Image Matching: We are interested in defining visual similarity between
images across different domains, such as photos taken over different seasons and lighting, paintings,
sketches, etc. What makes this challenging is that the visual content is only similar on the higher scene
level, but quite dissimilar on the pixel level.

In this thesis, we summarize the results of an application of the Exemplar-SVM

framework to the problem of cross-domain matching [Shrivastava et al., 2011]. We

briefly discuss the problem and only show a subset of our results for several different

cross-domain applications.

The central element common to many image-matching applications in computer

graphics is searching a large dataset to find visually-similar matches to a given query —

be it an image patch, a full image, or a spatio-temporal block. However, defining a good

visual similarity metric to use for matching can often be surprisingly difficult. Granted,

in many situations where the data is reasonably homogeneous (e.g., different patches

within the same texture image [Efros and Freeman, 2001], or different frames within
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the same video [Schodl et al., 2000]), a simple pixel-wise, sum-of-squared-differences

matching works quite well. But what about the cases when the visual content is only

similar on the higher scene level, but quite dissimilar on the pixel level, such as in

Figure A.1. For instance, methods that use scene matching (e.g., [Hays and Efros,

2007, Dale et al., 2009]) often need to match images across different illuminations,

different seasons, different cameras, etc. Likewise, re-texturing an image in the style of

a painting [Hertzmann et al., 2001,Efros and Freeman, 2001] requires making visual

correspondence between two very different domains — photos and paintings. The cross-

domain matching is even more critical for applications such as Sketch2Photo [Chen

et al., 2009] and CG2Real [Johnson et al., 2010], which aim to bring domains as

different as sketches and CG renderings into correspondence with natural photographs.

In all of these cases, pixel-wise matching fares extremely poorly, because perceptually

small differences can result in arbitrary large pixel-wise differences. What is needed is a

visual metric that can show some robustness to small, unimportant visual differences,

yet still capture the important visual structures that make two images appear similar.

This is precisely what makes this problem so difficult — the visual similarity algorithm

somehow needs to know which visual structures are important for a human observer

and which are not.

We show that a novel version of the Exemplar-SVM algorithm provides a very simple,

yet surprisingly effective approach to visual matching which is particularly well-suited

for matching images across different domains. Given an image represented by some

features the aim is to focus the matching on the features that are the most visually

important for this particular image. The central idea is use the notion of “data-driven

uniqueness”. We hypothesize that the important parts of the images are those that

are more unique or rare within the visual world (represented here by a large dataset).

Note that since the same local features could represent very different visual content
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Figure A.2: Sketch and Painting Matching Our approach works well across different visual domains
including sketches and paintings

depending of context, our notion of uniqueness has to be scene-dependent, i.e., each

query scene decides what’s the best way to weight its constituent parts. By focusing

on the globally salient parts of the image, the approach can be successfully used for

generic cross-domain matching, without making any domain-specific changes, as shown

on Figure A.2.

We operationalize this data-driven uniqueness by using the Exemplar-SVM frame-

work, but in a purely category-free manner. For a query image, we train an Exemplar-

SVM to discover which parts of an image are most discriminative in relationship to the

rest of the dataset. Thus in this scenario, the Exemplar-SVM’s negative set does not use

any class-information (which was required in [Malisiewicz et al., 2011]).

Figure A.3 show some example sketch queries and the corresponding top 6 retrieval

results for our approach and the baselines — it can be seen that our approach not only

outperforms all of the baselines, but returns images showing the target object in a very

similar pose and viewpoint as the query sketch. Qualitative examples of painting-to-

image matching can be seen in Figure A.4. Qualitative painting2GPS examples can be

seen in Figure A.5.
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Figure A.3: Sketch2Image Qualitative Example. Our approach using the Exemplar-SVM algorithm is
compared to several popular techniques for matching images.

Figure A.4: Painting2Image Qualitative Example. Our approach using the Exemplar-SVM algorithm is
compared to several popular techniques for matching images.

Figure A.5: Painting2GPS Qualitative Examples. In these two examples, we show the input painting as
well as the top 3 matches using GIST and our approach. We display GPS localization results as a density
map overlaid on the globe.
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Appendix B

Exemplar-SVMs: An Open Source

Implementation

We briefly describe the implementation of the Exemplar-SVM algorithm used to train

thousands of exemplars across a cluster of 200+ machines, in a MapReduce-like fashion.

While we learn w’s for a large number of exemplars, each exemplar’s learning problem

and calibration can be solved independently allowing for easy parallelization. The Matlab

source code of the Exemplar-SVM framework (Chapter 3 and Chapter 4) is available

as a public, open-source project on GitHub. GitHub is a code sharing website with

many modern social-networking features built-in. The philosophy behind hosting open-

source projects on GitHub is that it makes collaboration and interaction much easier

than uploading a tarball on a website. GitHub makes it easy to use a project, track its

progress, and also contribute any bug-fixes and enhancements for the computer vision

community to enjoy.

1. Exemplar-SVM Project: http://www.cs.cmu.edu/~tmalisie/projects/iccv11/

2. Exemplar-SVM Code: https://github.com/quantombone/exemplarsvm
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The Exemplar-SVM system requires access to a cluster with a shared network drive. To

be able to run on a variety of clusters, the basic principle which we employ is that of a

single process which could be replicated N times. There is one main driver program,

which when looping over exemplars, uses lockfiles to see if an exemplar has already been

trained. If an exemplar has not been trained, the current process grabs the exemplars

and writes a lockfile to disk — any other process will simply skip over an already finished

exemplar or a locked exemplar.

B.1 Exemplar-SVM Training Parameters

We use libsvm [Chang and Lin, 2001] to train each exemplar’s w. We alternate between

learning the weights given an active set of negative windows, and mining additional

negative windows using the current w as in [Felzenszwalb et al., 2010]. We use the

same regularization parameter C1 = 0.5 and C2 = .01 for all exemplars, but found our

weight vectors to be robust to a wide range of Cs, especially since they are re-scaled

during calibration. We use 2500 as the maximum number of negatives to mine, which

corresponds to a single pass over the negatives. We consider images as well as their

left-right flipped counterparts for both training and testing.

B.2 Sliding Windows and Feature Pyramids

One of the biggest drawbacks of segmentation-based “segment-then-recognize” tech-

niques is that they require significant computational resources to generate candidate

segments — once a segmentation is computed for an image and feature computation

has been applied to the resulting segments, it is typically wise to store the results

on hard-disk to avoid unnecessarily running the segmentation algorithm a second
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time. Segmentation-based approach preclude certain applications such as real-time /

interactive-time applications (due to speed of computing a segmentation), as well as

applying them to datasets of millions of images (due to storage space requirements).

The second shortcoming of using image segmentation for object recognition is that it

introduces a second place where object recognition could fail. By failing to group pixels

into reasonable chunks with sufficient spatial support for recognition, segmentation-

based approaches can simply fail at producing any reasonable segments for some

difficult-to-segment objects. What this means is that even if we were able to obtain

ideal per-exemplar similarity measures, we might still not be able to recognize every

single object depicted in a scene. This is a severe limitation, especially because applying

per-exemplar similarity measures (which we have already spent a considerable time

training) is significantly faster than generating the actual segments. What this suggests

is that we should generate more segments in less time — if the per-exemplar similarity

functions are good enough, then they could decide which segments to keep.

As will be seen in this Appendix, HOG-based sliding window approaches offer a

significant speedup over their segmentation-based counterparts. The speedup is so

significant that we can process many more regions per image, thus alleviating our

worry that segmentation might completely miss some objects. We first outline the

multiscale HOG feature-pyramid, then present the two different ways in which we can

perform localization within the pyramid. The blazing-fast detection strategy based on

convolution requires very little memory overhead and is suitable for dealing with a small

number of exemplars (e.g., the mining stage in Exemplar-SVM learning). Unfortunately,

using sliding-window convolution for a large number of exemplars can still be slow. Our

contribution in this chapter is the block-matching method of detection which requires a

single matrix-multiplication and is much faster when localizing thousands of exemplars

inside a single image (e.g., applying an ensemble of Exemplar-SVMs during testing).
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Multiscale HOG Pyramid

Histograms of Oriented Gradients (HOG) are some of the most widely used descrip-

tors due to their speed of computations, inherent robustness to slight object varia-

tions/deformations, and ability to capture a coarse (yet rigid) spatial layout of features.

While initially introduced for pedestrian detection [Dalal and Triggs, 2005] using a linear

SVM, HOG is also used by the state-of-the-art deformable part model of [Felzenszwalb

et al., 2010].

Rather than independently computing HOG descriptors for different regions in an

image, HOG is most often computed in a pyramid-like fashion. Image pyramids [Adelson

et al., 1991] are a classical techniques in vision, and are critical in making HOG

computations fast. One of the hallmarks of using feature pyramids for localization is that

we do not require explicitly looping over regions in the image and independently calling

a features(region) function. Since HOG features are a concatenation of smaller HOG

cells, two highly overlapping candidate regions from the same level of the pyramid

will share many of the same blocks. In other words, it suffices to compute the HOG

descriptor for each cell in an image only once, then concatenating different cells when

we want descriptors computed for different regions. We use 10 levels per octave when

creating the pyramid and use 1.0 as the finest image scale.

Representing Objects as HOG Templates

We use the HOG descriptor from [Felzenszwalb et al., 2010] which uses F = 31 numbers

to represent each cell, and a block size of 8 pixels (sbin = 8). When initializing

exemplars, instead of warping each exemplar to a canonical frame (as is necessary in

monolithic methods [Dalal and Triggs, 2005]), we let each exemplar define its own

HOG dimensions from the ground-truth bounding box’s aspect ratio. Using a single
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positive instance means that we do not need to worry about the alignment of multiple

instances (which must be addressed in monolithic classifiers by an alignment strategy

akin to the latent root-filter update step of Latent SVMs [Felzenszwalb et al., 2008]).

When it is necessary to extract features over a target region, provided as a bounding

box, we simply compute the image-wide multiscale HOG pyramid and search for a slice

of the pyramid whose spatial extent best matches the target bounding box (according to

overlap score). Since we could extract multiple rectangular regions (from different levels

of the pyramid) to represent the exemplar, it is also necessary to provide additional con-

straints regarding the size of the desired HOG dimensions. We use two simple heuristics

for choosing how to frame an exemplar: finding a template which comprises roughly

goalsize cells, and a maximum cell dimension, maxcelldimension. In the HOG experi-

ments used throughout this thesis, we use goalsize=100 and maxcelldimension=12.

This means that we look for a pyramid slice which has high overlap with the ground-

truth bounding box, comprises roughly 100 cells and has a maximum cell dimension of

12. For example, if an exemplar is represented with a 10× 10 HOG descriptor, then the

total number of dimensions in the descriptor will be 3100 (assuming F = 31).

Localizing a single exemplar via convolution

For the purpose of localizing a single exemplar, represented by a template w, within the

HOG pyramid, we apply a convolution across each level of the pyramid independently.

Given a level of the pyramid, represented as a M ×N × F matrix of numbers (F being

the dimensionality of the descriptor), and w being of size M ′ ×N ′ × F , we perform a

convolution which results in a (M −M ′)× (N −N ′) matrix of scores. This method of

localization is very fast since it does not require the creation of an explicit feature matrix

— the overlapping HOG features only need to be stored in pyramid form. We use this

convolution-based strategy during the hard negative mining step of the Exemplar-SVM
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algorithm because training is performed independently for each exemplar.

Applying Distance Functions via Two Convolutions

Convolution can also be used for localizing exemplars represented by distance functions,

although the complexity is more than twice that of linear templates (because the

convolution must be applied twice and a squared HOG pyramid must be computed). A

squared HOG pyramid is obtained by squaring all of the elements in the original HOG

pyramid. To see which two convolutions must be performed, consider the diagonal

Mahalanobis distance function form (same as as defined in Equation 2.1):

De(xi) = (xe − xi)
TWe(xe − xi) (B.1)

we = diag(We) (B.2)

We can perform some manipulations (which exploit the fact that We is diagonal) to

write the distance function as follows:

De(xi) = xTeWexe + xTi Wexi − 2xTeWexi (B.3)

De(xi) = K + ŵT
e xi + wT

e x̂i (B.4)

K = xTeWexe (B.5)

xTi Wexi = wT
e x̂i (B.6)

x̂i[k] = (xi[k])2 (B.7)

ŵe = −2Wexe (B.8)

As can be seen in Equation B.4, the first part of the distance function evaluation, K,

is independent of the test window xi and needs to be computed only once, and can be
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cached for future use. The part of the distance function evaluation which depends on

the test-window’s features can be broken down into two convolutions: the first using

the weight vector we, but applied to the squared HOG pyramid x̂i, and the second using

ŵe and applied to the raw HOG pyramid.

Localizing many exemplars via a single matrix multiplication

In the case of applying thousands of exemplars to the HOG pyramid extracted from a

single image, it is beneficial to explicitly construct the D ×N feature-matrix, where D

is the total dimensionality of the HOG template, and N is the total number of candidate

bounding boxes extracted from a single image (across all pyramid levels). We call this

approach the block-matching method for sliding-window localization. The key insight

which allows us to do this is the realization that the result of applying an M ×N HOG

template is equivalent to applying an enlarged, 0-padded, (M+∆M)×(N+∆N) template

where ∆M and ∆N indicate how much to pad. Because application of a template is a

simple dot-product, adding zeros will not change the result (as long as we also pad the

HOG pyramid with 0s to account for boundary effects). We exploit the fact that we used

maxcelldimension= 12 during exemplar initialization (see Appendix B.2). All of our

exemplars can then be 0-padded into a common 12× 12 frame (i.e., D = 4464).

Given a new image, we first extract all 12 × 12 windows from each level of its

0-padded HOG pyramid. In practice we get N ≈ 20, 000 distinct windows when using

sbin= 8 and using images which comprise approximately 300× 400 pixels. All of our

exemplars can now be applied to this image because they have also been 0-padded to

the canonical 12× 12 frame. In the case of using linear templates, as is the case with

the Exemplar-SVM algorithm, all of our exemplars can be applied via a single matrix

multiplication (even if they were initially of different dimensions). When applying

distance functions (i.e., diagonal Mahalanobis metrics) in a similar block-fashion (as
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was necessary for the experiments in Section 3.4), we need to both 0-pad the exemplar’s

features and learned distance function weights to fit the common 12× 12 frame.

While the block-matching methods takes more computer memory to store the

highly-redundant feature-matrix and takes approximately 4 seconds to compute per

image, this computation is independent of the number of exemplars. The single matrix-

multiplication is quite fast and provides a significant speedup over convolution when

the number of exemplars is moderately large. We found that for up to 50 exemplars,

the convolution-based method is faster, while for more than 50 exemplars, the single-

matrix-multiplication method is faster.

B.3 Exemplar-SVM run-time complexity

The run-time complexity of our approach at test time scales linearly with the number

of positive instances (but unlike kernel-SVM methods, not the negatives). However, in

practice, the bottleneck appears to be per-image tasks (loading, computing HOG pyramid

etc.) – the actual per-instance computation is just a single dot-product, which can be

done extremely fast. For an average PASCAL class (∼ 300 training examples yielding

∼ 300 separate classifiers) our method is only 6 times slower than a category-based

method such as [Felzenszwalb et al., 2010]. More generally, because of the long-tailed

distribution of objects in the world (10% of objects own 90% of exemplars [Torralba

et al., 2008]), the extra cost of using exemplars vs. categories will greatly diminish as

the number of categories increases.

120



Bibliography

[Adelson, 2001] Adelson, E. (2001). On seeing stuff: the perception of materials by

humans and machines. In Proc. SPIE.

[Adelson et al., 1991] Adelson, E. H., Simoncelli, E. P., and Freeman, W. T. (1991).

Pyramids and multiscale representations. Proc. 13th European Conference on Visual

Perception.

[Aha et al., 1991] Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based

learning algorithms. Machine Learning, 6.

[Aristotle, ] Aristotle. Categories.

[Atkeson et al., 1997] Atkeson, C., Moore, A., and Schaal, S. (1997). Locally weighted

learning. Artificial Intelligence Review.

[Bar, 2007] Bar, M. (2007). The proactive brain: Using analogies and associations to

generate predictions. Trends in Cognitive Science.

[Bar, 2009] Bar, M. (2009). The proactive brain: memory for predictions. Philosophical

Transactions of the Royal Society B, 364:1235–1243.

[Bar and Ullman, 1996] Bar, M. and Ullman, S. (1996). Spatial context in recognition.

Perception, 25:343–352.

121



[Basri, 1992] Basri, R. (1992). Recognition by prototypes. International Journal of

Computer Vision, 19:19–147.

[Belongie et al., 2002] Belongie, S., Malik, J., and Puzicha, J. (2002). Shape matching

and object recognition using shape contexts. PAMI.

[Berg et al., 2005] Berg, A. C., Berg, T. L., and Malik, J. (2005). Shape matching and

object recognition using low distortion correspondence. CVPR.

[Berkeley, 1710] Berkeley, G. (1710). Treatise Concerning the Principles of Human

Knowledge.

[Bourdev et al., 2010] Bourdev, L., Maji, S., Brox, T., and Malik, J. (2010). Detecting

people using mutually consistent poselet activations. ECCV.

[Brady et al., 2009] Brady, T., Konkle, T., Alvarez, G., and Oliva, A. (2009). Visual

long-term memory has a massive storage capacity for object details. Proceedings of

the National Academy of Sciences, USA.

[Bush, 1945] Bush, V. (1945). As we may think. The Atlantic Monthly.

[Chang and Lin, 2001] Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for sup-

port vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/

libsvm.

[Chapelle, 2007] Chapelle, O. (2007). Training a support vector machine in the primal.

Neural Computation, 19:1155–1178.

[Chen et al., 2009] Chen, T., Cheng, M.-M., Tan, P., Shamir, A., and Hu, S.-M. (2009).

Sketch2photo: internet image montage. ACM Trans. Graph., 28.

[Chen et al., 2001] Chen, Y., Zhou, X., , and Huang, T. S. (2001). One-class svm for

learning in image retrieval. ICIP.

122

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


[Chum and Zisserman, 2007] Chum, O. and Zisserman, A. (2007). An exemplar model

for learning object classes. CVPR.

[Comaniciu and Meer, 2002] Comaniciu, D. and Meer, P. (2002). Mean shift: A robust

approach toward feature space analysis. PAMI, 24(5):603–619.

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradi-

ents for human detection. CVPR.

[Dale et al., 2009] Dale, K., Johnson, M. K., Sunkavalli, K., Matusik, W., and Pfister, H.

(2009). Image restoration using online photo collections. In International Conference

on Computer Vision.

[Edelman, 1995] Edelman, S. (1995). Representation, similarity and the chorus of

prototypes. Minds and Machines.

[Efros and Freeman, 2001] Efros, A. A. and Freeman, W. T. (2001). Image quilting for

texture synthesis and transfer. Proceedings of SIGGRAPH 2001.

[Ellson et al., 2001] Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., and Woodhull,

G. (2001). Graphviz - open source graph drawing tools. In Graph Drawing, pages

483–484.

[Everingham et al., 2010] Everingham, M., Gool, L. V., Williams, C. K. I., Winn, J., and

Zisserman, A. (2010). The pascal visual object classes (voc) challenge. IJCV.

[Felzenszwalb et al., 2008] Felzenszwalb, P., McAllester, D., and Ramanan, D. (2008).

A discriminatively trained, multiscale, deformable part model. CVPR.

[Felzenszwalb et al., 2010] Felzenszwalb, P. F., Girschick, R. B., McCallester, D., and

Ramanan, D. (2010). Object detection with discriminatively trained part based

models. PAMI.

123



[Fisher and Hanrahan, 2010] Fisher, M. and Hanrahan, P. (2010). Context-based

search for 3d models. In ACM SIGGRAPH Asia 2010 papers, SIGGRAPH ASIA ’10,

pages 182:1–182:10. ACM.

[Frome and Malik, 2006] Frome, A. and Malik, J. (2006). Image retrieval and recogni-

tion using local distance functions. NIPS.

[Frome et al., 2007] Frome, A., Singer, Y., Sha, F., and Malik, J. (2007). Learning

globally-consistent local distance functions for shape-based image retrieval and

classification. ICCV.

[Frome, 2007] Frome, A. L. (2007). Learning Local Distance Functions for Exemplar-

Based Object Recognition. PhD thesis, EECS Department, University of California,

Berkeley.

[Galleguillos et al., 2008] Galleguillos, C., Rabinovich, A., and Belongie, S. (2008).

Object categorization using co-occurrence, location and appearance. ECCV.

[Gu and Ren, 2010] Gu, C. and Ren, X. (2010). Discriminative mixture-of-templates

for viewpoint classification. ECCV.

[Halevy et al., 2009] Halevy, A., Norvig, P., and Pereira, F. (2009). The unreasonable

effectiveness of data. Intelligent Systems.

[Hanson and Riseman, 1978] Hanson, A. and Riseman, E. (1978). Visions: A computer

system for interpreting scenes. Computer Vision Systems, pages 303–333.

[Hays and Efros, 2007] Hays, J. and Efros, A. A. (2007). Scene completion using

millions of photographs. ACM Transactions on Graphics (SIGGRAPH 2007), 26.

[He et al., 2004] He, X., Zemel, R. S., and Carreira-Perpiñán, M. Á. (2004). Multiscale
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