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Abstract

Modern mobile devices incorporate several transmit and receive antennas
in highly constrained volumes. As miniaturized antennas impinge upon fun-
damental physical limits on efficiency, new design approaches are required to
support ever-smaller devices with more varied and robust communication per-
formance. We take an unconventional design approach in which an arbitrary
metallic structure and its components can be modified to act as efficient radia-
tors. Using eigenmode analysis and the theory of characteristic modes (TCM),
we develop algorithms that allow for effective integration of antennas with me-
chanical structures and enable structure reuse, helping meet stringent space
and weight constraints without sacrificing electromagnetic performance.

We derive TCM-based objectives for effective exploration of the design space
in the electromagnetic (EM) domain. The procedure includes a feed placement
technique that identifies viable excitation points on the structure without run-
ning full EM analysis. In addition to computational advantages, this provides
a point of comparison among a variety of antenna shapes. Empirical evaluation
shows that the estimates of radiated power from TCM can effectively guide op-
timization toward structures with improved radiating properties. Automated
feed placement increases the proportion of good-quality designs among the ex-
plored candidates by consistently selecting the most promising feed positions.
The ability of the TCM-based algorithm to direct the search is further vali-
dated on two real-world applications: integration of a GPS antenna with the
frame of a mobile phone and integration of an S-band antenna with the frame
of a small spacecraft. To the best of our knowledge, this is the first work that
applies TCM to automated optimization of antennas.

We investigate how to leverage domain-specific methods and solution repre-
sentations in the coupled optimization of antennas. We develop a novel multi-
objective optimization framework based on local search in each domain. In
this procedure, the local optima in each objective are obtained and modified
to create a new population of candidate designs. On a number of benchmark
problems, the proposed technique is competitive with leading multi-objective
algorithms: while it finds a less uniform distribution along the Pareto front, it
shows better performance in locating solutions at the boundaries of the tradeoff
curve. The local search algorithm is successfully applied to topology optimiza-
tion of an antenna for a CubeSat, a small low-cost satellite platform.
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Chapter 1

Introduction

The advent of computer-aided design (CAD) has allowed engineers to replace physical test-

ing of systems with computer simulations. This has enabled them to quickly explore and

compare a multitude of design choices before settling on a technically and economically

viable solution. Modern technology enables highly complex designs in which interaction

between multiple components cannot always be thoroughly understood or anticipated. In

such cases, trade space exploration and search for an optimal solution requires taking into

consideration constraints across multiple physical domains (e.g., mechanical, electronic,

thermal, optical, etc.), making conventional trial-error methods infeasible. This highlights

the need for a flexible automated optimization tool that can explore vast multidimensional

search spaces efficiently and come up with complex real-world designs. Such an optimiza-

tion tool should be able to take into account multiple objectives (such as size, weight,

power consumption, and RF emissions) across multiple components and provide a range of

feasible engineering solutions, reducing the costs of system engineering. Moreover, such a

tool should effectively assist engineers in trade- space exploration by providing sensitivity

information and identifying marginal designs in each of the domains.
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1.1 Contributions

This work extends the current state-of-the-art simulation tools, most of which can take

into account only a single phenomenon during optimization. It investigates new stochastic

optimization algorithms to be used in a multi-physics design automation tool and is the

first to develop efficient techniques for coupled optimization of integrated electromagnetic

and mechanical systems. The main contributions of this thesis are: 1) A new TCM-based

algorithm for optimization of metallic structures in the EM domain; 2) A new algorithm

for coaxial feed placement; 3) Definition of benchmark problems for coupled EM and me-

chanical optimization; 4) New multi-objective algorithm with local search (MOLS) for

coupled optimization; and 5) Comprehensive evaluation of the algorithmic performance on

benchmark problems.

Optimization in the EM domain is guided by eigenmode analysis of the structure. The

theory of characteristic modes (TCM) is used for computing electromagnetic resonant fre-

quencies at which the structure can radiate efficiently and calculating the feed configuration

for exciting the resonant modes. To the best of our knowledge, this is the first work that

applies TCM to automated optimization of antennas. We derive TCM-based objectives

and neighborhood relations for effective exploration of the design space. We develop a feed

placement technique that allows us to identify good excitation points on the structure

without running full EM analysis. In addition to computational advantages, this provides

a fair point of comparison of the various antenna shapes. We conduct thorough empiri-

cal evaluation of the proposed algorithm and show that it performs effective search on a

number of test problems.

We characterize the interactions in the mechanical and EM domains and illustrate the

challenges of two-disciplinary optimization using small benchmark problems: design of a

two-bar truss antenna, design of a uniformly loaded cantilever beam or a monopole, and

design of a ten-bar truss antenna. We plot the Pareto trade-offs and evaluate the perfor-
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mance of existing multi-objective evolutionary algorithms. We define multi-objective fitness

functions and determine candidate solution representations suitable for both domains. Be-

cause mechanical evaluations are fast compared to the EM analysis, we investigate how

the multi-objective optimizer can utilize the fitness information from a single domain in

its search for Pareto-optimal solutions.

Finally, we validate the algorithms on a large-scale real-world application: integration of

an antenna with the frame of a small spacecraft. For topology optimization of the CubeSat

antenna, the TCM-based algorithm is combined with the gradient-based Solid Isotropic

Material with Penalization (SIMP) method for 3D structures.

The thesis is structured as follows: in Chapter 1 we motivate the study of the coupled

optimization of antennas and introduce the fields of mechanical and EM optimization.

Chapter 2 reviews the literature on TCM and multi-objective algorithms, and also covers

the essential background material to build on in Chapters 3 and 4. The TCM-based al-

gorithm for automated antenna design is presented in Chapter 3, while Chapter 4 looks

at coupled optimization across mechanical and EM domains. In Chapter 5, the proposed

multi-objective algorithm to optimization of a CubeSat antenna. Chapter 6 concludes with

the summary of results and an outlook to future extensions of this research.

1.2 Motivation

1.2.1 Coupled Design of Antennas

The focus on antenna optimization across mechanical and EM domains is driven by aerospace

and mobile applications. On one hand, coupled design and optimization is necessary to en-

sure that antenna’s performance is not sensitive to deformations experienced under load.

For example, antennas mounted on the aircraft are subjected to significant loads during

flight. Embedding antennas into the aircraft skin improves its aerodynamical properties

3



and reduces the size and weight of the system. Reflector antennas are large mechanical

structures that should be designed to bear self-weight, winds, temperature gradients, ice

and snow. On the other hand, modern mobile device incorporates several transmit and

receive antennas in highly constrained volumes. As minituarized antennas impinge upon

fundamental physical limits on efficiency, integrating an antenna with the metallic phone

chassis could enhance its EM performance and help meet the tight space and weight con-

straints.

Interactions of the antennas’ mechanical and EM properties has been the subject of

interest in various application domains.

Reflector antennas. Large satellite dishes and reflector antennas are massive structures

that must be able to withstand significant loads, like self-weight, winds, thermal gradients,

etc. Mechanical deformation of the reflector surface affects its gain and causes aberrations

in the antenna pattern. Mechanical and EM properties of large reflector antennas (parabolic

dishes) are well studied. The reflector performance is characterized in terms of how well

the surface of the reflector matches that of a paraboloid: Ruze’s approximation formula

characterizes the dependence between the antenna’s efficiency and the RMS error in the

distance between the focus of the ideal parabolic and the deformed reflector surface [67].

Liu and Hollaway present a systematic method and implementation details for Pareto

optimization of a reflector antenna with the truss backup structure [46]. They incorporate

structural (mass, structural fundamental frequency, maximum stress and displacement)

and EM objectives (EM efficiency, mainlobe and sidelobe levels) for many loading cases.

The optimization variables include member sizes, structural geometric and material design

variables. They conclude that there is a benefit in including EM performance calculations

into the procedure for optimization of large antenna structures [46].

Wang and Duan discuss the electromechanical coupling for a variety of antenna appli-

cations [24], [79]. They list the coupling variables and equations for the reflector antenna,
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planar slotted antenna, active phased array, and high-density packaging system. They

compare the simulation and measurement to verify the proposed models for describing the

interaction between the deformation, temperature and EM performance. They conclude

that the deformation and thermal fields can distort electrical performance of the antenna,

resulting in smaller gain, higher sidelobe level, and broader width of the main beam. The

impact becomes more detrimental at higher frequencies so that a more in-depth study is

needed to characterize inter-domain coupling [24].

Mechanically reconfigurable antennas. Large reflector antennas can be replaced with a

mesh of metallic elements that approximate the curvature of the parabolic surface. The

density of the mesh is chosen as a trade-off between the mass of the antenna and its EM

performance. While denser meshes have higher mass, they can provide better radiation

efficiency at higher frequencies, as they better approximate the parabolic surface. Mechan-

ically reconfigurable antennas have been designed to compensate for the deflections of the

main reflector surface under load. The reconfigurable mesh antenna was introduced in 1988

by Clarricoats and Zhou [17], and the ability to synthesize arbitrary radiation patterns by

controlling the position of the nodes in the mesh was demonstrated in subsequent years

[56]. Mesh antennas have been successfully deployed in space: replacing full metallic dish

with a mesh allows for compact stowage during antenna’s transport into orbit; coupled

with mass reduction this can significantly reduce the deployment costs.

Smart materials such as shape memory alloys (SMAs) have been used to mechanically

reconfigure antennas and achieve the desired change in the radiation pattern. The radiating

helix antenna is connected in parallel with the spring made of SMA. When the DC current

is passed through the SMA spring, it contracts, forcing the helix antenna to contract as

well [35]. The same research group developed a pattern reconfigurable monopole antenna: a

parasitic element constructed of a deformable polymer-metallic composite was placed close

to a monopole antenna. By varying the DC voltage, the added strip could be deflected to

5



different angles, changing the radiation pattern of the monopole [51].

Conformal load-bearing antenna structures. Conformal load-bearing antenna structures

(CLAS) have been studied as a low-cost replacement for conventional antennas mounted on

the aircraft surface, e.g., blades, wires and dishes. Conforming the antenna to the fuselage

or embedding it into the aircraft skin decreases the drag, weight, and signature of the

aircraft and might enhance the aircraft’s damage resistance and structural efficiency [11].

The CLAS must be optimized for EM and mechanical performance. Recently, multiple

companies have successfully demonstrated CLAS technology: American Semiconductor in

cooperation with the Air Force Research Laboratory has developed conformal antenna and

interconnects printed on a flexible substrate for an UAV. Mechanical testing, however,

demonstrated poor mounting of the packaged ICs on the flexible substrates. The company

now plans to optimize the antenna design and the substrate for conformally mounted

applications [14]. Boeing and ManTech demonstrated the CLAS by replacing a VHF blade

antenna on a 737 wing-to-body fairing with a conformal design [9].

In the academic community, optimization of structurally and electrically efficient an-

tennas was researched [81]. The group applies design of experiments and response surface

modeling to optimize a stacked patch antenna. The antenna is integrated in a sandwich

structure whose topology is representative of the composite skin of an aircraft. The re-

sponses for the surface models are the gain of the antenna and the mechanical deflection

at the patch center [81].

The idea of a structural antenna has also been applied on a different scale - for

VHF/UHF communications in marine and aerospace applications. As an example, Chen

et al. convert a ship’s structure into an antenna for the near vertical incidence skywave

(NVIS) communication [16]. They introduce large feed slots and validate the design by

building a scaled model of the ship-antenna. For this design, no mechanical analysis of the

structure is performed to ensure structural integrity of the resulting ship.
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Mobile antennas. In the era of mobile handheld devices, the push for more diverse

and robust wireless communication components squeezed into a tighter volume motivates

the need for new approach to antenna design. As the performance of electrically small

antennas (i.e., antennas whose largest dimension is smaller than 1/20 of the wavelength of

operation) reaches physical limitations, reuse of the phone structure could help meet the

stringent weight and size constraints and the LTE advanced standards for high-speed data

transfer. Miniaturization of antennas will also play a vital part in shaping the Internet of

Things (IoT), in which myriads of sensor nodes will be connected with wireless links to

provide services ubiquitously and unobtrusively to the user. Integrating the nodes’ antennas

with the existing structures will be beneficial for both functional and aesthetic reasons.

A number of research groups have looked into utilizing phone chassis as a radiating

structure. The antenna is viewed as a coupling element that can excite mode currents on

the frame of the phone, which are obtained from the theory of characteristic modes (TCM).

A detailed review of the theory and related research is given in chapter 2 of this thesis; in

chapter 3 we describe a TCM-based algorithm for automated antenna optimization.

Wearable antennas. The design of wearable and flexible antennas requires minimization

of weight and size as well as maximization of durability of the antenna. Wearable antennas

are primarily designed for military applications and extreme and climatically challenging

environments; depending on the application, they must be resistant to mechanical shock,

temperature, and material fatigue [64], [53], [68].

Sensing applications. There is a variety of sensing applications in which mechanical

properties of the antennas are used to monitor the mechanical integrity of a structure.

For example, the sensitivity of antenna’s EM performance to mechanical stress has been

utilized to monitor the structural strain in bridges and rails. A patch antenna is attached

to the rail. If the crack develops along the structure, antenna experiences deformation

which causes a shift in its resonance frequency. This change results in the degradation of
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the signal transmitted by the antenna which can be detected wirelessly by an RFID reader

[42].

The above applications highlight the necessity to study and provide systematic ap-

proach to coupled optimization of antennas across mechanical and EM domains. In many

areas, understanding the trade-offs between EM performance and mechanical properties is

required to prevent communication failure. In other areas, the structural properties of the

antenna can be exploited to achieve diversity and enhance communication performance.

1.2.2 Mechanical Optimization

The proposed research is closely related to the field of structural optimization. Robust

methods for structural optimization have been developed over the past 100 years. The

topological and geometric optimization of truss structures is well established and provides

mathematical programming techniques for structural problems with large number of design

and state variables and non-linear constraints. With the cheap computational power and

accurate mechanical modeling tools, the application of currently available global search

techniques has become possible for real-world structural designs.

Sizing, Shape and Topology Optimization. Structural optimization is divided

into three main categories - sizing, shape, and topology optimization. Sizing optimization

is concerned with finding the optimal values of design parameters for a structure with

predefined shape and geometry. For example, in a truss optimization problem, the nodes

and connectivity between the nodes might be fixed, while the cross sectional areas are

modified to maximize the stiffness of the structure. In shape optimization, the boundary

of the structure is optimized, while the topology is fixed. Thus, in optimization of a truss

shape, design variables might include the nodes’ coordinates and node-member incidence.

Topology optimization seeks to find the optimal distribution of material in the reference

domain for known load and support conditions and a desired volume. This type of opti-
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mization has been a central research topic in the structural optimization community over

the past three decades, giving rise to a number of robust solution techniques for a variety of

structural design problems and constraints. Bendsoe was the first to formulate structural

design as a material redistribution problem [5]. In the simple formulation, the structure

is optimized for minimum compliance (equivalently maximal stiffness) under volume con-

straints. Every point is viewed as a material point or a void [6]; the optimization goal is

then to determine the optimal assignment of material/void to the points within the do-

main so that the potential energy of the loaded structure is maximized and the equilibrium

constraints are satisfied. Bendsoe removed the discrete nature of the problem by express-

ing the objectives and constraints in terms of a continuous design variable, which can be

interpreted as a density of material in a given point [5]. The intermediate density points

were penalized to steer the optimization procedure toward 0-1 designs. In this continuous

form, the problem could be solved efficiently by mathematical programming.

There exist alternative approaches to topological optimization that do not use math-

ematical programming. Most of them are based on growing or degenerating the initial

structure or introducing holes to achieve the desired structural response. Evolutionary

structural optimization (ESO) uses a very intuitive approach: starting with a dense finite

element mesh of the structure, it removes regions of material with the lowest stress. After

each small change, the structure is re-analyzed, and the procedure is repeated until a fully

stressed design is obtained [80]. A so-called Bubble Method iterates between hole posi-

tioning (called a bubble)and structural shape optimization of the new design. The hole is

inserted based on some positioning criterion that depends on the objective function and

constraints as well as the type of load [26].

Genetic algorithms have successfully been applied to small- scale structural problems.

However, they have not gained much popularity in real-world designs because of the slow

convergence and large number of fitness evaluations that involve computationally costly
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finite element analysis. Various types of new operators and representations of mechanical

structures have been investigated to alleviate this problem - yet, they are still far from

reaching the performance of classical optimization techniques, that remain standard in

industrial applications.

1.2.3 Antenna Optimization

Antenna optimization relies on methods similar to the ones developed in mechanical op-

timization: sizing, shape and topology optimization have been applied to various antenna

problems.

Antenna engineers commonly use a parametric approach - similar to mechanical sizing -

to antenna optimization. The designer choses the shape of the antenna based on the a-priori

knowledge of its radiating properties and frequency range, parametrizes and optimizes

its geometric dimensions. Examples include optimization of the width and length of a

microstrip patch, the extent of the slots in the ground plane of a printed inverted F antenna

(PIFA), or size of corrugations in the horn antenna.

The non-parametric approach is widespread for the optimization of planar antennas.

Antenna’s surface is discretized into small elements (much smaller than the wavelength)

and represented as a 0/1 design - with ones denoting metallic areas and zeros assigned

to the areas without metal. Removal and addition of metal is the primary mechanism for

creating new designs. The design variables are binary, and the dimension of the optimization

problem is equal to the number of the mesh elements. This problem formulation lends

itself well to integration with the numerical solutions of Maxwell’s equations such as the

Method of Moments [38] or approximations using the transmission line theory [27]. In these

methods, current distribution on the structure is calculated by solving a matrix equation

of the form [I] = [Z]−1[V ], where I is an n× 1 vector of current values on each element (n

is the total number of mesh elements), Z is an n × n interaction/impedance matrix and
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V is the voltage excitation vector. Mathematically, removing a ”mesh” element from the

structure requires removing the corresponding row and column of the impedance matrix

and corresponding rows in the current and voltage vectors.

Shape optimization through parametrization of the surface using Bezier functions has

been demonstrated for reflector antennas [77]. A similar approach was applied to ultra-

wideband antenna synthesis [48], in which the shape of the patch antenna was parametrized

using B-spline representation, and the contours of the patch were defined using a set of

control points, whose positions were optimized.

Stochastic search algorithms prevail in EM optimization as they can effectively handle

complex, discontinuous, non-differentiable and discrete landscapes. In electromagnetics,

the search landscapes are vast and difficult to characterize analytically; sensitivity infor-

mation is not available or expensive to obtain. Therefore, unlike mechanical optimization,

stochastic methods are preferred over the deterministic gradient-based techniques. Because

of the inherent complexity and non-linearity of EM landscapes, the research in the field of

antenna optimization has focused on defining suitable algorithm parameters and represen-

tations rather than rigorous mathematical formulations of the optimization problems.

1.2.4 Multi-physics CAD optimization

Multiple commercial packages include the capability to perform coupled optimization

across several physical domains. However, due to the complexity of the models and in-

tensity of computation, rarely more than two domains are considered at a time.

In general-purpose tools, the coupling between domains can be expressed in a variety

of ways: in COMSOL, for example, the coupling can be defined explicitly through solving

the system of PDEs. The interface to MATLAB allows users to define the optimization

loop, objectives and constraints, exchanging the design and control variables between the

models. The general optimization procedure can be also defined through the COMSOL’s
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optimization package that can use outputs from any domain simulation to define the ob-

jective function and update the designs. For some multiphysics problems, modules are

developed for easy modeling of the domain interactions. Thus, a MEMS module integrates

”solid mechanics with electrostatics and moving mesh to model the deformation of elec-

trostatically actuated structures” [19]. In case of EM and structural coupling, the ALE or

computational fluid modules can be used to define how the structural changes affect EM

performance. The deformations of the shape appear as changes in the mesh of the structure

which is then used for simulation in the EM domain.

Similarly, ANSYS provides two techniques for setting up multi-physics problems: for a

variety of coupled-field problems - such as inductive heating, electrostatic actuation, Joule

heating, electroelasticity, piezoresistivity, etc. - the coupled-physics can be modeled and

solved for directly using only one FEM model. For many coupled problems (e.g. thermal-

electric, thermalelectricstructural, EMstructural, etc.) sequential modeling can be applied:

a model must be defined for each individual discipline; each discipline is then solved se-

quentially, and convergence is obtained between the disciplines at each iteration during

the solution [2]. ANSYS also includes design exploration tools which allow for direct or

response optimization across single or multiple domains, support design of experiments,

sensitivity and six-sigmas analysis.

Set up of multiphysics simulation requires expertise and proficiency in all involved

domains. A good overview of the state of the multiphysics software, challenges and ap-

proaches in multi-physics simulation can be found in [40]. The author underlines that the

main opportunity in multiphysics simulation is still in ”leveraging known concepts in new

contexts” rather than scaling up the performance of the coupled simulation.

The algorithms in this work target antenna optimization and integration of the antennas

with the existing structures. These algorithms could be used in a CAD tool as a separate

module, enabling the users to evaluate the structure’s radiation properties and modify
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it to act as an efficient radiator. We apply the domain-specific optimization techniques

to allow for fast assessment of each structure and predict the promising feed positions.

The accomplished research does not attempt to compete with the general-purpose CAD

and optimization tools, but rather extends existing multi-physics methods to the coupled

optimization of antennas.

In this work, we use the domain-specific techniques/simulators to obtain most accurate

and efficient evaluation of the objective function. For some problems, analytical functions

exist to describe structural properties of the antennas, e.g. simple FEM models of trusses

and beams are solved using the structural code implemented in MATLAB. Method of

Moment (MoM) codes - NEC2C or WIPL-D- are applied to simulate antenna’s EM per-

formance.

1.3 Summary

Interactions between an antenna’s mechanical and EM properties has been the subject of

interest in various application domains. We desire to engineer antennas that can bear heavy

loads while providing robust communication performance. On the other hand, we want to

reuse existing structures or structural components to enhance an antenna’s radiation. In

this research work, we develop a systematic approach to optimization of antennas across

mechanical and EM domains. We develop a theoretical foundation for optimization of

structural antennas. Building on the TCM, we improve the search in the EM domain

for easier integration with the structural optimization methods (Chapter 3). The fields

of EM and structural optimization are very mature but have developed along different

paths. We consider optimization of several basic coupled EM and mechanical systems as

multi-objective problems and investigate solution techniques that can effectively leverage

domain-specific methods and solution representations (Chapter 4). Finally, we test the

performance of proposed algorithms on a real-world optimization problem (Chapter 5).
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Chapter 2

Related Research

The contributions of this thesis relate to the fields of electromagnetics and multi-objective

optimization (MOO). In the electromagnetic (EM) domain, we define new fitness functions

based on the theory of characteristics modes (TCM). Section 2.1 introduces the TCM for

conductive bodies and reviews the existing research on its application to antenna design.

In chapter 3, the TCM is extended to automated feed placement. Chapter 4 builds on

the material presented in Sections 2.2 and 2.3. Section 2.2 describes the typical flow of

an evolutionary algorithm in antenna optimization. Section 2.3 introduces the concept of

Pareto optimality and reviews the classical and evolutionary approaches to MOO as well

as the techniques for their hybridization. The section also defines the metrics for evaluating

algorithms’ performance on multi-objective benchmark problems.

2.1 Background: Theory of Characteristic Modes

TCM is based on the method of moment (MoM) formulation, which is a classical method to

simulate antenna structures. The input to the simulation is antenna’s geometry as well as

position and magnitude of the power source that determines how energy is coupled into the

antenna. In MoM, an antenna is subdivided into multiple elements, segments or patches.
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The main task of the simulation is to determine the currents on each of the segments

produced by the excitation, from which any other metric of the antenna performance, like

impedance at the feed, electric fields, radiation pattern, etc. can be calculated. The relation

between the unknown total current Jtotal on the antenna subdivided into n segments and

the known excitation vector E is expressed in matrix form [8]:

[Z]n×n[Jtotal]n×1 = [E]n×1

Jtotal = Z−1E

Jtotal and E are n × 1 column vectors; Z is an n × n interaction or impedance matrix

that expresses the mutual EM interactions between any two segments in the structure.

Z consists of complex entries and can be decomposed into real and imaginary parts as

Z = R + jX. MoM procedure includes two major computational steps: assembly of the

impedance matrix Z and second, inversion of this matrix and its multiplication with the

excitation vector E.

A theory of characteristic modes describes the behavior of a scattering or radiating

system in terms of several independent modes. The total current on the conductor surface is

represented as a weighted sum of orthogonal eigencurrents, while the electric fields produced

by these eigencurrents form orthogonal set over the infinite sphere [32], i.e., in the far field

of the conducting body.

Mathematically, these modes can be obtained by applying the method of moments to

the solution of Maxwell’s equations on the boundary of the conducting body and diagonal-

izing the linear impedance operator in the resulting matrix equation. The solution of the

general eigenvalue problem provides a set of real eigenpairs (λi, Ji) termed eigenmode [32]

:

λiRJi = XJi

where R and X are real and imaginary parts of the general impedance matrix in the MoM
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formulation; λi is the ith eigenvalue; Jis are the corresponding eigenvectors (or eigencur-

rents) that form an orthonormal set.

The eigenvalues are proportional to the difference between the magnetic Wmag and

electric energy Wel stored on the antenna. w is the angular frequency.

λi =
1

2w
(Wmag −Wel)

A positive eigenvalue indicates higher magnetic energy and denotes an inductive mode; a

negative value is termed capacitive, while a zero eigenvalue is called an externally resonant

mode. In the following, we always order the modes according to the ascending magnitude

of the eigenvalue because the significance of the mode, i.e. its contribution to the radiated

or scattered power, decreases with increasing magnitude.

Only few modes are needed to describe the currents on small and intermediately sized

bodies. The total current Jtotal on the antenna can be represented as a weighted sum of

the eigencurrents [32]:

Jtotal =
n∑
i=1

αiJi

The weights αi are referred to as excitation coefficients and describe how well the energy

from the excitation vector E is coupled into each mode [32].

αi =
< J∗i · E >

(1 + λij) < J∗i RJi >

TCM for conducting bodies was first introduced by Garbasc [28] and then developed by

Harrington and Mautz [32]. It was also extended to the dielectric bodies [33] but did not

receive much attention in the antenna community until the advent of accurate electromag-

netic and mathematical tools and until cheap computational power became available.

Newman was the first to introduce the idea of a structural antenna [58]. He suggested

to think of a small antenna mounted on a support structure (e.g. ship, airplane, tank) not
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as the primary radiator but rather as a probe to excite currents on the support. He showed

that by choosing the proper position radiation efficiency can be maximized. TCM was

used to determine the optimum location and operating frequency. To excite mode n on the

structure, the excitation probe should be placed at or near the maximum of Jn. The probe

should be oriented in such a way that the excitation field Ei and current Jn are parallel [58].

This approach has been extended to pattern synthesis and placement of NVIS antennas [3].

Following the method developed by Mautz and Harrington, they determine the excitation

coefficients and the total current on the structure that produces the required far fields.

To calculate the excitation voltage for an N-port feed system, they select N segments - N

distinct positions on the support structure - and estimate the excitation voltage vector Vs

by solving an N by N linear system of equations [3]

Vs = [JTs ]−1[α]

where Js is the matrix containing the values of N scaled modal currants at N excitation

segments and [α] is the column vector with the excitation coefficients αn.

Lately, the procedure has been applied to multi-objective optimization of UAV [15]

and NVIS shipboard antennas [16]. In these works, researchers apply the multi-objective

evolutionary algorithm based on decomposition (MOEA/D) to find Pareto-optimal cur-

rent vectors that satisfy three objectives, i.e. produce radiation in the desired directions,

maximize the front to back ratio and constrain the amount of power in the main beam.

For several Pareto solutions, feed probes are designed to excite the synthesized currents:

the feeds are placed at the maxima of the most significant modal currents. The approach

is validated by simulation and measurement of the scaled models.

The TCM has been instrumental in the design of electrically small antennas for mobile

terminals [10], [1], [44], [54]. As miniaturization of mobile devices continues, the antennas

are subjected to stringent size and shape constraints. To achieve acceptable performance,
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the designers can take advantage of the phone structure, using the actual antenna element

to excite the phone’s resonant modes. Cabedo et al. investigated in depth how the TCM can

be applied to mobile antenna design and how the modes on the phone chassis can be excited

efficiently [10]. A method for antenna matching based on impedance models from TCM

is developed by Adams and Bernhard [1]. They seek to identify the near-optimum modes

and couple energy into the existing modes rather than to create more complex radiating

structures with resonant modes. The TCM has been applied to estimate the bandwidth

potential - obtainable bandwidth - of non-resonant and electrically small antennas [62].

The use of TCM is very promising for MIMO applications: since characteristic modes

are R-orthogonal to each other and there is no coupling of energy between them, exciting

these modes independently would allow for multiple antenna systems to be integrated into

one structure. Miers and Lau modify the phone chassis by adding a metallic bezel and

shorting it to the casing: this way, they introduce an additional radiating mode below 1

GHz which is orthogonal to the fundamental chassis mode. Both modes become radiating

in the GSM-850 band and if excited efficiently, can enable MIMO operation with high

isolation [45]. They design excitation ports based on the analysis of the reactive near-field

of the radiating modes: the first mode is excited at the maximum of the mode’s magnetic

field with an inductive coupling element; the second feed - a folded monopole - excites

the second mode at the maximum of the second mode’s electric field. With this approach,

high isolation of the antenna ports is achieved [45]. The research group from Ohio applied

characteristic mode analysis to automated feed design and to the reduction of mutual

coupling between antennas [63].

2.2 Evolutionary Algorithms

In this work, we focus on population-based stochastic search algorithms (SSA), a class of

algorithms widely used when little is known about the search landscape, optimal solutions
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are not required, accurate simulation tools are available, and solution quality is valued

over algorithm running time. This makes SSAs particularly attractive to solving real-world

engineering problems, which are often not completely specified at the beginning of a project

and may consequently undergo numerous modifications [73].

Evolutionary algorithms represent a large class of SSAs inspired by the biological evolu-

tion that operate through selection, mutation, and recombination [73]. Evolutionary algo-

rithms start with a population of potential (or candidate) solutions and apply the principles

of the survival of the fittest to produce better candidates. At each iteration, the fitness

of every individual in the population is evaluated, multiple individuals are stochastically

selected from the current population (based on their fitness) and modified (recombined and

possibly randomly mutated) to form a new population. The algorithm terminates when

either a maximum number of generations has been produced, or a satisfactory fitness level

has been reached for the population. If the algorithm has terminated due to a maximum

number of generations, a satisfactory solution may or may not have been reached.

A typical evolutionary algorithm requires two important components to be defined:

1) genetic representation of the candidate solutions, 2) a fitness function to evaluate and

compare the solutions [25].

In Figure 2.1, we show the typical flow of an evolutionary algorithm for antenna opti-

mization. The fitness of every antenna configuration is evaluated using NEC2C (Numerical

Electromagnetics Code), an open source simulator which takes antenna geometry as input

and computes far/near field radiation patterns, current and voltage distributions as well

as antenna parameters such as gain and VSWR.

Evolutionary algorithms have proven capable in finding high-performance antenna de-

signs with much less engineering labor than by-hand approaches [49]. They have been suc-

cessfully applied to a variety of electromagnetic optimization problems, including phased

array synthesis, the design of dual and multi-band patch antennas, aperiodic antenna ar-
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Figure 2.1: Flowchart of an evolutionary algorithm for antenna optimization.

rays, spacecraft antennas, and phase and amplitude pattern nulling of antenna arrays [39],

[13],[41].

One major challenge in using stochastic techniques is the need to tune their parameters

to achieve strong performance on a problem. Performance is commonly measured in terms

of algorithm efficiency and effectiveness. Efficiency describes the ability of an algorithm to

find solutions fast, i.e. using the least number of candidate solution evaluations. Effective-

ness, on the other hand, describes its ability to find high-quality solutions: for instance,

this is related to the ability to escape local optima and identify the most promising areas

of the search space.

As electromagnetic simulations are computationally costly and algorithm performance

is strongly problem dependent, it is important to understand each algorithms strengths and

limitations before applying them to complex real-world problems. This can be done by run-

ning multiple tests of the algorithms on a number of benchmark problems, representative

of the more complex fitness landscapes.
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2.3 Multi-objective Optimization Algorithms

Let us consider a multi-objective minimization problem (MOP) with M objective functions

Fi(x) subject to inequality constraints h(x) ≤ 0 and equality constraints g(x) = 0. The

objectives and constraints are functions of x, which is a vector of design variables with

dimensionality n. The goal of multi-objective optimization is to find a solution (solutions)

that minimizes the objective functions and satisfies the constraints. However, a vector that

simultaneously optimizes all of the objectives might not exist. In the case of competing

objectives, we must define additional criteria on the quality of solution vectors. The Pareto

optimality criterion states that the solution vector to a MOP must be non-dominated. For

a minimization problem a solution x∗ is said to be non-dominated if no other solution is

better than x∗ in all objectives. A distinction is made between weak and strong dominance.

Definition 1 (Non-dominated solution) ∀x ∈ X \ x∗, ∃i Fi(x
∗) < Fi(x),

where X is the set of all feasible solutions, satisfying the constraints.

Definition 2 (Strong dominance) A solution x1 strongly dominates solution x2 (x1 ≺

x2), if ∀i Fi(x1) < Fi(x2)

Definition 3 (Weak dominance) A solution x1 weakly dominates solution x2 (x1 � x2),

if 1) ∀i Fi(x1) ≤ Fi(x2) and

2) ∃i Fi(x1) < Fi(x2)

Using the Pareto optimality criteria, the goal of multi-objective optimization is to obtain

the globally optimal Pareto set, i.e., a set of vectors x∗ that are non-dominated in the entire

feasible space.

Definition 4 (Pareto-optimal set) The globally Pareto-optimal set is the set of all weakly

non-dominated solutions in the feasible search space.
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2.3.1 Classical Approach to Multi-objective Optimization

The classical approach to MOO (also referred to as preference-based) relies on scalarization

of the problem: MOP is reformulated as a number of single-objective tasks (SOPs), the

solution to which gives points on the Pareto front/set. The main strength of classical

methods is the existence of convergence proofs . Most of them guarantee convergence to a

Pareto-optimal solution. The main disadvantage is that one run can produce at most one

solution and that the result is highly sensitive to the choice of the conversion parameters.

Three classical MOP formulations are the weighted sum formulation, the ε-constraint

formulation and the weighted metric method:

1. Weighted sum formulation. A new objective function is defined as a weighted sum of

the initial objectives:

Fscalar =
∑
i

λiFi(x), λi > 0

The weights λi express the importance of minimizing the corresponding objective [7]. A

classical way of solving the MOP is to start multiple runs with various weight vectors

to obtain multiple solutions along the Pareto front. The solution to this single-objective

problem is guaranteed to be Pareto-optimal [55].

However, there is a number of issues associated with this approach. First, for non-

convex MOPs it is not guaranteed that there exists a positive vector for every Pareto-

optimal solution [55]. It is possible that not every Pareto-optimal point can be reached

using a weighted sum of objectives. Second, the solution to the SOP is very sensitive to

weight assignment. The choice of the weights is not intuitive: multiple sets might converge

to the same solution; some runs might produce no feasible solution at all; there are no

straightforward rules on how to set up preference vectors to obtain uniform distribution

along the Pareto front. In addition, proper normalization of objectives is required to define

a composite objective function. Finally, since each optimization run results in at most one

point on the trade-off surface, this approach incurs significant computational cost. The
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difficulties in choosing the weights further exacerbate this problem as the algorithm can

be wasting computational resources on solving SOPs with unfortunate weight assignment.

2. In ε-constraint formulation one objective is minimized, while other objectives are in-

cluded in SOP as constraints and are upper bounded by ε, where ε is a positive vector

[29]:

Minimize Fj(x)

subject to Fi(x) ≤ εi i = 1 . . .M, i 6= j

h(x) ≤ 0

g(x) = 0

Unlike the weighted sum approach, this formulation guarantees the existence of the ε-

vector for each Pareto-optimal solution for both convex and non-convex MOPs. The other

shortcomings of the weighted sum method also apply to this approach.

3. Weighted metric formulation:

Minimize lp(x) =

(
M∑
j=1

wj|Fj(x)− z∗j |p
)(1/p)

subject to h(x) ≤ 0

g(x) = 0

Objective function is defined as the distance from the current solution to some ideal solution

z∗ in the objective space. The most popular formulation is minimization of the lp distance

or minimization of the maximum weighted deviation in all dimensions linf (Tchebycheff

problem) [21, p. 59]. When the weighted Tchebysheff metric is used, any Pareto-optimal

solution can be reached [55].
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2.3.2 Evolutionary Approach to Multi-objective Optimization

Evolutionary algorithms take a population-based approach to solving the MOP. They start

with a set of candidates and by applying stochastic operators (recombination, mutation,

survival and offspring selection) attempt to reach the most accurate approximation of the

Pareto-optimal front in one run.

In order to steer the search toward non-dominated solutions, fitness assignment strate-

gies that rely on dominance relations within the current population and distribution/density

of the candidates in the search space have been developed. Most of the algorithms main-

tain a current - ’working’ - population and an external population that contains the non-

dominated vectors found by the algorithm so far. At each iteration, the external population

is updated with new non-dominated solutions, while individuals from both populations are

used to generate offspring.

In this work, we characterize the performance of two MOEAs on coupled optimization

problems - the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [84] and the Elitist

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [23]. The algorithms take different

approaches to fitness assignment and elitist preservation in the search for Pareto solutions

and both have shown superior performance on multiple benchmark problems [21].

NSGA-II performs diversity maintenance by using crowding comparison and tourna-

ment selection. The algorithm starts with a randomly initialized population of size 2N .

Dominance sorting is performed in which the population is subdivided into multiple non-

dominated fronts: each non-dominated front includes the individuals with the same rank,

equalling the number of solutions in the population that the individual strongly dominates.

The offspring population is filled with the individuals from different fronts. Competition

between solutions is decided using crowded tournament selection: solution that belongs to

a better front wins; if two solutions have the same rank, the solution that lies in a less

crowded region wins. This sorting procedure defines N individuals to be included in the
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offspring. After the offspring is modified by crossover and mutation and evaluated, new

population is combined with the parent population. The selection procedure is repeated.

Computational complexity of the algorithm is determined by non-dominated sorting. For

a population with size N and M objectives, the sorting procedure requires O(MN2) com-

putations [21].

SPEA2 - another elitist MOEA - was developed and improved by Thiele and Zitzler [84].

It differs from NSGA-II in that it explicitly keeps an archive of non-dominated solutions.At

each iteration, the archive is updated with new non-dominated solutions from the current

population and the existing archive. If the archive grows beyond a specified size, the more

crowded individuals are deleted from the elites.

Both the external (archive) and the working population are used to produce offspring.

Every individual is assigned strength based on how many solutions in the combined popula-

tion it dominates. Then the fitness of each solution is calculated as the sum of the strengths

of all members that weakly dominate it. To avoid the situation in which individuals dom-

inated by the same solutions have the same fitness, density information is incorporated

into the fitness function: the inverse of the distance to the kth nearest neighbor is added

to the individual’s raw fitness. The archive is filled with non-dominated solutions from

the current archive and working population. If the number of non-dominated individuals

exceeds archive size, truncation operation is applied: at each stage, the individual with the

smallest distance to its nearest neighbor is deleted; if multiple individuals have the same

distance, the tie is broken by considering the second neighbor and so on. The mating pool

is selected from the combined population using binary tournament, and the offspring is

modified by crossover and mutation.

Run-time complexity of SPEA2 is governed by the complexity of the truncation oper-

ation, which in the worst case is O((N̄ + N)3), where N̄ denotes the size of the archive.

The average complexity is lower at O((N̄ +N)2log(N + N̄) [84].
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2.3.3 Multio-bjective Optimization with Local Search

Multi-objective algorithms explore and exploit the search space by applying various stochas-

tic operators to a population of candidate solutions. It has been shown that including a

local search step in an evolutionary algorithm (called hybridization) improves the effective-

ness of the algorithm and allows for reaching higher precision in the Pareto solutions [34],

[36]. Hybrid EMO was first applied by Ishibuchi and Murata [34] to flowshop scheduling.

Their algorithm uses scalarization of the objectives with a random set of weights for fit-

ness assignment during parent selection and applies local search to each offspring produced

by regular genetic operators. Jaskiewicz describes the multi-objective genetic local search

(MOGLS) for the 0/1 knapsack problem. At each iteration, local search is performed on

the offspring population [36].

Evolutionary strategies (ES), multi-objective steepest descent method (MSDM), combined-

objectives repeated line search (CORL) have been investigated as local optimizers in

MOEAs. Harada et al. suggested a new local search method - a Pareto Descent Method

(PDM) - which moves the solutions along the descent directions to improve all objective

functions simultaneously [31]. NSGA-II was hybridized with the reference point method

used in MSDM [70]: an achievement scalarizing function (ASF) defined as the maximum

of the distance from an objective to the ideal reference point was minimized. At each

iteration, a subset of offspring population was selected for the local search. The mini-

mization problem was solved using mathematical programming algorithms. On a number

of benchmark problems the hybrid approach was faster and more accurate in getting to

the Pareto-optimal solutions than the original NSGA-II [69]. An archive-based micro ge-

netic algorithm (AMGA) switches between the regular mutation and the gradient-based

optimization as the mutation operator. Every several generations, each individual in the

offspring is optimized using the sequential programming method (SQP). The objective

function is defined as a weighted sum of the objectives; in addition, constraints on the
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objective values are introduced such that the local solution always dominates the starting

point [76]. The authors show that SQP speeds up the search and helps obtain the fine-

grained objective values. Though the hybrid AMGA is successful in discovering the global

Pareto solutions, the spread of these solutions is not uniform and further diversity preser-

vation operators are required. In highly multi-modal problems, the search is not able to

escape the locally optimal basins of attraction [76]. More recently, Lara et al. presented a

hill climber with side step (HCS) as a local search procedure in a multi-objective memetic

algorithm [43].

MOEA with decomposition (MOEA/D) can be included into the class of memetic al-

gorithms [82]. The optimization problem is decomposed into multiple subproblems (SOPs)

each described by an aggregation function which can be defined using a weighted sum of

several objectives, a Tchebysheff approach or boundary intersection approach [82]. Each

problem maintains one solution in memory during the search and generates new solutions

by combining the genotypic material from its neighbor subproblems. The neighborhood

relation is defined by the distance between the subproblem’s weighting vectors. The locally

optimal solution for each subdomain can be achieved by optimizing the assigned function

in a local search procedure.

2.3.4 Challenges for MOEAs

Deb names two main tasks of the multi-objective optimization: first, it should converge

as close to the true Pareto-optimal region as possible; second, it should maintain as many

widely spread non-dominated solutions as possible [21, p. 332]. He also identifies the main

characteristics of the search space that can make these tasks difficult for the MOEA. As

in single-objective optimization, multi-modality, deceptive attractors, isolated optima, and

collateral noise may cause major challenges for the algorithm to converge to the global

Pareto front [21, p. 333]. In achieving the second task, the major hurdles are the non-
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convexity/convexity, discontinuity of the Pareto front, and the non-uniform distribution

of the solutions in the search space [21, pp. 333-340]. Most MOEAs favor solutions of

intermediate quality since the survival probability of the candidate depends on how many

solutions it dominates. This puts individual champions at a disadvantage. For discontinuous

Pareto fronts the competition between the solutions in various Pareto sub-regions may lead

to the extinction of some of these regions. The non-uniform distribution of the solutions

makes it difficult for the algorithm to locate Pareto regions with lower density.

Constrained optimization further exacerbates the difficulties: adding hard constraints

to the problem can make part of the unconstrained Pareto front infeasible or can shift

parts or the entire Pareto front to the constraint boundary.

2.3.5 Performance Metrics

In assessing an MOA’s performance, three measures are important [21, p. 306]: first, the

ability of the algorithm to maintain diversity of the solutions along the Pareto front; second,

its ability to converge to the global Pareto front (lateral to the front); third, its ability to

handle different shapes of the Pareto front (discontinuous, convex or non-convex).

The set coverage metric is commonly used to determine how close the Pareto set Q

obtained by the algorithm approaches the known Pareto set P [83]. Given two solution

vectors P and Q, the set coverage metric C(P,Q) calculates the proportion of solutions in

Q weakly dominated by solutions in P [21, p. 311]. This metric is useful in comparing the

found solution to the true Pareto front and comparing two algorithms with each other.

C(P,Q) =
|{q ∈ Q | ∃ p ∈ P : p � q}|

|Q|

To monitor the convergence of the algorithm toward the global Pareto front, the gen-

erational distance (GD) is used. GD calculates the average distance of the solutions in Q
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from the solutions in P [78].

GD =

(∑|Q|
i=1 d

p
i

)1/p
|Q|

The distance di is the Euclidean distance in the objective space between the solution

qi ∈ Q and the nearest solution pj ∈ P

di = min
j

√√√√ M∑
m=1

(f im − f
j
m)2

The variance of the GD is calculated to verify that the metric measures the distance to the

Pareto front rather than the fluctuations in the distance values. Also, the objective values

are normalized to calculate the distance measure.

The diversity metric measures the distribution of the solutions along the Pareto front.

We use the metric proposed by Deb et al. [21, p. 314].

δ =

∑M
m=1 d

e
m +

∑|Q|
i=1 |di − d̄|∑M

m=1 d
e
m + |Q|d̄

where Q is the set of the solutions obtained by the algorithm, M is the number of objectives,

di is some distance measure between the neighboring solutions (in this work, the crowding

distance) and d̄ is their mean value. The distance dem is the distance between the extreme

solutions of the true Pareto and found Pareto solutions corresponding to the m-th objective

function.

In general, the set of non-dominated solutions is most diverse when the spread is close to

zero. However, in the problems where the Pareto front consists of multiple distinct regions

in the search space or includes individual champions, low spread value might indicate that

some of the Pareto regions were not found by the algorithm. In such cases, the value

should be compared to the spread of the true Pareto front, or the metric can be calculated

separately for each cluster of solutions.
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2.4 Summary

In this chapter, we have reviewed the background for the research in the following sections.

The TCM proves very promising for coupled structural-electromagnetic optimization be-

cause it provides information about the resonant frequency and radiating properties of

the conductive body based on the body’s topology (geometry and materials). TCM-based

objectives can be used to guide the optimization procedure in the EM domain. Without

the defined feed, TCM can not distinguish between the various EM objectives (VSWR,

gain, polarization) but it may not be necessary in the initial stages of the search. The

TCM-based optimization in the EM domain would allow for better integration with the

existing techniques in the structural optimization.

This research focuses on stochastic search for solving the coupled optimization prob-

lems. Evolutionary algorithms have proven very successful in the field of multi-objective

optimization, because they can find multiple Pareto-optimal solutions in one run. Hy-

bridizing evolutionary algorithms with local search can further improve an algorithm’s

performance, though it often requires special operators for maintaining a diverse set of

solutions. Memetic algorithms are of particular interest as they provide a way to com-

bine the domain-specific algorithms for the most efficient and effective multi-disciplinary

optimization.
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Chapter 3

Automated Antenna Design using

the Theory of Characteristics Modes

3.1 Introduction

In this chapter, we develop algorithms for automated antenna design and optimization

based on the Theory of Characteristic Modes (TCM). Integrating antennas as structural

elements requires a new approach to optimization in the EM domain. Unlike traditional

antenna optimization described in Chapter 1, structural antennas are electrically connected

to a larger metallic structure, whose shape and topology is dictated by mechanical con-

siderations (e.g., the structure must bear specific loads or enclose a certain volume) and

whose radiating performance is unknown a-priori. In order to turn an arbitrary metallic

structure into an efficient radiator, we must solve the following tasks: a) determine a struc-

ture’s potential to radiate in the frequency band of interest; b) modify the structure such

that it resonates in the desired band; c) find the feed configuration that best satisfies the

specifications.

TCM is well suited for all of the tasks because it gives valuable information about the

EM performance based on a structure’s topology and does not require full electromagnetic
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analysis to characterize its EM properties. A theory of characteristic modes describes the

behavior of a scattering or radiating system in terms of several independent modes. The

total current on the conductor surface can be decomposed into a weighted sum of orthogonal

eigencurrents, while the electric fields produced by these eigencurrents form orthogonal set

over the infinite sphere [32], i.e. in the far field of the conducting body. In other words, the

total current and the radiation pattern can be represented as a composition of the individual

eigenmodes: the contribution of each mode to the full EM performance is determined by

the feed configuration.

This chapter is organized as follows. In section 3.2, we introduce a procedure for au-

tomated feed placement and verify it on a number of conventional antennas. In section

3.2.1, we investigate how TCM can be applied to automated antenna design by deriving

the TCM-based objectives (radiation efficiency and matching). Their advantages and limi-

tations in guiding the search procedure toward optimal designs are discussed in section 3.3.

We support our findings with results on several test problems (section 3.3.2). Finally, the

TCM-based objectives and feed placement are used to solve two real-world optimization

problems in the EM domain: integration of a GPS antenna with the frame of a mobile

phone and integration of an S-band antenna with the face of a CubeSAT (sections 3.3.5

and 3.3.6).

3.2 Power Analysis Based on TCM

In this section, TCM is used to determine the best feed point for an arbitrary wire an-

tenna. A general procedure for optimizing the excitation vector E was presented in [63].

Inspired by compressive sensing, the algorithm applies gradient-based optimization to find

an excitation vector consistent with the specified set of excitation coefficients. Though

the algorithm is robust and can find general excitation vectors, the procedure is semi-

automated and requires an intelligent initial guess for excitation coefficients as well as the
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inspection of the resulting plots by the human designer. In addition, the authors do not

perform convergence analysis or identify clearcut criteria when the optimization procedure

fails or succeeds. Previous research on the design of structural antennas has focused on

synthesizing the currents on the existing structures and then attempting to design feed

networks to excite these currents at the maxima of the current modes. The research on

feed design and placement optimizes voltage vectors that in the end must be converted

into practical feed design. Our research addresses a different problem: rather than excit-

ing particular modes on an antenna [63], we are interested in the rapid assessment of the

radiating properties of an arbitrary metallic structure. This procedure will be integrated

with the optimization routine that modifies the initial topology, should be lightweight and

allow designers to quickly compare the radiating properties of one candidate wire structure

against another.

The developed procedure determines the placement of an inductive/coaxial feed. The

antenna is excited by a sinusoidal voltage source with 1V magnitude and 0◦ phase shift.

We assume a perfectly conducting structure composed of wires and plates radiating into

free space.

The power accepted by the structure from the excitation source is the main criterion

for evaluating antenna’s radiation efficiency. For the perfectly conducting antenna in a loss-

less medium, the power accepted by the antenna is partly stored in the antenna (reactive

power) and partly radiated into the far field. In this section, we will also determine con-

ditions on the power to obtain well-matched designs. For many common antenna shapes

(dipoles, Yagi-Udas, PIFAs, etc.) formulas and empirical guidelines exist to tune the an-

tenna performance. However, for an arbitrary metallic structure, either obtained as a result

of generative optimization or prescribed by other constraints, feed placement may not be

obvious or easily predicted. In the following, we provide mathematical analysis based on

TCM, demonstrate the ability of the feed placement algorithm to predict best feed position
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on a number of standard structures and apply them to arbitrary shapes.

The following derivations build on the background material discussed in section 2.1.

To reiterate, R and X are real and imaginary parts of the general impedance matrix in

the MoM formulation; λi is the ith eigenvalue; Jis are the corresponding eigenvectors (or

eigencurrents) that form an orthonormal set. The notation J∗ denotes a conjugate transpose

of vector J , and < ... > denotes the inner product.

Consider n modes that possess the eigenvalues with the smallest magnitude; the input

power to the antenna can be expressed as [63]:

P =
1

2
< J∗totalRJtotal >

P =
1

2

n∑
i=1

α2
i < J∗i RJi >=

1

2

n∑
i=1

< J∗i · E >2

(1 + λ2i ) < J∗i RJi >

For the delta-gap source placed on segment x, there is only one non-zero entry in the

excitation vector E =

[
0 . . . ex . . . 0

]′
. Substituting E and assuming that eigencurrents are

normalized such that < J∗i RJi >= 1, P becomes:

Px =
1

2

n∑
i=1

((Ji)x · ex)2

1 + λ2i
=

1

2
(ex)

2

n∑
i=1

(Ji)
2
x

1 + λ2i

The goal is to find segment x that maximizes the input power P to the antenna.

Besides increasing the radiated power, it is desirable to match the antenna’s input

resistance to 50 Ω. We can derive the conditions on the modes by considering antenna’s

resistance Rx at feed segment x. The eigencurrents in the following expressions are assumed

to be taken at the feed segment and we drop the subscript x for clarity of presentation.
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We also assume that the segments have equal lengths and omit the factor e2x:

Rx = 2
Re(P )

|Jx|2
= 2

Px
|Jx|2

Rx = 2
0.5
∑n

i=1 |αi|2

(
∑n

i=1 αi|Ji|)2
=

∑n
i=1 |αi|2∑

i |αi|2|Ji|2 +Re(
∑

i 6=j αiα
∗
j |Ji|2|Jj|2)

Rx =

∑
i

1
(1+λ2i )

J2
i∑

i
1

(1+λ2i )
J4
i +

∑
i 6=j

1+λiλj
(1+λ2i )(1+λ

2
j )
J2
i J

2
j

=

∑
i

1
(1+λ2i )

J2
i∑

j

∑
i

1+λiλj
(1+λ2i )(1+λ

2
j )
J2
i J

2
j

(3.1)

Note that the dimensions are correct because the currents are normalized such that< JiRJi >= 1:

[Ω] =
[1]

(A/
√
W )2

=

[
W

A2

]

Define the normalized real and imaginary power components Pr and Pim as:

Pr =
1

2

∑
i

J2
i

(1 + λ2i )

Pim =
1

2

∑
i

λiJ
2
i

(1 + λ2i )

Then the denominator in equation (3.1) can be expressed as:

denominator =
∑
i

J2
i

(1 + λ2i )

∑
j

J2
j

(1 + λ2j)
+
∑
i

λiJ
2
i

(1 + λ2i )

∑
j

λjJ
2
j

(1 + λ2j)
= 4P 2

r + 4P 2
im

Substituting into equation (3.1), the input resistance becomes:

Rx =
2Pr

4P 2
r + 4P 2

im

Rx =
1

2

Pr
P 2
r + P 2

im
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Rewriting, we obtain:

P 2
r −

1

2Rx

Pr + P 2
im = 0

(Pr −
1

4Rx

)2 + P 2
im =

1

16R2
x

The solution to the initial equation is expressed as a function of normalized real and

imaginary power components Pr and Pim. Solutions lie on a circle centered at ( 1
4Rx

, 0)

and of radius r = 1/(4Rx). The feeds that result in power values on or close to the circle

boundary are promising in terms of the real input resistance. To achieve best matching, we

want to minimize the imaginary power and obtain the points to the right side of the circle

where Pim goes to 0 and Pr equals 1/(2Rx). We could have arrived at this conclusion by

considering a 1V excitation source attached to the antenna with a purely real impedance

Rx.

In TCM, the above condition can be written as a system of equations linear in the vari-

ables ti = J2
i . Geometrically these equations represent two hyperplanes in an n-dimensional

space, where n is the number of eigenmodes. The intersection of these planes defines the

set of possible solutions ∑
i

1

1 + λ2i
J2
i =

1

Rx∑
i

λi
1 + λ2i

J2
i = 0

As an example, consider a metallic wire structure that possesses one strong radiating

mode with |λ1| ≈ 0 and |λ1| << |λ2|. In this case, the contribution from the first mode

determines the current flowing on the antenna, and the upper modes can be ignored. The

system reduces to one equation in terms of the first eigencurrent: J2
1 = 1

Rx
or equivalently

J1 = 1√
Rx

. The segment for which the value of the first eigencurrent J1 approaches the

inverse of the desired input resistance should be chosen as the antenna feed. If the input

resistance cannot be physically realized, then the maximum of the eigencurrent determines

the feed position with the highest possible input resistance.
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3.2.1 Relation between the Radiated Power and Matching

Voltage standing wave ratio (VSWR) is one of the widely used measures of how well an

antenna is matched to a source. We can derive a lower bound on the VSWR in terms of

the real resistance and radiated power. The relation between the power and the VSWR

can be expressed as follows:

Γ =
Z − Z0

Z + Z0

=
R + jX −Rdes

R + jX +Rdes

|Γ| =
√

(R2 −R2
des −X2)2 + (2XR)2

(R +Rdes)2 +X2

VSWR =
1 + |Γ|
1− |Γ|

=
(R +Rdes)

2 +X2 +
√

(R2 −R2
des −X2)2 + (2XR)2

(R +Rdes)2 +X2 −
√

(R2 −R2
des −X2)2 + (2XR)2

≥ (R +Rdes)
2 + |R2 −R2

des|
(R +Rdes)2 − |R2 −R2

des|

VSWRmin ≥


Rdes

R
if R ≤ Rdes

R
Rdes

if R > Rdes

With the assumption of zero imaginary power, we can rewrite this condition in terms of

the radiated power

VSWRmin ≥


Pr

Pdes
if Pr ≥ Pdes

Pdes

Pr
if Pr < Pdes

(3.2)

Here, Pdes = 1
2Rdes

is the power radiated by an antenna with a purely real resistance Rdes

and excited by the voltage source with 1V amplitude. An example of the relation between

the power and the VSWR for various mesh antennas is shown in Figure 3.1. Cross symbols
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Figure 3.1: VSWR as a function of radiated power: green boxes show the lower bound on
VSWR calculated from Equation (3.2); blue crosses are power values calculated from TCM
for various antennas.

correspond to numerically calculated VSWR and power of multiple grid antennas. Box

symbols denote the lower bound determined from the equation above. The desired input

resistance is 50 Ω, and the radiated power at the best matching point equals to 10 mW. For

most designs, the radiated power is below the desired value so that increasing the power

most likely leads to improvement in VSWR. The power value close to 10 mW is a necessary

but not sufficient condition to achieve a better matching. When choosing the feed, we want

not only to increase the real power but also to find a way to move closer to the boundary

by decreasing the imaginary component.

The derived conditions can be used in two ways: a) to determine the segment on the

antenna that results in the highest radiation resistance; b) as objectives in the optimization

procedure based on TCM. In an optimization procedure, antennas with different topologies

are compared to each other: the variations in the radiated and stored power across the

designs might be significant so that the use of the real power component alone might

not provide sufficient guidance to the algorithm. However, if we need to compare the
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potential feed positions within a given design, the real power can often predict feasible

source positions with good matching. For a number of standard antennas, the maximum

radiated power determines the standard position of the feed. In the following section, we

investigate how the real power from TCM can be used for feed placement.

3.2.2 Feed Placement for Dipole, Yagi-Uda, Wire Loop and PIFA

Antennas

Table 3.1: Standard antenna shapes used to verify TCM-based algorithm for feed place-
ment. Red circles show best positions for the voltage gap source.

Antenna type Description Resonance Best Feed

centrally fed λ/2 dipole 850 MHz central segment
18

wire loop ; width x height at res-
onance 0.2λ× 0.4λ

850 MHz center of the
long side (seg-
ments 15 and
56)

Yagi-Uda antenna 2.45 GHz center of the
driving element
(segment 18)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.01

0.02

0.03

0.04

0

0.005

0.01 wire grid model of the PIFA an-
tenna [10] with a shorting wall
along the width of the patch

1.6 GHz wire connecting
the ground
plane and the
top element

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.01

0.02

0.03

0.04

0

0.005

0.01 wire grid model of the PIFA
antenna [10] with two shorting
walls: a vertical plate between
the top and ground patches is
added

1.6 GHz wire connecting
the ground
plane and
the additional
vertical element

39



We verify the performance of the proposed algorithm for each antenna type listed in

Table 3.1. The following analysis is performed: first, we investigate VSWR or return loss

in the band of interest to confirm the antenna’s resonant frequency and bandwidth. For

the same frequency range, we perform the eigenvalue analysis and show how the radiating

modes explain the resonance. Finally, at the resonant frequency we apply the excitation

source at each potential feed position (for small antennas, simulation is performed for

each segment of the design) and record VSWR and the power accepted by the antenna

calculated from TCM.

Figure 3.2 summarizes representative results: bar graphs show the contribution of each

radiating mode to the radiated power for standard antenna types. Segment numbers along

x-axis indicate the position of the feed for which the power is estimated. The segment with

the maximum power value determines the feasible feed position.

For antennas with one dominant radiating mode (e.g., dipole), the maximum current

of this mode corresponds to the best feed position. The total current on the antenna is

most similar to the first eigencurrent at the resonance, which is solely responsible for the

radiation at the resonant frequency. In the case of the loop antenna, though the first

radiating mode dominates (λ1 = 0.745; λ2 = 2.8) and still determines the best feed points

(centers of the long side of the loop), the second mode becomes prominent and might

be excited independently of the first mode at the center of the short side. In the case of

the Yagi-Uda antenna, two modes get close to zero around 2.45 GHz. The second mode

contributes at least half of the radiated power when the antenna is excited at the driving

element, so that both modes are responsible for the resonance.

The two PIFAs are used to validate algorithm performance on wire grid models. The

PIFA-like structures represent a folded mobile chassis with an inductive feed and a dis-

tributed feed developed for broadband operation and were investigated in depth in [10]. All

wire grid plates satisfy the empirical rule for accurate grid modeling [66], i.e. for the square
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(a) Dipole antenna
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(b) Yagi-Uda antenna
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(c) Loop antenna
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Highest radiated power at the feed pin 

(d) PIFA antenna

Figure 3.2: Power contribution calculated from TCM for different antenna types. Segment
numbers along x-axis indicate the position of the feed for which the power is estimated.
Segments with the maximum power value determine the best feed position.

grid, the radius of the wire is chosen as the segment length squared divided by π. The

simulation of the return loss/impedance of the wire grid model run in NEC2C is verified

against the full MoM simulation in WIPL-D. The TCM analysis using wire grid models

in NEC2C agrees well with the results in [10] that use plate models of the antennas. For

both PIFAs, segments connecting the upper and lower plates are identified as the best feed

positions.
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3.2.3 Feed Placement for an Arbitrary Wire Structure

Upon validation of the TCM-based algorithm on standard antennas for which the feed

position is known, we apply it to an arbitrary wire structure which represents the central

part of the phone’s frame, also called endoskeleton. TCM analysis shows that the structure

possesses several strong radiating modes above 1.5 GHz which is promising for the use

in the GSM, GPS and WiFi bands. A prominent radiating mode exists around 1GHz

- close to the GSM-900. Figure 3.3a shows the antenna input power calculated using full

electromagnetic simulation and power predicted from ten characteristic modes at 2.45 GHz.

The best candidate for the excitation source at this frequency is segment 58.

Because the modes are frequency dependent, the power contributions and the optimal

feed placement also change with frequency. Figure 3.3b shows the distributions at 850 MHz.

There is only one prominent mode that can be most efficiently excited at segment 26.

Figure 3.3c demonstrates how the source placement affects antenna’s VSWR. VSWR

is a measure of mismatch loss between a 50 Ω voltage source and the antenna and is also

a suitable measure of the radiation performance for a lossless wire antenna. The radiation

resistance is equivalent to the real part of the impedance taken at the current maximum,

which corresponds to the highest power that can be accepted and radiated by this structure.

As expected, at 850 MHz feeding at segment 26 results in a better VSWR, while segment

58 gives better performance at 2.45 GHz. Both feeds produce resonances at 1040 MHz,

1340 MHz and around 2000 MHz. The power analysis, however, fails to predict the correct

ordering (in terms of VSWR) of the most promising segments at the resonant frequencies:

it can identify candidates for good source positions (all produce VSWRs close to 2) but

the ranking based on power values does not reflect the ordering based on VSWR. This is

investigated further in the following sections.
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Figure 3.3: Feed placement for an arbitrary wire structure. (a) Comparison of potential
feed points based on the radiated power for the given antenna structure (2450 MHz); (b)
Input power to the antenna estimated from TCM at 850 MHz; (c) VSWR for the two feed
positions determined from TCM analysis.
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3.3 Using TCM in an Optimization Procedure

In this section, we investigate how information obtained from TCM can be used to guide

EM optimization. The eigenmodes provide useful data so that the algorithm can identify the

most promising areas of the search landscape. In the exploitation phase, full EM analysis

can be run to fine-tune the solution.

Antenna optimization is a multi-objective, multi-constrained problem: the figures of

interest include impedance, radiation efficiency, directionality, polarization, and bandwidth.

The constraints can include the size and weight of the antenna and the position of the feed.

A common approach is to define the fitness function as the weighted sum of all objectives.

The geometric constraints are usually checked explicitly, and infeasible geometries are not

allowed. EM constraints are incorporated into the objective using a penalty function. For

EM optimization problems, the resulting composite objective function is usually non-linear,

non-convex, and multimodal.

The weights express the trade-offs between the multiple objectives that the designer

defines based on his/her knowledge and intuition. However, multiple objectives and non-

linear interactions between the optimization variables (hysteresis) make the choice of the

weights a challenging task. In the complex EM problems, these interactions are not always

obvious or easily predicted so that a trial and error approach is often necessary to determine

acceptable weights. Failed weight assignment can impede the effectiveness and efficiency

of the search in many ways: for example, it can lead the search away from good quality

solutions, favoring mediocre designs; it can prevent the algorithm from exploring certain

areas of the search space and create flat fitness landscapes, providing little guidance to the

algorithm and making it a “needle in haystack” problem.

The multi-objective approach avoids the challenges of defining the objective by ex-

ploring the design trade-offs explicitly. The goal of this optimization process is to obtain

multiple solutions situated on a Pareto front. The Pareto front consists of the designs that
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are better than any other design in the search space in at least one objective. Such solu-

tions are called non-dominated. For dominated candidates, there exists at least one solution

which supersedes it in all objectives. Multi-objective optimization algorithms (MOAs) have

high memory requirements because they must keep an archive of non-dominated designs.

They also incur a much higher computational cost than the single-objective procedures,

as in each iteration, each candidate in the population and/or archive must be compared

against each candidate to calculate the dominance relation. The MOAs need to go through

a much larger number of candidate solutions to approximate the Pareto front, and the

results are often discontinuous/discrete trade-off plots in the objective space that do not

translate easily into the design space.

Thus, the single-objective approach is easy to implement and interpret but requires

expertise and trial runs to define a suitable objective function; multi-objective algorithms

require no assumptions and can find the trade-offs in the objective and design space but at

a high computational cost. We can envision a two-stage optimization procedure in which

the first stage relies on a single objective determined from TCM. In the second stage, the

objectives of interest calculated from full EM analysis can guide the search to fine tune the

obtained solutions.

Characteristic modes give accurate, though incomplete information, about the radiating

properties of the structure. They do not distinguish between the various objectives but it

is not necessary in the initial stages of the search. The modes are fast to compute, and an

approximation procedure can further speed up optimization.

3.3.1 Computational Challenges

There are multiple computational challenges associated with the estimation of power using

TCM. First, the gain in computational time is only achieved if we use small number of

modes. A small number of modes (10 to 20 modes for the considered structures) gives good
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accuracy for the real power, as the members of the series decrease as 1/λ2i . The imaginary

components decrease much slower - as 1/λi - so that higher order modes are required. In

addition, the estimates of the imaginary power are calculated as the sum of an alternating

series and are less reliable, because contributions from partial sums toward the end of the

series can be comparable to the contributions of the first terms. Since we can only get an

order of magnitude estimate of the imaginary power using a limited number of eigenmodes,

in the optimization procedure we cannot directly use the equation of a circle (Equation

3.2) to determine the best feed.

Another source of error is related to our choice of the electromagnetic simulator. Our

TCM approach assumes the symmetry of the interaction matrix which guarantees the R -

orthogonality of the eigenvectors. However, NEC2C uses a collocation method for matrix

computation, which results in a non-symmetrical matrix and non-orthogonal eigenvectors.

This causes errors in the power calculations, especially for larger structures that possess

multiple strong modes. In our experiments/optimization runs, we are not looking for exact

solutions from TCM; rather we use TCM to guide the algorithm in a search procedure

and employ approximation methods to speed up computation. As the inaccuracies due

to eigenmode calculation do not seem to mislead the algorithm in its search for optimal

design, we assume the errors negligible.

In the following section, we investigate further how the errors affect the ability of the

proposed algorithm to steer the optimization procedure.

3.3.2 Validation of the Algorithm on Small Test Problems

The goal of this section is to demonstrate the feasibility of our approach to antenna op-

timization on a set of test problems. We investigate whether: 1) TCM provides accurate

estimates of the radiated power; 2) the conditions on power derived in section 3.2 are

correlated with the objective in terms of VSWR; 3) TCM approach provides significant
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computational advantage as compared to the the full EM simulation of each design; 4) the

approximation procedure can further improve the computational time without drastically

degrading the accuracy of the power estimates.

We select six benchmark problems to test the developed algorithm and focus on the

optimization of square or rectangular plates. A plate represents the basic building block

of a larger structure; TCM analysis of rectangular plates is commonly performed in other

TCM research; the dimensionality of the optimization problem can be scaled by either in-

creasing the mesh density or the size of the plate. We also consider two real-world problems:

integration of an antenna with the skeleton of a mobile phone and modification of a cubic

structure. The problems are representative of two application domains - small spacecraft

and mobile wireless communications - in which antenna specifications include stringent

weight and space constraints.

For each problem, we create 10, 000 designs by randomly removing the segments from

the full plate structure. The full structure is simulated in NEC2C to obtain the full inter-

action matrix. For each design, we apply the approximation procedure to identify a viable

feed position. The estimates of the real and imaginary power components at the feed are

recorded. Then a full MoM analysis of the design is run to obtain exact values of the input

resistance and power accepted by the antenna. We also record the time required by the

simulator to assemble and invert the interaction matrices. For this same design, we perform

the eigenvalue analysis on the exact interaction matrix and record five smallest eigenvalues,

the real and imaginary power components and the best feed segment estimated from TCM.

We use the simulation results to characterize correlations between the initial speci-

fications and TCM-based figures of merit, and to develop a suitable objective function

in TCM terms. Because we are interested only in the relative values of the estimates to

determine the search directions, we use the Spearman rank correlation to illustrate the

relations between the variables (real power, VSWR and impedance). Spearman coefficients
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can vary between −1 and 1, with the value 1 meaning that one variable is a monotonically

increasing function of the other, −1 a monotonically decreasing function, and a value of

zero indicating no correlation. For n observations of the variables X and Y , Spearman’s

coefficient is calculated as follows [72]:

ρ = 1− 6
∑
d2i

n(n2 − 1)

Here di = Xi − Yi denotes the difference between the ranks of the variables sorted in the

ascending order.

The linear correlation coefficient is used instead of the ranking metric to understand

the conditions under which the ranks of the variables are poorely correlated. The p-value

describes the significance of the observed correlations; the values close to zero indicate high

level of significance.

Test problem 1 (TP1). Square plate (Figure 3.4a). We optimize a square plate with the

side λ/2 in length to obtain a resonant antenna at 1575 MHz. The plate is meshed at 1/20λ

so that the full structure consists of 220 segments, resulting in a 220× 220 full interaction

matrix. The feed is fixed at one of the corner segments. About 2% of the simulated designs

show vswr below 2, making it relatively easy to find a well matched design. The electrical

size of the plate is representative of the more complex problems we will approach in later

sections. The structure possesses several strong modes at the frequency of interest so that

multiple characteristic modes are required to predict its electromagnetic behavior.

Test problem 2 (TP2) . Finely meshed square plate (Figure 3.4b). To understand how

much these results depend on the problem, we reduce the size of the meshing grid by

2 and repeat the experiments. The number of segments in the model increases to 840,

and the search space is enlarged to 2780. About 1.5% of the evaluated structures exhibit

VSWR below 2, the best structure having the impedance of 51 − j0.85 Ω and accepted

power of 10 mW. The setup is the same as in test case 1, except for each design, the
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feed segment is selected based on the approximation of the power values. Among 10, 000

random evaluations, 10% have VSWR below two which is 5.7 times more quality designs

than in the runs with the fixed feed.

Test problems 3 and 4 (TP3, TP4). Design of a small plate GPS antenna (Figure 3.4a

and 3.4b). The problems are used to evaluate the TCM-based feed placement. The previous

test cases show that power estimates are suitable to compare the quality of the designs of

various sizes and configurations relative to each other. Unlike the first two test problems,

where the feed is fixed at the first segment of the design, in TP3 TP4 we use power

estimates to predict the best position for the feed . By selecting the appropriate segment

for the excitation source, we expect to obtain more higher quality candidates: if this is the

case, the algorithm is considered effective at placing the feed. The geometry and meshing

of the plates is the same as in problems one and two.

Test problem 5 (TP5). Design and integration of a GPS antenna with the phone’s

endoskeleton (Figure 3.4c). The problem is used to evaluate the TCM-based feed placement.

The frame of the phone is represented as a wire model in 3D space. The structure of the

phone, the endoskeleton, consists of several slots for the modules of various sizes. Based on

TCM analysis, one of these slots is selected for placing a GPS antenna. A plate structure

is added on top of the module; on the sides it attaches to the metallic endoskeleton and

is assumed to be electrically connected. The unmodified structure is meshed into 1477

wire elements. The additional structure consists of 182 segments, making the size of the

search space 2182 - comparable to the first test case. As in the previous benchmarks, we

remove a random number of segments and record the TCM and full EM descriptors. The

search space is further reduced by prohibiting disconnected designs, in which parts of the

structure are not linked to its edges by at least one wire segment.

Test problem 6 (TP6). Design and Integration of an ISM-band antenna on a CubeSAT

(Figure 3.4d). We want to modify a hollow cubic structure so that it acts as an antenna
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Figure 3.4: Unmodified structures used for testing the TCM objectives: (a) TP1: a square
plate; (b) TP2: a finely meshed square plate; (c) TP4: GPS antenna and the endoskeleton;
(d) TP5: CubeSAT structure.

at 2.45 GHz. The structure has the dimensions of 1u CubeSat, measuring 0.1 m on the

side. One face is chosen for optimization. The meshed structure has 1200 elements, and

the meshed face consists of 180 segments, similar to the previous test case. Disconnected

designs are not allowed. TP6 differs from the CubeSat optimization problem discussed in

section 3.3.6: while optimization objectives are the same in both problems, in section 3.3.6

full cubic structure is allowed to be modified to achieve desired performance.
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3.3.2.1 Simulation Results

Table 3.2 summarizes the Spearman coefficients for the six test problems. In all test cases,

the rank correlation is high between the real power P TCM
r predicted from the TCM and the

power Pr obtained from the full EM. The correlation approaches one for smaller problems

with fixed feed and is slightly degraded for the TP3 through TP6, for which the feed

placement is applied. Overall, the TCM estimates are well correlated with the full MoM

results and we can use them in the search procedure with good confidence.

The results for correlations of real power with the power values obtained from the

approximate matrix P TCM
app are inconsistent across the problems: the approximation can

give acceptable prediction for problems with fixed feed (test problems one and two) but

not when the excitation segment is varied (TP3, TP4, TP6). One of the reasons is that

the accuracy of the approximate procedure depends on how many neighbors the removed

segments possess. A completely random removal tends to create irregular designs, such

that many segments “lose” their neighbors and the entries in the initial MoM matrix are

no longer representative of the local fields. The accuracy of the power estimates varies from

segment to segment within the design as well as between the designs, depending on the

number and position of the removed segments. In the first test problems, the approximation

is relatively good because the feed is fixed at the corner of the plate and can lose at most one

direct neighbor. The feed chosen based on the TCM analysis might lie internally and have

up to six neighbors: the variance in the error is increased, which results in poor correlation

between the full EM and approximate values.

TP5 is a notable exception as the TCM approximations and full EM powers have the

ranking coefficient comparable to the fixed-feed problems. One of the possible explanations

is that in these problems, a large proportion of designs have relatively poor radiating

performance: 80% to 90% of the explored designs radiate less than 1 mW of power at 1 V

excitation.
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The correlation between the power values using the approximate matrix and the real

radiated power is insignificant, showing that the approximate modes cannot correctly rank

the candidate designs.

We also measure the ranking correlation between the inverse of the TCM power es-

timates and the VSWR. According to the lower bound equation derived in section 3.2.1,

VSWR is proportional to 1/Pr, when Pr is below the desired radiated power. In most cases,

more than 90% of the randomly generated designs accept less than 10 mW of power. This

is reflected in the high value of the ranking coefficient ρ(1/P TCM
r ,VSWR). This relation is

investigated further using the linear correlation coefficient.

Table 3.2: Rank coefficients for the six test problems. First column shows the percent of
all designs with VSWR less than 2. Column 3 is the rank coefficient between the power
calculated from full EM simulation Pr and from TCM P TCM

r . Column 4: rank coefficient
for the full EM power and TCM power estimates calculated from approximated impedance
matrices. Column 5: rank coefficient for the inverse of the TCM power and VSWR.

Problem % VSWR < 2 ρ(Pr, P
TCM
r ) ρ(Pr, P

TCM
app ) ρ(1/PTCM

r ,VSWR)

TP1: Small Plate 1.78% 0.98 0.75 0.98
TP2: Large Plate 1.5% 0.98 0.77 0.98

TP3: Small Plate + feed 10.1% 0.89 −0.22 0.87
TP4: Large Plate + feed 11.1% 0.93 −0.18 0.89
TP5: Endo GPS + feed 0.7% 0.84 0.76 0.81

TP6: Cube + feed 6.4% 0.86 −0.22 0.82

Test problem 1. We measure how accurately TCM can predict the input resistance of

the antenna using the formula derived in 3.2. If we consider all the samples, there is no

correlation between the resistance predicted from TCM and the real resistance. This lack

of correlation is due to an error in the imaginary power estimates: this error is lower for

some designs. To demonstrate this, we reassemble the array of designs and corresponding

descriptors in the order of increasing reactance of the antenna. Then we compute the

correlation using an increasing number of observations, i.e. first we compute the correlation

between resistance and its TCM estimate using two first designs, then three, four, etc.

Figure 3.5 shows how the correlation changes as we add more observations with higher
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input reactance. The three curves correspond to three relations: a) between the inverse of

the exact real power and the resistance (1/Pr vs. R); b) between the inverse of the real

power from TCM and the resistance (1/P TCM
r vs. R); and c) between the derived TCM

expression Pr

P 2
r +P

2
im

and R. There is a very strong positive correlation for small reactances

especially in the curves a) and b), a sharp transition when the reactance reaches 100 Ohm,

and an insignificant negative correlation toward the tail of the curve. The transition and the

negative part indicate poor ability of the TCM to predict the ranking of the designs with

high reactance: this behavior is expected since in these designs, power is predominantly

imaginary, and must be included in the calculations. However, the behavior of curves b)

and c) particularly at low reactances indicates that Pim is not improving the accuracy of the

estimates - on the contrary, for the designs with low reactance it degrades the correlation by

about 20% as compared to the estimates based on the real power alone. Correlation shows

that the inverse of Pr from TCM can differentiate very well between the candidates with

low input reactance and can be used in place of the power values from full EM simulation.

It should be noted that the “good” candidates with correlations above 0.95 constitute only

about 15% of the explored designs.

A high level of correlation is also achieved between the inverse of input resistance and

the radiated power (Figure 3.6) for the small ratios of Im(Z)/Re(Z) . The correlation

goes below 90% at 1.5, and 50% correlation is still observed for reactance values five times

the resistance. Significant positive correlation accounts for 56% of the evaluated candidate

designs.

Test problem 2. The obtained results are very similar to the results of the smaller plate

problem: the correlation between the exact power values and TCM estimates is very high

at 97%. The correlation between the resistance and the radiated power of the samples (in

the order of increasing Im(Z)/Re(Z) ) exceeds 50% for approximately 40% of the tested

solutions and becomes insignificant for the ratios above 6. The accuracy of TCM predictions
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Figure 3.5: TP1: Correlation and its significance for the observations in the order of in-
creasing reactance.

using the imaginary power is much lower than in the first test problem, showing significant

correlation with the resistances from full EM only for 4% of the candidate solutions.

Finally, we use this data to illustrate how radiated power is related to the VSWR: from

Figure 3.7 the inverse of the power is significantly correlated with VSWR only for poorly

matched antennas with VSWRs higher than four. For VSWRs below two, there is no linear

correlation between the variables, and the real power alone gives no information about

matching. Overall, increase in the radiated power indicates an improvement in matching

and could be applied as a fitness function in the initial stages of the search. To distinguish

between the good designs, the reactive component and the matched impedance must be

considered. However, we cannot rely on the estimates of the reactive power because their

accuracy is limited.

Test problem 3. Design of a small plate GPS antenna. Among 10,000 random evalu-
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Figure 3.6: TP1: Correlation for the observations in the order of increasing ratio of imagi-
nary and real parts of the impedance.

ations, 10% have V SWR below two which is 5.7 times more quality designs than in the

runs with the fixed feed. The feed placement algorithm works quite well - even though

the correlation between the variables in this experiment is significantly reduced. Thus, the

correlation between the power and its TCM estimates lessens to 0.83. Due to a much larger

proportion of poor designs (50%), whose radiated power is on the order of 10−6 W, the

numerical errors significantly affect the calculation accuracy; excluding the results with

VSWR above 100, the correlation is 0.95. The correlation between the inverse of the power

and the input resistance also goes down. This behavior is expected and corroborates the

observation from previous experiments that TCM predictions cannot make the fine distinc-

tion between good quality candidates. As the algorithm tends to explore better solutions

with comparable resistances around the desired value, their ranking grows more dependent

on the reactive power component.

The correlation results are summarized in Table 3.3. For all problems, the VSWR and

inverse of TCM power are linearly correlated for the designs with VSWR > 2, especially
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Figure 3.7: Correlation between the inverse of the real power and VSWR. The independent
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calculate the correlation.

Table 3.3: Correlation between various TCM objectives and VSWR on six test problems.
Rows 2 through 6 show the correlation coefficient between various functions of radiated
power Pr and VSWR. VSWR<2 denotes all designs with VSWR below 2. Rdes is the
desired input impedance to be matched. The correlation coefficient is not shown, where
the confidence in the calculated value is low. Values in parentheses show correlation for
truncated data, from which the designs with VSWRs > 100 are excluded.

Correlation coefficient TP1 TP2 TP3 TP4 TP5 TP6

(1/Pr,VSWR<2) 0.58 0.53 0.55 0.48 no 0.45
(1/Pr,VSWR>2) 0.99 0.83(0.95) 0.99 0.91(0.97) 0.53(0.94) 0.99

(abs(Pr − 0.5/Rdes),VSWR<2) 0.69 0.73 0.65 0.66 no 0.58
(abs(Pr − 0.5/Rdes),VSWR>2) 0.49 0.17 0.28 0.20 no 0.38

when the numerical error is reduced by excluding the designs with microscale power lev-

els (values in brackets). The VSWRs of matched designs (VSWRs below two) are better

correlated with the function f = abs(Pr − 1/(2Rdes)), where Rdes is the resistance of the

excitation source.
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3.3.3 Generation of New Designs

We compare how the way we generate designs affects the exploration of the search space.

In the previous simulations, the new designs were generated by removing randomly a

number of segments from the interior of the plates. We want to compare if on average, we

can achieve better designs by constraining the algorithm to create only contingent slots

of rectangular shapes. In this experiment, the same structure is used; however candidate

designs are created by randomly selecting four nodes of the plate. Each pair of nodes defines

the corners of a rectangular slot.

Among the 10, 000 generated designs, only 17 had VSWR less than three. Obviously,

regular slots do not increase the probability of generating a good design: yet, the regularity

of the resulting structures provides for much better correlation between the power inverse

and the VSWR, which exceeds 96% for all designs.

Also, the error between the estimates of power using approximate and exact MoM

matrix is significantly reduced: overall, the values show 90% correlation. However, the error

for well-matched candidates (VSWR < 3) is still very poor, and the approximate approach

fails to predict the correct ranking of the top found designs. This can explained by the

fact, that the accuracy of the approximate procedure depends on how many neighbors

the removed segments have. A completely random removal - as in the first experiment -

tends to create irregular designs, such that many segments “lose” their neighbors and the

entries in the initial MoM matrix are no longer representative of the local fields. With

regular slots, only segments on the boundary of the slot are affected (each losing at most

two neighbors out of six) and the error in matrix entries is acceptable, resulting in the

reasonable estimates of the power.

Analyzing the obtained designs, we notice that good antennas possess feeds with two

neighbors, i.e. the wire with the excitation source connects to only two wires. The neigh-

boring segment parallel to the feed segment and immediately adjacent and perpendicular
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to it are absent in 70% of good designs. This explains why the approximation procedure

always fails to rank the well matched designs.

3.3.4 Computational Time

In this section, we investigate how the computational time scales with the size of the

meshed structure and what computational advantage we can expect from using the TCM

versus the full EM simulation. We compare the runtime of three MATLAB procedures:

1. TCM-based analysis (20 eigenmodes): a generalized eigenvalue problem is solved

using MATLAB routine eigs(R,X, n,′ sm′). The power values are estimated for all

segments of the structure.

2. TCM-based analysis (40 eigenmodes): a generalized eigenvalue problem is solved

using MATLAB routine eigs(R,X, n,′ sm′). The power values are estimated for all

segments of the structure.

3. Solution of the MoM equations using the MATLAB inverse function Zinv = [Z]−1 =

inv(Z): matrix is inverted once at the beginning of the run and stored; it is then used

to calculate the current and the impedance at the excitation segment. The equation

I = ZinvV has to be solved for each new feed segment.

All procedures operate on the same matrices. The interaction matrices for the structures

of different sizes are assembled in NEC2C and represent antennas discussed above. Fig-

ure 3.8 shows the runtimes for each procedure performed on a 2.53 GHz Intel dual core

MacBookPro with 4 GB RAM. Each data point in the figure is the mean of hundred

computations. The three curves are plotted on a semilog scale and represent the three

approaches. The computational complexity of the three algorithms is evaluated elsewhere

to be O(n3) where n is the dimension of the matrix, and we can see this trend in all three

curves. However, the rate of increase of the TCM curves is significantly lower, because the

TCM approach requires a limited number of modes (full eigenanalysis can produce up to
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Figure 3.8: Execution time of full EM and TCM-based procedures: (a) Time to compute
the power at one feed position; (b) Time to compute the power at all feed positions.

n− 1 eigenmodes) to compute the power estimates.

Because the TCM-based approach evaluates all segments in one run, its computational

advantage becomes significant as the number of tested feed positions increases. To show

how this affects the cross-over point, we investigate the two limiting cases - the worst and

best case scenarios for the TCM. In the first one, only one evaluation is required (Figure

3.8a). In the second approach, all segments must be evaluated to obtain impedance values

(Figure 3.8b).

From Figure 3.8a, the TCM using 20 modes starts to outperform the full MoM proce-

dure for structures with 1000 elements or more even when one feed position is considered.

For structures larger than 3000, the TCM procedure runs three times faster. Depending

on the number of tested feed positions, the cross-over point changes: as the number is

increased, the cross-over shifts to lower n hitting a limit around 500 segments (Figure

3.8b).

It should be noted that the speed up is achieved at the cost of accuracy. As shown

in previous sections, due to the numerical errors TCM-based power estimates can give a

rough approximation for the matching at the feed segment, while the other two procedures
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provide the impedance with accuracy limited primarily by the fidelity of the EM model.

To summarize, maximizing the power accepted by the antenna leads to more efficient

and better matched radiators. We have demonstrated that for the considered design prob-

lems, power values are correlated with the VSWR - particularly for the designs of inter-

mediate quality.

TCM provides estimates of the radiated power that are strongly correlated with the

power values from full EM calculation and can be used for fitness assignment in an opti-

mization procedure. The use of TCM estimates speeds up fitness evaluation for larger and

finer meshed structures. In addition, TCM selects the most promising feed position for each

structure, thus improving the proportion of good designs among the explored candidates.

Yet, the estimates are not accurate enough to rank the quality of the best matched designs,

and full EM optimization should be run to fine tune them. The eigenanalysis performed on

the approximate interaction matrix cannot provide useful information for the optimization

procedure.

3.3.5 Optimization of the Endoskeleton

The endoskeleton chassis can be used to enhance the performance of miniaturized mobile

antennas. The wire antenna we investigated in the previous section represented a part of

the endoskeleton. In the real design, it is electrically connected to a large bottom plate.

Figure 3.9 shows the mesh grid model of the endoskeleton and the first five modes as

the function of frequency. The first five eigenmodes are all significant for the radiation, as

the magnitudes of the eigenvalues are less than 5.

The endoskeleton is a relatively large structure and produces multiple radiating modes

in the band of interest. The interplay of these modes results in the large reactive component

of the power: the excitation by a coaxial probe at the point with the highest real power

does not result in a good performance as the antenna’s impedance is dominated by the
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Figure 3.9: (a) Mesh grid model of the endoskeleton; (b) Characteristic modes of the
endoskeleton.

inductive component. We need to modify the structure - by introducing slots or adding

material - so that the desired radiating modes are enhanced and inductive and capacitive

effects are balanced out, creating the resonance.

The capacitive effect can be created by adding a metallic plate on top of the module.

We define a metallic patch in the plane parallel to the endo-structure at the height of

0.5 mm and apply a greedy hill climber to optimize its shape. The additional structure is

modeled as a wire grid, whose elements are aligned with the elements on the bottom. This

new grid is represented as a binary vector, in which 1 denotes the presence of the mesh

element, while 0 indicates its absence in the design.

We analyze the structure in the GPS band (1575 MHz), at which it is challenging to

design an antenna fitting into a single phone module. From the power distribution graphs,

the third mode is the highest contributor to the radiated power. The eigencurrent of this

mode peaks at the upper edge of the endoskeleton and therefore, we choose this area for

optimization.

We apply the greedy hill climber, implemented in MATLAB, to optimize the shape of
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the additional structure. The interaction matrix is evaluated in the external EM simulator

NEC2C and imported into MATLAB for eigenvalue analysis. To speed up fitness evalua-

tion, we apply an approximation procedure [38]: NEC2C is not run after each modification

of the structure (e.g., in each iteration). Initially we obtain an interaction matrix with

all the segments present. During optimization, when removing an element, we remove the

corresponding rows and columns in the initial matrix. The approximate matrix is used to

find the eigenvalues of the new structure and calculate the objective function. The error is

tolerable as long as the changes in the structure and the changes in the eigenvalues due to

the modification are small. Once we see a big relative improvement (or no improvement for

many iterations), we fix the changes and rerun the full EM simulation to obtain the exact so-

lution. Then the search continues with the exact matrix as a starting point. On average, the

full EM analysis is run once every hundred iterations. The minimization objective/fitness

function is based on the conditions derived in section 2.2: F = abs(Pr−1/(2Rx)). The goal

is to increase the real power, keeping the reactive component small.

The search procedure starts with all segments present. In each iteration, a subset of

segments is removed to generate a new design. The hill climber accepts a change only if

it improves the objective function. The search terminates after 400 generations or when

no improvement occurs for several generations. After the algorithm terminates, the power

analysis is applied to find the optimal feed position and the full EM simulation is run to

characterize input impedance and radiation pattern of the structure.

One of the optimized designs is shown in Figure 3.10a - 3.10b : the patch has several

thin slots and is electrically connected to the endoskeleton on three sides; feed location is

highlighted in red. The structure becomes resonant around 1.575 GHz, achieving a VSWR

of 1.4 (Figure 3.10d). Its main radiation beam is directed away from the plane of the

antenna and has a relatively broad beamwidth of 60 degrees (Figure 3.10c).

Figure 3.11a - 3.11b shows another design obtained by the hill climber. In this run, the
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Figure 3.10: Design 1: Endoskeleton modified to radiate at 1575 MHz. (a) Endoskeleton
with an optimized patch; (b) Patch geometry; (c) Radiation pattern at 1575 MHz (dimen-
sionless); (d) VSWR as a function of frequency.

algorithm started by removing all additional elements and created new designs by adding

the segments. The resulting structure is more compact but has performance characteristics

similar to Design 1 (Figure 3.11c - 3.11d).

3.3.6 Feed Placement and Optimization of the Cubic Structure

Another application area is the integration of an antenna with a 1u CubeSat. The simplified

model of the CubeSat is a cubic grid model measuring 0.1 m on each side. The objectives

are the same as in problem TP6 discussed in section 3.3.2. However, in this problem full
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Figure 3.11: Design 2: Endoskeleton modified to radiate at 1575 MHz. (a) Endoskeleton
with an optimized patch; (b) Patch geometry; (c) Radiation pattern at 1575 MHz (dimen-
sionless). Due to symmetry with respect to XY plane, only the top part of the pattern is
shown; (d) VSWR as a function of frequency.

cubic structure is chosen for optimization, rather than just one face of a cube as in TP6. We

apply the same optimization routine as in section 3.3.5 to modify the structure at 2.45 GHz.

The algorithm gives a good result within 100 iterations, performing only two calls to the

full EM simulation. The obtained design and the VSWR plot is shown in Figure 3.12. The

optimized cube structure shows a broad impedance bandwidth with VSWR values below

3 between 2 and 3 GHz. Note the VSWR peaks at two frequencies around 2.1 and 2.55

GHz. The discontinuities occur due to the numerical instability in the MoM simulation,

which is associated with the existence of internally resonant waveguide modes.
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Figure 3.12: Cube structure modified to radiate at 2.45 GHz: (a) Optimized cube geometry;
(b) VSWR as a function of frequency for the optimized design.

3.4 Summary

In this section, we explored the advantages and limitations of the TCM for guiding the

antenna optimization. We derived an algorithm for placing the excitation source on the

structure and verified its performance on a number of representative antennas. Maximizing

the radiated power is a suitable objective in the initial stages of the optimization procedure.

The power is strongly correlated with the inverse of the antenna’s input resistance and is a

good measure of how well matched the antenna is and how much power is transformed into

the electromagnetic waves. Finally, we successfully applied the proposed algorithm to two

real-world problems: integration of a GPS antenna with the chassis of the mobile phone

and integration of an antenna with the metallic CubeSat structure.
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Chapter 4

Multi-objective Algorithms for

Coupled Optimization

4.1 Coupled Electromagnetic and Mechanical Opti-

mization

The disciplines of mechanical and electromagnetic (EM) optimization have developed along

different paths. In the mechanical domain, classical optimization methods dominate. Con-

vex formulations of the structural optimization problems exist, which can be efficiently

solved using derived optimality criteria or mathematical programming [74]. Continuous

topology optimization with thousands of variables has been demonstrated [5], [6], [4]. In

contrast, optimization in the EM domain is usually performed using stochastic population-

based algorithms [39], [13], [41], [49], [38]. Because of the inherent complexity and non-

linearity of the EM landscapes, research in the field of antenna optimization has focused on

defining suitable algorithmic parameters and representations rather than rigorous mathe-

matical formulations of the optimization problems.

For antenna design and optimization, the coupling between the EM and mechanical do-

mains is a one-way coupling: while the EM performance strongly depends on the changes

in shape due to mechanical impact, structural properties are not affected by the EM. De-

pending on the ultimate application, we can distinguish between two scenarios: in one case,

the dynamical interactions between the domains are significant such that the EM perfor-

mance depends on the results of the mechanical analysis. Both objectives are functions of

the design and state variables. An example would be a dipole antenna whose main beam
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is shifted when the antenna is deflected under load. If we wanted to find a sequence of

applied loads that would steer the radiation beam in certain directions by deflecting the

dipole, then we will need to run both mechanical and EM analysis to evaluate each of the

candidate solution vectors. Another example is the aberration in the focus of the reflector

when its surface is deformed because of the thermal gradients or snow. In some sensing

applications, strong interactions between the domains are desired: for example, when the

changes in an antenna’s performance are used to measure structural deformations or when

mechanical reconfiguration is used to obtain specific EM performance. In such cases, the

evaluation of the EM objective requires the output of the mechanical analysis, and full

decoupling of the optimization procedure between the domains is not possible.

In the second case, the EM properties are independent of the mechanical performance

unless there is catastrophic failure resulting in the degradation or loss of communica-

tion. For example, an antenna integrated with the spacecraft can be subjected to signifi-

cant vibrational loads during the launch and can also be mechanically damaged by space

junk/meteorites when in orbit. In this case, the domains are linked only through the de-

sign variables. The antenna can be optimized for EM performance, and its structure can

be reinforced to be mechanically robust.

In this chapter, we focus on the second problem type, in which EM and mechanical

domains are linked statically by the design variables. In the mechanical domain, we consider

linear elastic and isotropic materials. Objectives in structural optimization are continuous

functions of the design variables and lend themselves well to solution by gradient-based

methods. Calculation of the mechanical properties is significantly faster than simulation of

the EM response. This is accounted for in the design of the multi-objective optimization

engine in section 4.3.

In this chapter, we investigate how to leverage the domain-specific methods and so-

lution representations in coupled optimization of antennas. We develop a multi-objective

optimization framework based on the local search in each domain. In this procedure, the

local optima in each objective are modified to create a new population of candidate designs.

Local optimization becomes the primary way of exploring and exploiting the search space.

We evaluate the proposed technique on a number of benchmark problems and compare its

performance to the performance of leading MOEAs.

We start the chapter by illustrating the coupling for a load-bearing dipole example. In

section 4.2, we define the optimization benchmarks with objectives and constraints in both

domains and plot the corresponding fitness landscapes and Pareto fronts as a function of
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design variables. In section 4.3, we describe the implementation of the proposed multi-

objective algorithm with local search (MOLS). In section 4.4, we present and discuss the

results of extensive tests of MOAs on benchmark problems.

4.2 Benchmark Problems and Their Solutions

Table 4.1 summarizes the properties of the four benchmarks problems investogated in this

section. The size of the search space is calculated from the box constraints on the design

variables assuming precision of 10−6 in each variable. Benchmarks B1 through B4 are

presented in sections 4.2.2, 4.2.3, 4.2.4, and 4.2.5 correspondingly.

Table 4.1: Characteristics for four benchmarks B1 - B4.

Mechanical EM Variables Objectives Constraints Search space

B1 cantilever beam monopole over 1 displacement box 11, 633
ground VSWR

B2 two-bar truss monopole over 2 displacement box 2.48× 107

ground mass stress
gain inverse

B3 two-bar truss monopole over 3 displacement box 5.82× 1010

ground mass stress
gain inverse

B4 ten-bar truss radiating 10 compliance box 8.69× 1025

structure mass stress
first eigenmode statical

determinancy

4.2.1 Load-bearing Dipole Antenna

We select the deflection of a dipole antenna under load as a benchmark because it combines

the basic problem characteristics in both domains. In the mechanical domain, the antenna

represents a cantilever beam subjected to uniform or point loading. In the EM domain, it

is a dipole placed over ground and fed at its base with a voltage source.

First, let us illustrate how the pattern of the horizontal antenna is affected by the

deformation. Figure 4.1 shows the representation of the problem in the mechanical and

EM domains. From the structural perspective, the antenna is represented as a cantilever

beam fixed at its end. The uniform loading is applied along the length of the antenna,

resulting in the deflection of the structure. With the assumption of a slender beam (i.e.

the radius of the beam cross-section is less than 1/10 of its length), the deformation z can

68



(a) (b) (c)

Figure 4.1: Monopole antenna under load: (a) definition of the problem in the EM domain,
monopole over infinite ground; (b) in the mechanical domain the antenna is represented as
a uniformly loaded cantilever beam; (c) beam deflected under load.

be expressed analytically as a function of position y on the beam:

z(y) = − w

24EI
(y4 − 4Ly3 + 6L2y2)

where z is the vertical deflection, L is the total length of the undeflected beam, E is the

Young’s modulus, and I is the area moment of inertia. For the circular cross-section with

radius r, Iy = πr4/4 [20]. In the EM domain, the beam is a monopole antenna placed over

an infinite ground plane. We consider an antenna made of ABS plastic and covered by a

perfectly conductive layer. The plastic material is lighter and less rigid, and as a result

larger deformations occur before the material breaks. We compare the VSWR and the

change in the radiation patterns of the undeflected and deflected antenna.The performance

is summarized in Figure 4.2.

The change in VSWR can be completely explained by the elongation of the antenna

under the load. As the material bends, the effective length of the dipole is increased,

shifting the resonance (VSWR minima) to lower frequencies. Because of the bend, the main

radiation beam splits into multiple lobes, and the symmetry of the pattern is destroyed.

Main beam in the plane of deflection is depressed, with the gain decreasing from 4.5 to

about 2.5. Power flow in the direction of the deflection and parallel to the ground increases

by a factor of 4 (Figure 4.2b and 4.2c).

Suppose we want to optimize the matching of the monopole and reduce the effect of

the loading on its performance. In other words, we want to find the length and radius

of the monopole such that the maximum deflection and VSWR are minimized. There is

an additional mechanical constraint on the maximum bending stress σmax at the support:

it should not exceed the yield stress of the material so that the deformation does not
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(a)

(b) (c)

Figure 4.2: Change in EM Performance due to the uniform loading: (a) VSWR of the
deflected and undeflected monopole antenna. Radiation pattern of the (b) undeflected and
(c) deflected antenna.
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become irreversible. The deflection is proportional to the ratio of (L/r)4. The VSWR is

changing periodically as a function of L/λ, with the resonances occurring in approximately

λ/2 intervals. The increase in radius tends to broaden the VSWR minima, decreasing the

effects of the deformation; however VSWR is much less sensitive to the changes in radius

than to the changes in length.

The optimization problem is:

minimize zmax(L, r)

V SWR(L, r)

subject to σmax < σyield

Lmin ≤ L ≤ Lmax

rmin ≤ r ≤ rmax

where

zmax =
wL4

8EI
=

w

2Eπ
(
L

r
)4

σmax =
wLr

2Iy
=

2w

π

L

r3

The mechanical objective and constraints are convex functions of the design variables.

For r > 0 and L > 0, both the deflection and the stress are monotonically increasing

functions of the variables x1 = 1/r and x2 = L. The optimal solution to the mechanical

problem is obtained at (Lmin, rmax), i.e. for the shortest and thickest beam which minimizes

both the deformation and the stress. The EM objective is the one that determines the size

of the Pareto front which consists of the designs and resultant objective values close to the

constraint boundaries and near the minima of the VSWR.

4.2.2 Benchmark B1: Cantilever Beam Optimization

To illustrate this, we consider a fixed diameter beam and plot the values of maximal

deformation and VSWR as a function of L. Figure 4.3 shows the two objectives as a function

of the beam’s length (blue points) and the resultant Pareto optimal points highlighted in

green.

This plot underscores several properties of the problem: first, the Pareto optimal set is

discontinuous in the design space. It consists of two distinct regions: one near the bound-
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Figure 4.3: B1: Illustration of the Pareto optimal solutions for the cantilever beam problem:
VSWR as a function of beam’s length L normalized to the wavelength (bottom). Maximal
deflection of the beam (top).
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ary starting with Lmin = 0.1λ that contains solutions non-dominated in the mechanical

objectives; the second region - near the second VSWR minimum - is dominated by the

first set of designs in deflection but is non-dominated by it in VSWR. While locating the

first region of non-dominated solutions should be easy for any multi-objective algorithm,

finding the two individual champions toward the middle of the search space represents a

challenge. The candidate solutions that might be evolved into the desired Pareto designs

in the second region are strongly dominated by multiple solutions with smaller lengths. As

a result, the algorithm tends to preserve and exploit the candidates at the lower boundary

of the search space, eliminating the regions with the best VSWR.

Another observation is that in this problem, running domain optimizers independently

of each other and identifying local optima in both of them should yield a good approxima-

tion of the Pareto front. In general, it is desirable to decouple the optimization process in

separate domains as much as possible, so that each area could benefit from its most efficient

techniques, algorithm parameters and solution representations. A synchronization engine

should monitor the search progress in each domain, synchronize the candidate populations

and compute the dominance relations in some suitable intervals of time. Such distributed

structure is also very amenable to parallelization. If fitness evaluation is much faster in a

particular domain, then it should not wait for other simulators to finish before processing

the next batch of candidate solutions. The search in each separate domain should ensure

diversity of the population: the goal is not to obtain a globally optimal design but rather

to identify many local optima in various areas of the design space.

4.2.3 Benchmark B2: Geometry Optimization of a Two-bar Truss

The two-bar truss structure is one of the mechanical problems that has been widely used

as a benchmark in structural multicriteria optimization (Figure 4.4). In the mechanical

domain, this two-dimensional structure is optimized in two objectives: minimizing the

weight and minimizing the displacement at node 3 under the specific load conditions [18],

[12], [30], [22]. Both objectives can be expressed as a function of the applied load, material

properties and three design variables (width, height, and bar radius).

Here we extend this problem into the EM domain. The two-bar truss represents a

horizontal monopole antenna above the infinite ground plane fed at its end with a gap

voltage source. The antenna should resonate at 2.45 GHz, providing the best impedance

match to 50 Ω and high gain in the vertical direction at the desired frequency. The third
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(a) (b)

Figure 4.4: B2: Problem definition in the mechanical and EM domains. (a) Truss loaded
at the central node. (b) Corresponding antenna problem, i.e. monopole over ground.

objective, maximization of the realized gain, is added to the initial optimization problem.

Unlike the mechanical domain, this objective must be evaluated numerically, using NEC2C,

which incurs significant computational cost.

The first variant of the two-bar truss problem can be used to test algorithm’s ability

to optimize the topology of the structure. In this problem, the design variables are the

coordinates of the central node (xd, yd). The position of the corner nodes (nodes 1 and

2 in Figure 4.4), the radius of the bars and the height above ground are fixed during

the optimization. The coordinates are varied between 0 and λ/2. The objectives in the

mechanical domain are displacement at the central node and the mass of the truss. In

the EM domain, the objective is to maximize the realized gain (RG) along the y-axis,

i.e., vertically. To formulate the problem as a minimization problem, the EM objective is

calculated as the inverse of the gain:

minimize f1 = displacement(xd, yd)

f2 = mass(xd, yd)

f3 = 1/RG(xd, yd)

subject to σmax < σall

0 < xd ≤ λ/2

0 < yd ≤ λ/2

Figure 4.5a–4.5c depicts the search space of the test problem: displacement, mass and

realized gain are shown as a function of the coordinates. Figure 4.5d shows the Pareto-
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Figure 4.5: B2: The search space and the Pareto optimal designs for the various truss
topologies. The three objectives are shown as a function of the design variables, the central
node’s coordinates (xd, yd): (a) displacement at the central node, (b) mass of the truss; (c)
realized gain in dB to be maximized. (d) Pareto-optimal points in the decision space: the
set consists of six separate regions numbered clockwise as Reg1−Reg6.

optimal designs. There are several distinct areas of non-dominated solutions. The two

designs with the smallest yd values correspond to the local minima of mass and displacement

functions, which occur on the boundaries of the search space; antennas with high (xd, yd)

are located near the global maximum of the gain function. The designs in the middle are

dominated by the top designs in gain but not in mass or displacement; on the other hand,

the bottom designs dominate the solutions in the middle in mass and displacement but

show a lower gain.

The fitness landscapes in both mechanical objectives are relatively flat: mass changes

75



rapidly as a function of x but slowly along y, while the displacement function has small gra-

dient along both directions. Mass function reaches its minimum at the point (0.005, 0.005)

but since this design does not satisfy the stress constraints, it is not included in the Pareto

set.

Several aspects of this problem represent a challenge to the multi-objective algorithm.

First, there exist six isolated solution regions in the Pareto set. Smaller regions Reg1,Reg5

and Reg6 consist of the designs that are non-dominated in the mass objective. The con-

straints become active on the boundary of the search space where xd has the smallest

value. In the vicinity of the points where the stress in the bars exceeds the allowed value

we observe the spikes in the displacement function (Figure 4.5a).

It should be noted that the mechanical objectives are symmetric with respect to y −
ymax/2 axis. Because of the symmetry of the problem in the mechanical domain, the Pareto

regions occur on both sides of the symmetry axis, e.g. Reg1 and Reg6, Reg2 and Reg4

shown in Figure 4.5d. In the EM domain, the symmetry is not preserved because of the feed

position, which results in the Pareto-optimal design regions of varying size and density.

It should be beneficial to find the locally-optimal designs in each of the objectives

and explore the space around these local optima in other domains. This will help with

identifying the solutions of intermediate quality that represent best trade-offs between the

objectives.

4.2.4 Benchmark B3: Sizing Optimization of a Two-bar Truss

The second variant of this problem (the structural part) has been commonly used to

benchmark the performance of the multi-objective algorithms. The problem is formulated

as follows. Given a horizontal monopole antenna in Figure 4.6 loaded with weight P and

given its material properties (density ρ, Young’s modulus E, yield stress σall, and electric

conductivity σ), determine h, w, and wire radius r, such that the antenna has minimum

weight, experiences minimum displacement at node 3, can withstand stresses up to the

yield stress and has the maximum possible realized gain perpendicularly to the ground

plane:
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(a) (b)

Figure 4.6: B3: Problem definition in the mechanical and EM domains. (a) Illustrates the
two-bar truss under load and defines the design variables. (b) The corresponding antenna
problem - monopole over an infinite ground plane.

minimize f1 = 2
√
w2 + h2πr2ρ

f2 =
(w2 + h2)3/2P

2
√

2Eπr2h2

f3 = 1/RG(w, h, r)

subject to σmax < σall

hmin ≤ h ≤ hmax

wmin ≤ w ≤ wmax

rmin ≤ r ≤ rmax

where f1 is the mass of the structure, f2 is the displacement at node 3, f3 is the realized

gain. σmax denotes the maximum stress in the bars caused by the applied load and should

not exceed the material-specific yield stress σall:

σmax =
P

2
√

2

(w + h)
√
w2 + h2

whπr2

The Pareto-optimal solutions are presented in Figure 4.7b. For clarity, the data is

plotted in 2D, with the the color-coded EM objective and the mechanical objectives along

the x and y-axis. The gray markers indicate all feasible mechanical solutions. The scattered

data with the colored markers are the non-dominated solutions with the color corresponding

to a certain RG value. Most optimal solutions lie on or close to the boundaries of the feasible

region. The Pareto-optimal front consists of several distinct regions. In the design space
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(Figure 4.7a), each region corresponds to a (w, h) pair and is continuous in the value of the

wire radius r. The stress constraints become active for small wire radii, making solutions

on the boundaries of these regions infeasible. In the design space, it results in several small

disconnected sets of solutions that are difficult to locate. The multi-objective algorithm

should be able to discover the various regions on the discontinuous and non-convex Pareto

front.
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Figure 4.7: B3: Pareto solutions for the two-bar truss. (a) Pareto solutions in the decision
space. (b) Feasible points in the objective space and the Pareto-optimal points with the
color corresponding to a certain RG value.
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4.2.5 Benchmark B4: Topology Optimization of a Ten-bar Truss

In B4, we consider topology optimization of a ten-bar truss structure. In classical and EA

literature, the combinatorial problem of truss topology design is reformulated as a sizing

optimization problem using the ground structure approach [4]. The goal of this approach is

to find the optimal subset of truss members defined in the ground structure, which consists

of a set of fixed nodes and a set of all allowable connectivities between them. The cross-

sectional areas of the bars used as design variables are varied continuously between some

maximal value and zero so that the bars can be made vanishingly small and eventually

removed from the design. Figure 4.8a shows the loaded ground structure used in B4.

In mechanical domain, we want to minimize structure’s mass and deflection from the

unloaded position subject to stress constraints in the members. In the EM domain, we seek

to find the topology with the optimal radiating properties at 100 MHz as described by the

magnitude of the eigenvalue of the first characteristic mode. Since the largest dimension of

the structure is comparable to the wavelength (approximately λ/5), the ground structure

already possesses a relatively efficient first eigenmode with eigenvalue |λ1| = 6. Besides

optimizing the radiating properties, we are interested in studying their sensitivity to the

bar’s radii. Determining how much improvement can be achieved by varying the bar’s radii

of the antenna structure is also of interest in solving this MOP.

The MOP is defined as follows:

minimize
A

f1 = u(A)TF

f2 = ρATL

f3 = λ1(A)

subject to
∑
i

ailiKiu = F

σmax < σall

− amax ≤ ai ≤ amax

where i = 1 . . . 10

where A = [a1 . . . ai . . . a10]
T is the column vector of the bar areas; f1 is the compliance of

the truss calculated as a product of the displacement vector u and the vector of nodal loads

F; it expresses the amount of work done by the external forces to deform the structure. The

second objective f2 is the mass of the truss, with L = [l1 . . . li . . . l10]Tdenoting the vector
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(a)

(b)

Figure 4.8: Definition of the problem B4 in the mechanical and EM domains. (a) Ground
structure - the full ten-bar truss - loaded with the same load P at the two bottom nodes.
(b) In the EM domain the metallic structure of the truss is considered a radiator and its
properties are evaluated using the theory of characteristic modes. Optimization variables
are the cross-sectional areas of the bars.

of bar lengths. λ1 is the eigenvalue corresponding to the first radiating mode calculated

from the theory of characteristic modes (TCM) at 100 MHz.

The first constraint function describes the conditions of static equilibrium of the truss.

ailiKi is the element stiffness matrix for bar element number i; the sum of these matrices

determines the global stiffness matrix K, which is positive definite for feasible trusses

(i.e. structures that are not mechanisms or moving rigid bodies under the specified load).

Then the displacements are calculated as u = K−1F and removed from the problem.

In our implementation this is always the case, as the infeasible structures are identified

and assigned a very large score before the mechanical analysis is run. Note that for the

given feasible topology, compliance is a convex function of the cross-section areas and the

existence of solutions for minimizing the compliance is guaranteed [74].

The other constraints restrict the maximal stress σmax in the truss members and impose

the bounds on the cross-sectional areas. The design variables are allowed to take on negative

values to enable the changes in the truss topology. When the area of the bar falls below the

specified minimum value amin = 1e−7, the bar is removed from the structure for calculation

of EM and mechanical objectives. The use of negative areas during initialization ensures

the diversity of topologies in the starting population.

The definition of the structural problem largely follows the formulation by Deb [22]

though the dimensions of the ground structure and the amount of applied load are different.

Our definition also differs in the choice of one of the mechanical objectives - Deb minimizes

the displacement rather than the compliance of the truss. However, the two formulations
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are equivalent and we expect to obtain similar topologies in the mechanical domain as in

[22].

The Pareto solutions obtained in multiple runs of the optimization algorithms on B4

are shown in Figure 4.9. Figure 4.9a summarizes the topologies present in the found Pareto

set; the color of the points in Figure 4.9b maps the objective values to the corresponding

topologies. We observe that the Pareto front consists of several continuous regions, each

of which corresponds to a different topology. Within such a region, the designs differ in

the values of their cross-sectional areas. The stress constraints can further split a single-

topology region into multiple segments, as in the case of topology 4 (brown points in

Figure 4.9b below the green crosses). The designs with topology 4 lie on the constraint

boundaries, as do some of the designs with a neighboring topology 14 (gray colored circles)

which differs from topology 4 in only one central member; the introduction of a thin

vertical member strengthens the structure, such that the constraint is no longer violated.

We observe multiple design pairings of this type where the neighboring topology fills the

gap in the Pareto front created by the stress constraints (topology 4 and 14, 2 and 10, 5

and 7, etc.). In general, the regions of neighboring and similar topologies overlap.

To validate our results, we compare the trade-offs in the mechanical objectives to the

solution of the ten-bar problem by NSGA-II presented in [21]. Deb’s Pareto set contained

only two optimal topologies that are also present in our solution, namely topology 2 and

7. The overall shape of the trade-off curve between the mechanical objectives (compliance

vs. mass) also matches well with Deb’s findings. However, there are some important de-

viations in our results: our multi-objective study finds a more diverse set of topologies in

the mechanical domain. Along the Pareto front, designs with topology 2 (green crosses in

Figure 4.9b) that prevail among the solutions non-dominated in mechanical objectives are

competing with topology 10. Though direct comparison of the results is not possible due

to differences in the problem definition, we note that Pareto set in Deb’s study is missing

the ground structure, which has the largest mass but cannot be dominated by any other

design in the displacement (or compliance) objective. In Figure 4.9, this region shows as a

set of blue stars on the boundary of the Pareto surface where lowest compliance is reached.

Problem B4 measures how well the performance scales with the number of design vari-

ables. Increased search space exacerbates the difficulties encountered in previous bench-

marks: the discontinuous, non-convex Pareto surface consists of multiple competing regions

with the various topologies competing within each region. An important metric will be the

number of optimal topologies that the algorithms will be able to locate in a single run.
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Topology 1 Topology 2 Topology 3 Topology 4

Topology 5 Topology 6 Topology 7 Topology 8

Topology 9 Topology 10 Topology 11 Topology 12

Topology 13 Topology 14 Topology 15 Topology 16

Topology 17 Topology 18 Topology 19

(a)

(b)

Figure 4.9: Pareto solutions for the ten-bar truss problem B4. (a) Pareto-optimal truss
topologies. (b) Pareto surface with the three minimization objectives on the axis. The
color of the points matches to the corresponding topologies in (a).
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4.3 Multi-objective Optimization with Local Search

We propose a new multi-objective optimization algorithm with local search (MOLS) that

starts by obtaining the local optima in each objective and then proceeds by exploring the

space between the obtained solutions. Locally optimal solutions and their neighborhoods

in individual disciplines are likely to be part of the Pareto front. Attaining these optima

requires evaluation of the candidates in only one of the objectives; for local search, gradient-

based methods can be applied which usually require small number of iterations to converge

especially when analytical expressions for gradients are available, e.g., in the mechanical

domain. In the initial stage of the search, the optimization in individual domains can be

run in parallel, independently of each other. In this way, domain-specific techniques can

be used to achieve best results.

The pseudocode for MOLS is given on page 85; in the following discussion, line numbers

refer the reader to the corresponding operation in the pseudocode. In MOLS, optimization

in each domain starts with the same population of solutions (l.6). Each individual is opti-

mized in each objective, and as a result, the size of the current population CP increases

from N to mN , where m is the number of objectives (ll.7-9). The initial population size N

is chosen to be small, and the algorithm relies on the mutation for maintaining diversity

in the first iterations. Local search also helps generate a more diverse population, because

local optimization of the same candidate solution xi in each objective usually leads to local

optima spread out in the search space.

Objectives of the remaining solutions are evaluated in each domain (l.10), and a dom-

inance sort is run to eliminate the dominated solutions (l.11). The current non-dominated

set is used to generate the population for the next iteration: first, triangulation is created

over the set of non-dominated solutions (l.13); the edges in the triangulation define the

neighborhood relation for each design point. The midpoints of the edges define the next

population of solutions (l.15). Some of them are added directly to the offspring population

(l.16). Points that belong to longer edges undergo mutation and are passed as starting

points to the local search (ll.17-19). The shortest edges are excluded from mating (l.14).

The algorithm iterates through these steps until the specified number of evaluations is

reached.

The approach can be viewed as a special case of the problem decomposition with the

number of subproblems equal to the number of objectives. The subproblem’s scalarization

functions are the objective functions. Like many memetic algorithms, MOLS can result in

83



a poor distribution of solutions along the Pareto front. Because local search is implemented

as a deterministic procedure, the algorithm can get stuck when offspring do not produce

any new solutions in the Pareto set. In the crowded regions of the search space, local

search starting from multiple points will terminate at the same local optimum, wasting

computational time and ignoring the trade-off solutions in its vicinity. To avoid algorithm’s

premature convergence and preserve diversity, care must be taken in the generation and

selection of the offspring population for the local search. The following modified operators

are used:

1) The depth of the local search in each objective is varied between iterations. As the

search proceeds, we decrease the number of function evaluations during the local step,

forcing the algorithm to terminate at a sub-optimal solution, which then competes with

the others for its place in the Pareto set. Following the descent directions in the vicinity

of the local optimum in a given objective, local search explores solutions along the slopes

that can be non-dominated in other objectives. Toward the end of the run, when the

candidate solutions have congregated in the most promising areas of the search space, local

search becomes virtually inactive. New candidate solutions are added primarily between

the neighboring designs, with the neighborhood relation defined by the triangulation of the

non-dominated designs.

2) Small edges: the design points that lie very close to each other are excluded from

producing offspring. Duplicate points are removed during triangulation.

3) Diversity is also maintained by the mutation operator. We add Gaussian noise with

zero mean and standard deviation equal to 10% of the upper bound in the corresponding

dimension. The candidates chosen for the local search belong to the longest edges in the

triangulation (l.17).

4) At each iteration, the offspring that are not sent to the local search procedure are

selected randomly from the current population (l.16 on page 85). This randomness helps

preserve diversity in all search stages, because it adds the midpoints of longer edges directly

into the offspring population. As the search progresses, the density of solutions around the

locally optimal areas increases, the proportion of longer edges connecting these regions

and the probability of their selection decreases. However, it does not go to zero and design

points away from the rigorously exploited regions are occasionally introduced. Random

selection also ensures a more uniform distribution of candidates in the dense Pareto areas.

In MOLS, several parameters control the balance between the local and global search:
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Algorithm 1 Multi-objective Optimization with Local Search (MOLS)

Assumptions: effective local search in each objective that can handle constraints;
triangulation procedure Tri for computing the neighborhood relation
Notations: OP is the offspring population; CP is the current population; P is the
non-dominated population that contains the non-dominated solutions found so far; xi
is the vector of continuous or discrete design variables
Inputs: objective functions F = [F1, F2, . . . Fj . . . Fm] , termination condition, the size
of initial population N , the size of the population used in the local search Nl, the size
of the offspring population No, minimum allowed distance between neighboring designs
Lmin, mutation operator and probability
Outputs: Non-dominated set P and non-dominated front PF

5:

Initialize population CP = [x1, x2 . . . xN ] uniformly at random
Set Xl = CP , P = ∅ and OP = ∅
Y = performLocalSearch(Xl)
CP = Y

10: Evaluate objectives F (CP )
Compute the non-dominated set P ⊂ CP
while TERMINATION CRITERIA not met do

Compute the triangulation Tri on P and the lengths of edges L = ||Tri.edgek||
Sort and reduce the set of edges inds = {i|Li ≥ Li+1 ≥ Lmin}

15: For j = 1 . . . |inds|, compute the edge midpoints Mj = (Tri.Xj1 + Tri.Xj2)/2
Randomly select No midpoints to fill OP ⊂M
Select Nl midpoints of the longest edges for local search Xl ⊂M
Apply mutation to Xl

Y = performLocalSearch(Xl)
20: CP = P ∪ Y ∪OP

Evaluate objectives F (CP )
Compute the non-dominated set P ⊂ CP
PF = F (P )

end while
25: return P and PF

Method performLocalSearch(Xl)
for each xi ∈ Xl do

for each Fj ∈ F do
30: k = (i− 1) ∗m+ j

yk = arg min
x

Fj

end for
end for
return Y
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the size of the offspring population generated by averaging the neighboring points No; the

number of individuals passed to the local search at each iteration Nl; the depth of the

local search d, i.e. the number of evaluations allowed for the local optimizer in each of

the objectives and most importantly, the schedule for adjusting the depth as the search

progresses.

The proportion of the local to global search can be adjusted by limiting the number

of iterations taken by the gradient-based optimizer. As the search proceeds, we reduce the

number of fitness evaluations in each objective. The assumption is that the algorithm is

able to identify the local optima in the early stages of the search - limiting the depth of the

local search toward the end prevents the algorithm from converging to the local minima

that it has already visited.

We use a geometric progression for adjusting the depth of the search d:

di+1 = pdi

Here p is the common ratio between 0 and 1. If the fractional di is always rounded to the

lowest integer, we can find the upper bound on the total number of evaluations performed

by the local search throughout the run. The relation is convenient for controlling the pro-

portion of fitness evaluations allowed in the local search step. The algorithm is terminated

when it reaches the specified number of total objective function calls TE. We select p such

that the total number of evaluations during local search does not exceed some desired

fraction f of TE.

f · TE = Nl

n−1∑
i=1

di < Nld0
1

1− p

p = 1− Nld0
f · TE

There are some important differences between how MOLS and MOEAs search for the

Pareto solutions. First, MOLS does not require special fitness assignment to rank the

candidates (no crowding or density calculations are needed). In each generation, only non-

dominated individuals survive. Second, most MOEAs define the density of solutions in

the objective space, while MOLS operates in the design space. The mating can occur only

between neighboring solutions as defined by the triangularization of the current population.

MOLS allows for efficient integration of techniques from various domains. If optimization in

one domain can be run more efficiently, MOLS provides a way to integrate multiple locally
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optimal points into the population and use them to steer the search toward promising

trade-off regions.

4.3.1 Implementation of MOLS

MOLS is implemented in MATLAB, and structural analysis in B2 and B4 is performed

using MATLAB-based FEM codes [61]. In B1 and B3, analytical formulas and gradients

for both mechanical objectives are known. EM objectives are evaluated numerically in the

open-source method of moments code NEC2C [8].

Local search. In the mechanical domain, local single-objective optimization problems

(SOPs) are solved by the MATLAB fmincon function. Because of the non-linear stress

constraints, SOPs B2-B4 are handled by the sequential quadratic programming (SQP) -

an algorithm for constrained non-linear optimization which at each iteration finds quadratic

approximation of the Lagrangian function and linearizes the constraints to determine the

feasible search directions [75]. One of the advantages of SQP is that it maintains strict

feasibility with respect to the constraints, and returns a feasible solution at each iteration.

The algorithm also recovers from failing steps, when during the iterations the objective

function value becomes complex, NaN or infinity. The number of iterations in the SQP can

be specified by the user.

The SQP algorithm must start from a feasible design point. While it was not a serious

issue in B2, where a small number of infeasible designs were simply discarded from the

search process, on B3 we learned that this strategy greatly degraded MOLS’ performance.

Based on this knowledge, in B4 we implemented a special repair procedure before running

local optimization. For statically indeterminate trusses, the absent connections were added

randomly (up to five attempts were allowed) until the topology became feasible.

The local search in the EM domain is performed using a randomized hill climber with

the Gaussian update. At each iteration, small Gaussian perturbation is added to one of the

design variables. If there is an improvement in the objective value, the perturbed vector is

accepted as a new starting point, and the procedure is repeated. The algorithm terminates

when the number of maximal function evaluations is reached or if no improvement is

achieved for more than 20 iterations. Figure 4.10 shows the schematic representation of

the local optimization procedure on B4.

Triangularization. In MOLS, parent selection is based on the triangularization of the

current population in the design space. Triangularization imposes a neighborhood relation
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Figure 4.10: Local search step in MOLS algorithm as used in B4. The initial design vector
xstart
0 is repaired and passed to local optimizers in each of the objectives. The two me-

chanical objectives f1 and f2 (shown in green) are optimized by the MATLAB’s sequential
quadratic programming (SQP) routine. An FEM simulator is used to evaluate objectives
and constraints cons. In the EM domain (shown in orange), local search is performed by
the randomized hill climber (RHC). The optimized design vectors are inserted into the
current population.
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such that only a triangle’s vertices can be mated with each other to generate offspring.

The triangulation is constructed using the MATLAB function DelaunayTri that accepts

a set of point coordinates, removes the duplicates, and outputs the matrix with the ver-

tices of the triangles (or tetrahedra) and the connecting edges. This procedure is applied

directly for building 2D triangulation in B2 (triangles) and 3D triangulation in B3 (tetrahe-

dra). Since triangularization cannot be performed in one-dimensional space, in B1 we sort

the candidate designs in the ascending order of the single design variable. The neighbors

are allowed to create offspring. In higher dimensions, computing triangulation becomes

very time-consuming. Therefore, in 10-dimensional B4 we first create several orthogonal

projections of the initial coordinates on a 3-dimensional space in which the triangulation

is computed. The obtained connectivity matrix and corresponding lengths determine the

neighborhood relation.

4.4 Comparison of the Algorithms on Benchmark Prob-

lems

4.4.1 Experimental Set-up

We test the variants of NSGA-II and SPEA2 described in Chapter 2 and MOLS described

in the previous section on each of the benchmarks. Random search is implemented for

comparison: it finds non-dominated solutions from the randomly generated set of points

in the search space. The number of random samples equals the number of total function

evaluations. In our experiments, 1000 runs were performed for each algorithm on B1-B3

and 100 runs on B4.

The algorithm’s parameters used in each problem are summarized in Table 4.2. The

population and archive sizes are determined by the cardinality of the global Pareto set

P which was calculated from a large number of uniform samples in the feasible search

space. For the second benchmark, for which the global Pareto set is large (858 points), the

population size is taken as the mean size of the sets obtained by random search from 1000

random samples.

Termination is determined by the total number of evaluations performed in the EM

objective, since the call to the EM simulator is the most compute intensive operation.

In MOLS, we impose an additional stopping criterion to avoid the bloating of the non-
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dominated set. Since the size of the stored Pareto set is not restricted, the averaging of

neighboring points might create a large number of Pareto solutions, overcrowding certain

regions. Therefore we terminate the algorithm when the number of individuals in the

current set exceeds the archive size used in SPEA2.

This additional criterion seemingly puts MOLS at a disadvantage. However, the cri-

terion is not very restrictive as by the time the Pareto set is filled up to the limit the

local search is no longer contributing to the exploration of the search space. New regions

can be discovered mostly by chance - through application of the mutation operation. The

algorithm either keeps generating Pareto solutions between the closely spaced points or

the search stagnates because of the limitations on the distance between the mating points.

In addition, we adjust the parameters of MOLS in such a way that the size of Pareto set

reaches maximum approximately after the specified number of function evaluations. This

is achieved by increasing the proportion of local search evaluations: the algorithm finds

more local optima, while less evaluations are spent on exploiting the solutions. Thus, the

resulting set at termination is representative of the algorithm’s capabilities.

The EA’s recombination and mutation operators have been taken from previous work

[22]. In the first two benchmarks, whole arithmetic recombination creates an offspring as

a weighted sum of the parental genes; the weight is a random number between 0 and 1.

This approach is similar to the way offspring are created in MOLS – as the average of two

neighboring solutions. On larger dimensions (B3 and B4), one-point cross-over has shown

better performance.

The parameters for MOLS are selected using the following guidelines. The initial pop-

ulation size N is equal to the number of solutions passed to the local search (Nl). The

number of offspring from averaging the neighboring points is chosen as Nl × numobj, such

that equal number of new candidates is generated by the two procedures at each itera-

tion. The initial number of evaluations d0 is on average slightly larger than the number of

steps required by the gradient-based optimizer to terminate at the locally optimal point.

It is determined before the run as follows: the local search algorithm is allowed to take as

many steps as necessary for convergence for each individual in the initial population; d0

equals the mean number of evaluations in the EM objective. The common ratio p is chosen

according to equation 4.3 such that in B1 two thirds of total EM evaluations (TE) are

performed by the local search (f = 2/3), 90% of TE in B2, 75% in B3, and 80% in B4.

In each run, we collect statistics about the found Pareto set: the set coverage C(P, P̄ ) of

the found P̄ by the true P , generational distance GD, and spread σ as defined in Chapter
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Table 4.2: MOA’s and random search parameters.

Parameter B1 B2 B3 B4

Number of runs 1000 1000 1000 100
Total EM evaluations 340 1040 2000 4000

MOEAs: SPEA2, NSGA-II
Population size 20 160 200 150
Archive size (SPEA2) 20 160 200 150
Rec. prob. 0.8 0.8 0.8 0.9
Mut. prob. 0.1 0.1 0.1 0.1
Rec. operator* WAR WAR 1PX 1PX
Mut. operator** N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.005)

MOLS
Initial population size 4 10 20 20
Nl 4 10 20 10
No 8 30 60 30
Initial d0 40 50 50 100
p 0.3 0.5 0.34 0.7
Rec. operator averaging of neighboring solutions
Mut. operator** N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.001)
Neighborhood relation triangle vertices in Delaunay triangulation

*WAR: whole arithmetic recombination; 1PX: one-point crossover

**N(0, σ) Gaussian with zero mean and σ standard deviation

2, section 2.3.5. For B1, we are interested in the number of runs in which the champion

solution has been found and how well the spread of solutions in the first region is. In B2,

we also record the number of solutions in each of the Pareto regions. In B4, the distribution

of Pareto-optimal topologies is of interest.

4.4.2 Experimental Results

4.4.2.1 Performance on B1: Cantilever Beam

B1 is a one-dimensional optimization problem - very simple even for the random search. The

only difficulty is the existence of several champion solutions around the global minimum

of the VSWR, separated from the main continuous Pareto-optimal region. The successful

algorithm should be able to locate the stand-alone individual and maintain a uniform

spread of solutions along the continuous region.

In addition to C and GD, we use two metrics to compare the behavior of the algorithms
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in this landscape: we count the number of runs, in which the smaller region was found and

calculate the distribution of solutions within the larger region. The primary goal of this

test is to reveal the problems and pitfalls with the approach taken by MOLS in discovering

the Pareto set.

MOLS is expected to perform well on this problem. First, because of the local search

step MOLS can get close enough to the optimal VSWR so that the solution cannot be

eliminated from the population during the non-dominance sort. Second, in the dense Pareto

region, the objective functions show opposite behavior: the deflection is increasing with the

length of the beam, while the VSWR is decreasing. Hence, the local search will move in

opposite directions in each of the objectives, exploring the solutions along the whole region.

Third, algorithm’s offspring generation is favorable to finding the Pareto set, because the

midpoints between the already found designs in the first region are also Pareto-optimal.

MOLS performance is comparable to NSGA-II and random sampling. It finds the op-

timal VSWR region in 88% of the runs vs. 95% by NSGA-II and 99% by random search.

It achieves 0 set coverage 84% of the time. These results are summarized in Table 4.3.

The Pareto fronts with the best spread in the first region are shown in Figure 4.11a.

NSGA-II and MOLS achieve the most uniform distribution along the front. SPEA2 can

get a good distribution closer to the search boundary but fails to include the solutions in

the tail of the curve.

The differences in algorithms’ behavior are best illustrated by the worst-case perfor-

mance. Figure 4.11b shows the Pareto fronts with the worst spread of solutions (highest

σ1) in the first region. It is noted that in the runs with poor solution distribution and set

coverage, MOLS tends to create many solutions around the local minima of the VSWR.

The final Pareto front also contains duplicate points that degrades the spread value; the

points, however, cover the whole region, including the extreme objective values. This is in

contrast to NSGA-II and SPEA2, for which the worst results mainly contain solutions near

the search boundary (small values in the first objective f1).

Overall, MOLS’ metrics have a much larger variance than the other algorithms. It can

reach the lowest generational distance and the most uniform spread (Table 4.3) but it also

has runs in which half of the obtained solutions are not Pareto-optimal.

The main shortcoming of MOLS in B1 seems to be its dependence on the initialization

and lack of diversity preservation during the run. MOLS starts with a small population:

since every candidate must undergo local optimization, a larger population would introduce

many duplicate points and closely spaced solutions, wasting evaluations. It is expected that
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optimization in different objectives would produce a diverse set of new candidates. As the

algorithm proceeds, local search remains MOLS’ primary mechanism for exploring the

search space. However, if the number of evaluations in the local step is reduced very fast

(as in B1), this exploration time becomes very short and the solutions tend to congregate

around the local optima in each objective. On more complex problems with larger number

of design variables and objectives (B2, B3, and B4) this issue is less pronounced, because

the algorithm is given more time (i.e., fitness evaluations) to explore and local search in

multiple objectives produces locally optimal designs widespread in the search space. In

addition, to mitigate the lack of diversity, dominance sort is only run (l. 11, l. 21 on page

85) when the current population CP reaches 10x the size of the initial population N , so

that the algorithm can accumulate a large number of promising candidates in various areas

of the design space.

Unlike MOEAs, MOLS does not include any operators to discriminate against solutions

in the objective space based on the dominance rank or crowding distance. Therefore, MOLS

often overexploits the regions near the local optima. In some runs on B1, the final Pareto

set is split evenly between the first wide Pareto region and the region near the global

minimum of VSWR that only contains several champion solutions.

Table 4.3: Performance on B1. For each algorithm, the percentage of the runs in which all
found solutions were Pareto-optimal, the generational distance to the global Pareto front
GD, the spread of solutions along the front σ, and the percent of runs in which the found
Pareto set contained the champion solutions located away from the main Pareto region.
Note that lower values of GD and σ correspond to better performance.

Metric Random SPEA2 NSGA-II MOLS

% runs with C=0 77.8% 69.6% 92.4% 84%

GD
min 2.2× e−4 2.2× e−3 1.6× e−3 6.4× e−4

median 8.9× e−4 2.5× e−3 2.2× e−3 1.4× e−3
max 2.0× e−3 6.2× e−3 4.7× e−3 3.9× e−2

σ
min 0.29 0.48 0.26 0.18

median 0.59 0.64 0.59 0.5
max 1.01 0.77 0.85 1.1

stand-alone solutions found 99% 84.6% 95% 88%
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Figure 4.11: Performance on B1. Distribution of solutions along the Pareto front found
by each algorithm and the global Pareto-optimal front. (a) Pareto fronts with the best
spread σ; (b) Runs with the worst distribution of solutions. Because of low complexity of
the problem, set coverage is good even in the low performing runs.
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4.4.2.2 Performance on B2: Topology Optimization of a Two-bar Truss

In this problem, we test whether the algorithms are able to locate multiple Pareto regions

– inside and on the boundaries of the search space. Table 4.4 summarizes the percentage of

runs (out of 1000) in which each of the regions was found, and the last column labelled all

regions gives the number of runs in which the algorithm was able to locate all six regions.

Illustration of the regions in the design space is given in Figure 4.5.

Table 4.4: Algorithm performance on B2: data shows the percentage of runs in which each
of the disjoint Pareto-optimal regions Reg1−Reg6 in the design space was located by each
algorithm.

Algorithm Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 All regions

Random 98% 93.8% 100% 100% 99.6% 49.4% 45.7%
SPEA2 98.4% 87.4% 100% 100% 100% 45.1% 38.9%

NSGA-II 99.6% 79.5% 100% 100% 100% 80.1% 63.8%
MOLS 99.9% 87.0% 100% 100% 100% 83.9% 72.2%

In this landscape, the random search performs well: random sampling of the search

space provides uniform coverage and reaches all regions in approximately half of the runs.

Five regions are found in 95% of the runs. The median Pareto coverage by random search

is calculated to be C = 0.25, which is lower than that of the NSGAII and SPEA2 by 0.1.

Due to its local search step, MOLS has the best set coverage C. Being able to fine-tune the

candidate solution, it approaches closer the Pareto front than the other algorithms. GD

is best in the case of SPEA2, indicating that this algorithm is also able to find accurate

Pareto solutions. The most uniform coverage of the Pareto front is achieved by NSGA-II,

whose σ-value is twice lower than that of the other algorithms.

MOLS proves to be most effective in exploring the landscape: it finds all regions in

72% of the runs - more often than any other algorithm. In particular, it is better at finding

solutions on the boundaries of the search space (Reg1, Reg5, Reg6). Reg6 is especially hard

to locate because it lies on the constraint boundary and includes only few solutions that

are non-dominated in single objective, the mass of the truss. MOLS hits this region most

often because the nonlinear constraint is handled effectively by the SQP algorithm. The

NSGA-II crowding strategy is also successful in singling out this region of the search space:

since the displacement is changing quickly, the sparsity of solutions in the objective space

is high and NSGA-II keeps exploiting this area, creating multiple candidates. SPEA2’s

distance-based strategy is not as effective: the algorithm fails to consistently preserve and
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exploit promising solutions around Reg6 because of the competing Reg1 and Reg5 that

are similar in mass and displacement and are much easier to locate.

For each problem, we generate the plots of representative runs: for each algorithm, we

show the run where all six regions were found. Among those, the run with the best set

coverage C is chosen. Each subplot in Figure 4.12a shows the Pareto set obtained by each

algorithm in comparison to the global Pareto set. Table 4.5 includes the set coverage C,

GD and spread for the plotted runs.

From Figure 4.12, NSGA-II and MOLS have preferred regions. For NSGA-II, multiple

candidate solutions are concentrated in the corner region, while for MOLS wide regions

(Reg3 and Reg4) are overcrowded. In contrast, SPEA2 creates limited number of solutions

in the broadest part of the Pareto set. All algorithms tend not to exploit the regions around

the small values of x and y (Reg1 and Reg2).

Though the design space metrics the results from NSGA-II, random search and MOLS

look very similar and all these algorithms appear to identify the majority of Pareto solu-

tions, the objective space metrics show significant differences (Table 4.5). At 0.21, the set

coverage of NSGA-II is comparable to the set coverage by SPEA2 and random search –

meaning that about 20% of NSGA-II solutions are dominated by the global Pareto points.

Most of the dominated points are located around Reg5 and Reg6, in the corner of the de-

sign space. Here, the EM objective is changing quickly as the function of design variables,

and the distance from the closest Pareto values in the objective space varies significantly,

resulting in poor set coverage and higher generational distance.

Table 4.5: Summary of performance metrics for the runs on B2 that had the best and worst
set coverage C. Pareto solutions for these runs are plotted in Figure 4.12.

Higher performing runs Lower performing runs
Algorithm C GD Spread C GD Spread

Random 0.23 5.5× e−4 1.22 0.37 1.9× e−3 1.0
SPEA2 0.26 1.6× e−4 1.04 0.58 7.3× e−4 0.83

NSGA-II 0.21 2.9× e−4 0.52 0.72 3.7× e−4 0.53
MOLS 0.05 2.2× e−4 1.1 0.39 3.2× e−4 0.95

The Pareto fronts obtained by NSGA-II and MOLS in the best runs are shown in Figure

4.13. Each plot represents trade-offs in each pair of objectives: f1 is the displacement of

the central node, f2 is the mass of the truss and f3 is the inverse of the realized gain of

the truss-antenna. In the objective space, NSGA-II achieves a much better distribution of
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Figure 4.12: Performance on B2: the distribution of solutions in the design space for the
a) highest performing and b) the lower performing runs for each of the algorithms.
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Figure 4.13: Performance on B2: Pareto front for the highest performing runs.

solutions along the Pareto front than MOLS and better approximates the overall shapes

of the trade-off curves. MOLS fails to find the trade-offs in the mechanical objectives (f1

vs. f2), locating only the extreme values in f1 and f2. Nevertheless, in this run, MOLS

outperforms NSGA-II in terms of set coverage and generational distance because it keeps

fine-tuning the solutions in the flat Pareto regions, while NSGA-II keeps exploiting regions

with large fluctuations in the objective f3.

For comparison, we also include the results of lower performing runs: for each algorithm,

we select the run with the lowest number of covered regions. Among those, the run with

the worst set coverage is selected (Figure 4.12b). Compared to the higher performing runs,

there is not much difference in solution distribution in the design space for NSGA-II and

the random search. One main problem is that in the lower performing runs these algorithms

fail to locate Reg2 and Reg6 despite the large number of candidates around Reg6. MOLS

over-exploits the two broad regions, and is unable to explore further. The corresponding

Pareto fronts are shown in Figure 4.14.

Overall, the distance-based strategy of MOLS is at least as good as the objective dis-
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Figure 4.14: Performance on B2: Pareto front for the lower performing runs.
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tance used by NSGA-II. The gradient-based optimization allows for better fine-tuning of

the current candidate solutions and leads to the improvement in the set coverage and

generational distance. Optimization in three objectives generates enough diversity in the

population, such that all Pareto regions are located in most of the runs. On the other hand,

more exploitation comes at the cost of the uniform exploration of the search space. In the

objective space, MOEAs clearly reach a better distribution than MOLS.

4.4.2.3 Performance on B3: Optimization of a Two-bar Truss

B3 is included in the set to test i) how well an algorithm’s performance scales with the

number of dimensions and ii) how well an algorithm can deal with hard constraints. Some

of the Pareto solutions lie on the constraints, causing discontinuities and non-convexity in

the Pareto front. The harder optimization problem results in significant degradation in the

performance of the random search.

The best found Pareto trade-offs, runs with the lowest C-value, are shown in Figure

4.15. The metrics summarized in Table 4.6 demonstrate that SPEA2 is able to obtain

most diverse and accurate set of solutions. MOLS does not perform as well as the EAs and

contains a large number of locally Pareto-optimal solutions in the final set, especially for

the trade-offs between inverse of the realized gain f3 and displacement f1.

Table 4.6: Metrics for the runs on B3 that had the best and worst set coverage C. The
Pareto solutions for these runs are plotted in Figures 4.15 and 4.16.

Highest performing runs Lower performing runs
Algorithm C GD σ C GD σ

Random 0.37 1.13× e−4 0.8 0.68 1.27× e−4 0.83
SPEA2 0.025 5.5× e−5 0.8 0.32 7.0× e−3 1.25

NSGA-II 0.035 1.64× e−4 0.38 0.38 7.5× e−5 0.65
MOLS 0.034 9.8× e−5 1.1 0.5 1.8× e−4 0.94

The plots illustrate the differences in how the algorithms traverse the search space.

Though on average MOLS finds a less uniformly spread and accurate Pareto front, it tends

to explore the regions underexploited by the MOEAs. MOLS finds a better approximation

of the Pareto front between mass (f2) and realized gain (f3). Unlike the EAs, MOLS’ final

set contains the optimal values in each objective (extreme points on the Pareto front); in

the best-case performance, it is the only algorithm that is able to find the design with the
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lowest EM objective. It maintains this property also in the worst-case runs, finding the

outermost solutions among all algorithms (Figure 4.16).

4.4.2.4 Performance on B4: Topology Optimization of a Ten-bar Truss

B4 is an example of a multivariate, multi-objective problem with multiple constraints. The

search space is vast, while the feasible truss topologies contribute only a small fraction

of possible configurations. Random search performs very poorly in this type of landscape:

random initialization produces a large number of statically indeterminate structures and

in each run random search finds only a few non-dominated solutions.

MOEAs do not use any special constraint handling techniques, while MOLS includes

a special repair procedure that attempts to modify the topology to provide a feasible

starting point for the gradient-based optimization algorithm. The algorithms’ performance

is illustrated with the trade-off surfaces corresponding to the runs with the best and worst

distribution of solutions σ (Figures 4.18 and 4.17 and Table 4.7). We observe that MOEAs

tend to explore regions with lower values of the EM objective and fail to find designs with

the lowest mass. MOEAs also cannot locate the various topologies on constraint boundaries,

while MOLS is more effective at this task due to the gradient-based constraint handling

by SQP.

In contrast to MOEAs, MOLS finds many solutions along the middle ridge of the

Pareto front including extreme values in compliance and mass. However, the algorithm

has difficulties with identifying the best trade-offs between the mechanical objectives (the

uppermost region in Figures 4.17 and 4.18). This can be explained by the MOLS’ way of

creating offspring by averaging the designs. In Figure 4.9a, the uppermost region in the

objective space largely consists of designs with topology 2. Since this topology has a small

number of bars, it cannot always be obtained by averaging the cross-sectional areas of

the other feasible designs. The topology can be introduced primarily through a random

mechanism, during initialization or mutation, making it hard for MOLS to find it.

The distribution of Pareto topologies further highlights the differences between the al-

gorithms’ exploration strategies. Figure 4.19 shows the percent of experiments in which

each Pareto-optimal topology was present in the final population of the algorithm. Topolo-

gies 7, 13, 17 and 19 appeared frequently in all populations. The topologies lack only one

member in the second (farthest from the supports) section of the truss, resulting in small

compliance and high mass. These heavy, most stable trusses are the easiest to locate as
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Figure 4.15: Performance on B3: Pareto front for the runs with the best set coverage.
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Figure 4.16: Performance on B3: Pareto front for the runs with the worst set coverage.
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Figure 4.17: Performance on B4. Pareto surface for the runs with the lowest spread σ.
Green points show the global Pareto solutions; red circles correspond to the front found
by the algorithm.
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Figure 4.18: Performance on B4. Pareto surface for the runs with the worst spread σ.
Green points show the global Pareto front; red circles correspond to the front found by the
algorithm.
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Table 4.7: Metrics for the runs on B4 that had the best and worst spread. The Pareto
solutions for these runs are plotted in Figures 4.17 and 4.18.

Highest performing runs Lower performing runs
Algorithm C GD σ C GD σ

Random 1 9.2× e−2 0.61 1 6.4× e−2 0.97
SPEA2 0.99 2.1× e−2 0.67 0.92 1.9× e−2 0.85

NSGA-II 0.97 5.7× e−2 0.52 0.99 7.6× e−2 0.88
MOLS 0.87 1.75× e−2 0.74 0.99 4.8× e−2 0.96

they can always be created from other topologies by the recombination operator, and all

algorithms are likely to revisit these topologies multiple times during the run.

Because of the more effective recombination operator, MOEAs arrive at topologies 2

and 10 twice as often than MOLS. The designs 11 and 12 are also often absent from the

MOLS’ population. In the objective space they are non-dominated in the EM objective,

suggesting that the randomized hill climber fails to obtain local minima in the EM domain.

Including a more efficient local strategy can improve the performance in this respect.

Gravitating toward topologies with many members, MOLS usually terminates with

a more diverse set of designs than MOEAs. It exploits the central region of the Pareto

surface very well, locating multiple competing topologies with similar objective values, e.g.

topologies 1, 8, 14− 16, and 18.

To compare the performance of the algorithms we plot the distribution of the set cover-

age between each pair of algorithms on each benchmark problem. The results are summa-

rized in Figure 4.20. The plots are arranged in a matrix, with each subplot corresponding to

set coverage C(A,B), i.e. the proportion of solutions of set B that are weakly dominated by

A. In the plots, algorithm A is the column algorithm, e.g. a subplot in position (1, 2) shows

the statistics for set coverage of random search by SPEA2. An algorithm’s performance is

better if it finds many non-dominated solutions and dominates many solutions found by

the other algorithms, i.e., if it has larger C values in its column and smaller values in the

row. The algorithms appear in the following order: random search, NSGA-II, SPEA2, and

MOA with local search.

The plots suggest that MOLS finds better sets than other MOEAs on B1 and B2

but does not measure up to both on B3. With some improvements to constraint handling,

MOLS performance is greatly improved on B4. MOLS performs slightly better than NSGA-

II, since on average it dominates more solutions in the final NSGA-II’s population than
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Figure 4.19: Performance on B4. Percent of runs in which each of the19 Pareto-optimal
topologies of a ten-bar truss was found. Each group of bars corresponds to a different
topology. Each bar represents the result for a different algorithm. For the plots of topologies
refer to Figure 4.9a.

vice versa. The mutual set coverage between MOLS and SPEA2 are comparable in most of

the runs, suggesting that the two algorithms tend to exploit different areas of the objective

space. On all four benchmarks, SPEA2 finds the most solutions that are not dominated by

other algorithms’ results.

Figure 4.21 summarizes the statistics of all metrics on the benchmarks. Each column of

subplots represents a different problem; each row corresponds to a different metric (C, GD

and σ), while the four box-plots within a subplot show the results for each algorithm. For

all metrics, smaller values indicate better performance of the algorithm. B1 is the easiest

problem on which all algorithms - except SPEA2 - reach zero set coverage in most of the

runs. The fitness assignment of SPEA2 based on kth neighbor density estimation in the

objective space fails to discriminate effectively against the sub-optimal regions in the search

space. As a result, the algorithm keeps spending evaluations on exploration between the

various regions rather than exploitation of the best-found candidates, preserving the sub-

optimal solutions in the final archive. The GD is best for random search and MOLS, while

the most uniform spread of solutions is obtained by the MOEAs. On B2, MOLS outperforms

the other algorithms, showing better convergence to the global Pareto solutions (low C and

GD). However, the distribution of these solutions along the Pareto front is the worst among
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Figure 4.20: Comparison of algorithms’ performance on the benchmarks B1-B4. Each
subplot shows set coverage C(A,B) where A is the column algorithm and B is the row
algorithm. An algorithm’s performance is better if it has larger C values in its column and
smaller values in the row. Each of the boxes within the subplots corresponds to a different
benchmark problem. The central line in the box shows the median of the metric, box edges
show the 25% and 75% quantiles, and the whiskers extend to the extreme values. The red
pluses describe the outliers.
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the three algorithms. On B3, MOLS’ strategy is not as effective, though it is much better

than the random search, it loses to the MOEAs in all metrics. The changes in constraint

handling implemented in B4 make MOLS more powerful such that it outperforms both

MOEAs in set coverage and GD. The spread, however, remains high, indicating that MOLS

better exploits certain areas of the Pareto front rather than explores along the front.

Among the algorithms, NSGA-II always finds the most diverse set of solutions as sug-

gested by its low spread value in all benchmarks: this superior performance is credited

to the algorithm’s crowding-sort operator designed to explicitly increase the sparsity of

solutions.

4.5 Summary

In this chapter, we have presented a number of simple problems that characterize the

interactions between EM and mechanical properties of the structures and illustrate the

types of fitness landscapes, encountered in the coupled optimization. The considered struc-

tural objectives are well behaved functions of the design variables; the EM objectives are

more complex and non-convex. The resulting Pareto sets contain discontinuous islands of

designs, spread over the entire search space. The constraints and periodicity of the EM

functions might introduce champion solutions, that are hard to locate. The corresponding

Pareto fronts are non-convex and include multiple regions with varying solution density.

Since very effective gradient-based methods exist in the field of structural optimization,

we investigated how these methods can be combined with the population-based strategy of

the EAs. We proposed a procedure that generates new candidate solutions by using the local

search in each domain: in this way, the optimizers in each objective can be run separately

and each domain can benefit from its most efficient techniques, algorithm parameters and

solution representations.

We assessed the performance of the two most successful MOEAs and the proposed

MOLS on the benchmark problems. The performance of the local search procedure is

comparable and in some cases better than that of the MOEAs on simpler problems; on

multivariate problems with stringent constraints, additional repair procedure is required

to force the algorithm to explore feasible designs. Overall, MOLS finds a less uniform

representation of the Pareto front, but unlike EAs it is better at locating and maintaining

champion and extreme solutions.
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Figure 4.21: Comparison of algorithms’ performance on the benchmarks B1-B4. Each
column of subplots represents a different problem; each row corresponds to a different
metric (C, GD and spread σ), while the four box-plots within a subplot show the results for
each algorithm. For all metrics, smaller values indicate better performance of the algorithm.
The central line in the box shows the median of the metric, box edges show the 25% and
75% quantiles, and the whiskers extend to the extreme values.
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Chapter 5

Multi-objective Optimization of a

CubeSat

In this chapter, we apply the methods developed and tested in chapters 3 and 4 to the

optimization of a CubeSat, a real-world problem in which mechanical and electromagnetic

properties are critical to the mission success. CubeSat is a small satellite intended for

scientific and educational purposes and has a prescribed shape, size and mass. CubeSats

are deployed in space from a Poly-PicoSatellite Orbital Deployer (P-POD) which can carry

up to three 1u CubeSats [52] and is sent to space on a rocket as a secondary payload (Figure

5.1b).

Our goal is to design a CubeSat antenna that utilizes the existing cubic structure to

radiate. This allows for structure reuse and weight reduction, while freeing up mass for the

payload. By modifying the CubeSat, we must make sure that it meets the mass and volume

constraints and is still able to support loads during the launch which can reach up to 20g

along each cubical axis [71]. We want to understand the trade-offs between the structural

integrity and electromagnetic performance that can be achieved with modifications of initial

structure.
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(a) (b)

(c) (d)

Figure 5.1: (a) CubeSat frame by Pumpkin Inc. [60] (b) Poly-PicoSatellite Orbital Deployer
and a 3u CubeSat [57] (c) O/OREOS Mission CubeSat [37] (d) PhoneSAT 2.5 [59].

5.1 Problem Definition

Mechanical domain. In the mechanical domain, we can determine several requirements for

the CubeSat structure. The geometry of the CubeSat is prescribed: it should be 100± 0.1

mm wide and 113.5± 0.1 mm tall. Objects within the external mounting can extend up to

6.5 mm from the CubeSat surface. The total mass of a 1u CubeSat - including the payload

- should not exceed 1.33 kg [57]. For heavy payloads, it is desirable to reduce the mass of

the bearing structure, and this requirement is included in our problem formulation as the

volume constraint.

Main mechanical hazards can be encountered by the CubeSat during its transport to

orbit: the structure is subjected to high acoustic pressure, g-force and vibrations. Since

the size of the cube is small and its mechanical eigenfrequencies are much higher than the
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specified acceptance levels, the dynamics of the experienced loads can be ignored and we

can consider a static problem. The direction and magnitude of actual loads is a function

of the launch vehicle: for our purposes, we shall assume that a 1u CubeSat inserted into

P-POD experiences quasi-static forces along its vertical axis (Figure 5.2a).

In the mechanical domain, we seek a structure with the prescribed shape and volume

that can support forces along its longest dimension, which can be formulated as a classical

topology optimization problem and solved using mathematical programming methods.

The goal of topology optimization is to determine optimal material distribution within

a specified volume for the known load and support conditions. The classical approach seeks

to find an assignment of voids and solids in the reference domain so as to minimize the work

(compliance) done by the external forces to deform the structure [47]. Bendsoe removed

the discrete nature of the problem by expressing the objectives and constraints in terms of

a continuous design variable, which can be interpreted as a density of material in a given

point [5]. The Young’s modulus of the material element Ei is interpolated between solid

and void using a power law which penalizes the intermediate density points and steers the

optimization procedure toward 0-1 designs. This penalization procedure is usually referred

to as the Solid Isotropic Material with Penalization (SIMP) method [65]. In SIMP, at each

iteration Ei is updated according to:

Ei(xi) = Emin + xpi (E0 − Emin), xi ∈ [0, 1]

where xi is the normalized density of the ith finite element and p is a penalization parameter

greater than 1. The compliance problem in continuous formulation is

minimize
x̃

f = u(x̃)TF

subject to V (x̃) = x̃Tv − v ≤ 0

x ∈ X,X = {x ∈ Rn : 0 ≤ x ≤ 1}
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where x̃ is an nx1 vector of filtered element densities that can vary between 0 and 1, u is

the vector of displacements in each degree of freedom, F is the vector of loads, and v is the

volume fraction. v is a vector of elements’ volumes. It is taken to be a unit vector when

the reference domain is uniformly discretized.

The distinction between the filtered densities x̃ (referred to as physical densities) and

regular densities x should be emphasized. The use of a filter is an important regularization

technique that mitigates numerical difficulties during optimization, such as checkerboard

patterns, mesh dependency and local optima [5]. The filter has an effect of smoothing

the densities over the neighboring elements with the neighborhood including all elements

within the specified distance of the given element.

Electromagnetic domain. Most of the CubeSats include at least two antennas: an S-band

is used as a primary space to ground communication link for telemetry and command

transmission; a UHF beacon is included to broadcast satellite’s position to a wide ham

radio network, which allows to locate the CubeSat after its separation from the launch

vehicle and track its position away from the ground station. On a number of CubeSat

missions (e.g., OREOS , PhoneSAT shown in Figure 5.1c and 5.1d), a nadir-pointing S-

band patch antenna has been successfully deployed: this directive antenna does not require

any deployment mechanism but provides a relatively low beamwidth and might require

attitude slew to increase the visibility time during the satellite’s pass over the ground

station. In the UHF band, monopole antennas (tape measure antennas) that can provide a

wide coverage are commonly utilized. The placement of the antennas on the satellite must

be considered to avoid shadowing by its metallic structure and to achieve the radiation

performance conducive to mission goals.

As our test case, we consider a common situation in which one face of a CubeSAT is

known to point toward Earth. The CubeSat antenna must produce a directional pattern

with most of the power transmitted in the direction of the ground station. To match
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the performance of a commercial patch antenna(AstroDev patch), it should achieve 80◦

Half Power Beamwidth (HPBW) and 5 dB gain in the boresight direction. The operating

requirements are formalized as follows:

Frequency: 2215.5 MHz

Input impedance : 50 Ω

Gain pattern : maximum possible gain toward ground and negligible radiation in other

directions.

G(θ, φ)

 ≥ 3 0◦ ≤ θ ≤ 40◦, 0◦ ≤ φ ≤ 360◦

= 0 90◦ ≤ θ ≤ 180◦, 0◦ ≤ φ ≤ 360◦

The EM objective to be minimized is defined as the product of two components: (i) VSWR,

which assures antenna’s matching to 50 Ohms and (ii) error EG, which sums up the

deviations of the gain values from the desired pattern. The definition of the EG follows the

same principle as [50]. The function gain(i, j) is defined to allow for maximization of the

gain in the boresight direction. There is no pressure for the algorithm to increase the gain

beyond 8 dBi (equivalently a factor of 6). The second summation in the EG expression is

added to penalize the design for radiation in the remaining directions.

gainij = gain at θ = 5◦i, φ = 5◦j

gain(i, j) =

 0 if gainij > 6

6− gainij if gainij ≤ 6

EG =
i=8∑
i=0

j=72∑
j=0

gain(i, j) +
i=36∑
i=18

j=72∑
j=0

|G(θi, φj)|
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Multi-objective optimization problem. Combining the structural and EM SOPs, the MOP

is defined as:

minimize
x̃

f1 = u(x̃)TF

f2 = EG(x̃) · V SWR(x̃)

subject to V (x̃) = x̃Tv − v ≤ 0

x ∈ [0, 1]n

5.2 Implementation

The MOP is solved using MOLS, which was presented in section 4.3.

In the mechanical domain, the 169-line MATLAB program by Kai Liu and Andres

Tovar [47] serves as the local optimizer. The code takes a structure subdivided into finite

cubic elements, location of supports and loading, and volume constraint as inputs and

applies the regularized SIMP method to minimize the compliance of the structure.

The reference domain for optimization is a box subdivided into 12x12x14 cubic elements

(Figure 5.2a). The faces of the cube and the areas extending between the stand-offs are

modified during optimization. The rest volume is designated as passive areas that have

fixed density throughout the optimization run. The inside volume is assigned zero density.

CubeSat edges and stand-off legs in the corners have a fixed density of 1, contributing

about 5% of the total volume.

The search space in the mechanical domain is delineated in Table 5.1: the structures are

shown in the order of increasing compliance. Initial CubeSat frame has the lowest volume

fraction and the highest compliance, while the full structure (hollow inside) with the lowest

compliance and highest volume represents the other extreme of the structural universe.

In the EM domain, FEM structure is represented by a wire mesh (Figure 5.2b). To

reduce the computational time, the thickness of the CubeSat’s walls is ignored and finite

elements on the cubic faces are replaced by a planar wire mesh. Evaluation of the CubeSat’s
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(a) (b)

Figure 5.2: (a) Definition of the structural problem: 1u cube fixed at the bottom nodes
bears a load of equal magnitude at the top corner nodes; (b) Wire mesh model of the
structure used to evaluate EM fitness.

radiating properties is performed in NEC2C: after a feasible feed position is determined

from TCM analysis of the structure, full EM simulation is run to determine the VSWR

and gain of the antenna.

Local search operates on the same continuous vector of design variables x̃ as the struc-

tural optimizer. Unlike the mechanical domain, intermediate densities do not bear any

physical meaning that could be directly translated into the calculation of the EM objec-

tive: to evaluate EM fitness, the candidates must be interpreted as pure 0/1 designs where

elements with densities above 0.5 are included as solids and elements with densities below

0.5 - as voids. However, preserving the density information is important to algorithm’s

performance : filtering the grayscale designs (rather than pure black and white designs) on

density creates connected structures without floating elements, helps maintain diversity in

the population and propagate the mechanical properties of the structure.

We include the intermediate densities in our design update scheme in the local search

step. The TCM analysis estimates the power that could be radiated by the antenna if it
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Structure Compliance Volume fraction

2.76× e+ 4 6.75%

1.75× e+ 4 21%

1.38× e+ 4 25%

1.18× e+ 4 50%

Table 5.1: CubeSat structures representative of the search space in the mechanical domain.
The goal is to minimize compliance under the specified volume constraint. Compliance
represents a generalized measure of the structural deformation under applied loads. Volume
fraction is the percentage of the volume of the cube occupied by the solid material.
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was excited at a certain wire segment. The segments with the lowest power are likely to

be less significant for the antenna’s performance and can be penalized, while the segments

with higher power or current should be preserved and enhanced. Following this intuition,

we assign zero density to 5% of elements in the design that have the lowest power, the

density of 1 to 5% top segments and the density of 0.5 with small Gaussian perturbation

to the remaining segments. Though the relation between the density of material and current

distribution is not as straightforward as in the mechanical domain, this heuristic rule proves

to be a much better strategy than the random update.

The update rule defines the neighborhood of a candidate solution in the greedy hill

climber (GHC) that performs local EM optimization. At each iteration, GHC evaluates

the neighbors of the current solution and adopts a new candidate as the new solution only

if the candidate has a better fitness.

5.3 Results

The size of the search space in this problem is 2888, including infeasible designs with discon-

nected elements and designs violating the volume constraint. The search space is extremely

vast and is further increased by the continuous formulation of the problem. Since on aver-

age EM evaluation of a candidate takes three times longer than its mechanical evaluation,

the runtime of the algorithm is determined by the number of calls to the EM simula-

tor. After 25, 000 evaluations, MOLS produced fourteen trade-off points that are shown

in Figure 5.3. The trade-off curve is very steep and contains multiple designs with a good

mechanical score. Non-dominated solutions with low compliance values are small variations

of the same topology (Design 3 in Figure 5.4). The pre-dominance of this design suggests

that structural fitness landscape has a large basin of attraction with the local minimum at

1.359e + 4. Algorithm exploits the area in the vicinity of this design effectively, finding a

spectrum of solutions of varying EM quality.
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Figure 5.3: CubeSat Problem: Non-dominated solutions found by MOLS. Note the change
of the scale on the x-axis. Designs 1, 3 and 14 are discussed in more detail in this section.
Designs 14 and 1 are chosen as the designs on the boundaries of the Pareto front. Design
3 has the radiation pattern best matching the specifications.

The EM problem proves to be much harder. The solutions not dominated in the EM

objective show no resemblance to each other. Overall, they occupy much smaller volume

than the mechanically optimized structures and include small extensions of the initial

support frame (Figure 5.4a–5.4d). Similar positions of the feeds (on the CubeSat edges

along y-direction, connecting the edge and a small metallic extension) point to the similar

mechanism of the radiation by the structures. The smaller elements can be viewed as

excitation probes used to couple power into the radiating eigenmodes of the initial CubeSat

frame.

Fifty percent of the tradeoff designs have VSWRs below 3, meaning that at most 25%

of the supplied power is reflected back to the transmitter without additional matching
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circuitry. The best solutions in the EM objective have a nearly perfect matching with

VSWRs of 1.02 and 1.01. In terms of ER, Design 3 produces the best radiation pattern:

it is able to match the gain specification in certain directions providing a beam with 5 dB

gain at 45◦ from z-axis and HPBW 80◦. However, the overall performance is not completely

satisfactory for our goals. The total radiated power is split between two beams: the main

beam does not point perpendicularly to the face of the cube, and significant amount of

power is “lost” to the back-lobe with a 2 dB gain and HPBW of 40◦.

The results suggest that it is hard to achieve a uni-directional high-gain antenna with

this structure and given volume constraint. From TCM prospective, the difficulty of this

task is caused by the multiple radiating modes that exist in the band of interest. Every

edge of a CubeSAT is approximately half a wavelength long, resulting in multiple inde-

pendent resonant paths for the current on the structure. As several orthogonal modes are

excited at any feasible feed position, a multi-lobe pattern is produced. One feed is not

sufficient to suppress the undesired modes. Changing the modes and their combinations by

modifying the structure is possible, e.g., main radiation beams produced by the best EM

designs (Figure 5.4b and 5.4d) is clearly a merge of several lobes. However, in this problem

structural changes are restricted by the requirement to maintain the frame: since no parts

of the cube’s frame can be removed, the resonant paths along the edges are preserved as

well.

We know from experiments in Chapter 3 that cubic structure can produce a uni-

directional radiation pattern, if only one face of the cube is chosen for optimization, while

the other faces are preserved and act as a ground plane. However, in the current problem

formulation such configuration violates the volume constraint. Thickness of the CubeSat’s

walls is currently defined by the size of the mesh element (8× 8× 8 mm3). If optimization

is run on a finer meshed cubic structure, the algorithm will obtain a better set of non-

dominated solutions with desired radiation characteristics but higher compliance values.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: CubeSat antennas found by MOLS. Performance metrics of the designs are
summarized in Table 5.2. (a) Design 1 with the best EM score; (b) Radiation pattern of
Design 1; (c) Design 3 with the radiation pattern best matching the specifications; (d)
Radiation pattern of Design 3; (e) Design 14, the best design in terms of compliance; (f)
Radiation pattern of Design 14.
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Table 5.2 summarizes VSWR, ER, and compliance values for the found non-dominated

solutions in the order of increasing EM objective (left-to-right order in Figure 5.3). Some

discrepancies between the compliance values in the plot and the table occur because com-

pliance and volume fractions in the table have been recalculated for full designs, i.e., finite

elements (FEs) with intermediate densities have been replaced with voids for FEs with

ρ < 0.5 or solids (ρ ≥ 0.5). The compliance score of the best designs is improved by in-

creasing the density of the FEs, while the compliances of the worst structural designs are

depressed.

Table 5.2: Performance scores of the structural CubeSat antennas found by MOLS.

Design Volume fraction Compliance VSWR ER

1 0.131 3.2e+12 1.02 4.9e+03
2 0.138 2.1e+12 1.01 5.2e+03
3 0.132 1.2e+05 1.35 4.4e+03
4 0.20 1.356e+04 1.3 5.5e+03
5 0.20 1.355e+04 1.3 5.6e+03
6 0.197 1.366e+04 2.5 5.3e+03
7 0.197 1.3671e+04 2.6 5.28e+03
8 0.198 1.366e+04 3.1 5.36e+03
9 0.198 1.365e+04 3.4 5.39e+03
10 0.199 1.361e+04 3.4 5.45e+03
11 0.199 1.363e+04 3.5 5.43e+03
12 0.198 1.364e+04 3.6 5.44e+03
13 0.199 1.3629e+04 3.6 5.42e+03
14 0.198 1.3601e+04 9.2 5.36e+03

5.4 Summary

In this chapter, we applied MOLS to a real-world coupled optimization problem, integration

of an antenna on a CubeSat structure. In a high-dimensional search space, MOLS identified

a number of tradeoff designs, that balance structural resistance to deformation and its

performance as an S-band antenna. In the mechanical domain, a single locally optimal
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topology was obtained: small variations on this structure contributed the majority of non-

dominated solutions. In the EM domain, the goal of matching the antenna to 50 Ω was

met easily, unlike the radiation objective. The results suggest that the CubeSat structure

is capable of generating multi-lobe patterns but is less suitable for uni- or omni-directional

radiation in S-band under the given volume constraints.
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Chapter 6

Conclusions and Future Work

6.1 Multi-objective optimization with Local Search

Computer-aided simulation tools have enabled engineers to design highly complex sys-

tems while taking into consideration constraints across multiple physical domains (e.g.,

mechanical, electronic, thermal, etc.). With the current focus on improving the simulation

techniques, little attention has been paid to developing CAD tools for multi-physics opti-

mization. While most CAD tools consider only a single phenomenon during optimization,

MOLS algorithm presented in this work allows for effective integration of optimization

techniques from two physical domains. It is straightforward to extend MOLS to an arbi-

trary number of domains and objectives assuming the domains are coupled statically, i.e.

through design variables only.

MOLS performance is comparable to the performance of the leading MOEAs. Unlike

MOEAs, MOLS does not rely on specialized fitness assignment in its search for Pareto

trade-offs and determines the promising areas of the search space by considering the neigh-

borhood of the solution in the design space rather than in the objective space. This mode

of operation shifts the focus from the uniform coverage of Pareto objectives to attaining a

more diverse set of engineering designs.
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Adaptation/self-adaptation of algorithmic parameters. However, like MOEAs, MOLS’

performance is dependent on the choice of parameters. While for smaller problems, it is

possible to use preliminary tests or a meta-procedure to optimize the parameters before

solving the MOP, the computational cost makes any preliminary testing for larger prob-

lems prohibitive. This issue can be alleviated by incorporating feedback from the search

procedure and adapting the parameters during the run based on the search progress. One

of the most important MOLS’ parameters to adapt would be the number of steps taken by

the local search in each domain: in our implementation, the number of evaluations at each

iteration is reduced according to the power law. However, it should be beneficial to apply

a self-adaptive strategy that would adjust the number of LS steps in proportion to the

number of non-dominated candidates in each domain. Another parameter which governs

the relation between the local and global search is the number of candidate solutions passed

to the local search vs. the number of new solutions directly included in the population for

dominance sorting.

Parallelization. Distributed computation for MOO. Parallelization and distribution of

computation is necessary to alleviate the tremendous computational costs associated with

solving large-scale multi-physics problems. MOLS lends itself well to parallelization since

local search in each domain can be run independently. Further research should better

inform the assignment of the computation to the parallel nodes and should clarify how the

disproportion of LS in separate domains affects diversity in the population, what metrics

best characterize the complexity of the landscape in each domain and how to determine the

right balance between searches in landscapes of different complexity and non-linearity. We

envision an adaptive computational process that measures the runtime of fitness evaluation

in each domain and decides on the suitable distribution of computational resources. The

state of the search could be also described by the rate of growth/change of the Pareto set,

percentage of successful steps in LS, etc. For example, in the coupled problems in this work,
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optimization in the mechanical domain is performed much faster and more effectively than

EM optimization which is reflected in the number of LS evaluations taken to convergence

and in the number of non-improving solutions tested by the LS algorithm in each domain.

In this case, it would make sense to perform local optimization of more individuals in the

EM domain, reducing LS in the mechanical domain.

Another step towards parallelizing MOLS should be desynchronization of the optimiza-

tion procedure. In the current implementation, local searches are run sequentially and the

number of individuals optimized in each domain is the same; though the number of LS

steps is adjusted independently in each domain, there is no attempt at balancing out the

computation between the domain optimizers. After local search step is complete, all cur-

rent solutions are evaluated in both domains. Pareto sorting and triangularization is run

on the current population at each iteration of the algorithm. In a distributed version, the

non-dominated population can be updated asynchronously with the locally optimized can-

didates. Pareto sort and triangularization can be run as needed to generate new candidate

solutions.

Constraint handling. In most of the coupled problems in this work, mechanical con-

straints became active for a small portion of all solutions in the search space. As a result,

constraints did not have to be considered during local optimization in the EM domain. This

approach allows for full decoupling of the domains but degrades algorithm’s performance

in problems with more complex constraint functions, in which case such decomposition

may cause the algorithm to waste valuable resources on local search in the infeasible area.

Degradation of MOLS’ performance on B3 (compared to MOEAs) highlighted the need for

better constraint handling across the domains. On B4, for example, in which the require-

ment of statical determinancy of the structure made a large portion of the search space

infeasible, a special repair procedure had to be introduced to improve MOLS’ performance.

With the goal of decoupling the optimization in various domains as much as possible, better
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understanding and characterization of domain interactions on the constraint boundaries is

required.

Some classical and evolutionary approaches to constraint handling could be applied in

MOLS: explicitly solving the feasibility problem for each design before running optimization

is a good strategy (implemented in B4) though it precludes full decoupling of the domains;

design representation can be used to exclude infeasible designs from consideration, for

example by prohibiting certain changes or imposing suitable box constraints on the design

variables in the LS step; reformulating the problem and including the constraint as an

additional objective does not prevent the algorithm from exploration of the infeasible parts

of the search space.

Incorporating surface response models. As computational time is the primary roadblock

in solving any multi-physics MOP, incorporation of surface models is yet another way to

alleviate the costs and preserve the most information about the visited regions of the search

space. Evaluated designs and their fitness scores can be stored in memory, and as the search

proceeds and more designs are evaluated in each objective, the models can provide more

accurate predictions about the most promising search directions. Currently, the algorithm

stores the locally optimal designs and their EM scores to avoid reevaluating duplicates.

6.2 Local search in the EM domain

In this work, we have assumed that effective local search (LS) algorithms exist in each of

the considered domains. However, this assumption has proved too strong in multi-variate

SOPs in the EM domain. Due to the computational cost of EM evaluations, gradient-based

techniques are not always feasible. There is a need for robust LS algorithms that can consis-

tently lead to improvement in the EM objective by exploring the nearest neighborhood of

the current candidate solution. In the tests that we performed on electrically small plates,

removing the material around the segments with the highest currents created designs with
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a more pronounced radiating mode. A way of fine-tuning the designs (that we investigated

briefly) was the gradual change of the trace thickness (for planar antennas) or of wire radii

(wire antennas) based on the eigencurrents and power values. In the CubeSAT problem we

implemented an update rule based on TCM that removed a fraction of the segments with

the smallest currents, while assigned more weight to the segments with higher currents.

Though these procedures lead to improvement in the fitness function more often than a

random step, further research into heuristic rules and neighborhood definitions is required

to make LS more effective.

This also ties into the application of TCM to feed placement. Currently, the procedure

identifies the position of the coaxial feed for the segments present in the structure. It

is desirable to derive information from TCM that would also suggest ways of coupling

energy through capacitive or inductive elements. Since in our approach we consider these

elements as part of the structure (rather than separate probes), we could develop TCM-

based rules for adding material to the current antenna to ensure better matching, radiation

efficiency, etc. Some researchers have suggested using the near-fields of the radiating modes

to determine the promising feed areas. Incorporating this procedure into the automated

optimization algorithm is another way of extending the present research.

6.3 TCM

EM optimization based on TCM. We have conducted extensive study of the objectives

defined in TCM terms and have shown that power estimates from TCM can effectively

guide EM optimization toward designs with better radiating properties. TCM uses a single

objective to help the algorithm identify the most promising areas of the design space.

It further improves the search by suggesting the feasible feed positions. However, our

current approach seeks to improve VSWR and the radiation efficiency of an antenna and

cannot score designs in terms of polarization or radiation pattern. The procedure also
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does not utilize the full power of the TCM decomposition, as the various eigenmodes are

aggregated into a single fitness score. One obvious continuation of this work is to derive the

objectives for radiation patterns and polarization based on TCM and test if they give any

computational advantage or allow for more effective search than the full EM optimization.

Another research direction could seek to combine TCM and primary EM objectives for

single-objective optimization. TCM computation could guide the exploration in the initial

stages of the search, while full EM simulation could be used to exploit the promising

solution areas.

Application to dielectric bodies. Another area we have not considered in this work is

application of TCM to the optimization of dielectric bodies, e.g. microstrip antennas. In

the presence of dielectric losses, the eigencurrents and their corresponding patterns are no

longer R-orthogonal to each other. The power component of each eigenmode includes the

radiated as well as the dissipated power, and distinguishing between these components is

essential to determining the radiation efficiency of an antenna.

MIMO applications. TCM is promising for automated design of MIMO antennas, since

it describes antenna performance in terms of orthogonal current modes. MIMO applica-

tions are plentiful and one of the most challenging is associated with antenna design for

small sensor nodes and mobile terminals. For the frequency-agnostic operation, instead of

using a wide-band antenna and applying a filter to tune to the desired frequency (WiFi,

GSM, 3G, GPS, etc.), we could envision an antenna with multiple feeds (capacitive or

inductive coupling elements) that would sense signals at different bands. The objective is

then to minimize the coupling between the radiating modes at various power supplies while

maintaining acceptable matching and radiation properties. When formulated as MOP, it

could provide valuable insight into the trade-offs between the performance in the bands of

interest.

Our TCM-based placement algorithm could be extended for solving this problem. Real
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power associated with each of the modes at the given feed can be used as a measure of

inter-mode coupling. Within a discretized structure, the segments that have the largest

disparity between the powers of the radiating modes would suggest the lowest coupling.

6.4 Conclusion

This research investigated stochastic optimization algorithms that can be used in a multi-

physics design automation tool. It is the first work to develop and extensively test tech-

niques for coupled optimization of integrated electromagnetic and mechanical systems. We

took an unconventional design approach, in which an arbitrary metallic structure or its

components can be modified to act as efficient radiators. Leaning on the theory of char-

acteristic modes, we modified the search in the EM domain for easy integration with the

structural optimization methods. We derived TCM-based fitness objectives to predict the

potential of the structure to radiate and guide the exploration of the search space.

The algorithms presented in this work allow for effective integration of antennas with

the mechanical structure and enable structure reuse, as validated on a number of small

benchmark problems and real-world applications. Setting up and solving a multi-physics

problem is a time consuming and resource intensive process that requires expertise in

all domains under consideration. Relying on the efficient domain-specific methods relaxes

this requirement and allows for straightforward set-up of the optimization procedure across

multiple physical disciplines. While this research has focused on coupled optimization across

electromagnetic and mechanical domains, the presented multi-objective algorithm with

local search can be applied more generally: effectively combining domain-specific methods

and representations, MOLS can be extended to solve a multi-physics optimization problem

with a large number of disciplines and objectives.
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