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A B S T R A C T

This thesis develops flexible and principled nonparametric learning algo-
rithms to explore, understand, and predict high dimensional and complex
datasets. Such data appear frequently in modern scientific domains and lead
to numerous important applications. For example, exploring high dimensional
functional magnetic resonance imaging data helps us to better understand
brain functionalities; inferring large-scale gene regulatory network is crucial
for new drug design and development; detecting anomalies in high dimen-
sional transaction databases is vital for corporate and government security.

Our main results include a rigorous theoretical framework and efficient non-
parametric learning algorithms that exploit hidden structures to overcome the
curse of dimensionality when analyzing massive high dimensional datasets.
These algorithms have strong theoretical guarantees and provide high dimen-
sional nonparametric recipes for many important learning tasks, ranging from
unsupervised exploratory data analysis to supervised predictive modeling. In
this thesis, we address three aspects:

1 Understanding the statistical theories of high dimensional nonparamet-
ric inference, including risk, estimation, and model selection consistency;

2 Designing new methods for different data-analysis tasks, including
regression, classification, density estimation, graphical model learning,
multi-task learning, spatial-temporal adaptive learning;

3 Demonstrating the usefulness of these methods in scientific applications,
including functional genomics, cognitive neuroscience, and meteorology.

In the last part of this thesis, we also present the future vision of high
dimensional and large-scale nonparametric inference.

K E Y W O R D S

machine learning, statistical inference, nonparametric methods, curse of di-
mensionality, regression, classification, multi-task learning, density estimation,
undirected graphical models, structure learning, spatial-temporal adaptive
learning
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [Knuth, 1974]
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three different pairs of variables. The red-dashed horizontal
lines represent the population values. 116

Figure 34 Perspective and contour plots of the bivariate Gaussian fits
vs. the kernel density estimates for two edges of a Gaussian
graphical model. 116

Figure 35 Synthetic data. Top-left Gaussian, and top-right non-Gaussian:
Held-out log-likelihood plots of the forest density estimator
(black step function), glasso (red stars), and refit glasso (blue
circles), the vertical dashed red line indicates the size of the
true graph. Bottom plots show the true and estimated graphs
for the Gaussian (second row) and non-Gaussian data (third
row). 117

Figure 36 Results on microarray data. Top: held-out log-likelihood (left)
and its zoom-in (right) of the tree-based kernel density esti-
mator (black step function), glasso (red stars), and refit glasso
(blue circles). Bottom: estimated graphs using the tree-based
estimator (left) and glasso (right). 119

Figure 37 A 934 gene subgraph of the full estimated 4238 gene net-
work. Upper: estimated forest graph. Lower: estimated Gaus-
sian graph. Red edges in the forest graph are missing from the
Gaussian graph and vice versa; the blue edges are shared by
both graphs. Note that the layout of the genes is the same for
both graphs. 121

Figure 38 The sparse backfitting algorithm. The first two steps in the
iterative algorithm are the usual backfitting procedure; the re-
maining steps carry out functional soft thresholding. 143

Figure 39 The SpAM backfitting algorithm is a functional version of the
coordinate descent algorithm for the lasso, which computes

β̂ = arg min
1
2
‖Y− Xβ‖2

2 + λ‖β‖1. 144



List of Figures xv

Figure 40 Data version of the soft-thresholding operator. 155
Figure 41 The simultaneous sparse backfitting algorithm for MT-SpAM

or MR-SpAM. For the multi-response case, the same smooth-
ing matrices are used for each k. 156

Figure 42 The penalized local scoring algorithm for SMALR. 157
Figure 43 (Top) Estimated vs. true functions from MT-SpAM; (Middle)

Regularization paths using MT-SpAM. (Bottom) Quantitative
comparison between MR-SpAM and MARS 167

Figure 44 SMALR results on gene data: heat map (left), marginal fits
(center), and CV score (right). 168

Figure 45 Model for predicting fMRI activation for a stimuli 169
Figure 46 The leave-two-out-cross-validation protocols 172
Figure 47 Bar and Box plots for accuracies for 9 fMRI participants 173
Figure 48 The 25 estimated component functions using the MT-SpAM

174

Figure 49 The Additive Forward Regression Algorithm 181
Figure 50 The Generalized Forward Regression Algorithm 182
Figure 51 Performance of the different algorithms on synthetic data: MSE

versus sparsity level 186
Figure 52 Performance of the different algorithms on real datasets: CV

error versus sparsity level 188

Figure 53 (a) The 22 subregions defined on [0, 1]2. The horizontal axis
corresponds to the first dimension denoted as X1 while the
vertical axis corresponds to the second dimension denoted as
X2. The bottom left point corresponds to [0, 0] and the upper
right point corresponds to [1, 1]. (b) The true graph for subre-
gion 4. (c) The true graph for subregion 17. (d) The true graph
for subregion 22. 216

Figure 54 (a) The estimated dyadic tree structure; (b) the induced par-
tition on [0, 1]2 and the number labeled on each subregion
corresponds to each leaf node ID of the tree in (a); (c) the
held-out negative log-likelihood risk for each split. The order
of the splits corresponds the ID of the tree node (from small
to large) 217

Figure 55 (a) Estimated tree structure; (b) corresponding partitions 218
Figure 56 Comparison of our algorithm with glasso (a) Precision; (b)

Recall; (c) F1-score; (d) Estimated graph by applying glasso
on the entire dataset 219

Figure 57 (a) Estimated tree structure; (b) estimated partitions where the
labels correspond to the index of the leaf node in (a) 220



Figure 58 (a) Color map of F1-score for glasso run on the entire dataset;
(b) color map of F1-score for Go-CART. Red indicates large
values (approaching 1) and blue indicates small values (ap-
proaching 0), as shown in the color bar. 221

Figure 59 Analysis of the climate data. (a) Estimated partitions for 125
locations projected to the US map, with the estimated graphs
for subregions 2, 3, and 65; (b) estimated graph with data
pooled from all 125 locations; (c) the re-scaled partition pat-
tern induced by the dyadic tree structure. 222

Figure 60 The estimated dyadic tree structure on the climate data. 223

Figure 61 Comparison of different methods on the data from the neigh-
borhood graphs (n = 400, d = 100). 243

Figure 62 Comparison of different methods on the data from the hub
graphs (n = 400, d = 100). 244

Figure 63 Microarray data example. The StARS graph is more informa-
tive graph than the BIC graph. 244

L I S T O F TA B L E S

Table 1 Quantitative comparison on the data set using the cdf transfor-
mation. For both FPE and FNE, the nonparanormal performs
much better in general. 80

Table 2 Quantitative comparison on the data set using the power trans-
formation. For both FPE and FNE, the nonparanormal per-
forms much better in general. 81

Table 3 Quantitative comparison on the data set without any trans-
formation. The two methods behave similarly, the glasso is
slightly better. 82

Table 4 The semantic basis used in Mitchell et al. (2008) 169
Table 5 The 60 stimulus words presented during the fMRI studies.

Each row represents a category 170
Table 6 Accuracies for 9 fMRI participants 173
Table 7 An example of 25 learned semantic basis words. 175

Table 8 Comparison of variable selection 187

Table 9 Comparison of Variable Selection and Function Estimation on
Synthetic Datasets 202

xvi



Table 10 Testing MSE on Real Datasets 203

Table 11 The graph estimation performance over different subregions 217

Table 12 Quantitative comparison of different methods on the datasets
from the neighborhood and hub graphs. 242

L I S T I N G S

A C R O N Y M S

xvii





Part I

T H E S I S OV E RV I E W





1
THESIS OVERVIEW

1.1 motivation and thesis statement

Modern data acquisition routinely produces massive amounts of high dimen-
sional and highly complex datasets, including interactive logs from search
engines, traffic records from network routing, chip data from high throughput
genomic experiments, and image data from functional Magnetic Resonance
Imaging (fMRI). Driven by the complexity of these new types of data, highly
adaptive and reliable data analysis procedures are crucially needed.

Older high dimensional theories and learning algorithms rely heavily on
parametric models, which assume the data come from an underlying distri-
bution that can be characterized by a finite number of parameters. If these
assumptions are correct, accurate and precise estimates can be expected. How-
ever, given the increasing complexity of modern data, conclusions inferred
under these restrictive assumptions can be misleading. To handle this chal-
lenge, this thesis focuses on nonparametric methods, which directly conduct
inference in infinite-dimensional spaces and thus are powerful enough to
capture the subtleties in most modern applications.

The main goal of this thesis is to develop flexible and principled non-
parametric learning algorithms to explore, understand, and predict
high dimensional and complex datasets.

1.2 main results

Results of this thesis include rigorous statistical theories and efficient non-
parametric learning algorithms that exploit hidden structures to overcome the
curse of dimensionality when analyzing massive high dimensional datasets.
These algorithms have strong theoretical guarantees and provide high dimen-
sional nonparametric recipes for many important learning tasks, ranging from
unsupervised exploratory data analysis (e.g. density estimation, graphical
model learning, clustering) to supervised predictive modeling (e.g. regression,
classification, multi-task learning). The following list provides a summary of
the thesis structure and highlights the main results:
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4 THESIS OVERVIEW

A UNIFIED THEORETICAL FRAMEWORK

• PERSISTENCY: the prediction performance of a procedure;

• CONSISTENCY: the estimation performance of a procedure;

• SPARSISTENCY: the model selection performance of a procedure;

• RATES OF CONVERGENCE: the sample complexity.

UNSUPERVISED LEARNING METHODS

• DENSITY RODEO: Sparse Nonparametric Density Estimation using
the Rodeo [Liu et al., 2007];

• NONPARANORMAL: Semiparametric Estimation of High Dimen-
sional Undirected Graphs [Liu et al., 2009a];

• FOREST DENSITY ESTIMATION: Nonparametric Density Estimation
and Undirected Graphical Model Learning [Liu et al., 2010c].

SUPERVISED LEARNING METHODS

• MULTI-TASK SPAM: Sparse Additive Models for Multi-task Re-
gression and Multi-Class Classification [Liu et al., 2009b, 2008]

• GREEDY FORWARD REGRESSION: Nonparametric Regression with
General Mean Function [Liu and Chen, 2009];

• MULTIVARIATE DYADIC REGRESSION TREES: Multivariate Regres-
sion with General Mean Functions [Liu and Chen, 2010];

• GRAPH-OPTIMIZED CART: Graph-Valued Regression [Liu et al.,
2010a]

REGULARIZATION SELECTION METHOD

• STARS: Stability Approach to Regularization Selection for High
Dimensional Undirected Graphical Models [Liu et al., 2010b]

SCIENTIFIC APPLICATIONS

• GENOMICS: tumor classification; biomarker discovery, gene regu-
latory network construction[Liu et al., 2009a, 2010c, 2008, 2010b];

• COGNITIVE NEUROSCIENCE: neural semantic basis discovery[Liu
et al., 2009b];

• METEOROLOGY: learning spatial-temporal varying interaction
graphs of climate factors [Liu et al., 2009b, Chen et al., 2010].
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Several items in this list have very interesting extensions and will continue to
shape our research agenda in the near future. Although these topics appear to
be diverse, their underlying principles are the same, that is, to understand the
fundamental mathematical structure of these problems in order to develop
better theory and methods. In the following, we provide a high-level summary
of the main results of this thesis.

1.3 organization of this thesis

The structure and logic of this thesis are illustrated in Figure 1. This thesis
is motivated by novel applications arising from modern scientific domains
including Genomices, Cognitive Neuroscience, and Meteorology. Under a
unified theoretical framework, we develop flexible and efficient nonpara-
metric learning algorithms for both supervised and unsupervised learning
paradigms. Since all these methods involve a tuning parameter, we also pro-
pose a general regularization selection approach to automatically choose the
tuning parameter. We organize the rest of the thesis into several parts: (Part
II) fundamental theory; (Part III) unsupervised learning methods; (Part IV)
supervised learning methods; (Part V) regularization selection.

1.3.1 Part II: Fundamental Theory

In Chapter 2, we review some background of high dimensional data analysis
and nonparametric statistical inference. Next, we provide an overview of the
basic theoretical framework used in this thesis.

Classical nonparametric theory is developed by allowing the data sample
size n to grow while the data dimension d remains low, typically fixed at
one. In contrast, for high dimensional data, it is more realistic to allow both
n and d to grow, with d possibly growing much faster than n. Under this
setting, minimax theory shows that, without further structural assumptions,
it is hopeless to obtain a consistent learning procedure. This fact characterizes
the statistical curse of dimensionality. On the other hand, the time complexity
of many learning algorithms also increases exponentially with d, which
characterizes the computational curse of dimensionality. Together, these facts
illustrate a fundamental limit of nonparametric learning methods: Structural
assumptions must be traded off with statistical and computational efficiencies.

One concept that plays an important role in our research is functional
sparsity. For example, in high-dimensional nonparametric regression, even
if the observed dimensionality d is large, the true regression function might
only depend on a small number of relevant dimensions r with r � d. In other
words, the problem is sparse. This thesis aims to design learning algorithms
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Applications: Gene Network Reconstruction, Biomarker Identification,  Tumor 
Classification,  Neural Semantic Basis Discovery,  Climate Data Analysis

   Unified Theoretical Framework: 
• Persistency (Risk Consistency)
• Consistency (Estimation Consistency)
• Sparsistency (Model Selection Consistency)
• Rates of Convergence (Sample Complexity)

Unsupervised Learning 
Methods

• Density Rodeo

• (Time-varying) 
Nonparanormal

• Forest Density 
Estimation

Supervised Learning 
Methods

• MT-SpAM

• Nonparametric
             Greedy  Regression

• Multivariate Dyadic 
Regression Trees

• Graph-valued 
Regression

Regularization Selection: StARS

Figure 1.: A paradigm illustrating the thesis structure. The applications of this thesis
come from modern scientific areas including Genomics, Cognitive Neuroscience,
and Meteorology. Under a unified theoretical framework (including risk consis-
tency, estimation consistency, and model selection consistency), we develop high-
dimensional nonparametric learning methods for both unsupervised and supervised
learning paradigms; To automatically select the regularization parameters of these
methods, we also develop a regularization selection method named StARS.



1.3 O R G A N I Z AT I O N O F T H I S T H E S I S 7

that can effectively utilize this unknown sparsity pattern to beat the curse of
dimensionality. Two key questions are addressed:

• How can we design effective high-dimensional nonparametric algorithms?

• What kinds of theoretical guarantees can we provide?

In a series of papers with John Lafferty and Larry Wasserman [Liu et al., 2008,
2010a,b,c], we propose an integrated framework consisting of a family of eval-
uation criteria from modern statistical theory and numerical analysis. These
criteria can evaluate an algorithm’s performance from both the statistical and
computational perspectives. For example, a criterion called “sparsistency"
characterizes whether an algorithm can identify the unknown sparsity pattern
with large probability; “persistency" characterizes whether an algorithm can
predict as well as the best model within a family; The “rates of convergence”
evaluates the asymptotic sample complexity that an algorithm requires to
achieve a certain estimation accuracy; “nondegeneracy” and “numerical con-
vergence” characterize the uniqueness of the solution and whether an iterative
algorithm is guaranteed to converge to one of its solutions. This framework is
quite general and provides the theoretical underpinnings of high dimensional
nonparametric methods. We attempt to evaluate all the proposed methods in
the thesis using this integrated theoretical framework.

Under this principled theoretical framework, we focus on develop-
ing new methods for a number of important data-analysis tasks. These
methods roughly fall in two learning paradigms:

(P1) Unsupervised Learning: density estimation, undirected
graphical model learning, clustering;

(P2) Supervised Learning: regression, classification, learning con-
ditional undirected graphical models;

These two learning paradigms are broadly applicable, theoretically
interesting, and represent learning tasks including exploratory data
analysis and predictive modeling.

1.3.2 Part III: Unsupervised Learning Methods

1.3.2.1 Density-rodeo: High-dimensional Nonparametric Density Estimation

Accurately estimating the joint density is a fundamental problem in non-
parametric exploratory data analysis but is also notoriously difficult in high
dimensions due to the curse of dimensionality. Some structure or sparsity
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assumptions are needed to avoid the curse. In Chapter 3, we address the
following problem—

• What is an appropriate notion of sparsity in the density estimation setting?

We assume the joint density can be factored into the product of a high-
dimensional parametric baseline and a nonparametric correction term that
depends only on an unknown small subset of the variables. This turns out
to be a more realistic assumption for the real-world distributions. Under
this assumption, we develop a method called density-rodeo [Liu et al., 2007]
which can simultaneously achieve a nearly optimal rate of convergence in
the sample complexity and a very efficient asymptotic polynomial running
time. This is the first method that can systematically conduct nonparametric density
estimation in hundreds of dimensions with strong theoretical guarantees. Figure 2

illustrates the method on a simulated dataset, showing how it captures the
true shape of the density. In this simulation, the true bivariate density factors
into the product of two univariate densities: a mixture of Beta distribution
and a uniform distribution. The density rodeo perfectly recovers this true
density while the R build-in method KDE2d fails.

relevant dimension
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(a) the density rodeo estimation

relevant dimension
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(b) the KDE2d estimation

Figure 2.: An illustrative example of the density rodeo: Perspective plots of the estimated den-
sity functions by the density rodeo (left) and the R built-in method KDE2d (right)
on a 2-dimensional synthetic data.
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1.3.2.2 The Nonparanormal: Estimation of High-Dimensional Undirected Graphs

Another important exploratory data analysis task is to estimate undirected
graphical models, which graphically represent the conditional independence
structure among a large number of variables. Current methods for estimating
sparse undirected graphs in high-dimensional problems rely heavily on the
normality assumption, i.e., the data is assumed to have a multivariate Gaus-
sian distribution, which significantly limits the applications of these methods.
Motivated by this, we ask the following question—

• Can we estimate high-dimensional undirected graphs for non-Gaussian data?

In Chapter 4, we show that this is possible for a much larger family of
distributions, which we call the “nonparanormal.” Just as additive models ex-
tend linear models by replacing linear functions with a set of one-dimensional
smooth functions, the nonparanormal is a nonparametric extension of the
normal that transforms the variables by one-dimensional smooth functions.
Figure 3 provides three examples of 2-dimensional nonparanormal density
and contour plots, which illustrates the richness of the nonparanormal family.
We derive a method for estimating the nonparanormal and provide theoreti-

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

Figure 3.: An illustrate example of the nonparanormal: The densities of three 2-dimensional
nonparanormals. The component functions have the form f j(x) = sign(x)|x|αj .
Left: α1 = 0.9, α2 = 0.8; center: α1 = 1.2, α2 = 0.8; right α1 = 2, α2 = 3. In
each case µ = (0, 0) and Σ = (1 .5

.5 1).

cal guarantees including persistency, consistency, and sparsistency. We have
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applied the nonparanormal to estimate gene-gene interaction graphs for the
isoprenoid biosynthetic pathway of Arabadopsis thaliana using microarry
data. Our method supports different biological conclusions from those ob-
tained using the Gaussian graphical model and graphical lasso. A variant of
time-varying nonparanormal has been applied to analyze climate data [Chen
et al., 2010]. Some preliminary analysis shows that our result has a better match with
existing Meteorology theory than the competing state-of-the-art approaches.

1.3.2.3 Forest Density Estimation

In Chapter 5, we propose a forest density estimator which can simultaneously
estimate high dimensional densities and undirected graphical models. The
nonparanormal assumes the data can be Gaussianized using a set of univariate
monotone functions, but allows for arbitrary undirected graphical models. In
contrast, the forest density estimator assumes arbitrary smooth distributions,
but only allows for forest graphical models. Together, they reflect a tradeoff
between distribution flexibility and graphical model complexity. Both methods
have been proven to be persistent, consistent, and sparsistent; they are the
first high dimensional nonparametric density estimation methods that have
all of these desirable properties.

(a) Forest density estimator graph (b) Gaussian graph

Figure 4.: An illustrative example of the forest density estimator: a 934 gene subgraph of the
full estimated 4238 gene network. Left: estimated forest graph. Right: estimated
Gaussian graph. Red edges in the forest graph are missing from the Gaussian graph
and vice versa; the blue edges are shared by both graphs. Note that the layout of the
genes is the same for both graphs.

Figure 4 provides an illustration of the forest density estimator on a human
microarray dataset. The data contains Affymetrics chip measured expression
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levels of 4238 genes for 295 normal subjects in the Centre d’Etude du Polymor-
phisme Humain (CEPH) and the International HapMap collections. The 295

subjects come from four different groups: 148 unrelated grandparents in the
CEPH-Utah pedigrees, 43 Han Chinese in Beijing, 44 Japanese in Tokyo, and
60 Yoruba in Ibadan, Nigeria. We estimate the full 4238 node graph using
both the forest density estimator (described in Sections 5.3.1 and 5.3.2) and
the state-of-the-art Gaussian graphical models proposed in Meinshausen and
Bühlmann [2006] with the regularization parameter chosen so that the number
of estimated edges is the same as the forest graph.

The forest density estimator graph reveals one strongly connected compo-
nent of more than 3000 edges and various isolated genes; this is consistent
with the analysis in Nayak et al. [2009] and is realistic for the regulatory
system of humans. The Gaussian graph contains similar component structure,
but the set of estimated edges differs significantly. For visualization purposes,
in Figure 4, we only show a 934 gene subgraph of the strongly connected
component among the full 4238 node graphs we estimated.

1.3.3 Part IV: Supervised Learning Methods

1.3.3.1 Multi-task Sparse Additive Models

Many application problems can be naturally formulated in terms of multi-task
regression or multi-class classification problems, in which several regression
or discriminant functions need to be estimated based on different datasets.
Sometimes, while the details of the predictors vary from instance to instance,
they may share a common sparsity pattern across different regression tasks or
class categories. The linear model is a mainstay of statistical inference for these
problems and has been extended in several important ways. An extension
to high dimensions was achieved by adding a sparsity constraint, leading to
different variants of the sparse linear models. An extension to nonparametric
models was achieved by replacing linear functions with smooth functions,
leading to additive models. These developments motivate a natural question—

• Can we combine the power of sparse linear modeling and additive models?

In Chapter 6, we describe a new family of models and algorithms for high-
dimensional nonparametric multi-task learning with joint sparsity constraints
Liu et al. [2008]. Our approach formulates the problem as a sum of sup-norm
penalized least squares regression, which enforces common sparsity patterns
across different function components in a nonparametric additive model.
The obtained algorithm is called simultaneous sparse backfitting, which is
highly efficient since each individual iteration can be solved by a closed-
form functional soft-thresholding operator. This framework is very flexible
and yields several new models, including multi-task sparse additive models,
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Figure 5.: SMALR results on gene data: heat map (left), marginal fits (center), and CV score
(right).

multi-response sparse additive models, and sparse additive multi-category
logistic regression. Using the same idea as in Ravikumar et al. [2007, 2009a],
the multi-task sparse additive models can be proved to be both persistent and
sparsistent.

Figure 5 illustrates our method on a microarray dataset for small round
blue cell tumor (SRBCT) classification. This data contains 2,308 genes and 4

categories. Compared with previous analyses on this same data, our method
achieves the best predictive accuracy on the test set (100% accuracy) using
the most compact set of predictors (20 genes). From the gene heatmap, the
selected 20 genes are seen to have an informative block structure, and the
fitted components are highly nonlinear. This indicates that high-dimensional
nonparametric inference is suitable for this dataset.

1.3.3.2 Greedy Regression and Multivariate Dyadic Regression Trees

The multi-task sparse additive models assume the regression or classification
functions have an additive form. Such an assumption may still be restrictive
in applications. Motivated by this, we address the question:

• Can we conduct high-dimensional nonparametric inference with general
multivariate regression/classification functions?

To estimate general multivariate functions, we propose greedy forward regres-
sion and multivariate dyadic regression trees in Chapters 7 and 8. Both methods
simultaneously conduct estimation and variable selection in high dimensional
nonparametric regression problems. They can be viewed as nonparametric
counterparts for two major sparsity-inducing approaches: greedy pursuit and
convex regularization. The greedy pursuit approach regularizes the model by
iteratively selecting the current optimal approximation according to some
criterion; While the convex regularization approach regularizes the model
by adding a sparsity constraint. We provide theoretical justifications for both
methods and validate the theoretical arguments on real datasets.



1.3 O R G A N I Z AT I O N O F T H I S T H E S I S 13

1.3.3.3 Graph-valued Regression

Let Y be a high dimensional random vector with independence relations
encoded in a graph G. In many applications, it is of interest to model Y given
another random vector X as input. We refer to the problem of estimating the
graph G(x) of Y conditioned on X = x as “graph-valued regression.” The key
question we address here is

• Can we estimate conditional undirected graphical models with respect
to possibly high dimensional covariates?

In Chapter 9, we propose a semiparametric method for estimating G(x) that
builds a tree on the X space just as in CART (classification and regression
trees), but at each leaf of the tree estimates a graph. We call the method
“Graph-optimized CART,” or Go-CART. We study the theoretical properties
of Go-CART using dyadic partitioning trees, establishing oracle inequalities
on risk minimization and tree partition consistency. We also demonstrate the
application of Go-CART to a meteorological dataset, showing how graph-
valued regression can provide a useful tool for analyzing complex data.
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Figure 6.: An illustrative example of Go-CART: Analysis of the climate data. (a) Estimated
partitions for 125 locations projected to the US map, with the estimated graphs for
subregions 2, 3, and 65; (b) estimated graph with data pooled from all 125 locations;
(c) the re-scaled partition pattern induced by the dyadic tree structure.

Figure 6 provides an illustrative example of applying graph-valued re-
gression to analyze a meteorology dataset [Lozano et al., 2009] that contains
monthly data of 18 different meteorological factors from 1990 to 2002. The
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observations span 125 locations in the US on an equally spaced grid between
latitude 30.475 and 47.975 and longitude -119.75 to -82.25. The 18 meteorologi-
cal factors measured for each month include levels of CO2, CH4, H2, CO, average
temperature (TMP) and diurnal temperature range (DTR), minimum temperate
(TMN), maximum temperature (TMX), precipitation (PRE), vapor (VAP), cloud
cover (CLD), wet days (WET), frost days (FRS), global solar radiation (GLO),
direct solar radiation (DIR), extraterrestrial radiation (ETR), extraterrestrial
normal radiation (ETRN) and UV aerosol index (UV). For further detail, see
Lozano et al. [2009].

More detailed analysis of Figure 6 can be found in Chapter 9. Here, the
key point is that the fitted results by estimating the conditional independence
graphs (conditional on the geographic locations ) are more interpretable than
those obtained by estimating an unconditional universal graph.

1.3.4 Part V: Regularization Selection

1.3.4.1 Stability Approach to Regularization Selection (StARS) for High Dimen-
sional Graphical Models

All the new methods proposed in this thesis contain at least one tuning pa-
rameter. A challenging problem is to choose the regularization parameter in a
data-dependent way. The standard techniques include K-fold cross-validation
(K-CV), Akaike information criterion (AIC), and Bayesian information crite-
rion (BIC). Though these methods work well for low-dimensional problems,
they are not suitable in high dimensional settings. The key challenge is:

• Can we reliably choose the regularization parameters for high dimensional non-
parametric methods?

In chapter 10, we present StARS: a new stability-based method for choosing
the regularization parameter in high dimensional inference. The method
is quite general and can be applied to different kinds of parametric and
nonparametric models. In this chapter, we only consider the problem of
estimating high dimensional undirected graphs as a pilot study. The method
has a clear interpretation: we use the least amount of regularization that
simultaneously makes a graph sparse and replicable under random sampling
of data points. This interpretation requires essentially no conditions. Under
mild conditions, we show that StARS is partially sparsistent in terms of graph
estimation: i.e. with high probability, all the true edges will be included in
the selected model even when the graph size diverges with the sample size.

Empirically, the StARS is expected to provide more informative (sparser)
graphs than the other state-of-the-art methods. We illustrate this point in
Figure 7 using the fitted graphs of the StARS and Bayesian information
criterion (BIC) on a human microarray dataset containing 324 genes.
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(a) StARS graph (b) BIC graph

Figure 7.: An illustrative example of StARS: Two estimated graphs on the microarray data
using the StARS and BIC. The StARS graph is more informative than the BIC
graph.

We see that the StARS graph is remarkably simple and informative, exhibit-
ing some cliques and hub genes. In contrast, the BIC graph is very dense
and possible useful association information is buried in the large number of
estimated edges.

1.3.4.2 Conclusions

Some concluding remarks and future visions are provided in the last chapter.
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Related publications of Chapter 3 include

• Han Liu, John Lafferty, and Larry Wasserman (2007). Sparse Nonpara-
metric Density Estimation using the Rodeo. Proceedings of the Eleventh
Conference on Artificial Intelligence and Statistics (AISTATS), pages
283-290, April 2007.

Related publications of Chapter 4 include
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Part II

S TAT I S T I C A L T H E O RY





2
BACKGROUND AND STATISTICAL THEORY

In this chapter, we briefly review the literature on high-dimensional
nonparametric inference. We are especially interested in the situation
where the number of data dimensions can asymptotically increase with
the sample size, which is a key challenge for modern statistical theory.
We then introduce the key concept of sparsity and its usefulness in high
dimensional linear models. We also briefly overview existing results
on high dimensional nonaprametric methods. Finally, we present the
unified theoretical framework utilized throughout this thesis.

2.1 literature overview

Nonparametric learning aims to develop flexible and computationally efficient
algorithms that can effectively explore and predict complex datasets. It can be
viewed as a sub-area of both statistics and computer science. Researchers from
both communities are attacking essentially the same problem with different
emphasis. To conduct nonparametric inferences in high dimensions, we need
to estimate infinite-dimensional smooth functions from large-scale data. This
task is both theoretically and computationally challenging due to the curse
of dimensionality, which means that inference becomes exponentially harder
when the number of dimensions increases.

2.1.1 Curse of Dimensionality

One way to characterize the curse is by minimax theory. Given n observed data
points

Dn = {(X(1), Y(1)), . . . , X(n), Y(n))}, (2.1)

where X(i) = (X(i)
1 , . . . , X(i)

d )T ∈ Rd and Y(i) ∈ R. We consider a d-dimensional
nonparametric regression problem

Y(i) = m(X(i)) + ε(i), i = 1, . . . , n (2.2)
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where ε(i) is independently distributed mean zero noise. Let L2(0, 1) be the
class of L2-functions with support on [0, 1]d. If m is in M = W(2, c), the
d-dimensional Sobolev ball of order two and radius c, which is defined as

W(2, c) =

{
f : f ∈ L2(0, 1), D2 f ∈ L2(0, 1), ‖D2 f ‖2

L2
≤ c2

}
, (2.3)

the risk of an estimator m̂n, defined as

R(m̂n, m) = Em

∫
(m̂n(x)−m(x))2dx

satisfies

lim inf
n→∞

n4/(4+d) inf
m̂n

sup
m∈W(2,c)

R(m̂n, m) > 0. (2.4)

Thus, the rate of convergence is O(n−4/(4+d)). This means, to achieve a certain
error rate, the required sample size is exponential in d, which is practically
intractable.

Another way to characterize the curse is by complexity theory. Consider a
nonparametric kernel density estimation problem. Let X(1), X(2), ..., X(n) be a
sample from a d-dimensional density p(x). We are interested in estimating
the density p(x) when the dimension d is large. For an evaluation point x, the
kernel density estimator [Parzen, 1962] is defined as

f̂H(x) =
1

n det(H)

n

∑
i=1
K(H−1(x− X(i))) (2.5)

=
1
n

n

∑
i=i

d

∏
j=1

1
hj

K

 xj − X(i)
j

hj

 (2.6)

where K is a symmetric product kernel with
∫
K(u)du = 1 and

∫
uK(u)du =

0d. H = diag(h1, ..., hd) is a diagonal bandwidth matrix. If we want to conduct
bandwidth selection through cross validation with each dimension has q
candidate bandwidths, the total number of calculations will be O(qd). The
computational cost of trying all possible combinations is exponential in the
data dimension d, which is also practically intractable.

2.1.1.1 Theoretical Contributions of this Thesis

A major goal of this thesis is to develop rigorous theoretical frameworks which
could overcome the curse of dimensionality when analyzing high dimensional
datasets. A central concept in our framework is sparsity (or functional sparsity
in the nonparametric settings), which means that the data has some hidden
structures. Even though the observed data dimension d is very large, the
relevant (or intrinsic) dimension r can be very low, i.e. r � d. Under such a
sparsity assumption, it’s possible to develop some flexible methods which
can automatically exploit this underlying structure as if it’s already known.
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2.1.2 Sparsity in High-dimensional Parametric Methods

The notion of sparsity has played important role in fitting high-dimensional
linear models. One particularly successful case is the Lasso estimator [Tibshi-
rani, 1996], which is also named as basis pursuit estimator in the signal pro-
cessing community [Chen et al., 1998]. Consider a linear model m(x) = xT β.
The Lasso estimator is defined as

β̂λ = arg min
β

{
1
n

n

∑
i=1

(
Y(i) − X(i)T

β
)2

+ λ‖β‖1

}
(2.7)

where λ is the regularization parameter for the `1-norm of the coefficients
β. The solution of Lasso can be obtained by standard convex optimization
techniques [Osborne et al., 1999]. Furthermore, its entire solution path can
be computed in the same complexity of that of least squares [Efron et al.,
2004]. Greenshtein and Ritov [2004] prove that the Lasso estimator is persis-
tent, in the sense that the predictive risk of the Lasso estimator converges
to the risk obtained by the oracle estimator in probability. However, recent
studies [Meinshausen and Bühlmann, 2006, Zhao and Yu, 2007, Zou, 2006]
show that the Lasso estimator is not in general model selection consistent (or
sparsistent), which means the correct sparse subset of the relevant variables
can not be identified asymptotically. In particular, in [Zhao and Yu, 2007], it is
shown that in order for Lasso to be model selection consistent, the so-called
irrepresentable condition has to be satisfied. Zou [2006] propose the adaptive
Lasso and showed that by using adaptive weights for different variables, the
`1 penalty can lead to model selection consistent estimator. Besides adaptive
Lasso, the non-negative garrotte estimator [Breiman, 1995] has also been
shown to be able to achieve model selection consistency in a two-step proce-
dure given that the initial estimator is estimation consistent [Zou, 2006, Yuan
and Lin, 2007]. In terms of estimation, it has been shown in Meinshausen and
Yu [2009] that under weaker conditions, the Lasso estimator is `2 estimation
consistent for high-dimensional setting where d can grow almost as fast as
exp(n). Under a stronger assumption, Bunea et al. [2007] further prove the
sparsity oracle inequalities for the Lasso estimator using fixed design. These
oracle inequalites can be used to derive the rate of convergence of the Lasso
estimator as O (log d/n), a similar result for the random design can be found
in [Bunea et al., 2007]. Some newest theoretical results related to Lasso include
Negahban and Wainwright [2008], Wainwright [2009], Obozinski et al. [2009],
Ravikumar et al. [2010].

All these results show that the Lasso estimator can effectively utilize the
hidden sparsity structure in the linear regression to overcome both the statis-
tical and computational curse of dimensionality even when facing increasing
dimensions.
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2.1.3 Sparsity in High-dimensional Nonparametric Methods

It’s a natural idea to extend the Lasso estimator to high-dimensional nonpara-
metric methods. There are two basic approaches to utilize sparsity in high
dimensional nonparametric inferences: convex regularization and greedy pursuit.

Substantial progress has been made recently on applying the convex reg-
ularization idea to fit sparse additive models. For splines, Lin and Zhang
[2006] propose a method called COSSO, which uses the sum of reproducing
kernel Hilbert space norms as a sparsity inducing penalty, and can simul-
taneously conduct estimation and variable selection; A recent work of Jeon
and Lin [2006] extended the idea of COSSO to density estimation setting.
More technical details of the COSSO are presented in the Appendix A of this
thesis. In parallel to the COSSO, Ravikumar et al. [2007, 2009a] develop a
method called SpAM. The population version of SpAM can be viewed as a
least squared regression problem penalized by the sum of L2(P)-norms; Meier
et al. [2009] develop a similar method using a different sparsity-smoothness
penalty, which guarantees the solution to be a spline. The newest theoretical
result on the sparse additive models is developed by Raskutti et al. [2010]. All
these methods can be viewed as different nonparametric variants of Lasso.

Another way to conduct high dimensional nonparametric inference is
through greedy pursuit. Instead of trying to formulate the whole learning
task into a global convex optimization, the greedy pursuit approaches adopt
iterative algorithms with a local view. During each iteration, only a small num-
ber of variables are actually involved in the model fitting so that the whole
inference only involves low dimensional models. Thus they naturally extend
to the general multivariate regression and do not induce large estimation
bias, which makes them especially suitable for high dimensional nonpara-
metric inference. However, the greedy pursuit approaches do not attract as
much attention as the convex regularization approaches in the nonparametric
literature. For additive models, existing methods include the sparse boost-
ing [Bühlmann and Yu, 2006] and multivariate adaptive regression splines
(MARS) [Friedman, 1991]. These methods mainly target on additive models or
lower-order functional ANOVA models. For general multivariate regression,
the only available method we are aware of is rodeo [Lafferty and Wasserman,
2008]. The rodeo assumes the true regression function only depends on r
covariates and r � d. Using the local linear regression estimator [Fan and
Gijbels, 1996], the rodeo can simultaneously perform bandwidth selection and
(implicitly) variable selection to achieve an improved minimax convergence
rate of O(n−4/(4+r)) up to a logarithmic factor, as if the r relevant variables
were explicitly isolated in advance. The rodeo algorithm starts with large
bandwidths for all dimensions and incrementally shrink the bandwidths by a
sequence of hypothesis tests in a greedy manner, the nearly optimal rate of
convergence can be achieved even with increasing dimension d = O(log n).
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2.2 theoretical framework of this thesis

It is easy to invent new learnings methods and try it on some datasets. But
how do we know if a method is good or bad? Especially how can we gain
insights on why a method works for specific situations and does not work for
other situations. This requires us to provide theoretical justifications of the
methods. In this thesis, we aim to design a theoretical framework that could
evaluate a learning algorithm from different perspectives, including

1. prediction performance

2. estimation performance

3. model selection performance

4. sample complexity (The number of data points required to obtain a
certain error rate).

Before we present the detailed theoretical criteria, in Figure 8, we start with a
review of the typical workflow for designing statistical learning methods. We
first characterize a function class F which does not have to contain the true
function f ∗. Given some risk criterion R(·), the oracle estimator f o is defined
as

f o = arg min
f∈F

R( f ).

Statistical inferences aim at finding a function f̂n ∈ F that mimics the oracle
f o. Our theoretical criteria mainly characterize the relationships among f ∗, f o,
and f̂n.

The first criterion we are interested in is called persistency or risk consistency,
which characterizes how fast the predictive risk could converge to the oracle
risk.

Definition 2.1. (Persistency or Risk Consistency) For an estimator f̂n ∈ F , the ex-
cess risk is defined as

R( f̂n)−min
f∈F

R( f ). (2.8)

The estimator f̂n is risk consistent with the rate of convergence δn if

lim
M→∞

lim sup
n→∞

P

(
R( f̂n)−min

f∈F
R( f ) ≥ Mδn

)
= 0. (2.9)

We also write

R( f̂n)−min
f∈F

R( f ) = OP (δn) or R( f̂n)− R( f o) = OP (δn) . (2.10)
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Figure 8.: An paradigm of statistical learning under a function estimation view. the true func-
tion: f ∗; the oracle: f o; the empirical estimator: f̂ .

One thing to note is that the persistency criterion only considers the rela-
tionship between the empirical estimator f̂n and the oracle f o, which does
not involve the true function f ∗. Thus a procedure to be persistent does not
require the model to be correctly specified.

Let D(·, ·) be some distance (or divergence) defined on F and D( f̂n, f ∗) be
the distance (or divergence) between the empirical estimator f̂n and f ∗. The
second criterion we are interested in is estimation consistency, which character-
izes how fast f̂n converges to f ∗ evaluated by D(·, ·):

Definition 2.2. (Estimation Consistency) Under a distance (or divergence) D(·, ·),
an estimator f̂n ∈ F is estimation consistent with the rate of convergence δn if

lim
M→∞

lim sup
n→∞

P
(

D( f̂n, f ∗) ≥ Mδn

)
= 0. (2.11)

We could also write

D( f̂n, f ∗) = OP (δn) . (2.12)

Unlike the persistency criterion, the estimation consistency criterion re-
quires the model to be correctly specified.

Many methods in this thesis involve estimating the structures of a function
f , denoted by Struct( f ). For example, we might be interested in estimating
the conditional independence graph of a high dimensional density function
or the sparsity pattern of a regression function. The third criterion we are
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interested in is called sparsistency (or model selection consistency, structure esti-
mation consistency), which characterizes the structure estimation performance
of a procedure.

Definition 2.3. (Sparsistency or Model Selection Consistency, Structure Estimation
Consistency, Structural Consistency) An estimator f̂n ∈ F is sparsistent if

lim sup
n→∞

P
(

Struct( f̂n) 6= Struct( f ∗)
)

= 0. (2.13)

Similar to the estimation consistency, sparsistency also requires the model to
be correctly specified. Of course, we could define criteria like oracle estimation
consistency and oracle sparsistency. Instead of evaluating the estimation and
structure estimation performances of f̂n with respect to f ∗, we compare f̂n

with the oracle f o. These oracle criteria allow the models to be mis-specified.

Definition 2.4. (Oracle Estimation Consistency) Under a distance (or divergence)
D(·, ·), an estimator f̂n ∈ F is oracle estimation consistent with the rate of conver-
gence δn if

lim
M→∞

lim sup
n→∞

P
(

D( f̂n, f o) ≥ Mδn

)
= 0. (2.14)

Definition 2.5. (Oracle Sparsistency) An estimator f̂n ∈ F is sparsistent if

lim sup
n→∞

P
(

Struct( f̂n) 6= Struct( f o)
)

= 0. (2.15)

We try to evaluate all the proposed methods in this thesis under this
integrated theoretical framework.
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3
DENSITY RODEO: NONPARAMETRIC DENSITY ESTIMATION

In this Chapter, we consider the problem of estimating the density of a
d-dimensional random vector X = (X1, X2, ..., Xd) when d is large. We as-
sume that the density is a product of a parametric baseline component and
a nonparametric component. The nonparametric component depends on an
unknown subset of the variables. If this subset is small, then nonparametric
estimates with fast rates of convergence are possible. Using a modification
of a previously developed nonparametric regression framework called rodeo
(regularization of derivative expectation operator), we propose a method to ex-
ploit this fact. The method selects the bandwidths in an incremental way mak-
ing it computationally attractive. We empirically show that the density rodeo
works well even for very high-dimensional problems. When the unknown den-
sity function satisfies some suitably defined sparsity conditions, our approach
avoids the curse of dimensionality and achieves an optimal converge rate of
the risk. Because it is a greedy algorithm, bandwidth selection is fast. When
the parametric baseline is a very smooth distribution, we also provide theoret-
ical guarantees on the behavior of the method.

3.1 introduction and motivation

Let X(1), X(2), ..., X(n) be a sample from a distribution F with density p(x).
We are interested in estimating the density p(x) when the dimension d of
X(i) is moderate or large. Methods for estimating p(x) include the kernel
estimator [Parzen, 1962, Rosenblatt, 1956], local likelihood esitmator [Hjort
and M.C.Jones, 1996, Hjort and Glad, 1995, Loader, 1996] and others. These
methods work very well for low-dimensional problems (d ≤ 3) but are not
effective for high-dimensional problems. The major difficulty is due to the
intractable computational cost of cross validation when bandwidths need
to be selected for each dimension, and the slow rates of convergence of
the estimator. Density estimation in high dimensions is usually done by
mixture models[Dempster et al., 1977, Laird, 1978, Escobar and West, 1994,
Richardson and Green, 1997]. However, mixture models with a fixed number
of components are parametric and only useful to the extent that the assumed
model is right. Mixture models without a fixed number of components are
nonparametric and achieve, at best, the same rates as kernel estimators. In
fact, the theoretical guarantees with mixtures are generally not as good
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as for kernel estimators, see Genovese and Wasserman [2000] and Ghosal
et al. [2000]. Other methods for high dimensional density estimation include
projection pursuit [Friedman et al., 1984], log-spline model [Stone, 1990] and
penalized likelihood [Silverman, 1982].

In a d-dimensional space, minimax theory shows that the best convergence
rate for the mean squared error under standard smoothness assumptions is
Ropt = O(n−4/(4+d)) which represents the “curse of dimensionality” when d
is large. In this paper we present a method that acheives faster rates of
convergence when a certain sparsity assumption is satisfied. Morever, it is a
greedy method and so is computationally expedient for large d.

The idea comes from a newly developed nonparametric regression frame-
work called rodeo [Lafferty and Wasserman, 2008]. For the regression problem,

Y(i) = m(X(i)) + ε(i), i = 1, . . . , n,

where X(i) = (X(i)
1 , ..., X(i)

d ) ∈ Rd is a d-dimensional vector. Assuming that
the true function only depends on r covariates r � d, the rodeo can simul-
taneously perform bandwidth selection and (implicitly) variable selection to
achieve a better minimax convergence rate of O(n−4/(4+r)) up to a logarithmic
factor, as if the r relevant variables were explicitly isolated in advance. The
purpose of this chapter is to extend this idea to the nonparametric density
estimation setting. Toward this goal, we need to first define an appropriate
sparsity condition in the density estimation setting. Our key assumption is

p(x1, . . . , xd) = g(xR)b(x1, . . . , xd) (3.1)

where g is an unknown function, xR = (xj : j ∈ R), R is a subset of
{1, . . . , d} and b is a baseline density (completely known or known up to
finitely many parameters). If the number of coordinates in R is small then we
can exploit the fact that the nonparametric component g only depends on a
small number of variables. Two examples of this model are b(x) = uniform
so that p(x) = g(xR) and b(x) = Normal as in Hjort and M.C.Jones [1996]
and Hjort and Glad [1995]. In this chapter, We will consider two versions
of the rodeo for density estimation problems: a local version and a global
version. The local version estimates p(x) at a given point x and results in a
local bandwidth selection method. The global version estimates p(x) at all x
and results in a global bandwidth selection method.

The remaining part of this chapter is organized as follows: In section 2,
we derived the local rodeo algorithm for both kernel density estimator and
local likelihood estimator. The rodeo algorithm for a semiparametric model
when b(x) = Normal is also shown. Section 3 and 4 describe the global rodeo
algorithm and other variations. Section 5 uses both synthetic and real-world
datasets to test our method. Section 6 specifies our main theoretical results
about the asymptotic running time, selected bandwidths, and convergence
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rate of the risk. The conclusions and more discussion are in section 7. All the
proofs are given in the appendix.

3.2 the local rodeo

Suppose first that the data are on the unit cube [0, 1]d and b(x) is uniform.
Let x be a d-dimensional target point at which we want to estimate p(x). The
kernel density estimator is

f̂H(x) =
1

n det(H)

n

∑
i=1
K(H−1(x− X(i))) (3.2)

where K is a symmetric kernel, such that
∫
K(u)du = 1,

∫
uK(u)du = 0d

while KH(·) = 1
det(H)K(H−1·) and H = diag(h1, ..., hd). We assume that K is

a product kernel so

f̂H(x) =
1

n det(H)

n

∑
i=1
K(H−1(x− X(i))) =

1
n

n

∑
i=i

d

∏
j=1

1
hj

K

 xj − X(i)
j

hj

(3.3)

3.2.1 The Kernel Density Estimator Version

The density rodeo is based on the following idea. We start with a bandwidth
matrix H = diag(h0, . . . , h0) where h0 is large. We then compute test statistics
(Zj : 1 ≤ j ≤ d) and we reduce bandwidth hj if Zj is large. The test statistic is

Zj =
∂ f̂H(x)

∂hj
=

1
n

n

∑
i=1

∂

∂hj

(
d

∏
k=1

1
hk

K

(
xk − X(i)

k
hk

))
≡ 1

n

n

∑
i=1

Zji. (3.4)

Thus, |Zj| is large if changing hj leads to a substantial difference in the
estimator. To carry out the test, we compare Zj to its variance

σ2
j = Var(Zj) = Var

(
1
n

n

∑
i=1

Zji

)
=

1
n

Var(Zj1) (3.5)

We estimate σ2
j with s2

j = v2
j /n where v2

j is the sample variance of the Zji’s.
The algorithm is given in Figure 9. Some related methods also appeared in
Friedenberg and Genovese [2009].
For a general kernel, we have that

Zj =
∂ f̂H(x)

∂hj
(3.6)

= − 1
n

n

∑
i=1

 1
hj

+
xj − X(i)

j

h2
j

K̃

 xj − X(i)
j

hj

 d

∏
k=1

1
hk

K

(
xk − X(i)

k
hk

)
(3.7)
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DENSITY ESTIMATION RODEO

1. Select parameter 0 < β < 1 and initial h0, which slowly decreases to zero:

h0 = c0/log log n

for some constant c0. Let cn be a sequence satisfying cn = O( log n
n ).

2. Initialize the bandwidths, and activate all dimensions:

(a) hj = h0, j = 1, 2, ..., d.

(b) A = {1, 2, ..., d}.

3. While A is nonempty, do for each j ∈ A

(a) Compute the estimated derivative Zj and variance s2
j .

(b) Compute the threshold λj = sj
√

2 log(ncn).

(c) If |Zj| > λj, then set hj ← βhj; otherwise remove j from A.

4. Output bandwidths H∗ = diag(h1, ..., hd) and estimator f̃ (x) = f̂H∗(x)

Figure 9.: The density rodeo algorithm.

where K̃(x) =
d log K(x)

dx
. In the case where K is Gaussian this becomes

Zj =
∂ f̂H(x)

∂hj
(3.8)

=
1

nh3
j

d

∏
k=1

1
hk

n

∑
i=1

(
(xj − X(i)

j )2 − h2
j

) d

∏
k=1

K

(
xk − X(i)

k
hk

)
(3.9)

∝
1
n

n

∑
i=1

(
(xj − X(i)

j )2 − h2
j

) d

∏
k=1

K

(
xk − X(i)

k
hk

)
(3.10)

=
1
n

n

∑
i=1

(
(xj − X(i)

j )2 − h2
j

)
exp

{
−

d

∑
k=1

(xk − X(i)
k )2

2h2
k

}
(3.11)

Here, the constant of proportionality
1
h3

j

d

∏
k=1

1
hk

can be safely ignored to avoid

overflow in the computation as hk → 0 for large d.
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3.2.2 The Local Likelihood Version

Hjort and M.C.Jones [1996], Hjort and Glad [1995], Loader [1996] formulate
the local likelihood density estimation problem as:

max
θ
L( f , x) = (3.12)

n

∑
i=1
K
(

H−1(X(i) − x)
)

log f (X(i); θ)− n
∫
X
K
(

H−1(u− x)
)

f (u; θ)du

which is a localized version of the usual loglikelihood function for density
estimation problems:

max
θ
L( f , x) =

n

∑
i=1

log f (X(i); θ)− n
(∫
X

f (u; θ)du− 1
)

(3.13)

Since the true density function p(x) is unknown, a polynomial is used to
approximate the log density. The large-sample properties of the local likeli-
hood estimator are parallel to those of local polynomial regression. The most
appealing property of the resulting estimator is its good performance when
facing boundary effects [Loader, 1996]. When assuming a product Gaussian
kernel, the closed form of the local likelihood estimator can be written as

f̃H(x) = (3.14)

f̂H(x) exp

−
1
2

d

∑
k=1

h2
k


∑n

i=1 ∏d
j=1 K

(
X(i)

j −xj

hj

)(
X(i)

k −xk

h2
k

)
∑n

i=1 ∏d
j=1 K

(
X(i)

j −xj

hj

)


2
which can be viewed as a standard kernel density estimator f̂H(x) multiplied

by an exponential bias correction term. To evaluate Zm = ∂ f̂H(x)
∂hm

, m = 1, ..., d,
define

ĝk(x) =
∂

∂xk
f̂H(x) =

1
n

n

∑
i=1

d

∏
j=1

1
hj

K

X(i)
j − xj

hj

(X(i)
k − xk

h2
k

)
(3.15)

Then

Zm =
∂

∂hm

 f̂H(x) exp

−1
2

d

∑
k=1

h2
k

(
ĝk(x)
f̂H(x)

)2

 (3.16)

= f̃H(x)
(

∂

∂hm
log f̂H(x)

)
+ f̃H(x)

∂

∂hm

−1
2

d

∑
k=1

h2
k

(
ĝk(x)
f̂ (x)

)2


where ∂
∂hm

log f̂H(x) =
∂

∂hm
f̂H(x)

f̂H(x)
has been calculated in the previous section.

The derivation of the second term, though quite involved, is straightforward.
The same algorithm in figure 9 applies.
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3.2.3 Other Baseline Densities

When using a different baseline (i.e. the Normal distribution), we use the
semiparametric density estimator

f̄H(x) =
b̂(x) ∑n

i=1KH(X(i) − x)
n
∫
KH(u− x)b̂(u)du

(3.17)

where b̂(x) is a parametric density estimator at point x, its parameters are
estimated by maximum likelihood. Since the parameters in the parametric
form are easy to estimate, we treat them as known. The motivation of this
estimator comes from the local likelihood method in equation (3.12): instead
of using a polynomial P(x) to approximate the log density log p(x), we
use log b(x) + P(x). Under this setting, we see that starting from a large
bandwidth, if the true function is b(x), the algorithm will tend to freeze the
bandwidth decaying process for the estimator defined in expression (3.17).

Suppose that b(x) is a multivariate normal density function with a diag-
nolized variance-covariance matrix Σ. When we use the product Gaussian
kernels with bandwidth matrix H, a closed form estimator can be derived as

f̄H(x) =
1
n

n

∑
i=1

d

∏
j=1

K

X(i)
j − xj

hj

 (3.18)

×

√
|H + Σ̂|
|Σ̂|

exp

{
−

(x− µ̂)T (Σ̂−1 − (H + Σ̂)−1) (x− µ̂)
2

}

where µ̂ and Σ̂ are the M.L.E. for the normal distribution. More details about
the derivation of this closed form are given in the appendix. It’s easy to see
that the local likelihood estimator is a special case of this semiparametric
estimator when b(x) = uniform. The partial derivative of f̄H(x) with respect
to the bandwidth hm (m = 1, ..., d) is calculated as

Zm =
∂ f̄H(x)

∂hm
=

√√√√ d

∏
j=1

(
1 +

h2
j

σ̂2
j

)

× exp

 d

∑
j=1

− (xj − µ̂j)2

2
(

σ̂2
j (σ̂2

j + h2
j )/h2

j

)
(∂ f̂H(x)

∂hm
+ M f̂H(x)

) ,

where

M =
hm(2(σ̂2m + h2

m) + (xm − µ̂m)2)
2(σ̂2m + h2

m)2
(3.19)

and f̂H(x) is the standard kernel density estimator as defined in equation (3.3).
The variance of Zm is estimated using the bootstrap method (see section 3.4.1).
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3.3 the global rodeo

Instead of using the local rodeo which corresponds to the adaptive density
estimation, the idea could be easily extended to carry out global bandwidth
selection, in which case each dimension uses a fixed bandwidth. The idea is to
average the test statistics for multiple evaluation points x1, ..., xk, which could
be sampled from the empirical distribution of the observed sample points.

As has been pointed out by Lafferty and Wasserman [2008], averaging
the Zjs directly leads to a statistic whose mean for relevant variables is
asymptotically 1

k hj ∑k
i=1 pjj(xi). Because of sign changes in pjj(x), cancellations

can occur resulting in a small value for the statistics. To avoid this problem,
the statistic is squared. Let x1, ..., xm denote the evaluation points and Zj(xi)
represents the derivative for the i-th evaluation point with respect to the
bandwidth hj. Therefore

Zj(xi) =
1
n

n

∑
k=1

Zjk(xi), i = 1, ..., m, j = 1, ..., d. (3.20)

Let γjk = (Zj1(xk), Zj2(xk), ..., Zjm(xk))T (k = 1, ..., n). Assuming that Var(γjk) =
Σj, denote Zj· = (Zj1, Zj2, ..., Zjm)T, by the multivariate central limit theorem,
we know that Var(Zj·) = Σj/n ≡ Cj. Based on these derivations, we define
the test statistic

Tj =
1
m

m

∑
k=1

Z2
j (xk), j = 1, ..., d, (3.21)

while

sj =
√

Var(Tj) =
1
m

√
Var(ZT

j Zj) =
1
m

√
2tr(C2

j ) + 4µ̂j
TCjµ̂j (3.22)

where µ̂ = 1
m ∑m

i=1 Zj(xi). For the irrelevant dimension j ∈ Rc, as will be
shown in section 3.6, EZj(xi) = oP(hj), so that ETj ≈ Var(Zj(xi)). We use s2

j
as an estimate for Var(Zj(xi)) . Therefore, we take the threshold to be

λj = s2
j + 2sj

√
log(ncn). (3.23)

Several examples of this algorithm and its comparison with the other algo-
rithms are given in the experiment section, the theoretical properties of the
global rodeo estimator can be analyzed in a way that is similar to the local
version.

3.4 different extensions

3.4.1 Bootstrap Version

For the previous examples, the explicit closed-form expression for the Zj and
s2

j can be easily derived due to the existence of a closed form for the targeted
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density estimator. Sometimes, the density estimator f̂H(x) might not have a
closed form expression. In these cases, we could still numerically evaluate the
derivative Zj as

Zj =
f̂H+4hj(x)− f̂H(x)

4hj
(3.24)

where H +4hj means adding a small value 4hj on the j-th diagonal element
of H. One thing to note is that there exist more sophisticated methods to
estimate of Zj in a numerically more stable way. In general, a sensitivity
analysis may be needed to determine which methods to use. The variance of
Zj can be calculated by bootstrap, the algorithm is given in figure 10

THE BOOTSTRAP METHOD TO CALCULATE s2
j

1. Draw a sample X(1)∗, ..., X
(n)∗ of size n, with replacement:

Repeat B times for the following

Compute the estimate Z∗ji from data X
(1)∗, ..., X

(n)∗, i = 1, ..., B .

2. Compute the bootstrapped variance

s2
j = 1

B ∑B
b=1(Z∗ji − Z̄j·)2. where Z̄j· = 1

B ∑B
b=1 Ẑ∗j

3. Output the resulted s2
j .

Figure 10.: Density Rodeo: the bootstrap method to calculate the s2
j

This bootstrap version works for both local and global rodeo algorithms,
thus provides a more general framework. We expect that similar analytic
results will hold. However, bootstrap needs more computation. In cases that
the analytic form of the variance is hard to evaluate, like the local likelihood
rodeo and the semiparametric rodeo, this method applies.

3.4.2 Reverse Rodeo

The previous rodeo algorithms use a sequence of decreasing bandwidths
and estimates the optimal value by a sequence of hypothesis testing. On the
contrary, we could begin from a very small bandwidth, and use a sequence of
increasing bandwidths to estimate the optimal value. This reversed version
does not share the same theoretical property as before, but it’s useful in some
special cases (i.e. many dimensions need a small bandwidths, while only a few
need large bandwidths). More details will be given in an image processing
experiment in the next section.
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3.5 examples

In this section, we applied the rodeo algorithm on both synthetic and real data,
including one-dimensional, two-dimensional, high-dimensional and very high-
dimensional examples to investigate how it performs in various conditions.
For the purpose of evaluating the algorithm performance quantitatively, we
need some criterion to measure the distance between the estimated density
function f̂ (x) with the true density p(x). For this, we use the Hellinger
distance, defined as

D( f̂ ‖p) =
∫ (√

f̂ (x)−
√

p(x)
)2

dx = 2− 2
∫

p(x)

√
f̂ (x)
p(x)

dx (3.25)

Assuming we have m evaluation points, the hellinger distance could be
numerically calculated by the Monte Carlo integration

D( f̂ ‖p) ≈ 2− 2
m

m

∑
i=1

√
f̂H(X(i))
p(X(i))

(3.26)

Since this measure utilizes the property that p(x) is a density function, it’s
expected to be numerically more stable than the commonly used Kullback-
Leibler (KL) divergence as a loss function for evaluating the discrepancy
between two density functions. In the following, we first use the simulated
data, about which we have known the true distribution function, to investigate
the algorithm performance. Then our algorithm is also applied on some
real data for analysis and comparison. In the following experiments, if not
stated explicitly, the data is always rescaled into a d-dimensional cube [0, 1]d,
a product Gaussian kernels are used, the default parameters are c0 = 1,
cn = d log n/n, and β = 0.9.

3.5.1 One-dimensional Examples

First, we apply the rodeo algorithm on one dimensional examples. We have
conducted a series of comparative study on a list of 15 “test densities" pro-
posed by Marron and Wand [1992], which are all normal mixtures represent-
ing many different types of challenges to density estimation methods. Our
approach achieves a comparable performance to the built-in kernel density
estimator with bandwidth selected by unbiased cross-validation (from the
base library of R ). Due to the space consideration, only the strongly skewed
example is reported here, since it demonstrates the advantage of adaptive
bandwidth selection for the local rodeo algorithm.
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Figure 11.: Different versions of the density Rodeo algorithms run on the highly skewed uni-
modal example. The first three plots are results for the different estimators, the last
one is the fitted bandwidths for the local rodeo.
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Example 1 (Strongly skewed density): This density is chosen to resemble the
lognormal distribution, it distributes as

X ∼
7

∑
i=0

1
8

N

(
3
(

(
2
3
)i − 1

)
,
(

2
3

)2i
)

. (3.27)

200 samples were generated from this distribution, The estimated density
functions by the local rodeo, the global rodeo, and the built-in kernel density
estimator with bandwidth chosen by unbiased cross validation are shown
in figure 11. In which, the solid line is the true density function, the dashed
line illustrates the estimated densities by different methods. The local rodeo
works the best, this is because the true density function is highly skewed, the
fixed bandwidth density estimator fails to fit the very smooth tail. The last
subplot from firgure 11 illustrates the selected bandwidth for the local rodeo,
it illustrates how smaller bandwidths are selected where the function is more
rapidly varying.

Unibased CV Local Rodeo Global Rodeo

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Figure 12.: Density Rodeo Experiments on data from Highly skewed unimodal distribution:
The boxplots of the empirical Heillinger’s losses on test samples of estimated
densities by the three methods based on 100 simulations.

Figure 12 shows the distribution of the empirical Hellinger distances based
on 100 simulations. The boxplots show that the local rodeo works the best,
while the global rodeo and the unbiased cross-validation methods are compa-
rable in this one dimensional example.
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Figure 13.: Density Rodeo: Perspective plots of the estimated density functions by the global
density rodeo (left) and the R built-in method KDE2d (right) on a 2-dimensional
synthetic data.

3.5.2 Two dimensional Examples

We also show some 2-dimensional examples, since they are easy to visualize.
One uses a synthetic dataset, the other one uses some real data analyzed
by the other authors. The density rodeo’s performance is compared with a
built-in method named KDE2d ( from MASS package in R ). The empirical
results show that the rodeo algorithm works better than the built-in method
on the synthetic data, where we know the ground truth. For the real-world
dataset, where we do not know the underling density, our method achieves a
very similar result as those of the previous authors.
Example 2: (Combined Beta distribution with the uniform distribution as
irrelevant). We simulate a 2-dimensional dataset with n = 500 points. The
two dimensions are independently generated as

X1 ∼
2
3

Beta(1, 2) +
1
3

Beta(10, 10) (3.28)

X2 ∼ Uniform(0, 1) (3.29)

Figure 13 illustrates the perspective plots of the estimated density functions by
the global rodeo and the built-in method KDE2d. From which, we see that the
global rodeo fits the irrelevant uniform dimension perfectly, while KDE2d fails.
For a quantitative comparison, we evaluated the empirical Hellinger distance
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Figure 14.: Marginal distributions of the relevant and the irrelevant dimensions for example 2
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between the estimated density and the true density, the global rodeo algorithm
outperforms KDE2d uniformly on this example. For a qualitative comparison,
figure 14 illustrates the numerically integrated marginal distributions of the
two estimators (not normalized). Even with an eye examination, we see that
the rodeo’s result is better than that of KDE2d, which is consistent with the
previous observations.

Example 3: (Geyser data). For this example, a real dataset is used. Which
is a version of the eruptions data from the “Old Faithful” geyser in Yel-
lowstone National Park, Wyoming. This version comes from Azzalini and
Bowman A.Azzalini and A.W.Bowman [1990] and is of continuous measure-
ment from August 1 to August 15, 1985. There are two variables with 299

observations altogether. The first variable ,“Duration", represents the numeric
eruption time in minutes. The second variable, “waiting", represents the
waiting time to next eruption. We apply the global rodeo algorithm on this
dataset. The estimated density functions of the rodeo algorithm and the built-
in KDE2d method (used by the original authors) are provided in the upper
of figure 15. And lower two plots of figure 15 illustrates the corresponding
contour plots. Based on a visual examination, our method achieves a very
similar estimation as those provided by the previous authors who analyzed
this data before.

3.5.3 High Dimensional Examples

Example 4: (High dimensional case) Figure 16 illustrates the output band-
widths from the local rodeo for a 30-dimensional synthetic dataset with r = 5
relevant dimensions (n = 100, with 30 trials). The relevant dimensions are
generated as

Xi ∼ N(0.5, (0.02i)2), for i = 1, ..., 5. (3.30)

while the irrelevant dimensions are generated as

Xi ∼ Uniform(0, 1), for i = 6, ..., 30. (3.31)

The evaluation point is x = ( 1
2 , ..., 1

2 ). The boxplot illustrates the selected
bandwidths out of 30 trials. The plot shows that the bandwidths of the rele-
vant dimensions shrink towards zero, while the bandwidths of the irrelevant
dimensions remain large, indicates that the algorithm’s performance is con-
sistent with our analysis. Also, from the bandwidth plot, we see that, for the
relevant dimensions, the smaller the variance is, the smaller the estimated
bandwidth will be.

Example 5: (Image processing). Here we apply the reverse local rodeo on
image data. The results are shown in figure 17. The algorithm was run on
1100 grayscale images of digital letter 2s, each with 256 = 16× 16 pixels
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Figure 15.: Density rodeo experiments on the geyser data. Upper: Perspective plots of the
estimated density functions by the global rodeo (left) and the R built-in method
KDE2d (right) on the geyser data. Lower: Contour plots of the result from the
global rodeo (left) and KDE2d (right)
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Figure 16.: The bandwidth output by the local density rodeo for a 30-dimensional synthetic
dataset (Left) and its boxplot for 30 trials. (Right)

with some unknown background noise; thus this is a 256-dimensional density
estimation problem. An evaluation point is shown in the upper left subplot
of figure 17, and the bandwidths output by the rodeo algorithm is shown in
the upper right subplot. The estimated bandwidth plots in different rodeo
steps (step 10,20,40,60,and 100) are shown in the lower series of plots— smaller
bandwidths have darker colors, the pixels with larger bandwidth are more
informative than those with smaller bandwidths. This is a good example
to illustrate the usefulness of the reverse rodeo. For the image data, many
background pixels have a density close to point mass, which will pin down
the bandwidth to a very small value. The reverse rodeo starts from a small
bandwidths, which is more efficient than the original rodeo and is expected
to be numerically more stable. Figure 17 visualizes the evolution of the
bandwidths and could be viewed as a dynamic process for feature selection —
the earlier a dimension’s bandwidth increases, the more informative it is. The
reverse rodeo algorithm is quite efficient for this extremely high-dimensional
problem. One interesting thing to note is, the early stages of the rodeo reveal
that some of the 2s in the data have looped bottoms, while some have straight
bottoms; the evaluation point does not have such a loop. This might because in
the original dataset, some 2s have this loop while the others not. The density
rodeo algorithm could discover these kind of characteristics automatically.
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Figure 17.: ensity rodeo on the image data: the upper plots are the evaluation digit and the
bandwidths output by the reverse rodeo. The lower subplots illustrate a series of
bandwidth plots sampled at different rodeo steps: 10, 20, 40, 60, and 100

3.5.4 Using Other Baseline Densities

Example 6: (Using normal distributions as the irrelevant dimensions) Figure 18

illustrates the output bandwidths from the semiparametric rodeo (developed
in section 3.4) for both 15-dimensional and 20-dimensional synthetic datasets
with r = 5 relevant dimensions (n = 1000). When using normal distributions
as irrelevant dimensions, the relevant dimensions are generated as

Xi ∼ Uniform(0, 1), for i = 1, ..., 5. (3.32)

while the irrelevant dimensions are generated as

Xi ∼ N(0.5, (0.05i)2), for i = 6, ..., d. (3.33)

The evaluation point is x = ( 1
2 , ..., 1

2 ). Even when normal distributions are
used as irrelevant dimensions, the result is similar as before, showing that
the bandwidths of the relevant dimensions shrink toward zero, while the
bandwidths of the irrelevant dimensions remain large, this is just what we
expected.
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Figure 18.: The bandwidth output by the local semiparametric rodeo for a 15-dimensional syn-
thetic dataset (Left) and a 20-dimensional synthetic dataset (Right). Using Gaus-
sian distribution as the irrelevant dimensions

Example 7: ( The semiparametric density estimator for one dimensional prob-
lem ) For the illustration purpose, we also applied the semiparametric rodeo
algorithm on a dimensional example. We simulated 1000 one-dimensional
data points with Xi ∼ Uniform(0, 1). With β = 0.9, the results of the semi-
parametric rodeo algorithm are shown in figure 19. The first plot shows the
true density function, the second plot is the estimated density function, the
lower left plot illustrates the estimated bandwidths at different evaluation
points, the last one is the estimated density function by the kernel density
estimator with bandwidth selected by unbiased cross validation. Based on a
visual examination of the results, we see that the density function estimated
by the semiparametric rodeo is quite similar to that estimated by the kernel
density estimator with unbiased cross validation. However, the selected band-
widths are quite small in this case (≈ 0.015). Since the true density is uniform,
smaller bandwidths are needed to correct the assumed normal density.

3.6 theoretical properties

Here we show the asymptotic properties of the resulting estimator when
assuming the baseline component b(x) is a uniform distribution function. Our
main theoretical results characterize the asymptotic running time, selected
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Figure 19.: The density rodeo results for fitting the uniform distribution with the semipara-
metric rodeo. The first plot shows the true density , the second plot is the esti-
mated density, the lower left plot illustrates the estimated bandwidths at different
evaluation points, the last one is the estimated density function by the KDE with
bandwidth selected by cross validation
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bandwidths and the risk of the resulting estimator. To simplify notations, in
the sequel we denote the true density p(x) by f (x).

We assume that the underlying density function f has continuous second
order derivatives in a neighborhood of x. For convenience of notation, the
dimensions are numbered such that the relevant variables xj correspond to
1 ≤ j ≤ r and the irrelevant variables xj correspond to r + 1 ≤ j ≤ d. We write
Yn = ÕP(an) to mean that Yn = O(bnan) where bn is logarithmic in n. As
noted earlier, we write an = Ω(bn) if lim infn

∣∣∣ an
bn

∣∣∣ > 0; similarly an = Ω̃(bn) if
an = Ω(bncn) where cn is logarithmic in n. Also, let H f (x) denote the Hessian

matrix of f (x), let h(s)
j denote the jth bandwidth at step s and denote the

bandwidth matrix by H(s) = diag(h(s)
1 , ..., h(s)

d ). In the following, we assume
that the data lines in a unit cube [0, 1]d.

We list the assumptions needed to establish the main result.

Assumption 3.1. (A1) Kernel assumption: assuming that K is a bounded symmetric

kernel, s.t.
∫
K(u)du = 1,

∫
uK(u)du = 0d while KH(·) =

1
det(H)

K(H−1·)

represents the kernel with bandwidth matrix H = diag(h1, ..., hd). then∫
uuTK(u)du = v2 Id and v2 < ∞ (3.34)∫
K2(u)du = R(K) < ∞. (3.35)

We aslo assume that there exist CK, Cd < ∞ such that

sup
u
|K(u)| < CK and sup

u

∣∣∣∣d log K(u)
du

∣∣∣∣ < Cd.

Assumption 3.2. (A2) Initial bandwdith assumption: Let h(0)
j denotes the initial

bandwidth for the j-th dimension. Then,

h(0)
j =

c0

log log n
for (j = 1, ..., d). (3.36)

Assumption 3.3. (A3) Sparsity assumption: Assuming that f (x) could be factorized
into two components, f (x) ∝ g(x1, ..., xr)b(x), where bjj(x) = 0 for j = 1, ..., d.

In this section, we only consider the case when b(x) = 1.

Assumption 3.4. (A4) Hessian assumption: Let HR(x) denotes the Hessian matrix
of all the relevant dimensions j ≤ r. diag(HR(x)) is a continuous vector and∫

tr(HT
R(u)HR(u))du < ∞ (3.37)

lim inf
n

min
1≤j≤r

| f jj(x)| > 0. (3.38)
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Lemma 3.1. Under Assumptions A3.1−A3.4, Let x be interior to the support of f
and let HR(x) denote the Hessian matrix of all the relevant dimensions j ≤ r. Then,
over different steps in the algorithm and over j, we have

E f̂H(s)(x) = f (x) +
1
2

v2tr((H(s))TH(s)
R (x)H) + oP(tr((H(s))T H(s)))(3.39)

and

Var( f̂H(s)(x)) =
1

n det(H(s))
R(K) f (x) + oP

(
1

n det(H(s))

)
. (3.40)

where v2 and R(K) are as defined in A3.1.

Lemma 3.2. Suppose the kernel KH is defined as in A3.1. Given a positive constant
β < 1 and an increasing sequence of constants tn = 1

4+r log1/β(nbn), where bn =
Õ(1). Define the sets of bandwidth matrices

Hn = {H(s) : H(s) = H(0)βs for all the nonnegative integer s such that s ≤ tn}
Define

Mn(x) =

(
f̂H(x)−E f̂H(x)

)
√

Var( f̂H(x))
(3.41)

Then

sup
H∈Hn

sup
z
|P (Mn(x) ≤ z)−Φ(z)| −→ 0. (3.42)

Lemma 3.3. Under assumptions A3.1−A3.4, suppose that x is interior to the sup-
port of f and K is a product kernel with bandwidth matrix H(s) = diag(h(s)

1 , ..., h(s)
d ).

Then

µ
(s)
j =

∂

∂h(s)
j

E[ f̂H(s)(x)− f (x)] = oP(h(s)
j ) for all j ∈ Rc (3.43)

For j ∈ R we have

µ
(s)
j =

∂

∂h(s)
j

E[ f̂H(s)(x)− f (x)] = h(s)
j v2 f jj(x) + oP(h(s)

j ). (3.44)

Thus, for any integer s > 0, hs = h0βs, each j > r satisfies µ
(s)
j = oP(h(s)

j ) =

oP(h(0)
j ).

Lemma 3.4. Define

C =
R(K) f (x)

4
(3.45)

then, if h(0)
j is defined as in A3.2.

(s(s)
j )2 = Var(Z(s)

j ) =
C

n(h(s)
j )2

(
d

∏
k=1

1

h(s)
k

)
(1 + oP(1)) (3.46)
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Lemma 3.5. Under assumptions A3.1−A3.4. Let Zj = 1
n ∑n

i=1 Zji be defined as
in equation(3.4), given a positive constant β < 1 and an increasing sequence of
constants tn = 1

4+r log1/β(nbn), where bn = Õ(1). Define the sets of bandwidth
matrices

Hn = {H(s) : H(s) = H(0)βs for all the nonnegative integer s such that s ≤ tn}

Then

sup
H∈Hn

sup
z

∣∣∣∣∣∣P
 Zj −EZj√

Var(Zj)
≤ z

−Φ(z)

∣∣∣∣∣∣ −→ 0. (3.47)

Lemma 3.6. Let Z ∼ N(µ, σ2). If λ > 2µ and λ2 > 2σ2 then

P(|Z| > λ) ≤ 5λ

σ
exp

{
− λ2

8σ2

}
. (3.48)

Moreover, if λ ≥ 5σ then

P(|Z| > λ) ≤ exp
{
− λ2

16σ2

}
. (3.49)

The proof of this Lemma could be found in [Lafferty and Wasserman, 2008].

Theorem 3.1. Under assumptions A3.1−A3.4, suppose that Amin = minj≤r | f jj(x)| =
Ω̃(1) and Amax = maxj≤r | f jj(x)| = Õ(1). Then, the number of iterations Tn until
the density Rodeo algorithm stops satisfies

P

(
1

4 + r
log1/β(nan) ≤ Tn ≤

1
4 + r

log1/β(nbn)
)
−→ 1 (3.50)

where an = Ω̃(1) and bn = Õ(1). Moreover, the algorithm outputs bandwidths
H∗ = diag(h∗1 , ..., h∗d) that satisfies

P
(

h∗j = h(0)
j for all j > r

)
−→ 1 (3.51)

Also, we have

P
(

h(0)
j (nbn)−1/(4+r) ≤ h∗j ≤ h(0)

j (nan)−1/(4+r) for all j ≤ r
)
−→ 1 (3.52)

assuming that h(0)
j is defined as in A3.2.

Corollary 3.1. Under the same condition of theorem 3.1, the risk Rh∗ of the density
rodeo estimator satisfies

RH∗ = E

∫ (
f̂H∗(x)− f (x)

)2
dx = ÕP

(
n−4/(4+r)

)
(3.53)
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Proof. Since the integrand is nonnegative, the order of integration and expectation
can be reversed, so that

RH∗ = E

∫ (
f̂H∗(x)− f (x)

)2
dx =

∫
E
(

f̂H∗(x)− f (x)
)2

dx (3.54)

=
∫

Bias2
(

f̂H∗(x)
)

dx +
∫

Var
(

f̂H∗(x)
)

dx. (3.55)

Given the bandwidths in expression(3.51) and expression(3.52), we have that the
squared bias is given by∫

Bias2
(

f̂H∗(x)
)

dx =
∫ (

∑
j≤r

v2 f jj(x)h∗2j

)2

dx + oP(tr(H∗T H∗))

=
∫

∑
i,j≤r

v2
2 fii(x) f jj(x)h∗2i h∗2j dx + oP(tr(H∗T H∗))

= ÕP(n−4/(4+r)) (3.56)

by Theorem 3.1. Similarly, by lemma 3.4, we calculate the variance as∫
Var

(
f̂H∗(x)

)
dx =

∫ 1
n ∏

i

1
h∗i

R(K) f (x)(1 + oP(1))dx (3.57)

= ÕP(n−1+r/(4+r)) (3.58)

= ÕP(n−4/(4+r)). (3.59)

The result follows from the bias-variance decomposition.

This result shows that the optimal rates of convergence is obtained up to a
logarithmic factor.

3.7 conclusions

This chapter is mainly used to illustrate the generality of the rodeo frame-
work. Under some suitably-defined sparsity condition, the previously de-
veloped nonparametric regression framework is easily adapted to perform
high-dimensional density estimation. The resulting method is both computa-
tionally efficient and theoretically soundable. Empirical results show that our
method is better than the built-in methods in many cases.

Current assumption requires the underlying density to be factorized into
two components. Another interesting assumption is to assume that the ob-
served high-dimensional data are lying on a low-dimensional smooth man-
ifold. A recent result of Bickel and Li [2006] shows that local polynomial
regression can adapt to the local manifold structure in the sense that it
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achieves the optimal convergence rate. When assuming all dimensions use
the same bandwidth h, they formalize an asymptotic irrelevance condition as

∃ε(0 < ε < 1), s.t.

E

[
Kγ

(
X− x

h

)
w(X)1

(
X ∈

(
BD

x,h1−ε ∩ X
)c)]

= o(hd+2)(3.60)

for γ = 1, 2 and |w(x)| ≤ M(1 + |x|2). Under this kind of assumptions, it’s
interesting to design a blockwised rodeo algorithm(i.e. only on a local portion
of the data, we estimate the bandwidth) which can also adapt to the local
manifold structure and achieves a better risk.

3.8 APPENDIX: TECHNICAL PROOFS

3.8.1 Derivation of the Semiparametric Rodeo Estimator

When assuming a Gaussian kernel and a Gaussian baseline distribution, the
semiparametric kernel density estimator is defined as

f̄H(x) =
b̂(x) ∑n

i=1KH(X(i) − x)
n
∫
KH(u− x)b̂(u)du

. (3.61)

Here, we ignore the hat notation for both µ and Σ. Assuming that

Kh(u) ∼ N(0, H), H = diag(h2
1, h2

2, ..., h2
d) (3.62)

b̂(u) = N(µ, Σ). (3.63)

We get that the denominator is ∝ N(µ, H + Σ), therefore

n
∫ ∞

−∞
Kh(u− x)b̂(u)du (3.64)

=
n√

2π|H + Σ|
exp

{
− (x− µ)T(H + Σ)−1(x− µ)

2

}
. (3.65)

Thus

b̂(x)

n
∫ ∞

−∞
Kh(u− x)b̂(u)du

(3.66)

=

1√
2π|Σ|

exp
{
− (x− µ)T(Σ)−1(x− µ)

2

}
n√

2π|H + Σ|
exp

{
− (x− µ)T(H + Σ)−1(x− µ)

2

} (3.67)

=
1
n

√
|H + Σ|
|Σ| exp

{
−

(x− µ)T (Σ−1 − (H + Σ)−1) (x− µ)
2

}
.(3.68)
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The final estimator is

f̄H(x) (3.69)

= f̂H(x)

√
|H + Σ|
|Σ| exp

{
−

(x− µ)T (Σ−1 − (H + Σ)−1) (x− µ)
2

}
where f̂H(x) is the standard kernel density estimator defined in equation (3.3).

3.8.2 Proofs of the Main Results

For the convenience of notation, we suppress the superscripts unless necessary.

3.8.2.1 Proof of Lemma 3.1

For the expectation term,

E f̂H(x) (3.70)

= E
1

n det(H)

n

∑
i=1
K(H−1(x− X(i))) (3.71)

=
1

det(H)

∫
K(H−1(u− x)) f (u)du (3.72)

=
∫
K(u) f (x + Hu)du (3.73)

=
∫
K(u){ f (x) + uT HT∇ f (x) +

1
2

uT HTH f (x)Hu + oP(tr(uT HT Hu))}du

= f (x) +
1
2

v2tr(HTH f (x)H) + oP(tr(HT H)) (3.74)

= f (x) +
1
2

v2tr(HTHR(x)H) + oP(tr(HT H)). (3.75)

Equation (3.75) follows from Assumption A3.3. While

Var( f̂H(x)) (3.76)

= Var

(
1

n det(H)

n

∑
i=1
K(H−1(x− X(i)))

)
(3.77)

=
1

n det(H)2 Var
(
K(H−1(x− X(i)))

)
(3.78)

=
1

n det(H)2 E{K2(H−1(x− X(i)))} − 1
n det(H)2 E2{K(H−1(x− X(i)))}

=
1

n det(H)2

∫
{K(H−1(u− x))}2 f (u)du− 1

n
E2{ f̂H(x)} (3.79)

=
1

n det(H)

∫
{K(u)}2 f (u + Hu)du− 1

n
E2{ f̂H(x)} (3.80)

=
1

n det(H)
R(K) f (x) + oP

(
1

n det(H)

)
. (3.81)
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The first equality follows from the fact that all the X(i)’s are i.i.d. The last
equality follows by a Taylor’s expansion.

3.8.2.2 Proof of Lemma 3.2

We define f̂H(x) = 1
n ∑n

i=1 Ji(x), where J1(x), J2(x), ..., Jn(x) are i.i.d distributed,
and

Mn(x) =

(
f̂H(x)−E f̂H(x)

)
√

Var( f̂H(x))
. (3.82)

From the Berry-Esseen bound, for each fixed H, we get that

sup
z
|P (Mn(x) ≤ z)−Φ(z)| ≤ 33

4
E|J1(x)−EJ1(x)|3
√

nVar3/2(J1(x))
(3.83)

≤ 33
4

E (|J1(x)|+ |EJ1(x)|)3

√
nVar3/2(J1(x))

(3.84)

≤ 66|J1(x)|3
√

nVar3/2(J1(x))
(3.85)

≤
66 ∏d

k=1
1
h3

k
C3
K

√
n ∏d

k=1
1

h3/2
k

(4C)3
(3.86)

=
66(CK/4C)3

√
n ∏d

k=1 h3/2
k

. (3.87)

Where CK and C are defined in assumption A3.4 and Lemma3.1 respectively.
Based on this, the supreme over all the bandwidths H ∈ Hn satisfies

sup
H∈Hn

sup
z
|P (Mn(x) ≤ z)−Φ(z)| ≤ 66(CK/4C)3

√
n
(

∏d
k=1 h(0)

k βtn

)3/2 (3.88)

= O

(
b1/(4+r)

n (log log n)3d/2

n(r−2)/(8r+2)

)
→ 0.

The result follows directly.

3.8.2.3 Proof of Lemma 3.3

For j ∈ R, from lemma 3.2, we have

E f̂H(x)− f (x) =
1
2

v2tr(HTHR(x)H) + oP(tr(HT H)) (3.89)

Also, under some regularity conditions, we have

µj =
∂

∂hj
E[ f̂H(x)− f (x)] = hjv2 f jj(x) + oP(hj). (3.90)
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For j ∈ Rc, the proof proceeds by equation (3.89), when j ∈ Rc, the cor-
responding elements in the Heissen H f (x) will be zero, the result follows
directly.

3.8.2.4 Proof of Lemma 3.4

Assuming that ξ ∼ N(0, 1). From lemma 3.1, we could represent the kernel
density estimator f̂H(x) as

f̂H(x) = E f̂H(x) +
√

Var( f̂H(x))× ξ (3.91)

= f (x) +
1
2

v2tr(HTH f (x)H) + oP(tr(HT H)) +
√

Var( f̂H(x))× ξ.

Thus,

Zj =
∂ f̂H(x)

∂hj
+

∂

∂hj

(
1
2

v2tr(HTHR(x)H)
)

+
∂

∂hj

(√
Var( f̂H(x))× ξ

)
.

Since

∂

∂hj

(√
Var( f̂H(x))

)
=

1
2

1√
Var( f̂H(x))

∂

∂hj

(
Var

(
f̂H(x)

))
(3.92)

= −1
2

1√
Var( f̂H(x))

(
R(K) f (x)
hjn det(H)

)(
1 + oP

(
1

n det(H)hj

))

= −1
2

√
R(K) f (x)
h2

j n det(H)
(1 + oP(

√
hj)). (3.93)

The second equality follows from lemma3.1, therefore

s2
j = Var(Zj) =

C
nh2

j

(
d

∏
k=1

1
hk

)
(1 + oP(1)) . (3.94)
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3.8.2.5 Proof of Lemma 3.5

Since Zj = 1
n ∑n

i=1 Zji, and Zj1, Zj2, ..., Zjn are i.i.d distributed. Similar as in the
proof of lemma 3.2 , from the Berry-Esseen bound, for each fixed H, we get
that

sup
z

∣∣∣∣∣∣P
 Zj −EZj√

Var(Zj)
≤ z

−Φ(z)

∣∣∣∣∣∣ ≤ 33
4

E|Zj1 −EZj1|3√
nVar3/2(Zj1)

(3.95)

≤
66|Zj1|3√

nVar3/2(Zj1)
(3.96)

≤
66 1

h9
j

∏d
k=1

1
h3

k
C3
M

√
n 1

h3
j

∏d
k=1

1
h3/2

k
(C1/2)3

(3.97)

=
66(CM/

√
C)3

√
nh6

j ∏d
k=1 h3/2

k

. (3.98)

Where CM is evaluated from CK and Cd in assumption A3.4 and C is defined
in lemma 3.1. Based on the same reasoning as in lemma 3.2, the supreme over
all the bandwidths H ∈ Hn satisfies

sup
H∈Hn

sup
z

∣∣∣∣∣∣P
 Zj −EZj√

Var(Zj)
≤ z

−Φ(z)

∣∣∣∣∣∣ −→ 0. (3.99)

3.8.2.6 Proof of Lemma 3.6

Without loss of generality, we assume µ > 0. Then,

P(|Z| > λ) ≤ 2P(Z > λ) (3.100)

= 2P

(
Z− µ

σ
>

λ− µ

σ

)
(3.101)

≤ 2σ

λ− µ
exp

{
− (λ− µ)2

2σ2

}
≡ B(µ). (3.102)

Now B(µ) = B(0) + µB′(µ̃) for some 0 ≤ µ̃ ≤ µ and

B′(µ) =
2σ

λ− µ
exp

{
− (λ− µ)2

2σ2

}(
λ− µ

σ2 +
1

λ− µ

)
. (3.103)

Hence

B′(µ) ≤ 2σ

λ− µ
exp

{
− (λ− µ)2

2σ2

}(
λ

σ2 +
1

λ− µ

)
. (3.104)

When λ ≥ 2µ, 1/(λ− µ) ≤ 2/λ and (λ− µ)2 ≥ λ2/4 so that if λ2 ≥ 2σ2 then

B′(µ) ≤ 4σ

λ
exp

{
− λ2

8σ2

}(
λ

σ2 +
2
λ

)
≤ 8

σ
exp

{
− λ2

8σ2

}
. (3.105)
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Thus,

P(|Z| > λ) ≤ 2σ

λ
exp

{
− λ2

2σ2

}
+

8µ

σ
exp

{
− λ2

8σ2

}
≤ 5λ

σ
exp

{
− λ2

8σ2

}
.

The last statement follows since 5xe−x2/8 ≤ e−x2/16 for all x ≥ 5.

3.8.2.7 Proof of theorem 3.1

First, we consider consider the case j > r. Let Vt = {j > r : hj = h0βt} be the
set of irrelevant dimensions that are active at stage t > 1 of the algorithm.
Define vj = Var(Zj), from lemma 3.3 and the algorithm in figure 9, for
sufficiently large n, it’s obvious that λj ≥ 2µj, λ2

j ≥ 2s2
j , and λ ≥ 5sj, and

v2
j /s2

j = 1 + o(1) with probability tending to 1. Assuming Z̃j is a normal
random variable with the same mean and variance as Zj. Then

P(|Zj| > λj, for some j ∈ Vt) (3.106)

≤ ∑
j∈Vt

P(|Zj| > λj) + o(1) (3.107)

= ∑
j∈Vt

(
P(|Z̃j| > λj) + P(|Zj| > λj)−P(|Z̃j| > λj)

)
+ o(1) (3.108)

≤ d exp
{
−λ2

j /16v2
j

}
+ o(1) (3.109)

= d exp
{
−λ2

j (1 + o(1))/16s2
j

}
+ o(1)→ 0 (3.110)

Therefore, with probability tending to 1, hj = h0 for each j > r, meaning that
the bandwidth for each irrelevant dimension is frozen in the first step in the
algorithm.

Now consider j ≤ r. By assumption A3.4 and lemma 3.3, for sufficiently large
n, µj ≥ chj| f jj(x)| for some c > 0. Without loss of generality, assume that
chj f jj > 0. We claim that in the iteration t of the algorithm, if

t ≤ 1
4 + r

log1/β

(
c2nA2

minh4+d
0

8C log(ncn)

)
, (3.111)

then

P(hj = h0βt, for all j ≤ r)→ 1. (3.112)

To show this, first note that inequality (3.111) can be written as(
1
β

)t(4+r)

≤
c2nA2

minh4+d
0

8C log(ncn)
(3.113)

except on an event of vanishing probability. We have shown above that

∏
j>r

1
hj
≤
(

1
h0

)d−r

. (3.114)
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So on the complement of this event, if each relevant dimension is active at
step s ≤ t, we have

λ2
j

h2
j

=
2s2

j log(ncn)

h2
j

(3.115)

=
2C log(ncn)

nh4
j

∏
i

1
hi

(3.116)

≤ 2C log(ncn)
nh4+d

0

(
1
β

)(4+r)t

(3.117)

≤
c2A2

min
4

(3.118)

≤
c2 f jj(x)2

4
(3.119)

which implies that

c f jj(x)hj ≥ 2λj (3.120)

and hence

c f jj(x)hj − λj

sj
≥

λj

sj
=
√

2 log(ncn) (3.121)

for each j ≤ r. Now,

P( rodeo halts ) = P(|Zj| < λj for all j ≤ r) (3.122)

≤ P(|Zj| < λj for some j ≤ r) (3.123)

≤ ∑
j≤r

P(|Zj| < λj) (3.124)

≤ ∑
j≤r

P(Zj < λj) (3.125)

≤ ∑
j≤r

P

(
Zj − µj

sj
>

µj − λj

sj

)
(3.126)

≤ ∑
j≤r

P

(
Zj − µj

sj
>

c f jj(x)hj − λj

sj

)
(3.127)

≤ ∑
j≤r

P

(
|
Zj − µj

sj
| >

c f jj(x)hj − λj

sj

)
(3.128)

≈ ∑
j≤r

P

(
|
Z̃j − µj

sj
| >

c f jj(x)hj − λj

sj

)
(3.129)

≤ r
ncn
√

2 log(ncn)
(3.130)
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where equation (3.129) follows the same idea as in equation ( 3.108). The last
inequality follows from the standard Miller’s inequality. Finally, summing
over all iterations s ≤ t gives

P

⋃
s≤t

⋃
j≤r

{
|Z(s)

j | < λ
(s)
j

} ≤ tr
ncn
√

2 log(ncn)
(3.131)

≤
r

4+r log1/β

(
c2nA2

minh4+d
0

8C log(ncn)

)
ncn
√

2 log(ncn)
−→ 0 (3.132)

by the density Rodeo’s algorithm. Thus, the bandwidths hj for j ≤ r satisfy,
with high probability,

hj = h0βt ≤ h0

(
8C log(ncn)
c2A2

minnh4+d
0

)1/(4+r)

(3.133)

= n−1/(4+r)

(
8C log(ncn)
c2A2

minhd−r
0

)1/(4+r)

. (3.134)

In particular, with probability approaching one, the algorithm runs for a
number of iterations Tn bounded from below by

Tn ≥
1

4 + r
log1/β(nan) (3.135)

where

an =
c2A2

minhd−r
0

8C log(ncn)
= Ω̃(1). (3.136)

We next show that the algorithm is unlikely to reach iteration s, if

s ≥ 1
4 + r

log1/β(nbn) (3.137)

where bn = Õ(1) will be defined below. From the argument above, we know
that except on an event of vanishing probability, each relevant dimension
j ≤ r has bandwidth no larger than

hj ≤ h0β(log1/β(nan))/(4+r) =
h0

(nan)1/(4+r) . (3.138)
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Thus, if relevant dimension j has bandwidth hj ≤ h0βs, then from lemma 3.4
we have that

s2
j

µ2
j

=
s2

j

v2
2 f 2

jj(x)h2
j

(3.139)

≥ C
v2

2 f 2
jj(x)nh4

j det(H)
(3.140)

≥ C
v2

2 f 2
jj(x)nh4

0β4s
nr/(4+r)ar/(4+r)

n

hr
0

1
hd−r

0

(3.141)

=
C

v2
2 f 2

jj(x)n4/(4+r)
ar/(4+r)

n

h4+d
0

1
β4s (3.142)

≥ C
A2

maxn4/(4+r)
ar/(4+r)

n

h4+d
0

1
β4s . (3.143)

Therefore
s2

j

µ2
j
≥ log log n (3.144)

in case(
1
β

)s

≥ (nbn)1/(4+r) ≥ n1/(4+r)

(
A2

maxh4+d
0 log log n

Car/(4+r)
n

)1/4

, (3.145)

which defines bn = Õ(1). It follows that in iteration s ≥ 1
4+r log1/β(nbn), the

probability of a relevant dimension having estimated derivative Zj above
threshold is bounded by

P(|Zj| > λj, for some j ≤ r) ≤ ∑
j≤r

P(|Zj| > λj) (3.146)

= ∑
j≤r

P

( |Zj|
sj

>
λj

sj

)
(3.147)

≈ ∑
j≤r

P

(
|Z̃j|
sj

>
λj

sj

)
(3.148)

≤ ∑
j≤r

P

(
sj

λj
e−λ2

j /(2s2
j ) +

1
4

µ2
j

s2
j

)
(3.149)

≤ r
ncn
√

2 log(ncn)
+

1
4 ∑

j∈Vt

µ2
j

s2
j

(3.150)

≤ r
ncn
√

2 log(ncn)
+

r
4 log log n

(3.151)

= O
(

1
log log n

)
, (3.152)

which gives the statement of the theorem.



4
NONPARANORMAL: LEARNING NONPARAMETRIC UNDIRECTED
GRAPHS

Recent methods for estimating sparse undirected graphs for real-valued
data in high dimensional problems rely heavily on the assumption of
normality. We show how to use a semiparametric Gaussian copula—or

“nonparanormal”—for high dimensional inference. Just as additive models ex-
tend linear models by replacing linear functions with a set of one-dimensional
smooth functions, the nonparanormal extends the normal by transforming the
variables by smooth functions. We derive a method for estimating the nonpara-
normal, study the method’s theoretical properties, and show that it works well
in many examples.

4.1 introduction and motivation

The linear model is a mainstay of statistical inference that has been extended
in several important ways. An extension to high dimensions was achieved
by adding a sparsity constraint, leading to the lasso [Tibshirani, 1996]. An
extension to nonparametric models was achieved by replacing linear functions
with smooth functions, leading to additive models [Hastie and Tibshirani,
1999]. These two ideas were recently combined, leading to an extension called
sparse additive models (SpAM) [Ravikumar et al., 2007, 2009a]. In this paper
we consider a similar nonparametric extension of undirected graphical models
based on multivariate Gaussian distributions in the high dimensional setting.
Specifically, we use a high dimensional Gaussian copula with nonparametric
marginals, which we refer to as a nonparanormal distribution.

If X is a d-dimensional random vector distributed according to a mul-
tivariate Gaussian distribution with covariance matrix Σ, the conditional
independence relations between the random variables X1, X2, . . . , Xd are en-
coded in a graph formed from the precision matrix Ω = Σ−1. Specifically,
missing edges in the graph correspond to zeroes of Ω. To estimate the graph
from a sample of size n, it is only necessary to estimate Σ, which is easy if
n is much larger than d. However, when d is larger than n, the problem is
more challenging. Recent work has focused on the problem of estimating the
graph in this high dimensional setting, which becomes feasible if G is sparse.
Yuan and Lin [2007] and Banerjee et al. [2008] propose an estimator based
on regularized maximum likelihood using an `1 constraint on the entries of

63
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Ω, and Friedman et al. [2007] develop an efficient algorithm for computing
the estimator using a graphical version of the lasso. The resulting estimation
procedure has excellent theoretical properties, as shown recently by Rothman
et al. [2008] and Ravikumar et al. [2009b].

While Gaussian graphical models can be useful, a reliance on exact nor-
mality is limiting. Our goal in this paper is to weaken this assumption.
Our approach parallels the ideas behind sparse additive models for regres-
sion [Ravikumar et al., 2007, 2009a]. Specifically, we replace the Gaussian
with a semiparametric Gaussian copula. This means that we replace the
random variable X = (X1, . . . , Xd) by the transformed random variable
f (X) = ( f1(X1), . . . , fd(Xd)), and assume that f (X) is multivariate Gaus-
sian. This semiparametric copula results in a nonparametric extension of
the normal that we call the nonparanormal distribution. The nonparanormal
depends on the functions { f j}, and a mean µ and covariance matrix Σ, all of
which are to be estimated from data. While the resulting family of distribu-
tions is much richer than the standard parametric normal (the paranormal),
the independence relations among the variables are still encoded in the preci-
sion matrix Ω = Σ−1. We propose a nonparametric estimator for the functions
{ f j}, and show how the graphical lasso can be used to estimate the graph
in the high dimensional setting. The relationship between linear regression
models, Gaussian graphical models, and their extensions to nonparametric
and high dimensional models is summarized in Figure 20.

Most theoretical results on semiparametric copulas focus on low or at least
finite dimensional models [Klaassen and Wellner, 1997, Tsukahara, 2005].
Models with increasing dimension require a more delicate analysis; in par-
ticular, simply plugging in the usual empirical distribution of the marginals
does not lead to accurate inference. Instead we use a truncated empirical
distribution. We give a theoretical analysis of this estimator, proving consis-
tency results with respect to risk, model selection, and estimation of Ω in the
Frobenius norm.

In the following section we review the basic notion of the graph correspond-
ing to a multivariate Gaussian, and formulate different criteria for evaluating
estimators of the covariance or inverse covariance. In Section 4.3 we present
the nonparanormal, and in Section 4.4 we discuss estimation of the model.
We present a theoretical analysis of the estimation method in Section 4.5,
with the detailed proofs collected in an appendix. In Section 4.6 we present
experiments with both simulated data and gene microarray data, where the
problem is to construct the isoprenoid biosynthetic pathway.

4.2 estimating undirected graphs

Let X = (X1, . . . , Xd) denote a random vector with distribution P = N(µ, Σ).
The undirected graph G = (V, E) corresponding to P consists of a vertex set
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Assumptions Dimension Regression Graphical Models

parametric
low linear model multivariate normal

high lasso graphical lasso

nonparametric
low additive model nonparanormal

high sparse additive model L1-nonparanormal

Figure 20.: Comparison of regression and graphical models. The nonparanormal extends ad-
ditive models to the graphical model setting. Regularizing the inverse covariance
leads to an extension to high dimensions, which parallels sparse additive models
for regression.

V and an edge set E. The set V has d elements, one for each component of
X. The edge set E consists of ordered pairs (i, j) where (i, j) ∈ E if there is an
edge between Xi and Xj. The edge between (i, j) is excluded from E if and
only if Xi is independent of Xj given the other variables X\{i,j} ≡ (Xs : 1 ≤
s ≤ d, s 6= i, j), written

Xi ⊥⊥ Xj

∣∣∣ X\{i,j}. (4.1)

It is well known that, for multivariate Gaussian distributions, (4.1) holds if
and only if Ωij = 0 where Ω = Σ−1.

Let X(1), X(2), . . . , X(n) be a random sample from P, where X(i) ∈ Rd. If n
is much larger than d, then we can estimate Σ using maximum likelihood,
leading to the estimate Ω̂ = S−1, where

S =
1
n

n

∑
i=1

(
X(i) − X

) (
X(i) − X

)T

is the sample covariance, with X the sample mean. The zeroes of Ω can then
be estimated by applying hypothesis testing to Ω̂ [Drton and Perlman, 2007,
2008].

When d > n, maximum likelihood is no longer useful; in particular, the
estimate Σ̂ is not positive definite, having rank no greater than n. Inspired
by the success of the lasso for linear models, several authors have suggested
estimating Σ by minimizing

−`(Ω) + λ ∑
j 6=k
|Ωjk|

where
`(Ω) =

1
2

(log |Ω| − tr(ΩS)− d log(2π))

is the log-likelihood with S the sample covariance matrix. The estimator Ω̂
can be computed efficiently using the glasso algorithm [Friedman et al., 2007],
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which is a block coordinate descent algorithm that uses the standard lasso to
estimate a single row and column of Ω in each iteration. Under appropriate
sparsity conditions, the resulting estimator Ω̂ has been shown to have good
theoretical properties [Rothman et al., 2008, Ravikumar et al., 2009b].

There are several different ways to judge the quality of an estimator Σ̂
of the covariance or Ω̂ of the inverse covariance. We discuss three in this
paper, persistency, norm consistency, and sparsistency. Persistency means
consistency in risk, when the model is not necessarily assumed to be correct.
Suppose the true distribution P has mean µ0, and that we use a multivariate
normal p(x; µ0, Σ) for prediction; we do not assume that P is normal. We
observe a new vector X ∼ P and define the prediction risk to be

R(Σ) = −E log d(X; µ0, Σ) = −
∫

log d(x; µ0, Σ) dP(x).

It follows that

R(Σ) =
1
2

(
tr(Σ−1Σ0) + log |Σ| − d log(2π)

)
where Σ0 is the covariance of X under P. If S is a set of covariance matrices,
the oracle is defined to be the covariance matrix Σ∗ minimizing R(Σ) over S :

Σ∗ = arg minΣ∈SR(Σ).

Thus p(x; µ0, Σ∗) is the best predictor of a new observation among all dis-
tributions in {p(x; µ0, Σ) : Σ ∈ S}. In particular, if S consists of covariance
matrices with sparse graphs, then p(x; µ0, Σ∗) is, in some sense, the best
sparse predictor. An estimator Σ̂n is persistent if

R(Σ̂n)− R(Σ∗)
P→ 0

as the sample size n increases to infinity. Thus, a persistent estimator approx-
imates the best estimator over the class S , but we do not assume that the
true distribution has a covariance matrix in S , or even that it is Gaussian.
Moreover, we allow the dimension d = dn to increase with n. On the other
hand, norm consistency and sparsistency require that the true distribution is
Gaussian. In this case, let Σ0 denote the true covariance matrix. An estimator
is norm consistent if

‖Σ̂n − Σ‖ P→ 0

where ‖ · ‖ is a norm. If E(Ω) denotes the edge set corresponding to Ω, an
estimator is sparsistent if

P
(

E(Ω) 6= E(Ω̂n)
)
→ 0.

Thus, a sparsistent estimator identifies the correct graph consistently. We
present our theoretical analysis on these properties of the nonparanormal in
Section 4.5.
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4.3 the nonparanormal

We say that a random vector X = (X1, . . . , Xd)T has a nonparanormal distri-
bution if there exist functions { f j}d

j=1 such that Z ≡ f (X) ∼ N(µ, Σ), where
f (X) = ( f1(X1), . . . , fd(Xd)). We then write

X ∼ NPN (µ, Σ, f ).

When the f j’s are monotone and differentiable, the joint probability density
function of X is given by

pX(x) =
1

(2π)d/2|Σ|1/2 exp
{
−1

2
( f (x)− µ)T Σ−1 ( f (x)− µ)

} d

∏
j=1
| f ′j (xj)|.

(4.2)

Lemma 4.1. The nonparanormal distribution NPN (µ, Σ, f ) is a Gaussian copula
when the f j’s are monotone and differentiable.

Proof. By Sklar’s theorem [Sklar, 1959], any joint distribution can be written as

F(x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}

where the function C is called a copula. For the nonparanormal we have

F(x1, . . . , xd) = Φµ,Σ(Φ−1(F1(x1)), . . . , Φ−1(Fd(xd)))

where Φµ,Σ is the multivariate Gaussian cdf and Φ is the univariate standard Gaussian
cdf. Thus, the corresponding copula is

C(u1, . . . , ud) = Φµ,Σ(Φ−1(u1), . . . , Φ−1(ud)).

This is exactly a Gaussian copula with parameters µ and Σ. If each f j is differentiable
then the density of X has the same form as (4.2).

Note that the density in (4.2) is not identifiable; to make the family identifi-
able we demand that f j preserve means and variances:

µj = E(Zj) = E(Xj) and σ2
j ≡ Σjj = Var

(
Zj
)

= Var
(
Xj
)

. (4.3)

Note that these conditions only depend on diag(Σ) but not the full covariance
matrix.

Let Fj(x) denote the marginal distribution function of Xj. Then

Fj(x) = P
(
Xj ≤ x

)
= P

(
Zj ≤ f j(x)

)
= Φ

(
f j(x)− µj

σj

)
which implies that

f j(x) = µj + σjΦ−1 (Fj(x)
)

. (4.4)

The following basic fact says that the independence graph of the nonpara-
normal is encoded in Ω = Σ−1, as for the parametric normal.
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Lemma 4.2. If X ∼ NPN (µ, Σ, f ) is nonparanormal and each f j is differentiable,
then Xi ⊥⊥ Xj |X\{i,j} if and only if Ωij = 0, where Ω = Σ−1.

Proof. From the form of the density (4.2), it follows that the density factors with
respect to the graph of Ω, and therefore obeys the global Markov property of the
graph.

Next we show that the above is true for any choice of identification restric-
tions.

Lemma 4.3. Define

hj(x) = Φ−1(Fj(x)) (4.5)

and let Λ be the covariance matrix of h(X). Then Xj ⊥⊥ Xk |X\{j,k} if and only if
Λ−1

jk = 0.

Proof. We can rewrite the covariance matrix as

Σjk = Cov(Zj, Zk) = σjσkCov(hj(Xj), hk(Xk)).

Hence Σ = DΛD and
Σ−1 = D−1Λ−1D−1,

where D is the diagonal matrix with diag(D) = σ. The zero pattern of Λ−1 is there-
fore identical to the zero pattern of Σ−1.

Thus, it is not necessary to estimate µ or σ to estimate the graph.
Figure 21 shows three examples of 2-dimensional nonparanormal densities.

In each case, the component functions f j(x) take the form

f j(x) = ajsign(x)|x|αj + bj

where the constants aj and bj are set to enforce the identifiability constraints
(4.3). The covariance in each case is Σ = (1 .5

.5 1) and the mean is µ = (0, 0). The
exponent αj determines the nonlinearity. It can be seen how the concavity of
the density changes with the exponent α, and that α > 1 can result in multiple
modes.

The assumption that f (X) = ( f1(X1), . . . , fd(Xd) is normal leads to a semi-
parametric model where only one dimensional functions need to be estimated.
But the monotonicity of the functions f j, which map onto R, enables compu-
tational tractability of the nonparanormal. For more general functions f , the
normalizing constant for the density

pX(x) ∝ exp
{
−1

2
( f (x)− µ)T Σ−1 ( f (x)− µ)

}
(4.6)

cannot be computed in closed form.
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Figure 21.: Densities of three 2-dimensional nonparanormals. The component functions have

the form f j(x) = sign(x)|x|αj . Left: α1 = 0.9, α2 = 0.8; center: α1 = 1.2,
α2 = 0.8; right α1 = 2, α2 = 3. In each case µ = (0, 0) and Σ = (1 .5

.5 1).

4.4 estimation method

Let X(1), . . . , X(n) be a sample of size n where X(i) = (X(i)
1 , . . . , X(i)

d )T ∈ Rd.
In light of (4.5) we define

ĥj(x) = Φ−1(F̃j(x)) (4.7)

where F̃j is an estimator of Fj. A natural candidate for F̃j is the marginal
empirical distribution function

F̂j(t) ≡ 1
n

n

∑
i=1

I
(

X(i)
j ≤ t

)
.

Now, let θ denote the parameters of the copula. Tsukahara (2005) suggests
taking θ̂ to be the solution of

n

∑
i=1

φ
(

F̃1(X(i)
1 ), . . . , F̃d(X(i)

d ), θ
)

= 0

where φ is an estimating equation and F̃j(t) = nF̂j(t)/(n + 1). In our case,
θ corresponds to the covariance matrix. The resulting estimator θ̂, called a
rank approximate Z-estimator, has excellent theoretical properties. However,
we are interested in the high dimensional scenario where the dimension d
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is allowed to increase with n; the variance of F̂j(t) is too large in this case.
Instead, we use the following truncated or Winsorized1 estimator:

F̃j(x) =


δn if F̂j(x) < δn

F̂j(x) if δn ≤ F̂j(x) ≤ 1− δn

(1− δn) if F̂j(x) > 1− δn,

(4.8)

where δn is a truncation parameter. Clearly, there is a bias-variance tradeoff
in choosing δn. Essentially the same estimator with δn = 1/n is studied by
Klaassen and Wellner [1997] in the case of bivariate Gaussian copula. In what
follows we use

δn ≡
1

4n1/4
√

π log n
.

This provides the right balance so that we can achieve the desired rate of
convergence in our estimate of Ω and the associated undirected graph G in
the high dimensional setting.

Given this estimate of the distribution of variable Xj, we then estimate the
transformation function f j by

f̃ j(x) ≡ µ̂j + σ̂jh̃j(x) (4.9)

where

h̃j(x) = Φ−1 (F̃j(x)
)

(4.10)

and µ̂j and σ̂j are the sample mean and the standard deviation:

µ̂j ≡
1
n

n

∑
i=1

X(i)
j and σ̂j =

√
1
n

n

∑
i=1

(
X(i)

j − µ̂j

)2
.

Now, let Sn( f̃ ) be the sample covariance matrix of f̃ (X(1)), . . . , f̃ (X(n)); that
is,

Sn( f̃ ) ≡ 1
n

n

∑
i=1

(
f̃ (X(i))− µn( f̃ )

) (
f̃ (X(i))− µn( f̃ )

)T
(4.11)

µn( f̃ ) ≡ 1
n

n

∑
i=1

f̃ (X(i)). (4.12)

We then estimate Ω using Sn( f̃ ). For instance, the maximum likelihood
estimator is Ω̂MLE

n = Sn( f̃ )−1. The `1-regularized estimator is

Ω̂n = arg min
Ω

{
tr
(
ΩSn( f̃ )

)
− log |Ω|+ λ‖Ω‖1

}
(4.13)

1 After Charles P. Winsor, whom John Tukey credited with converting him from topology to statistics
Mallows 1990.
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where λ is a regularization parameter, and ‖Ω‖1 = ∑j 6=k |Ωjk|. The estimated
graph is then Ên = {(j, k) : Ω̂jk 6= 0}.

The nonparanormal is analogous to a sparse additive regression model
[Ravikumar et al., 2009a], in the sense that both methods transform the
variables by univariate functions. However, while sparse additive models use a
regularized risk criterion to fit univariate transformations, our nonparanormal
estimator uses a two-step procedure:

1. Replace the observations, for each variable, by their respective normal
scores, subject to a Winsorized truncation.

2. Apply the graphical lasso to the transformed data to estimate the undi-
rected graph.

The first step is non-iterative and computationally efficient, with no tuning
parameters; it also makes the nonparanormal amenable to theoretical analysis.

Starting with the model in (4.2), another possibility would be to parametrize
each f j according to some parametric class of monotone functions such as
the Box-Cox family, and then find the maximum likelihood estimates of
(Ω, f1, ... fd) in that class. This might lead to estimates of f j that depend on
Ω, and vice versa, and the estimation problem would not in general be
convex. Alternatively, due to (4.4), the marginal information could be used
to estimate the parameters. Our nonparametric approach to estimating the
transformations has the advantages of making few assumptions and being
easy to compute. In the following section we analyze the theoretical properties
of this estimator.

4.5 theoretical properties

In this section we present our theoretical results on risk consistency, model
selection consistency, and norm consistency of the covariance Σ and inverse
covariance Ω. From Lemma 4.3, the estimate of the graph does not depend
on σj, j ∈ {1, . . . , d} and µ, so we assume that σj = 1 and µ = 0. Our key
technical result is an analysis of the covariance of the Winsorized estimator
defined in (4.8), (4.9), and (4.11). In particular, we show that under appropriate
conditions,

max
j,k

∣∣Sn( f̃ )jk − Sn( f )jk
∣∣ = oP(1)

where Sn( f̃ )jk denotes the (j, k) entry of the matrix. This result allows us to
leverage the recent analysis of Rothman et al. [2008] and Ravikumar et al.
[2009b] in the Gaussian case to obtain consistency results for the nonparanor-
mal. More precisely, our main theorem is the following.
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Theorem 4.1. Suppose that d = nξ and let f̃ be the Winsorized estimator defined in

(4.9) with δn =
1

4n1/4
√

π log n
. Define

CM ≡
48√

π

(√
2M− 1

)
(M + 2). (4.14)

For some M ≥ 2 (ξ + 1).

Then for any ε ≥ CM

√
log d log2 n

n1/2 and sufficiently large n, we have

P

(
max

jk

∣∣Sn( f̃ )jk − Sn( f )jk
∣∣ > 2ε

)
(4.15)

≤ 1
2
√

π log(nd)
+ 2 exp

(
2 log d− n1/2ε2

1232π2 log2 n

)
(4.16)

+2 exp
(

2 log d− n1/2

8π log n

)
+ o(1). (4.17)

The proof of the above theorem is given in Section 4.8. The following
corollary is immediate, and specifies the scaling of the dimension in terms of
sample size.

Corollary 4.1. Let M ≥ max{15π, 2ξ + 1}. Then

P

max
jk

∣∣Sn( f̃ )jk − Sn( f )jk
∣∣ > 2CM

√
log d log2 n

n1/2

 = o(1). (4.18)

Hence,

max
j,k

∣∣Sn( f̃ )jk − Sn( f )jk
∣∣ = OP

√ log d log2 n
n1/2

 .

The following corollary yields estimation consistency in both the Frobenius
norm and the `2-operator norm. The proof follows the same arguments as
the proof of Theorem 1 and Theorem 2 from Rothman et al. [2008], replacing
their Lemma 1 with our Theorem 4.1.

For a matrix A = (aij), the Frobenius norm ‖ · ‖F is defined as ‖A‖F ≡√
∑i,j a2

ij. The `2-operator norm ‖ · ‖2 is defined as the magnitude of the largest

eigenvalue of the matrix, ‖A‖2 ≡ max‖x‖2=1 ‖Ax‖2. In the following, we write
an � bn if there are positive constants c and C independent of n such that
c ≤ an/bn ≤ C.

Corollary 4.2. Suppose that the data are generated as X(i) ∼ NPN (µ0, Σ0, f0), and
let Ω0 = Σ−1

0 . If the regularization parameter λn is chosen as

λn � 2CM

√
log d log2 n

n1/2
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where CM is defined in Theorem 4.1. Then the nonparanormal estimator Ω̂n of (4.13)
satisfies

‖Ω̂n −Ω0‖F = OP

√ (s + d)(log d log2 n)
n1/2

 (4.19)

and

‖Ω̂n −Ω0‖2 = OP

√ s(log d log2 n)
n1/2

 , (4.20)

where

s ≡ Card ({(i, j) ∈ {1, . . . , d} × {1, . . . , d} |Ω0(i, j) 6= 0, i 6= j}) (4.21)

is the number of nonzero off-diagonal elements of the true precision matrix.

To prove the model selection consistency result, we need further assump-
tions. We follow Ravikumar (2009) and let the d2 × d2 Fisher information
matrix of Σ0 be Γ ≡ Σ0 ⊗ Σ0 where ⊗ is the Kronecker matrix product, and
define the support set S of Ω0 = Σ−1

0 as

S ≡ {(i, j) ∈ {1, . . . , d} × {1, . . . , d} |Ω0(i, j) 6= 0} . (4.22)

We use Sc to denote the complement of S in the set {1, . . . , d} × {1, . . . , d},
and for any two subsets T and T′ of {1, . . . , d} × {1, . . . , d}, we use ΓTT′ to
denote the sub-matrix with rows and columns of Γ indexed by T and T′

respectively.

Assumption 4.1. There exists some α ∈ (0, 1], such that
∥∥ΓScS(ΓSS)−1

∥∥
∞ ≤ 1− α.

As in Ravikumar et al. [2009b], we define two quantities KΣ0 ≡ ‖Σ0‖∞ and
KΓ ≡ ‖(ΓSS)−1‖∞. Further, we define the maximum row degree as

deg ≡ max
i=1,...,d

Card ({j ∈ 1, . . . , d |Ω0(i, j) 6= 0}) . (4.23)

Assumption 4.2. The quantities KΣ0 and KΓ are bounded, and there are positive
constants C such that

min
(j,k)∈S

|Ω0(j, k)| ≥ C

√
log3 n
n1/2 (4.24)

for large enough n.

The proof of the following corollary uses our Theorem 4.1 in place of
Equation (12) in the analysis of Ravikumar et al. [2009b].
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Corollary 4.3. Suppose the regularization parameter is chosen as

λn � 2CM

√
log d log2 n

n1/2

where C(M, n, p) is defined in Theorem 4.1. Then the nonparanormal estimator Ω̂n

satisfies

P
(
G
(
Ω̂n, Ω0

))
≥ 1− o(1) (4.25)

where G(Ω̂n, Ω0) is the event{
sign

(
Ω̂n(j, k)

)
= sign (Ω0(j, k)) , ∀j, k ∈ S

}
. (4.26)

Our persistency (risk consistency) result parallels the persistency result
for additive models given in Ravikumar et al. [2009a], and allows model
dimension that grows exponentially with sample size. The definition in this
theorem uses the fact (from Lemma 4.4) that supx Φ−1 (F̃j(x)

)
≤
√

2 log n
when δn = 1/(4n1/4

√
π log n).

In the next theorem, we do not assume the true model is nonparanormal
and define the population and sample risks as

R( f , Ω) =
1
2

{
tr
[
ΩE( f (X) f (X)T

]
− log |Ω| − p log(2π)

}
(4.27)

R̂( f , Ω) =
1
2
{tr [ΩSn( f )]− log |Ω| − p log(2π)} . (4.28)

Theorem 4.2. Suppose that d ≤ enξ
for some ξ < 1, and define the classes

Mn =
{

f : R→ R : f is monotone with ‖ f ‖∞ ≤ C
√

log n
}

(4.29)

Cn =
{

Ω : ‖Ω−1‖1 ≤ Ln

}
. (4.30)

Let Ω̂n be given by

Ω̂n = arg min
Ω∈Cn

{
tr
(
ΩSn( f̃ )

)
− log |Ω|

}
. (4.31)

Then

R( f̃n, Ω̂n)− inf
( f ,Ω)∈Mp

n⊕Cn

R( f , Ω) = OP

(
Ln

√
log n
n1−ξ

)
.

Hence the Winsorized estimator of ( f , Ω) with δn = 1/(4n1/4
√

π log n) is persis-

tent over Cn when Ln = o
(

n(1−ξ)/2/
√

log n
)

.

The proofs of Theorems 4.1 and 4.2 are given in Section 4.8.
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4.6 experimental results

In this section, we report experimental results on synthetic and real data
sets. We mainly compare the `1-regularized nonparanormal and Gaussian
(paranormal) models, computed using the graphical lasso algorithm (glasso)
of Friedman et al. [2007]. The primary conclusions are: (i) When the data are
multivariate Gaussian, the performance of the two methods is comparable; (ii)
when the model is correct, the nonparanormal performs much better than the
graphical lasso in many cases; (iii) for a particular gene microarray data set,
our method behaves differently from the graphical lasso, and may support
different biological conclusions.

Note that we can reuse the glasso implementation to fit a sparse nonpara-
normal. In particular, after computing the Winsorized sample covariance
Sn( f̃ ), we pass this matrix to the glasso routine to carry out the optimization

Ω̂n = arg min
Ω

{
tr
(
ΩSn( f̃ )

)
− log |Ω|+ λn‖Ω‖1

}
. (4.32)

4.6.1 Neighborhood Graphs

We begin by describing a procedure to generate graphs as in [Meinshausen
and Bühlmann, 2006], with respect to which several distributions can then be
defined. We generate a d-dimensional sparse graph G ≡ (V, E) as follows: Let
V = {1, . . . , d} correspond to variables X = (X1, . . . , Xd). We associate each
index j with a point (Y(1)

j , Y(2)
j ) ∈ [0, 1]2 where

Y(k)
1 , . . . , Y(k)

n ∼ Uniform[0, 1]

for k = 1, 2. Each pair of nodes (i, j) is included in the edge set E with
probability

P

(
(i, j) ∈ E

)
=

1√
2π

exp

(
−
‖yi − yj‖2

n

2s

)
(4.33)

where yi ≡ (y(1)
i , y(2)

i ) is the observation of (Y(1)
i , Y(2)

i ) and ‖ · ‖n represents
the Euclidean distance. Here, s = 0.125 is a parameter that controls the
sparsity level of the generated graph. We restrict the maximum degree of the
graph to be four and build the inverse covariance matrix Ω0 according to

Ω0(i, j) =


1 if i = j

0.245 if (i, j) ∈ E

0 otherwise,

(4.34)

where the value 0.245 guarantees positive definiteness of the inverse covari-
ance matrix.
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Given Ω0, n data points are sampled from

X(1), . . . , X(n) ∼ NPN(µ0, Σ0, f0) (4.35)

where µ0 = (1.5, . . . , 1.5), Σ0 = Ω−1
0 . For simplicity, the transformation func-

tions for all dimensions are the same, f1 = . . . = fd = f . To sample data
from the nonparanormal distribution, we also require g ≡ f−1; two different
transformations g are employed.

Definition 4.1. (Gaussian CDF Transformation) Let g0 be a one-dimensional Gaus-
sian cumulative distribution function with mean µg0 and the standard deviation σg0 ,
that is,

g0(t) ≡ Φ
(

t− µg0

σg0

)
. (4.36)

We define the transformation function gj = f−1
j for the j-th dimension as

gj(zj) ≡ σj


g0(zj)−

∫
g0(t)φ

(
t−µj

σj

)
dt√∫ (

g0(y)−
∫

g0(t)φ
(

t−µj
σj

)
dt
)2

φ
(

y−µj
σj

)
dy

+ µj

where σj = Σ0(j, j).

Definition 4.2. (Symmetric Power Transformation) Let g0 be the symmetric and odd
transformation given by

g0(t) = sign(t)|t|α (4.37)

where α > 0 is a parameter. We define the power transformation for the j-th dimen-
sion as

gj(zj) ≡ σj

 g0(zj − µj)√∫
g2

0(t− µj)φ
(

t−µj
σj

)
dt

+ µj. (4.38)

These transformation are constructed to preserve the marginal mean and
standard deviation. In the following experiments, we refer to them as the
cdf transformation and the power transformation, respectively. For the cdf
transformation, we set µg0 = 0.05 and σg0 = 0.4. For the power transformation,
we set α = 3.

To visualize these two transformations, we sample 5000 data points from
a one-dimensional normal distribution N(0.5, 1.0) and then apply the above
two transformations; the results are shown in Figure 22. It can be seen how
the cdf and power transformations map a univariate normal distribution into
a highly skewed and a bi-modal distribution, respectively.



4.6 E X P E R I M E N TA L R E S U LT S 77

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

before transform

N = 5000   Bandwidth = 0.1631

D
en

si
ty

0.2 0.4 0.6

0
10

0
20

0
30

0

Power transform

N = 5000   Bandwidth = 0.0003173
D

en
si

ty

−1.5 −0.5 0.5 1.5

0.
0

0.
4

0.
8

CDF transform

N = 5000   Bandwidth = 0.164

D
en

si
ty

−4 −2 0 2 4

−
4

−
2

0
2

4

identity function

−4 −2 0 2 4

0.
0

0.
4

0.
8

power function, alpha = 3

−4 −2 0 2 4
−

1.
0

0.
0

1.
0

CDF of N(0.05,0.4)

Figure 22.: The power and cdf transformations. The densities are estimated using a kernel
density estimator with bandwidths selected by cross-validation.

To generate synthetic data, we set d = 40, resulting in (40
2 ) + 40 = 820

parameters to be estimated, and vary the sample sizes from n = 200 to
n = 1000. Three conditions are considered, corresponding to using the cdf
transform, the power transform, or no transformation. In each case, both the
glasso and the nonparanormal are applied to estimate the graph.

4.6.1.1 Comparison of Regularization Paths

We choose a set of regularization parameters Λ; for each λ ∈ Λ, we obtain
an estimate Ω̂n which is a 40× 40 matrix. The upper triangular matrix has
780 parameters; we vectorize it to get a 780-dimensional parameter vector. A
regularization path is the trace of these parameters over all the regularization
parameters within Λ. The regularization paths for both methods are plotted
in Figure 23. For the cdf transformation and the power transformation, the
nonparanormal separates the relevant and the irrelevant dimensions very
well. For the glasso, relevant variables are mixed with irrelevant variables. If
no transformation is applied, the paths for both methods are almost the same.

4.6.1.2 Estimated Transformations

For sample size n = 1000, we plot the estimated transformations for three of
the variables in Figure 24. It is clear that Winsorization plays a significant role
for the power transformation. This is intuitive due to the high skewness of
the nonparanormal distribution in this case.
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Figure 23.: Regularization paths for the glasso and nonparanormal with n = 500 (top) and

n = 200 (bottom). The paths for the relevant variables (nonzero inverse covari-
ance entries) are plotted as solid (black) lines; the paths for the irrelevant variables
are plotted as dashed (red) lines. For non-Gaussian distributions, the nonparanor-
mal better separates the relevant and irrelevant dimensions.
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Figure 24.: Estimated transformations for the first three variables. Winsorization plays a sig-
nificant role for the power transformation due to its high skewness.

4.6.1.3 Quantitative Comparison

To evaluate the performance for structure estimation quantitatively, we use
false positive and false negative rates. Let G = (V, E) be a d-dimensional
graph (which has at most (d

2) edges) in which there are |E| = r edges, and
let Ĝλ = (V, Êλ) be an estimated graph using the regularization parameter λ.
The number of false positives at λ is

FP(λ) ≡ number of edges in Êλ not in E (4.39)

The number of false negatives at λ is defined as

FN(λ) ≡ number of edges in E not in Êλ. (4.40)

The oracle regularization level λ∗ is then

λ∗ = arg min
λ∈Λ

{FP(λ) + FN(λ)} . (4.41)

The oracle score is FP(λ∗) + FN(λ∗). Figure 25 shows boxplots of the oracle
scores for the two methods, calculated using 100 simulations.
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Figure 25.: Boxplots of the oracle scores for n = 1000, 500, 200 (top, center, bottom).

To illustrate the overall performance of these two methods over the full
paths, ROC curves are shown in Figure 26, using(

1− FN(λ)
r

, 1− FP(λ)
(d

2)− r

)
. (4.42)

The curves clearly show how the performance of both methods improves with
sample size, and that the nonparanormal is superior to the Gaussian model
in most cases.

Let FPE ≡ FP(λ∗) and FNE ≡ FN(λ∗), Tables 1, 2, and 3 provide numerical
comparisons of both methods on data sets with different transformations,
where we repeat the experiments 100 times and report the average FPE and
FNE values with the corresponding standard deviations. It’s clear from the
tables that the nonparanormal achieves significantly smaller errors than the
glasso if the true distribution of the data is not multivariate Gaussian and
achieves performance comparable to the glasso when the true distribution is
exactly multivariate Gaussian.

Figure 27 shows typical runs for the cdf and power transformations. It’s
clear that when the glasso estimates the graph incorrectly, the mistakes include
both false positives and negatives.
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Figure 26.: ROC curves for sample sizes n = 1000, 500, 200 (top, middle, bottom).

4.6.1.4 Comparison in the Gaussian Case

The previous experiments indicate that the nonparanormal works almost
as well as the glasso in the Gaussian case. This initially appears surprising,
since a parametric method is expected to be more efficient than a nonpara-
metric method if the parametric assumption is correct. To manifest this
efficiency loss, we conducted some experiments with very small n and rela-
tively large d. For multivariate Gaussian models, Figure 28 shows results with
(n, d, s) = (50, 40, 1/8), (50, 100, 1/15) and (30, 100, 1/15). From the mean
ROC curves, we see that nonparanormal does indeed behave worse than the
glasso, suggesting some efficiency loss. However, from the corresponding
boxplots, the efficiency reduction is relatively insignificant.

4.6.1.5 The Case When d� n

Figure 29 shows results from a simulation of the nonparanormal using cdf
transformations with n = 200, d = 500 and sparsity level s = 1/40. The
boxplot shows that the nonparanormal outperforms the glasso. A typical
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Figure 27.: Typical runs for the two methods for n = 1000 using the cdf and power transfor-
mations. The dashed (black) lines in the symmetric difference plots indicate edges
found by the glasso but not the nonparanormal, and vice-versa for the solid (red)
lines.



4.6 E X P E R I M E N TA L R E S U LT S 83

Nonparanormal glasso

n FPE (sd(FPE)) FNE (sd(FNE)) FPE (sd(FPE)) FNE (sd(FNE))

1000 0.10 (0.3333) 0.05 (0.2190) 3.73 (2.3904) 7.24 (3.2910)

900 0.18 (0.5389) 0.16 (0.4197) 3.31 (2.4358) 8.94 (3.2808)

800 0.16 (0.5069) 0.23 (0.5659) 3.80 (2.9439) 9.91 (3.4789)

700 0.26 (0.6295) 0.43 (0.7420) 3.45 (2.5519) 12.26 (3.5862)

600 0.33 (0.6039) 0.41 (0.6371) 3.31 (2.8804) 14.25 (4.0735)

500 0.58 (0.9658) 1.10 (1.0396) 3.18 (2.9211) 17.54 (4.4368)

400 0.71 (1.0569) 1.52 (1.2016) 1.58 (2.3535) 21.18 (4.9855)

300 1.37 (1.4470) 2.97 (2.0123) 0.67 (1.6940) 23.14 (5.0232)

200 2.03 (1.9356) 7.13 (3.4514) 0.01 (0.1000) 24.03 (4.9816)

Table 1.: Quantitative comparison on the data set using the cdf transformation. For both FPE
and FNE, the nonparanormal performs much better in general.

run of the regularization paths confirms this conclusion, showing that the
nonparanormal path separates the relevant and irrelevant dimensions very
well. In contrast, with the glasso the relevant variables are “buried” among
the irrelevant variables.

4.6.2 Gene Microarray Data

In this study, we consider a data set based on Affymetrix GeneChip microar-
rays for the plant Arabidopsis thaliana, [Wille et al., 2004]. The sample size
is n = 118. The expression levels for each chip are pre-processed by log-
transformation and standardization. A subset of 40 genes from the isoprenoid
pathway are chosen, and we study the associations among them using both
the paranormal and nonparanormal models. Even though these data are
generally treated as multivariate Gaussian in the previous analysis [Wille
et al., 2004], our study shows that the results of the nonparanormal and the
glasso are very different over a wide range of regularization parameters. This
suggests the nonparanormal could support different scientific conclusions.

4.6.2.1 Comparison of the Regularization Paths

We first compare the regularization paths of the two methods, in Figure 30.
To generate the paths, we select 50 regularization parameters on an evenly
spaced grid in the interval [0.16, 1.2]. Although the paths for the two methods
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Nonparanormal glasso

n FPE (sd(FPE)) FNE (sd(FNE)) FPE (sd(FPE)) FNE (sd(FNE))

1000 0.27 (0.7086) 0.35 (0.6571) 2.89 (1.9482) 4.97 (2.9213)

900 0.38 (0.6783) 0.41 (0.6210) 2.98 (2.3697) 5.99 (3.0467)

800 0.25 (0.5751) 0.73 (0.8270) 4.10 (2.7834) 6.39 (3.3571)

700 0.69 (0.9067) 0.90 (1.0200) 4.42 (2.8891) 8.80 (3.9848)

600 0.92 (1.2282) 1.59 (1.5314) 4.64 (3.3830) 10.58 (4.2168)

500 1.17 (1.3413) 2.56 (2.3325) 4.00 (2.9644) 13.09 (4.4903)

400 1.88 (1.6470) 4.97 (2.7687) 3.14 (3.4699) 17.87 (4.7750)

300 2.97 (2.4181) 7.85 (3.5572) 1.36 (2.3805) 21.24 (4.7505)

200 2.82 (2.6184) 14.53 (4.3378) 0.37 (0.9914) 24.01 (5.0940)

Table 2.: Quantitative comparison on the data set using the power transformation. For both
FPE and FNE, the nonparanormal performs much better in general.

look similar, there are some subtle differences. In particular, variables become
nonzero in a different order, especially when the regularization parameter
is in the range λ ∈ [0.2, 0.3]. As shown below, these subtle differences in the
paths lead to different model selection behaviors.

4.6.2.2 Comparison of the Estimated Graphs

Figure 31 compares the estimated graphs for the two methods at several values
of the regularization parameter λ in the range [0.16, 0.37]. For each λ, we show
the estimated graph from the nonparanormal in the first column. In the second
column we show the graph obtained by scanning the full regularization
path of the glasso fit and finding the graph having the smallest symmetric
difference with the nonparanormal graph. The symmetric difference graph is
shown in in the third column. The closest glasso fit is different, with edges
selected by the glasso not selected by the nonparanormal, and vice-versa.
Several estimated transformations are plotted in Figure 32, which are are
nonlinear. Interestingly, several of the differences between the fitted graphs
are related to these variables.

4.7 concluding remarks

In this paper we have introduced the nonparanormal, a type of Gaussian
copula with nonparametric marginals that is suitable for estimating high
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Nonparanormal glasso

n FPE (sd(FPE)) FNE (sd(FNE)) FPE (sd(FPE)) FNE (sd(FNE))

1000 0.10 (0.3333) 0.05 (0.2190) 0.09 (0.3208) 0.06 (0.2386)

900 0.24 (0.7537) 0.14 (0.4025) 0.22 (0.6447) 0.15 (0.4113)

800 0.17 (0.4277) 0.16 (0.3949) 0.16 (0.4431) 0.19 (0.4191)

700 0.25 (0.6871) 0.33 (0.8534) 0.29 (0.8201) 0.27 (0.7501)

600 0.37 (0.7740) 0.36 (0.7456) 0.36 (0.7722) 0.37 (0.6459)

500 0.28 (0.5874) 0.46 (0.7442) 0.25 (0.5573) 0.45 (0.6571)

400 0.55 (0.8453) 1.37 (1.2605) 0.47 (0.7713) 1.35 (1.2502)

300 1.24 (1.3715) 3.07 (1.7306) 0.98 (1.2058) 3.04 (1.8905)

200 1.62 (1.7219) 5.89 (2.7373) 1.55 (1.6779) 5.62 (2.6620)

Table 3.: Quantitative comparison on the data set without any transformation. The two meth-
ods behave similarly, the glasso is slightly better.
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Figure 28.: For Gaussian models, comparison of boxplots of the oracle scores and ROC curves
for small n and relatively large d. The ROC curves suggest some efficiency loss
of the nonparanormal; however, the corresponding boxplots indicate this loss is
insignificant.
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Figure 30.: The regularization paths of both methods on the microarray data set. Although the
paths for the two methods look similar, there are some subtle differences.

dimensional undirected graphs. The nonparanormal can be viewed as an
extension of sparse additive models to the setting of graphical models. We
proposed an estimator for the component functions that is based on thresh-
olding the tails of the empirical distribution function at appropriate levels. A
theoretical analysis was given to bound the difference between the sample
covariance with respect to these estimated functions and the true sample
covariance. This analysis was leveraged with the recent work of Ravikumar
et al. [2009b] and Rothman et al. [2008] to obtain consistency results for the
nonparanormal. Computationally, fitting a high dimensional nonparanormal
is no more difficult than estimating a multivariate Gaussian, and indeed one
can exploit existing software for the graphical lasso. Our experimental results
indicate that the sparse nonparanormal can give very different results than a
sparse Gaussian graphical model. This suggests that it may be a useful tool for
relaxing the normality assumption, which is often made only for convenience.
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Figure 31.: The nonparanormal estimated graph for three values of λ =
0.2448, 0.2661, 0.30857 (left column), the closest glasso estimated graph
from the full path (middle) and the symmetric difference graph (right).
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Figure 32.: Estimated transformations for the microarray data set, indicating non-Gaussian
marginals. The corresponding genes are among the nodes appearing in the sym-
metric difference graphs above.

4.8 appendix: technical proofs

We assume, without loss of generality from Lemma 4.3, that µj = 0 and σj = 1
for all j = 1, . . . , d. Thus, define f̃ j(x) ≡ Φ−1(F̃j(x)) and f j(x) ≡ Φ−1(Fj(x)),
and let gj ≡ f−1

j .

4.8.1 Proof of Theorem 4.1

We start with some useful lemmas; the first is from Abramovich et al. [2006].

Lemma 4.4. (Gaussian Distribution function vs. Quantile function) Let Φ and φ

denote the distribution and density functions of a standard Gaussian random variable.
Then

φ(t)
2t
≤ 1−Φ(t) ≤ φ(t)

t
if t ≥ 1
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and

(Φ−1)′(η) =
1

φ (Φ−1(η))
.

Also, for η ≥ 0.99, we have

Φ−1(η) =

√
2 log

(
1

1− η

)
− r(η) (4.43)

where r(η) ∈ [0, 1.5].

Lemma 4.5. (Distribution function of the transformed random variable) For any α ∈
(−∞, ∞)

Φ−1
(

Fj

(
gj(α

√
log n)

))
= α

√
log n. (4.44)

Proof. The statement follows from

Fj(t) = P(Xj ≤ t) = P(gj(Zj) ≤ t) (4.45)

= P(Zj ≤ g−1
j (t)) = Φ

(
g−1

j (t)
)

. (4.46)

which holds for any t.

Lemma 4.6. (Gaussian maximal inequality) Let W1, . . . , Wn be identically distributed
standard Gaussian random variables (do not have to be independent). Then for any
α > 0

P

(
max
1≤i≤n

Wi >
√

α log n
)
≤ 1

nα/2−1
√

2πα log n
. (4.47)

Proof. Using Mill’s inequality, we have

P

(
max
1≤i≤n

Wi >
√

α log n
)

(4.48)

≤
n

∑
i=1

P
(

Wi >
√

α log n
)

(4.49)

≤ n
φ(
√

α log n)√
α log n

(4.50)

=
1

nα/2−1
√

2πα log n
, (4.51)

from which the result follows.

Lemma 4.7. For any α > 0 that satisfies 1− δn −Φ
(√

α log n
)

> 0 for all n, we
have

P
[

F̂j

(
gj

(√
α log n

))
> 1− δn

]
(4.52)

≤ exp
{
−2n

(
1− δn −Φ

(√
α log n

))2
}

. (4.53)
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and

P
[

F̂j

(
gj

(
−
√

α log n
))

< δn

]
(4.54)

≤ exp
{
−2n

(
1− δn −Φ

(√
α log n

))2
}

. (4.55)

Proof. Using Hoeffding’s inequality,

P
[

F̂j

(
gj

(√
α log n

))
> 1− δn

]
(4.56)

= P
[
F̂j

(
gj

(√
α log n

))
−Fj

(
gj

(√
α log n

))
> 1−δn−Fj

(
gj

(√
α log n

))]
≤ exp

{
−2n

(
1− δn − Fj

(
gj

(√
α log n

)))2
}

. (4.57)

Equation (4.52) then follows from equation (4.46). The proof of equation (4.54) uses
the same argument.

Now let M > 2 and set β =
1
2

. We split the interval[
gj(−

√
M log n), gj(

√
M log n)

]
into two parts, the middle

Mn ≡
(

gj

(
−
√

β log n
)

, gj

(√
β log n

))
(4.58)

and ends

En ≡
[

gj

(
−
√

M log n
)

, gj

(
−
√

β log n
)]
∪
[

gj

(√
β log n

)
, gj

(√
M log n

)]
.

The behaviors of the function estimates in these two regions are different, so
we first establish bounds on the probability that a sample can fall in the end
region En.

Lemma 4.8. Let A ≡
√

2
π

(
√

M−
√

β). Then

P
(

X(1)
j ∈ En

)
≤ A

√
log n

nβ
, ∀j ∈ {1, . . . , d}. (4.59)

Proof. Using Equation (4.46) and the mean value theorem, we have

P
(

X(1)
j ∈ En

)
(4.60)

= P
(

X(1)
j ∈

[
gj(
√

β log n), gj(
√

M log n)
])

(4.61)

+P
(

X(1)
j ∈

[
gj(−

√
M log n), gj(−

√
β log n)

])
(4.62)

= Fj

(
gj(
√

M log n)
)
− Fj

(
gj(
√

β log n)
)

(4.63)

+Fj

(
gj(−

√
β log n)

)
− Fj

(
gj(−

√
M log n)

)
(4.64)

= 2
(

Φ(
√

M log n)−Φ(
√

β log n)
)

(4.65)

≤ 2φ
(√

β log n
) (√

M log n−
√

β log n
)

. (4.66)
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The result of the lemma follows directly.

We next bound the error of the Winsorized estimate of a component function
over the end region.

Lemma 4.9. For all n, we have, for all j ∈ {1, . . . , d},

sup
t∈En

∣∣∣Φ−1(F̃j(t))−Φ−1 (Fj(t)
)∣∣∣ <

√
2(M + 2) log n. (4.67)

Proof. From Lemma 4.5 and the definition of En, we have

sup
t∈En

∣∣∣Φ−1 (Fj(t)
)∣∣∣ ∈ [0,

√
M log n

]
.

Given the fact that δn =
1

4n1/4
√

π log n
, we have F̃j(t) ∈

(
1
n

, 1− 1
n

)
. Therefore,

from Equation (4.43),

sup
t∈En

∣∣∣Φ−1 (F̃j(t)
)∣∣∣ ∈ [0,

√
2 log n

)
. (4.68)

The result follows from the triangle inequality and
√

M +
√

2 ≤
√

2(M + 2).

Now for any ε > 0, we have

P

(
max

j,k

∣∣Sn( f̃ )jk − Sn( f )jk
∣∣ > 2ε

)
(4.69)

= P

(
max

j,k

∣∣∣ 1
n

n

∑
i=1

{
f̃ j(X(i)

j ) f̃k(X(i)
k )− f j(X(i)

j ) fk(X(i)
k ) (4.70)

−µn( f̃ j)µn( f̃k) + µn( f j)µn( fk)
}∣∣∣ > 2ε

)
(4.71)

≤ P

(
max

j,k

∣∣∣∣∣ 1n n

∑
i=1

(
f̃ j(X(i)

j ) f̃k(X(i)
k )− f j(X(i)

j ) fk(X(i)
k )
)∣∣∣∣∣ > ε

)
(4.72)

+ P

(
max

j,k

∣∣µn( f̃ j)µn( f̃k)− µn( f j)µn( fk)
∣∣ > ε

)
. (4.73)

We only need to analyze the rate for the first term above, since the second one
is of higher order [Cai et al., 2010]. Let

∆i(j, k) ≡ f̃ j(X(i)
j ) f̃k(X(i)

k )− f j(X(i)
j ) fk(X(i)

k ) (4.74)

and

Θt,s(j, k) ≡ f̃ j(t) f̃k(s)− f j(t) fk(s). (4.75)

We define the event An as

An ≡
{

gj

(
−
√

M log n
)
≤ X(1)

j , . . . , X(n)
j ≤ gj

(√
M log n

)
, j = 1, . . . , d

}
.
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Then, by Lemma 4.6, when M ≥ 2(ξ + 1), we have

P(Ac
n) ≤ P

(
max

i,j∈{1,...,n}×{1,...,d}
| f j(X(i)

j )| >
√

2 log(nd)
)
≤ 1

2
√

π log(nd)
.

Therefore

P

(
max

j,k

∣∣∣∣∣ 1n n

∑
i=1

∆i(j, k)

∣∣∣∣∣ > ε

)
(4.76)

≤ P

(
max

j,k

∣∣∣∣∣ 1n n

∑
i=1

∆i(j, k)

∣∣∣∣∣ > ε,An

)
(4.77)

+P(Ac
n) (4.78)

≤ P

(
max

j,k

∣∣∣∣∣ 1n n

∑
i=1

∆i(j, k)

∣∣∣∣∣ > ε,An

)
+

1
2
√

π log(nd)
. (4.79)

Thus, we only need to carry out our analysis on the event An. On this event,
we have the following decomposition:

P

(
max

j,k

∣∣∣∣∣ 1n n

∑
i=1

∆i(j, k)

∣∣∣∣∣ > ε, An

)
(4.80)

≤ P

max
j,k

1
n ∑

X(i)
j ∈Mn,X(i)

k ∈Mn

|∆i(j, k)| > ε

4

 (4.81)

+P

max
j,k

1
n ∑

X(i)
j ∈En,X(i)

k ∈En

|∆i(j, k)| > ε

4

 (4.82)

+ 2P

max
j,k

1
n ∑

X(i)
j ∈Mn,X(i)

k ∈En

|∆i(j, k)| > ε

4

 . (4.83)

We now analyze each of these terms separately.

Lemma 4.10. On the event An, let β = 1/2 and ε ≥ CM

√
log d log2 n

n1/2 , then

P

max
j,k

1
n ∑

X(i)
j ∈En,X(i)

k ∈En

|∆i(j, k)| > ε

4

 = o(1). (4.84)

Proof. We define

θ1 ≡
nβ/2ε

8A
√

log n
(4.85)
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with the same parameter A as in Lemma 4.8. Such a θ1 guarantees that

nε

4θ1
− nA

√
log n

nβ
= nA

√
log n

nβ
> 0. (4.86)

By Lemma 4.8, we have

P

(
1
n

n

∑
i=1

I
(

X(i)
j ∈ En, X(i)

k ∈ En

)
>

ε

4θ1

)
(4.87)

≤ P

(
n

∑
i=1

I
(

X(i)
j ∈ En

)
>

nε

4θ1

)
(4.88)

= P

(
n

∑
i=1

(
I
(

X(i)
j ∈ En

)
−P

(
X(1)

j ∈ En

))
>

nε

4θ1
− nP

(
X(1)

j ∈ En

))

≤ P

(
n

∑
i=1

(
I
(

X(i)
j ∈ En

)
−P

(
X(1)

j ∈ En

))
>

nε

4θ1
− nA

√
log n

nβ

)
.

Using Bernstein’s inequality, for β =
1
2

,

P

(
1
n

n

∑
i=1

I
(

X(i)
j ∈ En, X(i)

k ∈ En

)
>

ε

4θ1

)
(4.89)

≤ P

(
n

∑
i=1

(
I
(

X(i)
j ∈ En

)
−P

(
X(1)

j ∈ En

))
> nA

√
log n

nβ

)
(4.90)

≤ exp

(
− c1n2−β log n

c2n1−β/2
√

log n + c3n1−β/2
√

log n

)
= o(1), (4.91)

where c1, c2, c3 > 0 are generic constants.
Using the fact that

P

max
j,k

1
n ∑

X(i)
j ∈En,X(i)

k ∈En

|∆i(j, k)| > ε

4

 (4.92)

= P

max
j,k

1
n ∑

X(i)
j ∈En,X(i)

k ∈En

|∆i(j, k)| > ε

4
, max

j,k
sup

t∈En,s∈En

|Θt,s(j, k)| > θ1


+P

max
j,k

1
n ∑

X(i)
j ∈En,X(i)

k ∈En

|∆i(j, k)| > ε

4
, max

j,k
sup

t∈En,s∈En

|Θt,s(j, k)| ≤ θ1

 ,
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we have

P

max
j,k

1
n ∑

X(i)
j ∈En,X(i)

k ∈En

|∆i(j, k)| > ε

4

 (4.93)

≤ P

(
max

j,k
sup

t∈En,s∈En

|Θt,s(j, k)| > θ1

)
(4.94)

+P

(
1
n

n

∑
i=1

I
(

X(i)
j ∈ En, X(i)

k ∈ En

)
>

ε

4θ1

)
(4.95)

= P

(
max

j,k
sup

t∈En,s∈En

|Θt,s(j, k)| > θ1

)
+ o(1). (4.96)

Now, we analyze the first term

P

(
max

j,k
sup

t∈En,s∈En

|Θt,s(j, k)| > θ1

)
(4.97)

≤ d2P

(
sup

t∈En,s∈En

|Θt,s(j, k)| > θ1

)
(4.98)

= d2P

(
sup

t∈En,s∈En

| f̃ j(t) f̃k(s)− f j(t) fk(s)| > θ1

)
. (4.99)

By adding and subtracting terms f j(t) and fs(t), we have

P

(
sup

t∈En,s∈En

| f̃ j(t) f̃k(s)− f j(t) fk(s)| > θ1

)
(4.100)

≤ P

(
sup

t∈En,s∈En

|( f̃ j(t)− f j(t))( f̃k(s)− fk(s))| > θ1

3

)
(4.101)

+ P

(
sup

t∈En,s∈En

|( f̃ j(t)− f j(t))| · | fk(s)| > θ1

3

)
(4.102)

+ P

(
sup

t∈En,s∈En

|( f̃k(s)− fk(s))| · | f j(t)| > θ1

3

)
. (4.103)

The first term can further be decomposed to be

P

(
sup

t∈En,s∈En

|( f̃ j(t)− f j(t))( f̃k(s)− fk(s))| > θ1

3

)
(4.104)

≤ P

(
sup
t∈En

|( f̃ j(t)− f j(t))| >
√

θ1

3

)
(4.105)

+P

(
sup
s∈En

|( f̃k(s)− fk(s))| >
√

θ1

3

)
. (4.106)
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Also, from the definition of En, we have

sup
t∈En

| f j(t)| = sup
t∈En

∣∣∣g−1
j (t)

∣∣∣ ≤ √M log n. (4.107)

Since ε ≥ CM

√
log d log2 n

n1/2 , we have

θ1

3
=

nβ/2ε

24A
√

log n
≥

CM

√
log d log2 n

24A
√

log n
= 2(M + 2) log n. (4.108)

This implies that√
θ1

3
≥
√

2(M + 2) log n and
θ1

3
√

M log n
≥
√

2(M + 2) log n. (4.109)

Then, from Lemma 4.9, we get

P

(
sup
t∈En

|( f̃ j(t)− f j(t))| >
√

θ1

3

)
= 0 (4.110)

and

P

(
sup

t∈En,s∈En

|( f̃ j(t)− f j(t))| · | fk(s)| > θ1

3

)
= 0. (4.111)

The claim of the lemma then follows directly.

Remark 4.1. From the above analysis, we see that the data in the tails doesn’t affect
the rate. Using exactly the same argument, we can also show that

P

max
j,k

1
n ∑

X(i)
j ∈Mn,X(i)

k ∈En

|∆i(j, k)| > ε

4

 = o(1). (4.112)

Lemma 4.11. On the event An, let β = 1/2 and ε ≥ CM

√
log d log2 n

n1/2 . We have

P

max
j,k

1
n ∑

X(i)
j ∈Mn,X(i)

k ∈Mn

|∆i(j, k)| > ε

4

 (4.113)

≤ 2 exp

(
2 log d− n1/2ε2

1232π2 log2 n

)
+ 2 exp

(
2 log d− n1/2

8π log n

)
.
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Proof. We have

P

max
j,k

1
n ∑

X(i)
j ∈Mn,X(i)

k ∈Mn

|∆i(j, k)| > ε

4

 (4.114)

≤ d2P

(
sup

t∈Mn,s∈Mn

| f̃ j(t) f̃k(s)− f j(t) fk(s)| > ε

4

)
(4.115)

≤ d2P

(
sup

t∈Mn,s∈Mn

|( f̃ j(t)− f j(t))( f̃k(s)− fk(s))| > ε

12

)
(4.116)

+ 2d2P

(
sup

t∈Mn,s∈Mn

|( f̃ j(t)− f j(t))| · | fk(s)| > ε

12

)
. (4.117)

Further, since

sup
t∈Mn

| f j(t)| = sup
t∈Mn

∣∣∣g−1
j (t)

∣∣∣ =
√

β log n (4.118)

and
sup

t∈Mn,s∈Mn

|( f̃ j(t)− f j(t))( f̃k(s)− fk(s))|

is of higher order than

sup
t∈Mn,s∈Mn

|( f̃ j(t)− f j(t))| · | fk(s)|,

we only need to analyze the term

P

(
sup

t∈Mn

|( f̃ j(t)− f j(t))| > ε

12
√

β log n

)
.

Since δn =
1

4nβ/2
√

2πβ log n
, using Mill’s inequality we have

2δn =
φ(
√

β log n)
2
√

β log n
≤ 1−Φ(

√
β log n). (4.119)

This implies that

1− δn −Φ(
√

β log n) ≥ δn > 0. (4.120)

Using Lemma 4.7, we have

d2P
(

F̂j

(
gj

(√
β log n

))
> 1− δn

)
(4.121)

≤ d2 exp
(
−2nδ2

n
)

= exp
(

2 log d− n1−β

(16πβ log n)

)
(4.122)

and

d2P
(

F̂j

(
gj

(
−
√

β log n
))

< δn

)
≤exp

(
2 log d− n1−β

(16πβ log n)

)
.(4.123)
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Define an event Bn as

Bn ≡
{

δn ≤ F̂j

(
gj

(√
β log n

))
≤ 1− δn, j = 1, . . . , d

}
. (4.124)

From (4.121) and (4.123), it is easy to see that

P (Bc
n) ≤ 2 exp

(
2 log d− n1/2

8π log n

)
. (4.125)

From the definition of F̃j, we have

d2P

(
sup

t∈Mn

| f̃ j(t)− f j(t)| > ε

12
√

β log n

)
(4.126)

≤ d2P

(
sup

t∈Mn

∣∣∣Φ−1 (F̃j(t)
)
−Φ−1 (Fj(t)

)∣∣∣ >
ε

12
√

β log n
,Bn

)
+ P (Bc

n) .

≤ d2P

(
sup

t∈Mn

∣∣∣Φ−1 (F̂j(t)
)
−Φ−1 (Fj(t)

)∣∣∣ >
ε

12
√

β log n

)
(4.127)

+2 exp
(

2 log d− n1/2

8π log n

)
. (4.128)

Define

T1n ≡ max
{

Fj

(
gj

(√
β log n

))
, 1− δn

}
(4.129)

and

T2n ≡ 1−min
{

Fj

(
gj

(
−
√

β log n
))

, δn

}
. (4.130)

From Equation (4.46) and the fact that 1− δn ≥ Φ
(√

β log n
)
, we have that

T1n = T2n = 1− δn. (4.131)

Thus, by the mean value theorem,

P

(
sup

t∈Mn

∣∣∣Φ−1 (F̂j(t)
)
−Φ−1 (Fj(t)

)∣∣∣ >
ε

12
√

β log n

)
(4.132)

≤ P

(
(Φ−1)′ (max {T1n, T2n}) sup

t∈Mn

∣∣F̂j(t)− Fj(t)
∣∣ >

ε

12
√

β log n

)

= P

(
(Φ−1)′ (1− δn) sup

t∈Mn

∣∣F̂j(t)− Fj(t)
∣∣ >

ε

12
√

β log n

)
. (4.133)
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Finally, using the Dvoretzky-Kiefer-Wolfowitz inequality,

P

(
sup

t∈Mn

∣∣∣Φ−1 (F̂j(t)
)
−Φ−1 (Fj(t)

)∣∣∣ >
ε

12
√

β log n

)
(4.134)

≤ P

(
sup

t∈Mn

∣∣F̂j(t)− Fj(t)
∣∣ >

ε

(Φ−1)′ (1− δn) 12
√

β log n

)
(4.135)

≤ 2 exp

(
−2

nε2

144β log n [(Φ−1)′ (1− δn)]
2

)
. (4.136)

Furthermore, by Lemma 4.4,

(Φ−1)′ (1− δn) =
1

φ (Φ−1(1− δn))
(4.137)

≤ 1

φ

(√
2 log

1
δn

) (4.138)

=
√

2π

(
1
δn

)
(4.139)

= 8πnβ/2
√

β log n. (4.140)

This implies that

d2P

(
sup

t∈Mn

∣∣∣Φ−1 (F̂j(t)
)
−Φ−1 (Fj(t)

)∣∣∣ >
ε

12
√

β log n

)
(4.141)

≤ 2 exp

(
2 log d− n1/2ε2

1232π2 log2 n

)
. (4.142)

In summary, we have

P

max
j,k

1
n ∑

X(i)
j ∈Mn,X(i)

k ∈En

|∆i(j, k)| > ε

4

 (4.143)

≤ 2 exp

(
2 log d− n1/2ε2

1232π2 log2 n

)
+ 2 exp

(
2 log d− n1/2

8π log n

)
.

This finish the proof.

The conclusion of Theorem 4.1 follows from Lemma 4.10 and Lemma 4.11.
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4.8.2 Proof of Theorem 4.2

Proof. First note that the population and sample risks are

R( f , Ω) =
1
2

{
tr
[
ΩE( f (X) f (X)T

]
− log |Ω| − d log(2π)

}
R̂( f , Ω) =

1
2
{tr [ΩSn( f )]− log |Ω| − d log(2π)} .

Therefore, for all ( f , Ω) ∈ Md
n ⊕ Cn, we have

|R̂( f , Ω)− R( f , Ω)| =
1
2

∣∣∣tr [Ω (E[ f f T]− Sn( f )
)]∣∣∣

≤ 1
2
‖Ω‖1 max

jk
sup

f j, fk∈Mn

|E( f j(Xj) fk(Xk)− Sn( f )jk|

≤ Ln

2
max

jk
sup

f j, fk∈Mn

|E( f j(Xj) fk(Xk)− Sn( f )jk|.

Now, if F is a class of functions, we have

E

(
sup
g∈F
|µ̂(g)− µ(g)|

)
≤

C J[ ](‖F‖∞ ,F )
√

n
(4.144)

for some C > 0, where F(x) = supg∈cF |g(x)|, µ(g) = E(g(X)) and µ̂(g) =
n−1 ∑n

i=1 g(Xi) (see Corollary 19.35 of van der Vaart 1998). Here the bracketing
integral is defined to be

J[ ](δ,F ) =
∫ δ

0

√
log N[ ](u,F ) du (4.145)

where log N[ ](ε,F ) is the bracketing entropy. For the class of one dimensional,
bounded and monotone functions, the bracketing entropy satisfies

log N[ ](ε,M) ≤ K
(

1
ε

)
(4.146)

for some K > 0 [van der Vaart and Wellner, 1996].
Now, let Pn,d be the class of all functions of the form m(x) = f j(xj) fk(xk) for

j, k ∈ {1, . . . , d}, where f j ∈ Mn for each j. Then the bracketing entropy satisfies

log N[ ](C
√

log n,Pn,d) ≤ 2 log d + K
(

1
ε

)
and the bracketing integral satisfies J[ ](C

√
log n,Pn,d) = O(

√
log n log d). It fol-

lows from (6.124) and Markov’s inequality that

max
jk

sup
f j, fk∈Mn

|Sn( f )jk−E( f j(Xj) fk(Xk)| = OP

(√
log n log d

n

)
= OP

(√
log n
n1−ξ

)
.
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Therefore,

sup
( f ,Ω)∈Md

n⊕Cn

|R̂( f , Ω)− R( f , Ω)| = OP

(
Ln
√

log n
n(1−ξ)/2

)
.

As a consequence, we have

R( f ∗, Ω∗) ≤ R( f̃n, Ω̂n)

≤ R̂( f̃n, Ω̂n) + OP

(
Ln
√

log n
n(1−ξ)/2

)

≤ R̂( f ∗, Ω∗) + OP

(
Ln
√

log n
n(1−ξ)/2

)

≤ R( f ∗, Ω∗) + OP

(
Ln
√

log n
n(1−ξ)/2

)
and the conclusion follows.





5
FOREST DENSITY ESTIMATION

In this chapter, we study high dimensional graph estimation and density
estimation using a family of density estimators based on forest structured undi-
rected graphical models. For density estimation, we do not assume the true
distribution corresponds to a forest; rather, we form kernel density estimates
of the bivariate and univariate marginals, and apply Kruskal’s algorithm to
estimate the optimal forest on held out data. We prove an oracle inequality on
the excess risk of the resulting estimator relative to the risk of the best forest.
Viewing the forest size as a complexity parameter, we then select a forest using
data splitting, and prove bounds on excess risk and structure selection consis-
tency of the procedure. Experiments with simulated data and microarray data
indicate that the methods are a practical alternative to Gaussian graphical
models.

5.1 introduction and motivation

As we have explained in the previous chapter, one way to explore the structure
of a high dimensional distribution P for a random vector X = (X1, . . . , Xd) is
to estimate its undirected graph. The undirected graph G associated with P
has d vertices corresponding to the variables X1, . . . , Xd, and omits an edge
between two nodes Xi and Xj if and only if Xi and Xj are conditionally
independent given the other variables. Currently, the most popular methods
for estimating G assume that the distribution P is Gaussian. Finding the
graphical structure in this case amounts to estimating the inverse covariance
matrix Ω; the edge between Xj and Xk is missing if and only if Ωjk = 0.
Algorithms for optimizing the `1-regularized log-likelihood have recently been
proposed that efficiently produce sparse estimates of the inverse covariance
matrix and the underlying graph [Banerjee et al., 2008, Friedman et al., 2007].

In this chapter our goal is to relax the Gaussian assumption and to develop
nonparametric methods for estimating the graph of a distribution. Of course,
estimating a high dimensional distribution is impossible without making any
assumptions. The approach we take here is to force the graphical structure
to be a forest, where each pair of vertices is connected by at most one path.
Thus, we relax the distributional assumption of normality but we restrict the
family of undirected graphs that are allowed.

101
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If the graph for P is a forest, then a simple conditioning argument shows
that its density p can be written as

p(x) = ∏
(i,j)∈E

p(xi, xj)
p(xi)p(xj)

d

∏
k=1

p(xk) (5.1)

where E is the set of edges in the forest [Lauritzen, 1996]. Here p(xi, xj)
is the bivariate marginal density of variables Xi and Xj, and p(xk) is the
univariate marginal density of the variable Xk. With this factorization, we see
that it is only necessary to estimate the bivariate and univariate marginals.
Given any distribution P with density p, there is a tree T and a density pT

whose graph is T and which is closest in Kullback-Leibler divergence to
p. When P is known, then the best fitting tree distribution can be obtained
by Kruskal’s algorithm [Kruskal, 1956], or other algorithms for finding a
maximum weight spanning tree. In the discrete case, the algorithm can be
applied to the estimated probability mass function, resulting in a procedure
originally proposed by Chow and Liu [1968]. Here we are concerned with
continuous random variables, and we estimate the bivariate marginals with
nonparametric kernel density estimators.

In high dimensions, fitting a fully connected spanning tree can be expected
to overfit. We regulate the complexity of the forest by selecting the included
edges using a data splitting scheme, a simple form of cross validation. In
particular, we consider the family of forest structured densities that use the
marginal kernel density estimates constructed on the first partition of the
data, and estimate the risk of the resulting densities over a second, held out
partition. The final forest optimizing the held out risk is then obtained by
finding a maximum weight spanning forest for an appropriate set of edge
weights.

A closely related approach is proposed by Bach and Jordan [2003], where
a tree is estimated for the random vector Y = WX instead of X, where
W is a linear transformation, using an algorithm that alternates between
estimating W and estimating the tree T. Kernel density estimators are used,
and a regularization term that is a function of the number of edges in the
tree is included to bias the optimization toward smaller trees. We omit the
transformation W, and we use a data splitting method rather than penalization
to choose the complexity of the forest.

While tree and forest structured density estimation has been long recog-
nized as a useful tool, there has been little theoretical analysis of the statistical
properties of such density estimators. The main contribution of this paper is
an analysis of the asymptotic properties of forest density estimation in high
dimensions. We allow both the sample size n and dimension d to increase,
and prove oracle results on the risk of the method. In particular, we assume
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that the univariate and bivariate marginal densities lie in a Hölder class with
exponent β (see Section 5.4 for details), and show that

R( p̂F̂)−min
F

R( p̂F) = OP

(√
log(nd)

(
k∗ + k̂

nβ/(2+2β) +
d

nβ/(1+2β)

))
(5.2)

where R denotes the risk, the expected negative log-likelihood, k̂ is the number
of edges in the estimated forest F̂, and k∗ is the number of edges in the optimal
forest F∗ that can be constructed in terms of the kernel density estimates p̂.

In addition to the above results on risk consistency, we establish conditions
under which

P
(

F̂(k)
d = F∗(k)

d

)
→ 1 (5.3)

as n → ∞, where F∗(k)
d is the oracle forest—the best forest with k edges; this

result allows the dimensionality d to increase as fast as o
(

exp(nβ/(1+β))
)

,
while still having consistency in the selection of the oracle forest.

Among the only other previous work analyzing tree structured graphical
models is Tan et al. [2009a] and Chechetka and Guestrin [2007]. Tan et al.
[2009a] analyze the error exponent in the rate of decay of the error probability
for estimating the tree, in the fixed dimension setting, and Chechetka and
Guestrin [2007] give a PAC analysis. An extension to the Gaussian case is
given by Tan et al. [2009b].

Here is the organization of this chapter. In Section 5.2 we review some
background and notation. In Section 5.3 we present a two-stage algorithm for
estimating high dimensional densities supported by forests, and we provide a
theoretical analysis of the algorithm in Section 5.4, with the detailed proofs
collected in the appendix. In Section 5.5 we present experiments with both
simulated data and gene microarray datasets, where the problem is to estimate
the gene-gene association graphs.

5.2 preliminaries and notation

Let p∗(x) be a probability density with respect to Lebesgue measure µ(·) on
Rd and let X(1), . . . , X(n) be n independent identically distributed Rd-valued
data vectors sampled from p∗(x) where X(i) = (X(i)

1 , . . . , X(i)
d ). Let Xj denote

the range of X(i)
j and let X = X1 × · · · × Xd.

A graph is a forest if it is acyclic. If F is a d-node undirected forest with
vertex set VF = {1, . . . , d} and edge set E(F) ⊂ {1, . . . , d} × {1, . . . , d}, the
number of edges satisfies |E(F)| < d, noting that we do not restrict the graph
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to be connected. We say that a probability density function p(x) is supported
by a forest F if the density can be written as

pF(x) = ∏
(i,j)∈E(F)

p(xi, xj)
p(xi) p(xj)

∏
k∈VF

p(xk), (5.4)

where each p(xi, xj) is a bivariate density on Xi × Xj, and each p(xk) is a
univariate density on Xk. More details can be found in Lauritzen [1996].

Let Fd be the family of forests with d nodes, and let Pd be the corresponding
family of densities:

Pd = (5.5){
p ≥ 0 :

∫
X

p(x) dµ(x) = 1, and p(x) satisfies (5.4) for some F ∈ Fd

}
.

To bound the number of labeled spanning forests on d nodes, note that each
such forest can be obtained by forming a labeled tree on d + 1 nodes, and
then removing node d + 1. From Cayley’s formula [Cayley, 1889, Aigner and
Ziegler, 1998], we then obtain the following.

Proposition 5.1. The size of the collection Fd of labeled forests on d nodes satisfies

|Fd| < (d + 1)d−1. (5.6)

Define the oracle forest density

q∗ = arg min
q∈Pd

D(p∗‖ q) (5.7)

where the Kullback-Leibler divergence D(p‖ q) between two densities p and
q is

D(p‖ q) =
∫
X

p(x) log
p(x)
q(x)

dx, (5.8)

under the convention that 0 log(0/q) = 0, and p log(p/0) = ∞ for p 6= 0. The
following is proved by Bach and Jordan [2003].

Proposition 5.2. Let q∗ be defined as in (5.7). There exists a forest F∗ ∈ Fd, such
that

q∗ = p∗F∗ = ∏
(i,j)∈E(F∗)

p∗(xi, xj)
p∗(xi) p∗(xj)

∏
k∈VF∗

p∗(xk) (5.9)

where p∗(xi, xj) and p∗(xi) are the bivariate and univariate marginal densities of
p∗.
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For any density q(x), the negative log-likelihood risk R(q) is defined as

R(q) = −E log q(X) = −
∫
X

p∗(x) log q(x) dx (5.10)

where the expectation is defined with respect to the distribution of X.
It is straightforward to see that the density q∗ defined in (5.7) also minimizes

the negative log-likelihood loss:

q∗ = arg min
q∈Pd

D(p∗‖ q) = arg min
q∈Pd

R(q). (5.11)

Let p̂(x) be the kernel density estimate, we also define

R̂(q) = −
∫
X

p̂(x) log q(x) dx. (5.12)

We thus define the oracle risk as R∗ = R(q∗). Using Proposition 5.2 and
equation (5.4), we have

R∗ = R(q∗) = R(p∗F∗)

= −
∫
X

p∗(x)
(

∑
(i,j)∈E(F∗)

log
p∗(xi, xj)

p∗(xi)p∗(xj)
+ ∑

k∈VF∗

log (p∗(xk))
)

dx

= − ∑
(i,j)∈E(F∗)

∫
Xi×Xj

p∗(xi, xj) log
p∗(xi, xj)

p∗(xi)p∗(xj)
dxidxj (5.13)

− ∑
k∈VF∗

∫
Xk

p∗(xk) log p∗(xk)dxk

= − ∑
(i,j)∈E(F∗)

I(Xi; Xj) + ∑
k∈VF∗

H(Xk), (5.14)

where

I(Xi; Xj) =
∫
Xi×Xj

p∗(xi, xj) log
p∗(xi, xj)

p∗(xi) p∗(xj)
dxidxj (5.15)

is the mutual information between the pair of variables Xi, Xj and

H(Xk) = −
∫
Xk

p∗(xk) log p∗(xk) dxk (5.16)

is the entropy. While the best forest will in fact be a spanning tree, the densities
p∗(xi, xj) are in practice not known. We estimate the marginals using finite
data, in terms of a kernel density estimates p̂n1(xi, xj) over a training set
of size n1. With these estimated marginals, we consider all forest density
estimates of the form

p̂F(x) = ∏
(i,j)∈E(F)

p̂n1(xi, xj)
p̂n1(xi) p̂n1(xj)

∏
k∈VF

p̂n1(xk). (5.17)
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Within this family, the best density estimate may not be supported on a
full spanning tree, since a full tree will in general be subject to overfitting.
Analogously, in high dimensional linear regression, the optimal regression
model will generally be a full d-dimensional fit, with a nonzero parameter for
each variable. However, when estimated on finite data the variance of a full
model will dominate the squared bias, resulting in overfitting. In our setting
of density estimation we will regulate the complexity of the forest by cross
validating over a held out set.

There are several different ways to judge the quality of a forest structured
density estimator. In this paper we concern ourselves with prediction and
structure estimation.

Definition 5.1 ((Risk consistency)). For an estimator q̂n ∈ Pd, the excess risk is
defined as R(q̂n)− R∗. The estimator q̂n is risk consistent with convergence rate δn

if

lim
M→∞

lim sup
n→∞

P (R(q̂n)− R∗ ≥ Mδn) = 0. (5.18)

In this case we write R(q̂n)− R∗ = OP(δn).

Definition 5.2 ((Estimation consistency)). An estimator q̂n ∈ Pd is estimation con-
sistent with convergence rate δn, with respect to the Kullback-Leibler divergence, if

lim
M→∞

lim sup
n→∞

P (D(p∗F∗‖ q̂n) ≥ Mδn) = 0. (5.19)

Definition 5.3 ((Structure selection consistency)). An estimator q̂n ∈ Pd supported
by a forest F̂n is structure selection consistent if

P
(

E(F̂n) 6= E(F∗)
)
→ 0, (5.20)

as n goes to infinity, where F∗ is defined in (5.9).

Later we will show that estimation consistency is almost equivalent to risk
consistency. If the true density is give, these two criteria are exactly the same;
otherwise, the estimation consistency requires stronger conditions than those
of the risk consistency.

It is important to note that risk consistency is an oracle property, in the
sense that the true density p∗(x) is not restricted to be supported by a forest;
rather, the property assesses how well a given estimator q̂ approximates the
best forest density (the oracle) within a class.

5.3 kernel density estimation for forests

If the true density p∗(x) were known, by Proposition 5.2, the density esti-
mation problem would be reduced to finding the best forest structure F∗d ,
satisfying

F∗d = arg min
F∈Fd

R(p∗F) = arg min
F∈Fd

D(p∗‖ p∗F). (5.21)
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The optimal forest F∗d can be found by minimizing the right hand side of
(5.14). Since the entropy term H(X) = ∑k H(Xk) is constant across all forests,
this can be recast as the problem of finding the maximum weight spanning
forest for a weighted graph, where the weight of the edge connecting nodes i
and j is I(Xi; Xj). Kruskal’s algorithm [Kruskal, 1956] is a greedy algorithm
that is guaranteed to find a maximum weight spanning tree of a weighted
graph. In the setting of density estimation, this procedure was proposed by
Chow and Liu [1968] as a way of constructing a tree approximation to a
distribution. At each stage the algorithm adds an edge connecting that pair of
variables with maximum mutual information among all pairs not yet visited
by the algorithm, if doing so does not form a cycle. When stopped early, after
k < d− 1 edges have been added, it yields the best k-edge weighted forest.

Of course, the above procedure is not practical since the true density p∗(x)
is unknown. We replace the population mutual information I(Xi; Xj) in (5.14)
by the plug-in estimate În(Xi, Xj), defined as

În(Xi, Xj) =
∫
Xi×Xj

p̂n(xi, xj) log
p̂n(xi, xj)

p̂n(xi) p̂n(xj)
dxidxj (5.22)

where p̂n(xi, xj) and p̂n(xi) are bivariate and univariate kernel density esti-

mates. Given this estimated mutual information matrix M̂n =
[

În(Xi, Xj)
]
,

we can then apply Kruskal’s algorithm (equivalently, the Chow-Liu algorithm)
to find the best forest structure F̂n.

Since the number of edges of F̂n controls the number of degrees of freedom
in the final density estimator, we need an automatic data-dependent way
to choose it. We adopt the following two-stage procedure. First, randomly
partition the data into two sets D1 and D2 of sizes n1 and n2; then, apply the
following steps:

1. Using D1, construct kernel density estimates of the univariate and
bivariate marginals and calculate În1(Xi, Xj) for i, j ∈ {1, . . . , d} with

i 6= j. Construct a full tree F̂(d−1)
n1 with d− 1 edges, using the Chow-Liu

algorithm.

2. Using D2, prune the tree F̂(d−1)
n1 to find a forest F̂(k̂)

n1 with k̂ edges, for
0 ≤ k̂ ≤ d− 1.

Once F̂(k̂)
n1 is obtained in Step 2, we can calculate p̂

F̂(k̂)
n1

according to (5.4),

using the kernel density estimates constructed in Step 1.
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5.3.1 Step 1: Estimating the marginals

Step 1 is carried out on the dataset D1. Let K(·) be a univariate kernel function.
Given an evaluation point (xi, xj), the bivariate kernel density estimate for

(Xi, Xj) based on the observations {X(s)
i , X(s)

j }s∈D1 is defined as

p̂n1(xi, xj) =
1
n1

∑
s∈D1

1
h2

2
K

(
X(s)

i − xi

h2

)
K

X(s)
j − xj

h2

 , (5.23)

where we use a product kernel with h2 > 0 be the bandwidth parameter. The
univariate kernel density estimate p̂n1(xk) for Xk is

p̂n1(xk) =
1
n1

∑
s∈D1

1
h1

K

(
X(s)

k − xk

h1

)
, (5.24)

where h1 > 0 is the univariate bandwidth. Detailed specifications for K(·) and
h1, h2 will be discussed in the next section.

We assume that the data lie in a d-dimensional unit cube X = [0, 1]d. To
calculate the empirical mutual information În1(Xi, Xj), we need to numeri-
cally evaluate a two-dimensional integral. To do so, we calculate the kernel
density estimates on a grid of points. We choose m evaluation points on each
dimension, x1i < x2i < · · · < xmi for the ith variable. The mutual information
În1(Xi, Xj) is then approximated as

În1(Xi, Xj) =
1

m2

m

∑
k=1

m

∑
`=1

p̂n1(xki, x`j) log
p̂n1(xki, x`j)

p̂n1(xki) p̂n1(x`j)
. (5.25)

The approximation error can be made arbitrarily small by choosing m suffi-
ciently large. As a practical concern, care needs to be taken that the factors
p̂n1(xki) and p̂n1(x`j) in the denominator are not too small; a truncation proce-
dure can be used to ensure this. Once the d× d mutual information matrix
M̂n1 =

[
În1(Xi, Xj)

]
is obtained, we can apply the Chow-Liu (Kruskal) algo-

rithm to find a maximum weight spanning tree.

5.3.2 Step 2: Optimizing the forest

The full tree F̂(d−1)
n1 obtained in Step 1 might have high variance when the

dimension d is large, leading to overfitting in the density estimate. In order
to reduce the variance, we prune the tree; that is, we choose forest with
k ≤ d− 1 edges. The number of edges k is a tuning parameter that induces a
bias-variance tradeoff.

In order to choose k, note that in stage k of the Chow-Liu algorithm we
have an edge set E(k) which corresponds to a forest F̂(k)

n1 with k edges, where
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Algorithm 5.3.1 Chow-Liu (Kruskal)

1: Input data D1 = {X(1), . . . , X(n1)}.
2: Calculate M̂n1 , according to (5.23), (5.24), and (5.25).

3: Initialize E(0) = ∅

4: for k = 1, . . . , d− 1 do

5: (i(k), j(k)) ← arg max(i,j) M̂n1(i, j) such that E(k−1) ∪ {(i(k), j(k))} does not
contain a cycle

6: E(k) ← E(k−1) ∪ {(i(k), j(k))}

7: Output tree F̂(d−1)
n1 with edge set E(d−1).

F̂(0)
n1 is the union of d disconnected nodes. To select k, we choose among the d

trees F̂(0)
n1 , F̂(1)

n1 , . . . , F̂(d−1)
n1 .

Let p̂n2(xi, xj) and p̂n2(xk) be defined as in (5.23) and (5.24), but now evalu-
ated solely based on the held-out data in D2. For a density pF that is supported
by a forest F, we define the held-out negative log-likelihood risk as

R̂n2(pF) (5.26)

= − ∑
(i,j)∈EF

∫
Xi×Xj

p̂n2(xi, xj) log
p(xi, xj)

p(xi) p(xj)
dxidxj (5.27)

− ∑
k∈VF

∫
Xk

p̂n2(xk) log p(xk) dxk. (5.28)

The selected forest is then F̂(k̂)
n1 where

k̂ = arg min
k∈{0,...,d−1}

R̂n2

(
p̂

F̂(k)
n1

)
(5.29)

and where p̂
F̂(k)

n1
is computed using the density estimate p̂n1 constructed on

D1.
For computational simplicity, we can also estimate k̂ as

k̂ = arg max
k∈{0,...,d−1}

1
n2

∑
s∈D2

log

 ∏
(i,j)∈E(k)

p̂n1(X(s)
i , X(s)

j )

p̂n1(X(s)
i ) p̂n1(X(s)

j )
∏

k∈V
F̂(k)
n1

p̂n1(X(s)
k )


= arg max

k∈{0,...,d−1}

1
n2

∑
s∈D2

log

 ∏
(i,j)∈E(k)

p̂n1(X(s)
i , X(s)

j )

p̂n1(X(s)
i ) p̂n1(X(s)

j )

 . (5.30)

This minimization can be efficiently carried out by iterating over the d− 1
edges in F̂(d−1)

n1 .



110 FOREST DENSITY ESTIMATION

Once k̂ is obtained, the final forest density estimate is given by

p̂n(x) = ∏
(i,j)∈E(k̂)

p̂n1(xi, xj)
p̂n1(xi) p̂n1(xj)

∏
k

p̂n1(xk). (5.31)

Remark 5.1. For computational efficiency, Step 1 can be carried out simultaneously
with Step 2. In particular, during the Chow-Liu iteration, whenever an edge is added
to E(k), the log-likelihood of the resulting density estimator on D2 can be immedi-
ately computed. A more efficient algorithm to speed up the computation of the mutual
information matrix is discussed in the later Appendix section.

5.3.3 Building a forest on held-out data

Another approach to estimating the forest structure is to estimate the marginal
densities on the training set, but only build graphs on the held-out data. To do
so, we first estimate the univariate and bivariate kernel density estimates using
D1, denoted by p̂n1(xi) and p̂n1(xi, xj). We also construct a new set of univari-
ate and bivariate kernel density estimates using D2, p̂n2(xi) and p̂n2(xi, xj).
We then estimate the “cross-entropies” of the kernel density estimates p̂n1 for
each pair of variables by computing

În2,n1(Xi, Xj) =
∫

p̂n2(xi, xj) log
p̂n1(xi, xj)

p̂n1(xi) p̂n1(xj)
dxi dxj (5.32)

≈ 1
m2

m

∑
k=1

m

∑
`=1

p̂n2(xki, x`j) log
p̂n1(xki, x`j)

p̂n1(xki) p̂n1(x`j)
. (5.33)

Our method is to use În2,n1(Xi, Xj) as edge weights on a full graph and run
Kruskal’s algorithm until we encounter edges with negative weight. Let F be
the set of all forests and ŵn2(i, j) = În2,n1(Xi, Xj). The final forest is then

F̂n2 = arg max
F∈F

ŵn2(F) = arg min
F∈F

R̂n2( p̂F) (5.34)

By building a forest on held-out data, we directly cross-validate over all
forests.

5.4 statistical properties

In this section we present our theoretical results on risk consistency, structure
selection consistency, and estimation consistency of the forest density estimate
p̂n = p̂

F̂(k̂)
d

.

To establish some notation, we write an = Ω(bn) if there exists a constant c
such that an ≥ cbn for sufficiently large n. We also write an � bn if there exists
a constant c such that an ≤ c bn and bn ≤ c an for sufficiently large n. Given a
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d-dimensional function f on the domain X , we denote its L2(P)-norm and
sup-norm as

‖ f ‖L2(P) =
√∫

X
f 2(x)dPX(x), ‖ f ‖∞ = sup

x∈X
| f (x)| (5.35)

where PX is the probability measure induced by X. Throughout this section,
all constants are treated as generic values, and as a result they can change
from line to line.

In our use of a data splitting scheme, we always adopt equally sized splits
for simplicity, so that n1 = n2 = n/2, noting that this does not affect the final
rate of convergence.

5.4.1 Assumptions on the density

Fix β > 0. For any d-tuple α = (α1, . . . , αd) ∈ Nd and x = (x1, . . . , xd) ∈ X ,
we define xα = ∏d

j=1 x
αj
j . Let Dα denote the differential operator

Dα =
∂α1+···+αd

∂xα1
1 · · · ∂xαd

d
. (5.36)

For any real-valued d-dimensional function f on X that is bβc-times continu-
ously differentiable at point x0 ∈ X , let P(β)

f ,x0
(x) be its Taylor polynomial of

degree bβc at point x0:

P(β)
f ,x0

(x) = ∑
α1+···+αd≤bβc

(x− x0)α

α1! · · · αd!
Dα f (x0). (5.37)

Fix L > 0, and denote by Σ(β, L, r, x0) the set of functions f : X → R that are
bβc-times continuously differentiable at x0 and satisfy∣∣∣ f (x)− P(β)

f ,x0
(x)
∣∣∣ ≤ L‖x− x0‖β

2 , ∀x ∈ B(x0, r) (5.38)

where B(x0, r) = {x : ‖x− x0‖2 ≤ r} is the L2-ball of radius r centered at x0.
The set Σ(β, L, r, x0) is called the (β, L, r, x0)-locally Hölder class of functions.
Given a set A, we define

Σ(β, L, r, A) = ∩x0∈AΣ(β, L, r, x0). (5.39)

The following are the regularity assumptions we make on the true density
function p∗(x).

Assumption 5.1. For any 1 ≤ i < j ≤ d, we assume

(D1) there exist L1 > 0 and L2 > 0 such that for any c > 0 the true bivariate and
univariate densities satisfy

p∗(xi, xj) ∈ Σ
(

β, L2, c (log n/n)
1

2β+2 ,Xi ×Xj

)
(5.40)
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and

p∗(xi) ∈ Σ
(

β, L1, c (log n/n)
1

2β+1 ,Xi

)
; (5.41)

(D2) there exists two constants c1 and c2 such that

c1 ≤ inf
xi ,xj∈Xi×Xj

p∗(xi, xj) ≤ sup
xi ,xj∈Xi×Xj

p∗(xi, xj) ≤ c2 (5.42)

µ-almost surely.

These assumptions are mild, in the sense that instead of adding constraints
on the joint density p∗(x), we only add regularity conditions on the bivariate
and univariate marginals.

5.4.2 Assumptions on the kernel

An important ingredient in our analysis is an exponential concentration result
for the kernel density estimate, due to Giné and Guillou [2002]. We first
specify the requirements on the kernel function K(·).

Let (Ω,A) be a measurable space and let F be a uniformly bounded
collection of measurable functions.

Definition 5.4. F is a bounded measurable VC class of functions with characteristics
A and v if it is separable and for every probability measure P on (Ω,A) and any
0 < ε < 1,

N
(

ε‖F‖L2(P),F , ‖ · ‖L2(P)

)
≤
(

A
ε

)v

, (5.43)

where F(x) = sup f∈F | f (x)| and N(ε,F , ‖ · ‖L2(P)) denotes the ε-covering number
of the metric space (Ω, ‖ · ‖L2(P)); that is, the smallest number of balls of radius no
larger than ε (in the norm ‖ · ‖L2(P)) needed to cover F .

The one-dimensional density estimates are constructed using a kernel K,
and the two-dimensional estimates are constructed using the product kernel

K2(x, y) = K(x) · K(y). (5.44)

Assumption 5.2. The kernel K satisfies the following properties.

(K1)
∫

K(u) du = 1,
∫ ∞

−∞
K2(u) du < ∞ and sup

u∈R

K(u) ≤ c for some constant c.

(K2) K is a finite linear combination of functions g whose epigraphs epi(g) =
{(s, u) : g(s) ≥ u}, can be represented as a finite number of Boolean op-
erations (union and intersection) among sets of the form {(s, u) : Q(s, u) ≥
φ(u)}, where Q is a polynomial on R×R and φ is an arbitrary real function.
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(K3) K has a compact support and for any ` ≥ 1 and 1 ≤ `′ ≤ bβc∫
|t|β |K(t)| dt < ∞, and

∫
|K(t)|`dt < ∞,

∫
t`
′
K(t)dt = 0. (5.45)

Assumptions (K1), (K2) and (K3) are mild. As pointed out by Nolan and
Pollard [1987], both the pyramid (truncated or not) kernel and the boxcar
kernel satisfy them. It follows from (K2) that the classes of functions

F1 =
{

1
h1

K
(

u− ·
h1

)
: u ∈ R, h1 > 0

}
(5.46)

F2 =
{

1
h2

2
K
(

u− ·
h2

)
K
(

t− ·
h2

)
: u, t ∈ R, h2 > 0

}
(5.47)

are bounded VC classes, in the sense of Definition 5.4. Assumption (K3)
essentially says that the kernel K(·) should be β-valid; see Tsybakov [2008]
and Definition 6.1 in Rigollet and Vert [2009] for further details about this
assumption.

We choose the bandwidths h1 and h2 used in the one-dimensional and
two-dimensional kernel density estimates to satisfy

h1 �
(

log n
n

) 1
1+2β

(5.48)

h2 �
(

log n
n

) 1
2+2β

. (5.49)

This choice of bandwidths ensures the optimal rate of convergence.

5.4.3 Risk consistency

Given the above assumptions, we first present a key lemma that establishes
the rates of convergence of bivariate and univariate kernel density estimates
in the sup norm. The proof of this and our other technical results are provided
in the later appendix sections.

Lemma 5.1. Under Assumptions 5.1 and 5.2, and choosing bandwidths satisfying
(5.48) and (5.49), the bivariate and univariate kernel density estimates p̂(xi, xj) and
p̂(xk) in (5.23) and (5.24) satisfy

max
(i,j)∈{1,...,d}×{1,...,d}

sup
(xi ,xj)∈Xi×Xj

| p̂(xi, xj)− p∗(xi, xj)| (5.50)

= OP

(√
log n + log d

nβ/(1+β)

)
(5.51)

and

max
k∈{1,...,d}

sup
xk∈Xk

| p̂(xk)− p∗(xk)| = OP

(√
log n + log d

n2β/(1+2β)

)
. (5.52)
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To describe the risk consistency result, let P (d−1)
d = Pd be the family of

densities that are supported by forests with at most d− 1 edges, as already de-
fined in (5.5). For 0 ≤ k ≤ d− 1, we define P (k)

d as the family of d-dimensional
densities that are supported by forests with at most k edges. Then

P (0)
d ⊂ P (1)

d ⊂ · · · ⊂ P (d−1)
d . (5.53)

Now, due to the nesting property (5.53), we have

inf
qF∈P

(0)
d

R(qF) ≥ inf
qF∈P

(1)
d

R(qF) ≥ · · · ≥ inf
qF∈P

(d−1)
d

R(qF). (5.54)

We first analyze the forest density estimator obtained using a fixed number
of edges k < d; specifically, consider stopping the Chow-Liu algorithm in
Stage 1 after k iterations. This is in contrast to the algorithm described in 5.3.2,
where the pruned tree size is automatically determined on the held out data.
While this is not very realistic in applications, since the tuning parameter k
is generally hard to choose, the analysis in this case is simpler, and can be
directly exploited to analyze the more complicated data-dependent method.

Theorem 5.1 (Risk consistency). Let p̂
F̂(k)

d
be the forest density estimate with

|E(F̂(k)
d )| = k

obtained after the first k iterations of the Chow-Liu algorithm, for some k ∈ {0, . . . , d−
1}. Under Assumptions 5.1 and 5.2, we have

R( p̂
F̂(k)

d
)− inf

qF∈P
(k)
d

R(qF) = OP

(
k

√
log n + log d

nβ/(1+β) + d

√
log n + log d

n2β/(1+2β)

)
. (5.55)

Note that this result allows the dimension d to increase at a rate

d = o
(√

n2β/(1+2β)/ log n
)

and the number of edges k to increase at a rate o
(√

nβ/(1+β)/ log n
)

, with

the excess risk still decreasing to zero asymptotically.
The above results can be used to prove a risk consistency result for the

data-dependent pruning method using the data-splitting scheme described in
Section 5.3.2.

Theorem 5.2. Let p̂
F̂(k̂)

d
be the forest density estimate using the data-dependent prun-

ing method in Section 5.3.2, and let p̂
F̂(k)

d
be the estimate with |E(F̂(k)

d )| = k obtained



5.4 S TAT I S T I C A L P RO P E RT I E S 115

after the first k iterations of the Chow-Liu algorithm. Under Assumptions 5.1 and 5.2,
we have

R( p̂
F̂(k̂)

d
)− min

0≤k≤d−1
R( p̂

F̂(k)
d

) (5.56)

= OP

(
(k∗ + k̂)

√
log n + log d

nβ/(1+β) + d

√
log n + log d

n2β/(1+2β)

)
(5.57)

where k∗ = arg min0≤k≤d−1 R( p̂
F̂(k)

d
).

The proof of this theorem is given in the appendix. A parallel result can be
obtained for the method described in Section 5.3.3, which builds the forest by
running Kruskal’s algorithm on the heldout data.

Theorem 5.3. Let F̂n2 be the forest obtained using Kruskal’s algorithm on held-out
data, and let k̂ = |F̂n2 | be the number of edges in F̂n2 . Then

R( p̂F̂n2
)−min

F∈F
R( p̂F) (5.58)

= OP

(
(k∗ + k̂)

√
log n + log d

nβ/(1+β) + d

√
log n + log d

n2β/(1+2β)

)
(5.59)

where k∗ = |F∗| is the number of edges in the optimal forest F∗ = arg minF∈F R( p̂F).

5.4.4 Structure selection consistency

In this section, we provide conditions guaranteeing that the procedure is
structure selection consistent. Again, we do not assume the true density p∗(x)
is consistent with a forest; rather, we are interested in comparing the estimated
forest structure to the oracle forest which minimizes the risk. In this way our
result differs from that in Tan et al. [2009a], although there are similarities in
the analysis.

By Proposition 5.2, we can define

p∗
F(k)

d
= arg min

qF∈P
(k)
d

R(qF). (5.60)

Thus F(k)
d is the optimal forest within P (k)

d that minimizes the negative log-

likelihood loss. Let F̂(k)
d be the estimated forest structure, fixing the number

of edges at k; we want to study conditions under which

P
(

F̂(k)
d = F(k)

d

)
→ 1. (5.61)

Let’s first consider the population version of the algorithm—if the algorithm
cannot recover the best forest F(k)

d in this ideal case, there is no hope for stable
recovery in the data version. The key observation is that the graph selected
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by the Chow-Liu algorithm only depends on the relative order of the edges
with respect to mutual information, not on the specific mutual information
values. Let

E =
{
{(i, j), (k, `)} : i < j and k < `, j 6= ` and i, j, k, ` ∈ {1, . . . , d}

}
. (5.62)

The cardinality of E is

|E | = O(d4). (5.63)

Let e = (i, j) be an edge; the corresponding mutual information associated
with e is denoted as Ie. If for all (e, e′) ∈ E , we have Ie 6= Ie′ , the population
version of the Chow-Liu algorithm will always obtain the unique solution
F(k)

d . However, this condition is, in a sense, both too weak and too strong. It
is too weak because the sample estimates of the mutual information values
will only approximate the population values, and could change the relative
ordering of some edges. However, the assumption is too strong because, in
fact, the relative order of many edge pairs might be changed without affecting
the graph selected by the algorithm. For instance, when k ≥ 2 and Ie and Ie′

are the largest two mutual information values, it’s guaranteed that e and e′

will both be included in the learned forest F(k)
d whether Ie > Ie′ or Ie < Ie′ .

Define the crucial set J ⊂ E to be a set of pairs of edges (e, e′) such that
Ie 6= Ie′ and flipping the relative order of Ie and Ie′ changes the learned forest
structure in the population Chow-Liu algorithm, with positive probability.
Here, we assume that the Chow-Liu algorithm randomly selects an edge
when a tie occurs.

The cardinality |J | of the crucial set is a function of the true density p∗(x),
and we can expect |J | � |E|. The next assumption provides a sufficient
condition for the two-stage procedure to be structure selection consistent.

Assumption 5.3. Let the crucial set J be defined as before. Suppose that

min
((i,j),(k,`))∈J

|I(Xi; Xj)− I(Xk; X`)| ≥ 2Ln (5.64)

where Ln = Ω

(√
log n + log d

nβ/(1+β)

)
.

This assumption is satisfied in many cases. For example, in a graph with
population mutual informations differing by a constant, the assumption

holds. Assumption 5.3 is trivially satisfied if
nβ/(1+β)

log n + log d
→ ∞. However, if

two pairs of edges belonging J have the same marginal distributions, the
assumption may fail.
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Theorem 5.4 (Structure selection consistency). Let F(k)
d be the optimal forest within

P (k)
d that minimizes the negative log-likelihood loss. Let F̂(k)

d be the estimated forest
with |E

F̂(k)
d
| = k. Under Assumptions 5.1, 5.2, and 5.3, we have

P
(

F̂(k)
d = F(k)

d

)
→ 1 (5.65)

as n→ ∞.

The proof shows that our method is strucure selection consistent as long
as the dimension increases as d = o

(
exp(nβ/(1+β))

)
; in this case the error

decreases at the rate o
(

exp
(

4 log d− c(log n)
1

1+β log d
))

.

5.4.5 Estimation consistency

Estimation consistency can be easily established using the structure selection
consistency result above. Define the eventMk = {F̂(k)

d = F(k)
d }. Theorem 5.4

shows that P(Mc
k)→ 0 as n goes to infinity.

Lemma 5.2. Let p̂
F̂(k)

d
be the forest-based kernel density estimate for some fixed k ∈

{0, . . . , d− 1}, and let

p∗
F(k)

d
= arg min

qF∈P
(k)
d

R(qF). (5.66)

Under the assumptions of Theorem 5.4,

D(p∗
F(k)

d
‖ p̂

F̂(k)
d

) = R( p̂
F̂(k)

d
)− R(p∗

F(k)
d

) (5.67)

on the eventMk.

Proof. According to Bach and Jordan [2003], for a given forest F and a target distri-
bution p∗(x),

D(p∗‖ qF) = D(p∗‖ p∗F) + D(p∗F‖ qF) (5.68)

for all distributions qF that are supported by F. We further have

D(p∗‖ q) =
∫
X

p∗(x) log p∗(x)−
∫
X

p∗(x) log q(x)dx (5.69)

=
∫
X

p∗(x) log p∗(x)dx + R(q) (5.70)
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for any distribution q. Using (5.68) and (5.70), and conditioning on the eventMk, we
have

D(p∗
F(k)

d
‖ p̂

F̂(k)
d

) (5.71)

= D(p∗‖ p̂
F̂(k)

d
)− D(p∗‖ p∗

F(k)
d

) (5.72)

=
∫
X

p∗(x) log p∗(x)dx + R( p̂
F̂(k)

d
)−

∫
X

p∗(x) log p∗(x)dx− R(p∗
F(k)

d
)

= R( p̂
F̂(k)

d
)− R(p∗

F(k)
d

),

which gives the desired result.

The above lemma combined with Theorem 5.1 allows us to obtain the
following estimation consistency result, the proof of which is omitted.

Corollary 5.1 (Estimation consistency). Under Assumptions 5.1, 5.2, and 5.3, we
have

D(p∗
F(k)

d
‖ p̂

F̂(k)
d

) = OP

(
k

√
log n + log d

nβ/(1+β) + d

√
log n + log d

n2β/(1+2β)

)
. (5.73)

5.5 experimental results

In this section, we report numerical results on both synthetic datasets and
microarray data. We mainly compare the forest density estimator with sparse
Gaussian graphical models, fitting a multivariate Gaussian with a sparse
inverse covariance matrix. The sparse Gaussian models are estimated using
the graphical lasso algorithm (glasso) of Friedman et al. [2007], which is a
refined version of an algorithm first derived by Banerjee et al. [2008]. Since
the glasso typically results in a large parameter bias as a consequence of the
`1 regularization, we also compare with a method that we call the refit glasso,
which is a two-step procedure—in the first step, a sparse inverse covariance
matrix is obtained by the glasso; in the second step, a Gaussian model is refit
without `1 regularization, but enforcing the sparsity pattern obtained in the
first step.

To quantitatively compare the performance of these estimators, we calculate
the log-likelihood of all methods on a held-out dataset D2. With µ̂n1 and Ω̂n1

denoting the estimates from the Gaussian model, the held-out log-likelihood
can be explicitly evaluated as

`gauss = − 1
n2

∑
s∈D2

{
1
2
(X(s) − µ̂n1)

FΩ̂n1(X(s) − µ̂n1) +
1
2

log

(
|Ω̂n1 |
(2π)d

)}
.
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For a given tree structure F̂, the held-out log-likelihood for the forest density
estimator is

`fde =
1
n2

∑
s∈D2

log

 ∏
(i,j)∈E(F̂)

p̂n1(X(s)
i , X(s)

j )

p̂n1(X(s)
i ) p̂n1(X(s)

j )
∏

k∈VF̂

p̂n1(X(s)
k )

 , (5.74)

where p̂n1(·) are the corresponding kernel density estimates using the plug-in
bandwidths.

Since the held-out log-likelihood of the forest density estimator is indexed
by the number of edges included in the tree, while the held-out log-likelihoods
of the glasso and the refit glasso are indexed by a continuously varying
regularization parameter, we need to find a way to calibrate them. To address
this issue, we plot the held-out log-likelihood of the forest density estimator
as a step function indexed by the tree size. We then run the full path of the
glasso and discretize it according to the corresponding sparsity level, i.e., how
many edges are selected for each value of the regularization parameter. The
size of the forest density estimator and the sparsity level of the glasso (and
the refit glasso) can then be aligned for a fair comparison.

5.5.1 Synthetic data

We use a procedure to generate high dimensional Gaussian and non-Gaussian
data which are consistent with an undirected graph. We generate high di-
mensional graphs that contain cycles, and so are not forests. In dimension
d = 100, we sample n1 = n2 = 400 data points from a multivariate Gaussian
distribution with mean vector µ = (0.5, . . . , 0.5) and inverse covariance matrix
Ω. The diagonal elements of Ω are all 62. We then randomly generate many
connected subgraphs containing no more than eight nodes each, and set the
corresponding non-diagonal elements in Ω at random, drawing values uni-
formly from −30 to −10. To obtain non-Gaussian data, we simply transform
each dimension of the data by its empirical distribution function; such a
transformation preserves the graph structure but the joint distribution is no
longer Gaussian (see Liu et al. [2009a]).

To calculate the pairwise mutual information Î(Xi; Xj), we need to numeri-
cally evaluate two-dimensional integrals. We first rescale the data into [0, 1]d

and calculate the kernel density estimates on a grid of points; we choose
m = 128 evaluation points x(1)

i < x(2)
i < · · · < x(m)

i for each dimension i, and
then evaluate the bivariate and the univariate kernel density estimates on this
grid.

There are three different kernel density estimates that we use—the bivariate
kde, the univariate kde, and the marginalized bivariate kde. Specifically,
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the bivariate kernel density estimate on xi, xj based on the observations

{X(s)
i , X(s)

j }s∈D1 is defined as

p̂(xi, xj) =
1
n1

∑
s∈D1

1
h2ih2j

K

(
X(s)

i − xi

h2i

)
K

X(s)
j − xj

h2j

 , (5.75)

using a product kernel. The bandwidths h2i, h2j are chosen as

h2k = 1.06 ·min
{

σ̂k,
q̂k,0.75 − q̂k,0.25

1.34

}
· n−1/(2β+2), (5.76)

where σ̂k is the sample standard deviation of {X(s)
k }s∈D1 and q̂k,0.75, q̂k,0.25 are

the 75% and 25% sample quantiles of {X(s)
k }s∈D1 .

In all the experiments, we set β = 2, such a choice of β and the “plug-
in” bandwidth h2k (and h1k in the following) is a very common practice in
nonparametric Statistics. For more details, see Fan and Gijbels [1996] and
Tsybakov [2008].

Given an evaluation point xk, the univariate kernel density estimate p̂(xk)
based on the observations {X(s)

k }s∈D1 is defined as

p̂(xk) =
1
n1

∑
s∈D1

1
h1k

K

(
X(s)

k − xk

h1k

)
, (5.77)

where h1k > 0 is defined as

h1k = 1.06 ·min
{

σ̂k,
q̂k,0.75 − q̂k,0.25

1.34

}
· n−1/(2β+1). (5.78)

Finally, the marginal univariate kernel density estimate p̂M(xk) based on the
observations {X(s)

k }s∈D1 is defined by integrating the irrelevant dimension out
of the bivariate kernel density estimates p̂(xj, xk) on the unit square [0, 1]2.
Thus,

p̂M(xk) =
1

m− 1

m

∑
`=1

p̂(x(`)
j , xk). (5.79)

With the above definitions of the bivariate and univariate kernel density
estimates, we consider estimating the mutual information I(Xi; Xj) in three
different ways, depending on which estimates for the univariate densities are
employed.
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Îfast(Xi, Xj) (5.80)

=
1

(m− 1)2

m

∑
k′=1

m

∑
`′=1

p̂(x(k′)
i , x(`′)

j ) log p̂(x(k′)
i , x(`′)

j ) − (5.81)

1
m− 1

m

∑
k′=1

p̂(x(k′)
i ) log p̂(x(k′)

i )− 1
m− 1

m

∑
`′=1

p̂(x(`′)
j ) log p̂(x(`′)

j )

Îmedium(Xi, Xj) (5.82)

=
1

(m− 1)2

m

∑
k′=1

m

∑
`′=1

p̂(x(k′)
i , x(`′)

j ) log
p̂(x(k′)

i , x(`′)
j )

p̂(x(k′)
i ) p̂(x(`′)

j )
. (5.83)

Îslow(Xi, Xj) (5.84)

=
1

(m− 1)2

m

∑
k′=1

m

∑
`′=1

p̂(x(k′)
i , x(`′)

j ) log p̂(x(k′)
i , x(`′)

j ) − (5.85)

1
m− 1

m

∑
k′=1

p̂M(x(k′)
i ) log p̂M(x(k′)

i )− 1
m− 1

m

∑
`′=1

p̂M(x(`′)
j ) log p̂M(x(`′)

j ).

The terms “fast,” “medium” and “slow” refer to the theoretical statis-
tical rates of convergence of the estimators. The “fast” estimate uses one-
dimensional univariate kernel density estimators wherever possible. The
“medium” estimate uses the one-dimensional kernel density estimates in the
denominator of p(xi, xj)/(p(xi)p(xj), but averages with respect to the bivari-
ate density. Finally, the “slow” estimate marginalizes the bivariate densities
to estimate the univariate densities. While the rate of convergence is the two-
dimensional rate, the “slow” estimate ensures the consistency of the bivariate
and univariate densities.
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Figure 33.: (Gaussian example) Boxplots of Îfast, Îmedium, and Îslow on three different pairs
of variables. The red-dashed horizontal lines represent the population values.
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Figure 34.: Perspective and contour plots of the bivariate Gaussian fits vs. the kernel density
estimates for two edges of a Gaussian graphical model.

Figure 33 compares Îfast, Îmedium, and Îslow on different pairs of variables.
The boxplots are based on 100 trials. Compared to the ground truth, which
can be computed exactly in the Gaussian case, we see that the performance
of Îmedium and Îslow is better than that of Îfast. This is due to the fact that
simply replacing the population density with a “plug-in” version can lead
to biased estimates; in fact, Îfast is not even guaranteed to be non-negative.
In what follows, we employ Îmedium for all the calculations, due to its ease
of computation and good finite sample performance. Figure 34 compares
the bivariate fits of the kernel density estimates and the Gaussian models
over four edges. For the Gaussian fits of each edge, we directly calculate
the bivariate sample covariance and sample mean and plug them into the
bivariate Gaussian density function. From the perspective and contour plots,
we see that the bivariate kernel density estimates provide reasonable fits for
these bivariate components.

A typical run showing the held-out log-likelihood and estimated graphs
is provided in Figure 35. We see that for the Gaussian data, the refit glasso
has a higher held-out log-likelihood than the forest density estimator and the
glasso. This is expected, since the Gaussian model is correct. For very sparse
models, however, the performance of the glasso is worse than that of the
forest density estimator, due to the large parameter bias resulting from the `1

regularization. We also observe an efficiency loss in the nonparametric forest
density estimator, compared to the refit glasso. The graphs are automatically
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Figure 35.: Synthetic data. Top-left Gaussian, and top-right non-Gaussian: Held-out log-
likelihood plots of the forest density estimator (black step function), glasso (red
stars), and refit glasso (blue circles), the vertical dashed red line indicates the size
of the true graph. Bottom plots show the true and estimated graphs for the Gaus-
sian (second row) and non-Gaussian data (third row).
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selected using the held-out log-likelihood, and we see that the nonparametric
forest-based kernel density estimator tends to select a sparser model, while
the parametric Gaussian models tend to overselect. This observation is new
and is quite typical in our simulations. Another observation is that the held-
out log-likelihood curve of the glasso becomes flat for less sparse models
but never goes down. This suggests that the held-out log-likelihood is not
a good model selection criterion for the glasso. For the non-Gaussian data,
even though the refit glasso results in a reasonable graph, the forest density
estimator performs much better in terms of held-out log-likelihood risk and
graph estimation accuracy.

5.5.2 Microarray data

5.5.2.1 Arabidopsis thaliana Data

In this example, we consider a dataset based on Affymetrix GeneChip mi-
croarrays for the plant Arabidopsis thaliana, [Wille et al., 2004]. The sample
size is n = 118. The expression levels for each chip are pre-processed by
a log-transformation and standardization. A subset of 40 genes from the
isoprenoid pathway are chosen, and we study the associations among them
using the glasso, the refit glasso, and the tree-based kernel density estimator.

From the held-out log-likelihood curves in Figure 36, we see that the tree-
based kernel density estimator has a better generalization performance than
the glasso and the refit glasso. This is not surprising, given that the true
distribution of the data is not Gaussian. Another observation is that for the
tree-based kernel density estimator, the held-out log-likelihood curve achieves
a maximum when there are only 35 edges in the model. In contrast, the held-
out log-likelihood curves of the glasso and refit glasso achieve maxima when
there are around 280 edges and 100 edges respectively, while their predictive
estimates are still inferior to those of the tree-based kernel density estimator.

Figure 36 also shows the estimated graphs for the tree-based kernel density
estimator and the glasso. The graphs are automatically selected based on
held-out log-likelihood. The two graphs are clearly different; it appears that
the nonparametric tree-based kernel density estimator has the potential to
provide different biological insights than the parametric Gaussian graphical
model.

5.5.2.2 HapMap Data

This dataset comes from Nayak et al. [2009]. The dataset contains Affymetrics
chip measured expression levels of 4238 genes for 295 normal subjects in
the Centre d’Etude du Polymorphisme Humain (CEPH) and the International
HapMap collections. The 295 subjects come from four different groups: 148

unrelated grandparents in the CEPH-Utah pedigrees, 43 Han Chinese in
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Figure 36.: Results on microarray data. Top: held-out log-likelihood (left) and its zoom-in
(right) of the tree-based kernel density estimator (black step function), glasso (red
stars), and refit glasso (blue circles). Bottom: estimated graphs using the tree-
based estimator (left) and glasso (right).
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Beijing, 44 Japanese in Tokyo, and 60 Yoruba in Ibadan, Nigeria. Since we
want to find common network patterns across different groups of subjects,
we pooled the data together into a n = 295 by d = 4238 numerical matrix.

We estimate the full 4238 node graph using both the forest density esti-
mator (described in Section 5.3.1 and 5.3.2) and the Meinshausen-Bühlmann
neighborhood search method as proposed in [Meinshausen and Bühlmann,
2006] with regularization parameter chosen to give it about same number as
edges as the forest graph.

To construct the kernel density estimates p̂(xi, xj) we used an array of
Nvidia graphical processing units (GPU) to parallelize the computation over
the pairs of variables Xi and Xj. We discretise the domain of (Xi, Xj) into a
128× 128 grid, and correspondingly employ 128× 128 parallel cells in the
GPU array, taking advantage of shared memory in CUDA. Parallelizing in this
way increases the total performance by approximately a factor of 50, allowing
the experiment to complete in a day.

The forest density estimated graph reveals one strongly connected compo-
nent of more than 3000 genes and various isolated genes; this is consistent
with the analysis in Nayak et al. [2009] and is realistic for the regulatory
system of humans. The Gaussian graph contains similar component structure,
but the set of edges differs significantly. We also ran the t-restricted forest
algorithm for t = 2000 and it successfully separates the giant component into
three smaller components. For visualization purposes, in Figure 37, we show
only a 934 gene subgraph of the strongly connected component among the
full 4238 node graphs we estimated. More detailed analysis of the biological
implications of this work will left as a future study.

5.6 conclusion

We have studied forest density estimation for high dimensional data. Forest
density estimation skirts the curse of dimensionality by restricting to undi-
rected graphs without cycles, while allowing fully nonparametric marginal
densities. The method is computationally simple, and the optimal size of the
forest can be robustly selected by a data-splitting scheme. We have established
oracle properties and rates of convergence for function estimation in this
setting. Our experimental results compared the forest density estimator to
the sparse Gaussian graphical model in terms of both predictive risk and the
qualitative properties of the estimated graphs for human gene expression
array data. Together, these results indicate that forest density estimation can
be a useful tool for relaxing the normality assumption in graphical modeling.
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Figure 37.: A 934 gene subgraph of the full estimated 4238 gene network. Upper: estimated
forest graph. Lower: estimated Gaussian graph. Red edges in the forest graph are
missing from the Gaussian graph and vice versa; the blue edges are shared by both
graphs. Note that the layout of the genes is the same for both graphs.
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5.7 appendix: technical proofs

5.7.0.3 Proof of Lemma 8.3

We only need to consider the more complicated bivariate case (5.51); the result
in (5.52) follows from the same line of proof. First, given the assumptions, the
following lemma can be obtained by an application of Corollary 2.2 of Giné
and Guillou [2002]. For a detailed proof, see Rinaldo and Wasserman [2009b].

Lemma 5.3. [Giné and Guillou, 2002] Let p̂ be a bivariate kernel density estimate
using a kernel K(·) for which Assumption 5.2 holds and suppose that

sup
t∈X 2

sup
h2>0

∫
X 2

K2
2(u)p∗(t− uh2)du ≤ D < ∞. (5.86)

1. Let the bandwidth h2 be fixed. Then there exit constants L > 0 and C > 0,
which depend only on the VC characteristics of F2 in (5.47), such that for any
c1 ≥ C and 0 < ε ≤ c1D/‖K2‖∞, there exists n0 > 0 which depends on ε, D,
‖K2‖∞ and the VC characteristics of K2, such that for all n ≥ n0,

P

(
sup
u∈X 2

| p̂(u)−Ep̂(u)| > 2ε

)
(5.87)

≤ L exp
{
− 1

L
log(1 + c1/(4L))

c1

nh2
2ε2

D

}
. (5.88)

2. Let h2 → 0 in such a way that nh2
2/log h2 → ∞, and let ε→ 0 so that

ε = Ω

(√
log rn

nh2
2

)
, (5.89)

where rn = Ω(h−1
2 ). Then (5.88) holds for sufficiently large n.

From (D2) in Assumption 5.1 and (K1) in Assumption 5.2, it’s easy to see
that (5.86) is satisfied. Also, since

h2 �
(

log n
n

) 1
2+2β

, (5.90)

it’s clear that nh2
2/log h2 → ∞. Part 2 of Lemma 5.3 shows that there exist c2

and c3 such that

P

(
sup

(xi ,xj)∈Xi×Xj

| p̂(xi, xj)−Ep̂(xi, xj)| ≥
ε

2

)
(5.91)

≤ c2 exp
(
−c3n

β
1+β (log n)

1
1+β ε2

)
(5.92)
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for all ε satisfying (5.89).
This shows that for any i, j ∈ {1, . . . , d} with i 6= j, the bivariate kernel

density estimate p̂(xi, xj) is uniformly close to Ep̂(xi, xj). Note that Ep̂(xi, xj)
can be written as

Ep̂(xi, xj) =
∫ 1

h2
2

K
(

ui − xi

h2

)
K
(

vj − xj

h2

)
p∗(ui, vj) duidvj. (5.93)

The next lemma, from Rigollet and Vert [2009], provides a uniform deviation
bound on the bias term Ep̂(xi, xj)− p∗(xi, xj).

Lemma 5.4. [Rigollet and Vert, 2009] Under (D1) in Assumption 5.1 and (K3) in
Assumption 5.2, we have

sup
(xi ,xj)∈Xi×Xj

∣∣Ep̂(xi, xj)− p∗(xi, xj)
∣∣ ≤ L1hβ

2

∫
X 2

(u2 + v2)β/2K(u)K(v) dudv.

(5.94)

where L is defined in (D1) of Assumption 5.1.

Let c4 = L1

∫
X 2

(u2 + v2)β/2K(u)K(v) dudv. From the discussion of Example

6.1 in Rigollet and Vert [2009] and (K1) in Assumption 5.2, we know that
c4 < ∞ and only depends on K and β. Therefore

P

(
sup

(xi ,xj)∈Xi×Xj

|p∗(xi, xj)−Ep̂(xi, xj)| ≥
ε

2

)
= 0 (5.95)

for ε ≥ 4c4hβ
2 .

The desired result in Lemma 8.3 is an exponential probability inequality
showing that p̂(xi, xj) is close to p∗(xi, xj). To obtain this, we use a union
bound:

P

(
max

(i,j)∈{1,...,d}×{1,...,d}
sup

(xi ,xj)∈Xi×Xj

| p̂(xi, xj)− p∗(xi, xj)| ≥ ε

)

≤ d2P

(
sup

(xi ,xj)∈Xi×Xj

| p̂(xi, xj)−Ep̂(xi, xj)| ≥
ε

2

)

+ d2P

(
sup

(xi ,xj)∈Xi×Xj

|p∗(xi, xj)−Ep̂(xi, xj)| ≥
ε

2

)
. (5.96)

Choosing

ε = Ω

(
4c4

√
log n + log d

nβ/(1+β)

)
, (5.97)

the result directly follows by combining (5.92) and (5.95)
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5.7.0.4 Proof of Theorem 5.1

First, from (D2) in Assumption 5.1 and Lemma 8.3, we have for any i 6= j,

max
(i,j)∈{1,...,d}×{1,...,d}

sup
(xi ,xj)∈Xi×Xj

(
p̂(xi, xj)
p∗(xi, xj)

− 1
)

(5.98)

= OP

(√
log n + log d

nβ/(β+1)

)
. (5.99)

The next lemma bounds the deviation of R̂( p̂F) from R(p∗F) over different
choices of F ∈ Fd with |E(F)| ≤ k. In the following, we let

F (k)
d = {F ∈ Fd : |E(F)| ≤ k} (5.100)

denote the family of d-node forests with no more than k edges.

Lemma 5.5. Under the assumptions of Theorem 5.1, we have

sup
F∈F (k)

d

|R̂( p̂F)− R(p∗F)| = OP

(
k

√
log n + log d

nβ/(β+1) + d

√
log n + log d

n2β/(1+2β)

)
.

Proof. For any F ∈ F (k)
d , we have

|R̂( p̂F)− R(p∗F)| ≤ A1 + A2 (5.101)

where

A1 =
∣∣∣∣ ∑
(i,j)∈E(F)

(∫
Xi×Xj

p∗(xi, xj) log
p∗(xi, xj)

p∗(xi)p∗(xj)
dxidxj (5.102)

−
∫
Xi×Xj

p̂(xi, xj) log
p̂(xi, xj)

p̂(xi) p̂(xj)
dxidxj

)∣∣∣∣, (5.103)

and

A2 =
∣∣∣∣ ∑
k∈VF

(∫
Xk

p∗(xk) log p∗(xk)dxk −
∫
Xk

p̂(xk) log p̂(xk)dxk

)∣∣∣∣. (5.104)

Defining p∗ij = p∗(xi, xj) and p̂ij = p̂(xi, xj), we further have It now suffices to show
that

A1 = OP

(
k

√
log n + log d

nβ/(β+1)

)
(5.105)

and

A2 = OP

(
d

√
log n + log d

n2β/(1+2β)

)
. (5.106)

In the sequel, we only prove (5.105); (5.106) follows in the same way. We will also
exploit the fact that the univariate and bivariate densities are assumed to have the same



5.7 A P P E N D I X : T E C H N I C A L P RO O F S 131

smoothness parameter β, therefore the univariate terms are of higher order, and so can
be safely ignored.

To show (5.105), using the fact that max(i,j)∈{1,...,d}×{1,...,d} p∗(xi, xj) ≤ c2, it’s
sufficient to prove that

max
(i,j)∈{1,...,d}×{1,...,d}

sup
(xi ,xj)∈Xi×Xj

|p∗(xi, xj)− p̂(xi, xj)| (5.107)

= OP

(√
log n + log d

nβ/(β+1)

)
(5.108)

and

max
(i,j)∈{1,...,d}×{1,...,d}

D(p∗ij‖ p̂ij) = OP

(√
log n + log d

nβ/(β+1)

)
. (5.109)

Equation (5.108) directly follows from (5.51) in Lemma 8.3, while (5.109) follows
from the fact that, for any densities p and q, where q is strictly positive,

D(p‖q) =
∫ p(x)

q(x)
log

p(x)
q(x)

q(x)dx. (5.110)

By a Taylor expansion, for x ≈ 1,

x log x = (x− 1) + o (x− 1) (5.111)

and we then have

D(p∗ij‖ p̂ij) = OP

(
sup

(xi ,xj)∈Xi×Xj

|p∗(xi, xj)− p̂(xi, xj)|
)

. (5.112)

The desired result follows by combining (5.108) and (5.109).

The next auxiliary lemma is also needed to obtain the main result. It shows
that R̂( p̂F) does not deviate much from R( p̂F) uniformly over different choices
of F ∈ F (k)

d .

Lemma 5.6. Under the assumptions of Theorem 5.1, we have

sup
F∈F (k)

d

|R( p̂F)− R̂( p̂F)| = OP

(
k

√
log n + log d

nβ/(β+1) + d

√
log n + log d

n2β/(1+2β)

)
.
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Proof. Following the same line of argument as in Lemma 5.5, we have for all F ∈
F (k)

d ,

|R( p̂F)− R̂( p̂F)| (5.113)

≤
∣∣∣∣ ∑
(i,j)∈E(F)

(∫
Xi×Xj

p∗(xi, xj) log
p̂(xi, xj)

p̂(xi) p̂(xj)
dxidxj (5.114)

−
∫
Xi×Xj

p̂(xi, xj) log
p̂(xi, xj)

p̂(xi) p̂(xj)
dxidxj

)∣∣∣∣
+
∣∣∣∣ ∑
k∈VF

(∫
Xk

p∗(xk) log p̂(xk)dxk −
∫
Xk

p̂(xk) log p̂(xk)dxk

)∣∣∣∣
= OP

 ∑
(i,j)∈E(F)

∣∣∣∣ sup
(xi ,xj)

|p∗(xi, xj)− p̂(xi, xj)|
∫

log p̂(xi, xj)dxidxj

∣∣∣∣


+
∣∣∣∣ ∑
k∈VF

(∫
Xk

p∗(xk) log p̂(xk)dxk −
∫
Xk

p̂(xk) log p̂(xk)dxk

)∣∣∣∣.
From (5.98), we get that

max
(i,j)∈{1,...,d}×{1,...,d}

log | p̂(xi, xj)| < max{| log c2|, | log c1|}+ 1 (5.115)

for large enough n. The result then directly follows from (5.51) and (5.52) in Lemma
8.3.

The proof of the main theorem follows by repeatedly applying the previous
two lemmas. As in Proposition 5.2, with

p∗
F(k)

d
= arg min

qF∈P
(k)
d

R(qF), (5.116)

Let ψ(n, d, β) = k

√
log n + log d

nβ/(β+1) + d

√
log n + log d

n2β/(1+2β) . We have

R( p̂
F̂(k)

d
)− R(p∗

F(k)
d

)

= R( p̂
F̂(k)

d
)− R̂( p̂

F̂(k)
d

) + R̂( p̂
F̂(k)

d
)− R(p∗

F(k)
d

) (5.117)

= R̂( p̂
F̂(k)

d
)− R(p∗

F(k)
d

) + OP (ψ(n, d, β)) (5.118)

≤ R̂( p̂
F(k)

d
)− R(p∗

F(k)
d

) + OP (ψ(n, d, β)) (5.119)

= R(p∗
F(k)

d
)− R(p∗

F(k)
d

) + OP (ψ(n, d, β)) (5.120)

= OP

(
k

√
log n + log d

nβ/(β+1) + d

√
log n + log d

n2β/(1+2β)

)
. (5.121)

where (5.118) follows from Lemma 5.6, (5.119) follows from the fact that p̂
F̂(k)

d

is the minimizer of R̂(·), and (5.120) follows from Lemma 5.5.
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5.7.0.5 Proof of Theorem 5.2

To simplify notation, we denote

φn(k) = k

√
log n + log d

nβ/(β+1) (5.122)

ψn(d) = d

√
log n + log d

n2β/(1+2β) . (5.123)

Following the same proof as Lemma 5.6, we obtain the following.

Lemma 5.7. Under the assumptions of Theorem 5.1, we have

sup
F∈F (k)

d

|R( p̂F)− R̂n2( p̂F)| = OP

(
φn(k) + ψn(d)

)
. (5.124)

where R̂n2 is the held out risk.

To prove Theorem 5.2, we now have

R( p̂
F̂(k̂)

d
)− R( p̂

F̂(k∗)
d

) (5.125)

= R( p̂
F̂(k̂)

d
)− R̂n2( p̂

F̂(k̂)
d

) + R̂n2( p̂
F̂(k̂)

d
)− R( p̂

F̂(k∗)
d

) (5.126)

= OP(φn(k̂) + ψn(d)) + R̂n2( p̂
F̂(k̂)

d
)− R( p̂

F̂(k∗)
d

) (5.127)

≤ OP(φn(k̂) + ψn(d)) + R̂n2( p̂
F̂(k∗)

d
)− R( p̂

F̂(k∗)
d

) (5.128)

= OP

(
φn(k̂) + φn(k∗) + ψn(d)

)
. (5.129)

where (5.128) follows from the fact that k̂ is the minimizer of R̂n2(·).

5.7.0.6 Proof of Theorem 5.3

Using the shorthand

φn(k) = k

√
log n + log d

nβ/(1+β) (5.130)

ψn(d) = d

√
log n + log d

n2β/(1+2β) (5.131)

We have that

R( p̂F̂n2
)− R( p̂F∗) = R( p̂F̂n2

)− R̂n2( p̂F̂n2
) + R̂n2( p̂F̂n2

)− R( p̂F∗) (5.132)

= OP(φn(k̂) + ψn(d)) + R̂n2( p̂F̂n2
)− R( p̂F∗) (5.133)

≤ OP(φn(k̂) + ψn(d)) + R̂n2( p̂F∗)− R( p̂F∗) (5.134)

= OP(φn(k̂) + φn(k∗) + ψn(d)) (5.135)

(5.136)

where line 5.134 follows because F̂n2 is the minimizer of R̂n2(·).
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5.7.0.7 Proof of Theorem 5.4

We begin by showing an exponential probability inequality on the difference
between the empirical and population mutual informations.

Lemma 5.8. Under Assumptions 5.1, 5.2, there exist generic constants c5 and c6

satisfying

P
(
|I(Xi; Xj)− Î(Xi; Xj)| > ε

)
≤ c5 exp

(
−c6n

β
1+β (log n)

1
1+β ε2

)
. (5.137)

for arbitrary i, j ∈ {1, . . . , d} with i 6= j, and ε→ 0 so that

ε = Ω

(√
log rn

nh2
2

)
, (5.138)

where rn = Ω(h−1
2 ).

Proof. For any ε = Ω

(√
log rn

nh2
2

)
, we have

P
(
|I(Xi; Xj)− Î(Xi; Xj)| > ε

)
= P

(
|
∫

p∗(xi, xj) log
p∗(xi, xj)

p∗(xi)p∗(xj)
dxidxj (5.139)

−
∫

p̂(xi, xj) log
p̂(xi, xj)

p̂(xi) p̂(xj)
dxidxj| > ε

)
≤ P

(
|
∫ (

p∗(xi, xj) log p∗(xi, xj)− p̂(xi, xj) log p̂(xi, xj)
)

dxidxj| >
ε

2

)
+ P

(
|
∫ (

p∗(xi, xj) log p∗(xi)p∗(xj)

− p̂(xi, xj) log p̂(xi) p̂(xj)
)

dxidxj| >
ε

2

)
(5.140)

Since the second term of (5.140) only involves univariate kernel density estimates,
this term is dominated by the first term, and we only need to analyze

P

(
|
∫
Xi×Xj

(
p∗(xi, xj) log p∗(xi, xj)− p̂(xi, xj) log p̂(xi, xj)

)
dxidxj| >

ε

2

)
.

The desired result then follows from the same analysis as in Lemma 5.5.

Let

Ln = Ω

(√
log n + log d

nβ/(1+β)

)
(5.141)
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be defined as in Assumption 5.3. To prove the main theorem, we see the event
F̂(k)

d 6= F(k)
d implies that there must be at least exist two pairs of edges (i, j)

and (k, `), such that

sign
(

I(Xi, Xj)− I(Xk, X`)
)
6= sign

(
Î(Xi, Xj)− Î(Xk, X`)

)
. (5.142)

Therefore, we have

P
(

F̂(k)
d 6= F(k)

d

)
(5.143)

≤ P
((

I(Xi, Xj)− I(Xk, X`)
)
·
(

Î(Xi, Xj)− Î(Xk, X`)
)
≤ 0, ∃(i, j), (k, `)

)
.

With d nodes, there can be no more than d4/2 pairs of edges; thus, applying
a union bound yields

P
((

I(Xi, Xj)− I(Xk, X`)
)
·
(

Î(Xi, Xj)− Î(Xk, X`)
)
≤ 0, for some (i, j), (k, `)

)
≤ d4

2
max

((i,j),(k,`))∈J
P
((

I(Xi, Xj)− I(Xk, X`)
)
·
(

Î(Xi, Xj)− Î(Xk, X`)
)
≤ 0

)
.

Assumption 5.3 specifies that

min
((i,j),(k,`))∈J

|I(Xi, Xj)− I(Xk, X`)| > 2Ln. (5.144)

Therefore, in order for (5.142) hold, there must exist an edge (i, j) ∈ J such
that

|I(Xi, Xj)− Î(Xi, Xj)| > Ln. (5.145)

Thus, we have

max
((i,j),(k,`))∈J

P
((

I(Xi, Xj)− I(Xk, X`)
)
·
(

Î(Xi, Xj)− Î(Xk, X`)
)
≤ 0

)
≤ max

i,j∈{1,...,d},i 6=j
P
(
|I(Xi, Xj)− Î(Xi, Xj)| > Ln

)
(5.146)

≤ c5 exp
(
−c6n

β
1+β (log n)

1
1+β L2

n

)
. (5.147)

where (5.147) follows from Lemma 5.8.
Chaining together the above arguments, we obtain

P
(

F̂(k)
d 6= F(k)

d

)
(5.148)

≤ d4 max
i,j∈{1,...,d},i 6=j

P
(
|I(Xi, Xj)− Î(Xi, Xj)| > Ln

)
(5.149)

≤ d4c5 exp
(
−c6n

β
1+β (log n)

1
1+β L2

n

)
(5.150)

= o
(

c5 exp
(

4 log d− c6(log n)
1

1+β log d
))

(5.151)

= o(1). (5.152)

The conclusion of the theorem now directly follows.
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5.7.1 Computation of the Mutual Information Matrix

In this appendix we explain different methods for computing the mutual
information matrix, and making the tree estimation more efficient. One way
to evaluate the empirical mutual information is to use

Î(Xi; Xj) =
1
n1

∑
s∈D1

log
p̂n1(X(s)

i , X(s)
j )

p̂n1(X(s)
i ) p̂n1(X(s)

j )
. (5.153)

Compared with our proposed method

În1(Xi, Xj) =
1

m2

m

∑
k=1

m

∑
`=1

p̂n1(xki, x`j) log
p̂n1(xki, x`j)

p̂n1(xki) p̂n1(x`j)
, (5.154)

(5.153) is somewhat easier to calculate. However, if the sample size in D1 is
small, the approximation error can be large. A different analysis is needed to
provide justification of the method based on (5.153), which would be more
difficult since p̂n1(·) is dependent on D1. For these reasons we use the method
in (5.154).

Also, note that instead of using the grid based method to evaluate the
numerical integral, one could use sampling. If we can obtain m1 i.i.d. samples
from the bivariate density p̂(Xi, Xj),{

(X(s)
i , X(s)

j )
}m1

s=1

i.i.d.∼ p̂n1(xi, xj), (5.155)

then the empirical mutual information can be evaluated as

Î(Xi; Xj) =
1

m1

m1

∑
s=1

log
p̂(X(s)

i , X(s)
j )

p̂(X(s)
i ) p̂(X(s)

j )
. (5.156)

Compared with (5.153), the main advantage of this approach is that the
estimate can be arbitrarily close to (5.25) for large enough m1 and m. Also,
the computation can be easier compared to the brutal-force algorithm

Let p̂n1(Xi, Xj) be the bivariate kernel density estimator on D1. To sample a

point from p̂n1(Xi, Xj), we first random draw a sample (X(k′)
i , X(`′)

j ) from D1,
and then sample a point (X, Y) from the bivariate distribution

(X, Y) ∼ 1
h2

2
K

(
X(k′)

i − ·
h2

)
K

X(`′)
j − ·

h2

 . (5.157)

Though this sampling strategy is superior to the brutal-force algorithm, it
requires evaluation of the bivariate kernel density estimates on many random
points, which is time consuming; the grid-based method is preferred.
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In our two-stage procedure, the stage requires calculation of the empirical
mutual information Î(Xi; Xj) for (d

2) entries. Each requires O(m2n1) work to
evaluate the bivariate and univariate kernel density estimates on the m×m
grid, in a naive implementation. Therefore, the total time to calculate the
empirical mutual information matrix M is O(m2n1d2). In the second stage,
the time complexity of the Chow-Liu algorithm is dominated by that of the
first step. Therefore the total time complexity is O

(
m2n1d2). The first stage

requires O(d2) space to store the matrix M and O(m2n1) space to evaluate
the kernel density estimates on D1. The space complexity for the Chow-Liu
algorithm is O(d2), and thus the total space complexity is O(d2 + m2n1).

Algorithm 5.7.1 More efficient calculation of the mutual information matrix M.

1: Initialize M = 0d×d and H(i) = 0n1×m for i = 1, . . . , d.

2: % calculate and pre-store the univariate KDE
3: for k = 1, . . . , d do
4: for k′ = 1, . . . , m do

5: p̂(x(k′)
k )← 1

n1
∑

s∈D1

1
h1

K

(
X(s)

k − x(k′)
k

h1

)
6: for k′ = 1, . . . , m do
7: % calculate the components used for the bivariate KDE
8: for i′ = 1, . . . , n1 do
9: for i = 1, . . . , d do

10: H(i)(i′, k′)← 1
h2

K

(
Xi′

i − x(k′)
i

h2

)
11: % calculate the mutual information matrix
12: for `′ = 1, . . . , m do
13: for i = 1, . . . , d− 1 do
14: for j = i + 1, . . . , d do
15: p̂(x(k′)

i , x(`′)
j )← 0

16: for i′ = 1, . . . , n1 do
17: p̂(x(k′)

i , x(`′)
j )← p̂(x(k′)

i , x(`′)
j ) + H(i)(i′, k′) · H(j)(i′, `′)

18: p̂(x(k′)
i , x(`′)

j )← p̂(x(k′)
i , x(`′)

j )/n1

19: M(i, j)← M(i, j) +
1

m2 p̂(x(k′)
i , x(`′)

j ) · log
p̂(x(k′)

i , x(`′)
j )

p̂(x(k′)
i ) · p̂(x(`′)

j )

The quadratic time and space complexity in the number of variables d is
acceptable for many practical applications but can be prohibitive when the
dimension d is large. The main bottleneck is to calculate the empirical mutual
information matrix M. Due to the utilization of the kernel density estimate,
the time complexity is O(d2m2n1). The straightforward implementation of the
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brutal-form algorithm is conceptually easy but computationally inefficient,
due to many redundant operations. For example, in the nested for loop,
many components of the bivariate and univariate kernel density estimates
are repeatedly evaluated. Here we suggest an alternative method which
can significantly reduce such redundancy at the price of increased but still
affordable space complexity.

The main technique used in the speed up algorithm is to change the order
of the multiple nested for loops, combined with some pre-calculation. This
algorithm can significantly boost the empirical performance, although the
worst case time complexity remains the same. An alternative suggested by
Bach and Jordan [2003] is to approximate the mutual information, although
this would require further analysis and justification.
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6
MT-SPAM: MULTI-TASK SPARSE ADDITIVE MODELS

In this chapter, we present a new class of methods for nonparametric
multi-task regression and multi-class classification called sparse addi-
tive models. Our models, named MT-SpAM, combine ideas from sparse
linear modeling and additive nonparametric regression. Especially, we
utilize a regularization method that enforces common sparsity pat-
terns across different function components in a nonparametric additive
model. We derive an algorithm for fitting the models that is practical
and effective even when the number of predictors is larger than the
sample size. The algorithms employ a coordinate descent approach
that is based on a functional soft-thresholding operator. The frame-
work yields several new models, including multi-task sparse additive
models, multi-response sparse additive models, and sparse additive
multi-category logistic regression. These methods have good theoretical
properties and perform well on both synthetic and real data. We also
present some newest insights on the sparse backfitting algorithms.

6.1 introduction and motivation

Substantial progress has been made recently on the problem of fitting high
dimensional linear regression models of the form

Y = β0 +
d

∑
j=1

β jXj + ε.

Here Y is a real-valued response, Xj is a predictor (or covariate) and ε is a
mean zero error term. Finding an estimate of β = (β1, . . . , βd)T when d > n
that is both statistically well-behaved and computationally efficient has proved
challenging; however, under the assumption that the vector β is sparse, the
lasso estimator (Tibshirani [1996]) has been remarkably successful.

Let (X(1), Y(1)), . . . , (X(n), Y(n)) be observed data points where

X(i) = (X(i)
1 , . . . , X(i)

d )T ∈ Rd

141
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be the d-dimensional covariate. The lasso estimator β̂ minimizes the `1-
penalized sum of squares

β̂ = arg min
β

{
1

2n

n

∑
i=1

(Y(i) − β0 +
d

∑
j=1

β jX
(i)
j )2 + λ

d

∑
j=1
|β j|
}

(6.1)

with the `1 penalty ‖β‖1 encouraging sparse solutions, where many com-
ponents β̂ j are zero. The good empirical success of this estimator has been
recently backed up by results confirming that it has strong theoretical proper-
ties; see [Bunea et al., 2007, Greenshtein and Ritov, 2004, Zhao and Yu, 2007,
Meinshausen and Yu, 2009, Wainwright, 2006].

Though these high dimensional parametric models are much better un-
derstood now. Their finite-dimensional parametric assumptions may re-
strict their applications. In contrast, the nonparametric regression model
Y(i) = m(X(i)) + ε(i), where m is a general smooth function, relaxes the strong
assumptions made by a linear model, but is much more challenging in high
dimensions. Hastie and Tibshirani [1999] introduced the class of additive
models of the form

Y(i) =
d

∑
j=1

f j(X(i)
j ) + ε(i). (6.2)

This additive combination of univariate functions—one for each covariate
Xj—is less general than joint multivariate nonparametric models, but can be
more interpretable and easier to fit; in particular, an additive model can be es-
timated using a coordinate descent Gauss-Seidel procedure, called backfitting.
Unfortunately, additive models only have good statistical and computational
behavior when the number of variables d is not large relative to the sample
size n, so their usefulness is limited in the high dimensional setting. For this,
we investigate sparse additive models (SpAM), which extend the advantages
of sparse linear models to the additive, nonparametric setting. The underlying
model is the same as in (6.2), but we impose a sparsity constraint on the index
set {j : f j 6≡ 0} of functions f j that are not identically zero. Lin and Zhang
[2006] have proposed COSSO, an extension of lasso to this setting, for the case
where the component functions f j belong to a reproducing kernel Hilbert
space (RKHS). They penalize the sum of the RKHS norms of the component
functions. Yuan [2007] proposed an extension of the non-negative garrote to
this setting. As with the parametric non-negative garrote, the success of this
method depends on the initial estimates of component functions f j.

The above models have a real-valued response Y. In applications, many
learning problems can be naturally formulated in terms of multi-category clas-
sification or multi-task regression. In a multi-category classification problem,
it is required to discriminate between the different categories using a set of
high-dimensional feature vectors—for instance, classifying the type of tumor
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in a cancer patient from gene expression data. In a multi-task regression prob-
lem, it is of interest to form several regression estimators for related data sets
that share common types of covariates—for instance, predicting test scores
across different school districts. In other areas, such as multi-channel signal
processing, it is of interest to simultaneously decompose multiple signals in
terms of a large common overcomplete dictionary, which is a multi-response
regression problem. In each case, while the details of the estimators vary from
instance to instance, across categories, or tasks, they may share a common
sparsity pattern of relevant variables selected from a high-dimensional space.
How to find this common sparsity pattern is an interesting learning task.

In the parametric setting, progress has been recently made on such problems
using regularization based on the sum of supremum norms [Turlach et al.,
2005, Tropp et al., 2006, Zhang, 2006]. For example, let

Dn =
{
(X(i),(k), Y(i),(k))nk

i=1

}K

k=1
(6.3)

be the observed data points for K tasks. We consider the K-task linear regres-
sion problem

Y(i),(k) = β
(k)
0 +

d

∑
j=1

β
(k)
j X(i),(k)

j + ε
(k)
i

where the superscript k indexes the tasks, and the subscript i = 1, . . . , nk in-
dexes the instances within a task. Using quadratic loss, Zhang [2006] suggests
to estimate β̂ by minimizing the following objective function

K

∑
k=1

 1
2nk

nk

∑
i=1

(
Y(i),(k) − β

(k)
0 −

d

∑
j=1

β
(k)
j X(i),(k)

j

)2
+ λ

d

∑
j=1

max
k
|β(k)

j | (6.4)

where maxk |β
(k)
j | = ‖β j‖∞ is the sup-norm of the vector β j ≡ (β

(1)
j , . . . , β

(K)
j )T

of coefficients for the jth feature across different tasks. The sum of sup-norms
regularization has the effect of “grouping” the elements in β j such that they
can be shrunk towards zero simultaneously. The problems of multi-response
(or multivariate) regression and multi-category classification can be viewed as
a special case of the multi-task regression problem where tasks share the same
design matrix. Turlach et al. [2005] and Fornasier and Rauhut [2008] propose
the same sum of sup-norms regularization as in (6.121) for such problems
in the linear model setting. In related work, Zhang et al. [2008] propose the
sup-norm support vector machine, demonstrating its effectiveness on gene
data.

In this chapter we develop new methods for nonparametric estimation for
such multi-task and multi-category regression and classification problems.
Rather than fitting a linear model, we instead estimate smooth functions of
the data, and formulate a regularization framework that encourages joint
functional sparsity, where the component functions can be different across
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tasks while sharing a common sparsity pattern. Building on a recently pro-
posed method called sparse additive models, or “SpAM” [Ravikumar et al.,
2007], we propose a convex regularization functional that can be viewed as
a nonparametric analog of the sum of sup-norms regularization for linear
models. Based on this regularization functional, we develop new models for
nonparametric multi-task regression and classification, including multi-task
sparse additive models (MT-SpAM), multi-response sparse additive models
(MR-SpAM), and sparse multi-category additive logistic regression (SMALR).

The main contributions of this work include (1) an efficient iterative al-
gorithm based on a functional soft-thresholding operator derived from sub-
differential calculus, leading to the multi-task and multi-response SpAM
procedures, (2) a penalized local scoring algorithm that corresponds to fitting
a sequence of multi-response SpAM estimates for sparse multi-category addi-
tive logistic regression, and (3) the successful application of this methodology
to multi-category tumor classification and biomarker discovery from gene
microarray data. In the sequel, we first present some background materials
on single-task sparse additive models due to its notational simplicity. We then
show how to generalize the SpAM to multi-task settings. Thorough experi-
mental results on both simulated and real-world datasets are also provided.

6.2 background materials on single-task sparse additive mod-
els

In this section, we explain some backgrounds on single-task sparse additive
models. The results of this section have appeared in Ravikumar et al. [2009a]
(with Han Liu as a co-author) and the thesis of Pradeep Ravikumar. Since
the notation and key ideas are highly related to the remaining contents, we
present here for completeness. However, we do not treat the materials of this
section as novel contribution of this thesis.

Our main results include the formulation of a convex optimization problem
for estimating a sparse additive model, an efficient backfitting algorithm for
constructing the estimator, and theoretical results that analyze the effective-
ness of the estimator in the high dimensional setting. Our theoretical results
are of two different types. First, we show that, under suitable choices of
the design parameters, the SpAM backfitting algorithm recovers the correct
sparsity pattern asymptotically; this is a property we call sparsistency, as a
shorthand for “sparsity pattern consistency.” Second, we show that that the
estimator is persistent, in the sense of Greenshtein and Ritov [2004], which is a
form of risk consistency.
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6.2.0.1 Main Ideas

Let (X(1), Y(1)), . . . , (X(n), Y(n)) be observed data points where

X(i) = (X(i)
1 , . . . , X(i)

d )T ∈ Rd

be the d-dimensional covariate. We form an additive model

Y(i) = α +
d

∑
j=1

β jgj(X(i)
j ) + ε(i) (6.5)

with the identifiability conditions that the component functions have mean

zero and norm one:
∫

gj(xj)dP(xj) = 0 and
∫

g2
j (xj)dP(xj) = 1. Further, we

impose the sparsity condition ∑d
j=1 |β j| ≤ Ln and the smoothness condition

gj ∈ Tj where Tj is some class of smooth functions. While this problem is not
convex, it makes clear the way in which sparsity is encouraged, through the `1

penalty ∑d
j=1 |β j| ≤ Ln which induces sparsity. Below, we derive an alternative

formulation that is convex. This approach is closely related to the COSSO,
introduced by Lin and Zhang [2006], in which a regression function m(x) is
assumed to be a sparse linear combination of smooth functions. However,
Lin and Zhang [2006] put a sparsity constraint on the second derivatives of
the gj. Our formulation of sparse additive models allows the use of general
smoothing operators, not only smoothing splines. As we explain later, SpAM
can also be though of as a functional version of the grouped lasso [Yuan and
Lin, 2006].

6.2.0.2 Notation and Assumptions

Given a general nonparametric regression model:

Y(i) = m(X(i)) + ε(i), (6.6)

we assume that ε(i) ∼ N(0, σ2) independent of X(i) and

m(x) =
d

∑
j=1

f j(xj). (6.7)

Let µ denote the distribution of X, and let µj denote the marginal distribution
of Xj for each j = 1, . . . , d. For a function f j on [0, 1] denote its L2(µj) norm
by

‖ f j‖µj =

√∫ 1

0
f 2
j (x) dµj(x) =

√
E( f j(Xj)2). (6.8)

When the variable Xj is clear from the context, we remove the dependence on
µj in the notation ‖ · ‖µj and simply write ‖ f j‖.
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For j ∈ {1, . . . , d}, let Hj denote the Hilbert subspace L2(µj) of measurable
functions f j(xj) of the single scalar variable xj with zero mean, E( f j(Xj)) = 0.
Thus, Hj has the inner product〈

f j, f ′j
〉

= E
(

f j(Xj) f ′j (Xj)
)

(6.9)

and ‖ f j‖ =
√

E( f j(Xj)2) < ∞. Let H = H1 ⊕ H2 ⊕ . . . ⊕ Hd denote the
Hilbert space of functions of (x1, . . . , xd) that have the additive form: m(x) =
∑j f j(xj), with f j ∈ Hj, j = 1, . . . , d.

Let {ψjk, k = 0, 1, . . .} denote a uniformly bounded, orthonormal basis with
respect to L2[0, 1]. Unless stated otherwise, we assume that f j ∈ Tj where

Tj =

{
f j ∈ Hj : f j(xj) =

∞

∑
k=0

β jkψjk(xj),
∞

∑
k=0

β2
jkk2νj ≤ C2

}
(6.10)

for some 0 < C < ∞. We shall take νj = 2 although the extension to other
levels of smoothness is straightforward. It is also possible to adapt to νj
although we do not pursue that direction here.

Let Λmin(A) and Λmax(A) denote the minimum and maximum eigenvalues
of a square matrix A. If v = (v1, . . . , vk)T is a vector, we use the norms

‖v‖ =

√√√√ k

∑
j=1

v2
j , ‖v‖1 =

k

∑
j=1
|vj|, ‖v‖∞ = max

j
|vj|. (6.11)

6.2.0.3 A Convex Formulation and the Algorithm

The outline of the derivation of our algorithm is as follows. We first formulate
a population level optimization problem, and show that the minimizing
functions can be obtained by iterating through a series of soft-thresholded
univariate conditional expectations. We then plug in smoothed estimates of
these univariate conditional expectations, to derive our sparse backfitting
algorithm.

Population SpAM. For simplicity, assume that E(Y(i)) = 0. The standard
additive model optimization problem in L2(µ) (the population setting) is

min
f j∈Hj, 1≤j≤d

E
(

Y−∑d
j=1 f j(Xj)

)2
(6.12)
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where the expectation is taken with respect to X and the noise ε. Now consider
the following modification of this problem that introduces a scaling parameter
for each function, and that imposes additional constraints:

min
β∈Rd,gj∈Hj

E
(

Y−∑d
j=1 β jgj(Xj)

)2
(6.13)

subject to:
d

∑
j=1
|β j| ≤ L, (6.14)

E
(

g2
j

)
= 1, j = 1, . . . , d. (6.15)

noting that gj is a function while β = (β1, . . . , βd)T is a vector. The constraint
that β lies in the `1-ball {β : ‖β‖1 ≤ L} encourages sparsity of the estimated
β, just as for the parametric lasso [Tibshirani, 1996]. It is convenient to absorb
the scaling constants β j into the functions f j, and re-express the minimization
in the following equivalent Lagrangian form:

L( f , λ) =
1
2

E
(

Y−∑d
j=1 f j(Xj)

)2
+ λ

d

∑
j=1

√
E( f 2

j (Xj)). (6.16)

Theorem 6.1. The minimizers f j ∈ Hj of (6.16) satisfy

f j =

1− λ√
E(P2

j )


+

Pj a.s. (6.17)

where [·]+ denotes the positive part, and Pj = E[Rj |Xj] denotes the projection of
the residual Rj = Y−∑k 6=j fk(Xk) ontoHj.

Proof of Theorem 6.1. Consider the minimization of the Lagrangian

min
{ f j∈Hj}

L( f , λ) ≡ 1
2

E
(

Y−∑d
j=1 f j(Xj)

)2
+ λ

d

∑
j=1

√
E( f j(Xj)2) (6.18)

with respect to f j ∈ Hj, holding the other components { fk, k 6= j} fixed. The sta-
tionary condition is obtained by setting the Fréchet derivative to zero. Denote by
∂jL( f , λ; ηj) the directional derivative with respect to f j in the direction ηj(Xj) ∈
Hj (E(ηj) = 0, E(η2

j ) < ∞). Then the stationary condition can be formulated as

∂jL( f , λ; ηj) =
1
2

E
[
( f j − Rj + λvj) ηj

]
= 0 (6.19)

where Rj = Y − ∑k 6=j fk is the residual for f j, and vj ∈ Hj is an element of the

subgradient ∂
√

E( f 2
j ), satisfying vj = f j/

√
E( f 2

j ) if E( f 2
j ) 6= 0 and vj ∈ {uj ∈

Hj| E(u2
j ) ≤ 1} otherwise.
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Using iterated expectations, the above condition can be rewritten as

E
[
( f j + λvj −E(Rj|Xj)) ηj

]
= 0. (6.20)

But since f j −E(Rj|Xj) + λvj ∈ Hj, we can compute the derivative in the direction
ηj = f j −E(Rj|Xj) + λvj ∈ Hj, implying that

E
[(

f j(xj)−E(Rj|Xj = xj) + λvj(xj)
)2
]

= 0; (6.21)

that is,

f j + λvj = E(Rj|Xj) a.s. (6.22)

Denote the conditional expectation E(Rj|Xj)—also the projection of the residual

Rj onto Hj—by Pj. Now if E( f 2
j ) 6= 0, then vj =

f j√
E( f 2

j )
, which from condi-

tion (6.22) implies√
E(P2

j ) =

√
E

[(
f j + λ f j/

√
E( f 2

j )
)2
]

(6.23)

=

1 +
λ√

E( f 2
j )

√E( f 2
j ) (6.24)

=
√

E( f 2
j ) + λ (6.25)

≥ λ. (6.26)

If E( f 2
j ) = 0, then f j = 0 a.e., and

√
E(v2

j ) ≤ 1. Equation (6.22) then implies that√
E(P2

j ) ≤ λ. (6.27)

We thus obtain the equivalence√
E(P2

j ) ≤ λ ⇐⇒ f j = 0 a.e. (6.28)

Rewriting equation (6.22) in light of (6.28), we obtain1 +
λ√

E( f 2
j )

 f j = Pj if
√

E(P2
j ) > λ

f j = 0 otherwise.

Using (6.25), we thus arrive at the soft thresholding update for f j:

f j =

1− λ√
E(P2

j )


+

Pj (6.29)

where [·]+ denotes the positive part and Pj = E[Rj |Xj]. �
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At the population level, the f j’s can be found by a coordinate descent
procedure that fixes ( fk : k 6= j) and fits f j by equation (6.17), then iterates
over j.

Data version of SpAM. To obtain a sample version of the population solution,
we insert sample estimates into the population algorithm, as in standard
backfitting [Hastie and Tibshirani, 1999]. Thus, we estimate the projection
Pj = E(Rj |Xj) by smoothing the residuals:

P̂j = SjRj (6.30)

where Sj is a linear smoother, such as a local linear or kernel smoother. Let

ŝj =
1√
n
‖P̂j‖ =

√
mean(P̂2

j ) (6.31)

be the estimate of
√

E(P2
j ). Using these plug-in estimates in the coordinate

descent procedure yields the SpAM backfitting algorithm given in Figure 42.
This algorithm can be seen as a functional version of the coordinate descent

algorithm for solving the lasso. In particular, if we solve the lasso by iteratively
minimizing with respect to a single coordinate, each iteration is given by soft
thresholding; see Figure 39. Convergence properties of variants of this simple
algorithm have been recently treated by Daubechies et al. [2004, 2007]. Our
sparse backfitting algorithm is a direct generalization of this algorithm, and it
reduces to it in case where the smoothers are local linear smoothers with large
bandwidths. That is, as the bandwidth approaches infinity, the local linear
smoother approaches a global linear fit, yielding the estimator P̂j(i) = β̂ jX

(i)
j .

When the variables are standardized, ŝj =

√
1
n ∑n

i=1 β̂2
j X(i)

j

2
= |β̂ j| so that the

soft thresholding in step (4) of the SpAM backfitting algorithm is the same as
the soft thresholding in step (3) in the coordinate descent lasso algorithm.

As an alternative to estimating the conditional expectations in (6.16) by
smoothing, we can define estimators by minimizing a sample version of the
problem. Thus, we would minimize

1
n

n

∑
i=1

(Y(i) −
d

∑
j=1

f j(X(i)
j ))2 (6.32)

subject to f j ∈ Tj, and

d

∑
j=1

√
1
n

n

∑
i=1

f 2
j (X(i)

j ) ≤ L,
1
n

n

∑
i=1

f j(X(i)
j ) = 0, j = 1, . . . , d. (6.33)

Note that disregarding the functional constraints f j ∈ Tj, and optimizing only
over the nd values f j(X(i)) leads to a finite dimensional convex optimization
problem.
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SPARSE BACKFITTING ALGORITHM

Input: Data (X(i), Y(i)), regularization parameter λ.

Initialize f̂ j = 0, for j = 1, . . . , d.

Iterate until convergence:

For each j = 1, . . . , d:

(1) Compute the residual: Rj = Y−∑k 6=j f̂k(Xk);

(2) Estimate Pj = E[Rj |Xj] by smoothing: P̂j = SjRj;

(3) Estimate norm: ŝ2
j = 1

n ∑n
i=1 P̂2

j (i);

(4) Soft-threshold: f̂ j =
[
1− λ/ŝj

]
+ P̂j;

(5) Center: f̂ j ← f̂ j −mean( f̂ j).

Output: Component functions f̂ j and estimator m̂(X(i)) = ∑j f̂ j(X(i)
j ).

Figure 38.: The sparse backfitting algorithm. The first two steps in the iterative algorithm
are the usual backfitting procedure; the remaining steps carry out functional soft
thresholding.

Basis Functions. It is useful to express the model in terms of basis functions.
Recall that Bj = (ψjk : k = 1, 2, . . .) is an orthonormal basis for Tj and that
supx |ψjk(x)| ≤ B for some B. Then

f j(xj) =
∞

∑
k=1

β jkψjk(xj) (6.34)

where β jk =
∫

f j(xj)ψjk(xj)dxj.

Let us also define

f̃ j(xj) =
q

∑
k=1

β jkψjk(xj) (6.35)

where q = qn is a truncation parameter. For the Sobolev space Tj of order

two we have that
∥∥∥ f j − f̃ j

∥∥∥2
= O(1/q4). Let S = {j : f j 6= 0}. Assuming

the sparsity condition |S| = O(1) it follows that ‖m− m̃‖2 = O(1/q4) where
m̃ = ∑j f̃ j. The usual choice is d � n1/5 yielding truncation bias ‖m− m̃‖2 =
O(n−4/5).

In this setting, the smoother can be taken to be the least squares projection
onto the truncated set of basis functions {ψj1, . . . , ψjq}; this is also called or-
thogonal series smoothing. Let Ψj denote the n× qn matrix given by Ψj(i, `) =



6.2 BAC K G RO U N D M AT E R I A L S O N S I N G L E - TA S K S PA R S E A D D I T I V E M O D E L S 151

COORDINATE DESCENT LASSO

Input: Data (X(i), Y(i)), regularization parameter λ.

Initialize β̂ j = 0, for j = 1, . . . , d.

Iterate until convergence:

For each j = 1, . . . , d:

(1) Compute the residual: Rj = Y−∑k 6=j β̂kXk;

(2) Project residual onto Xj: Pj = XT
j Rj

(3) Soft-threshold: β̂ j =
[
1− λ/|Pj|

]
+ Pj;

Output: Estimator m̂(X(i)) = ∑j β̂ jX
(i)
j .

Figure 39.: The SpAM backfitting algorithm is a functional version of the coordinate descent

algorithm for the lasso, which computes β̂ = arg min
1
2
‖Y− Xβ‖2

2 + λ‖β‖1.

ψj,`(X(i)
j ). The smoothing matrix is the projection matrix Sj = Ψj(ΨT

j Ψj)−1ΨT
j .

In this case, the backfitting algorithm in Figure 42 is a coordinate descent
algorithm for minimizing

1
2n

∥∥∥Y−∑d
j=1Ψjβ j

∥∥∥2

2
+ λ

d

∑
j=1

√
1
n

βT
j ΨT

j Ψjβ j

which is the sample version of (6.16). This is the Lagrangian of a second-
order cone program (SOCP), and standard convexity theory implies existence
of a minimizer. In Section 6.2.0.5 we prove theoretical properties of SpAM
assuming that this particular smoother is being used.

Connection with the Grouped Lasso. The SpAM model can be thought of as
a functional version of the grouped lasso [Yuan and Lin, 2006] as we now
explain. Consider the following linear regression model with multiple factors,

Y =
d

∑
j=1

Xjβ j + ε = Xβ + ε, (6.36)

where Y is an n× 1 response vector, ε is an n× 1 vector of iid mean zero
noise, Xj is an n× dj matrix corresponding to the j-th factor, and β j is the
corresponding dj × 1 coefficient vector. Assume for convenience (in this sub-
section only) that each Xj is orthogonal, so that XT

j Xj = Idj , where Idj is the



152 MT-SPAM: MULTI-TASK SPARSE ADDITIVE MODELS

dj × dj identity matrix. We use X = (X1, . . . , Xd) to denote the full design
matrix and use β = (βT

1 , . . . , βT
d )T to denote the parameter.

The grouped lasso estimator is defined as the solution of the following convex
optimization problem:

β̂(λn) = arg min
β

‖Y− Xβ‖2
2 + λn

d

∑
j=1

√
dj‖β j‖ (6.37)

where
√

dj scales the jth term to compensate for different group sizes.
It is obvious that when dj = 1 for j = 1, . . . , d, the grouped lasso becomes

the standard lasso. From the KKT optimality conditions, a necessary and
sufficient condition for β̂ = (β̂T

1 , . . . , β̂T
d )T to be the grouped lasso solution is

− XT
j (Y− Xβ̂) +

λ
√

dj β̂ j

‖β̂ j‖
= 0, ∀β̂ j 6= 0, (6.38)

‖XT
j (Y− Xβ̂)‖ ≤ λ

√
dj, ∀β̂ j = 0.

Based on this stationary condition, an iterative blockwise coordinate descent
algorithm can be derived; as shown by Yuan and Lin [2006], a solution to
(6.38) satisfies

β̂ j =

[
1−

λ
√

dj

‖Sj‖

]
+

Sj (6.39)

where Sj = XT
j (Y− Xβ\j), with β\j = (βT

1 , . . . , βT
j−1, 0T, βT

j+1, . . . , βT
d ). By iter-

atively applying (6.39), the grouped lasso solution can be obtained.
As discussed in the introduction, the COSSO model of Lin and Zhang

[2006] replaces the lasso constraint on ∑j |β j| with a RKHS constraint. The
advantage of our formulation is that it decouples smoothness (gj ∈ Tj) and
sparsity (∑j |β j| ≤ L). This leads to a simple algorithm that can be carried out
with any nonparametric smoother and scales easily to high dimensions.

6.2.0.4 Choosing the Regularization Parameter

We choose λ by minimizing an estimate of the risk. Let νj be the effective
degrees of freedom for the smoother on the jth variable, that is, νj = trace(Sj)
where Sj is the smoothing matrix for the j-th dimension. Also let σ̂2 be an
estimate of the variance. Define the total effective degrees of freedom as

df(λ) = ∑
j

νj I
(∥∥∥ f̂ j

∥∥∥ 6= 0
)

. (6.40)

Two estimates of risk are

Cp =
1
n

n

∑
i=1

(
Y(i) −

d

∑
j=1

f̂ j(Xj)

)2

+
2σ̂2

n
df(λ) (6.41)
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and

GCV(λ) =
1
n ∑n

i=1(Y(i) −∑j f̂ j(X(i)
j ))2

(1− df(λ)/n)2 . (6.42)

The first is Cp and the second is generalized cross validation but with degrees
of freedom defined by df(λ). A proof that these are valid estimates of risk is
not currently available; thus, these should be regarded as heuristics.

Based on the results in Wasserman and Roeder [2009] about the lasso, it
seems likely that choosing λ by risk estimation can lead to overfitting. One
can further clean the estimate by testing H0 : f j = 0 for all j such that f̂ j 6= 0.
For example, the tests in Fan and Jiang [2005] could be used.

6.2.0.5 Sparsistency

In the case of linear regression, with f j(Xj) = β∗Tj Xj, several authors have
shown that, under certain conditions on n, d, the number of relevant variables
s = |supp(β∗)|, and the design matrix X, the lasso recovers the sparsity
pattern asymptotically; that is, the lasso estimator β̂n is sparsistent:

P
(

supp(β∗) = supp(β̂n)
)
→ 1. (6.43)

Here, supp(β) =
{

j : β j 6= 0
}

. References include Wainwright [2006], Mein-
shausen and Bühlmann [2006], Zou [2005], Fan and Li [2001], and Zhao
and Yu [2007]. We show a similar result for sparse additive models under
orthogonal function regression.

In terms of an orthogonal basis ψ, we can write

Y(i) =
d

∑
j=1

∞

∑
k=1

β∗jkψjk(X(i)
j ) + ε(i). (6.44)

To simplify notation, let β j be the qn dimensional vector {β jk, k = 1, . . . , qn}
and let Ψj be the n × qn matrix Ψj[i, k] = ψjk(X(i)

j ). If A ⊂ {1, . . . , d}, we
denote by ΨA the n × q|A| matrix where for each j ∈ A, Ψj appears as a
submatrix in the natural way.

We now analyze the sparse backfitting algorithm of Figure 42 assuming an
orthogonal series smoother is used to estimate the conditional expectation in
its Step (2). As noted earlier, an orthogonal series smoother for a predictor
Xj is the least squares projection onto a truncated set of basis functions
{ψj1, . . . , ψjq}. Our optimization problem in this setting is

min
β

1
2n

∥∥∥Y−∑d
j=1Ψjβ j

∥∥∥2

2
+ λ

d

∑
j=1

√
1
n

βT
j ΨT

j Ψjβ j. (6.45)
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Combined with the soft-thresholding step, the update for f j in algorithm of
Figure 42 can thus be seen to solve the following problem,

min
β

1
2n
‖Rj −Ψjβ j‖2

2 + λn

√
1
n

βT
j ΨT

j Ψjβ j

where ‖v‖2
2 denotes ∑n

i=1 v2
i and Rj = Y−∑l 6=j Ψl βl is the residual for f j. The

sparse backfitting algorithm thus solves

min
β
{Qn(β) + λnΩ(β)} (6.46)

= min
β

1
2n

∥∥∥∥∥Y−
d

∑
j=1

Ψjβ j

∥∥∥∥∥
2

2

+ λn

d

∑
j=1

∥∥∥∥ 1√
n

Ψjβ j

∥∥∥∥
2

where Qn denotes the squared error term and Ω denotes the regularization
term, and each β j is a qn-dimensional vector. Let S denote the true set of
variables {j : f j 6= 0}, with s = |S|, and let Sc denote its complement. Let
Ŝn = {j : β̂ j 6= 0} denote the estimated set of variables from the minimizer β̂n,
with corresponding function estimates f̂ j(xj) = ∑

qn
k=1 β̂ jkψjk(xj). For the results

in this section, we will treat the covariates as fixed. A preliminary version of
the following result is stated here without proof, for details, see in Ravikumar
et al. [2007].

Theorem 6.2. Suppose that the following conditions hold on the design matrix X in
the orthogonal basis ψ:

Λmax

(
1
n

ΨT
S ΨS

)
≤ Cmax < ∞ (6.47)

Λmin

(
1
n

ΨT
S ΨS

)
≥ Cmin > 0 (6.48)

max
j∈Sc

∥∥∥( 1
n ΨT

j ΨS

) ( 1
n ΨT

S ΨS
)−1
∥∥∥ ≤

√
Cmin

Cmax

1− δ√
s

, for some 0 < δ ≤ 1.

(6.49)

Assume that the truncation dimension qn satisfies qn → ∞ and qn = o(n). Further-
more, suppose the following conditions, which relate the regularization parameter λn

to the design parameters n, p, the number of relevant variables s, and the truncation
size qn:

s
qnλn

−→ 0 (6.50)

qn log (qn(d− s))
nλ2

n
−→ 0 (6.51)

1
ρ∗n

(√
log(sqn)

n
+

s3/2

qn
+ λn

√
sqn

)
−→ 0 (6.52)
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where ρ∗n = minj∈S ‖β∗j ‖∞. Then the solution β̂n to (6.45) is unique and satisfies

Ŝn = S with probability approaching one.

This result parallels the theorem of Wainwright [2006] on model selection
consistency of the lasso; however, technical subtleties arise because of the
truncation dimension qn which is increasing with sample size, and the matrix
ΨT

j Ψ which appears in the regularization of β j. As a result, the operator norm
rather than the sup-norm appears in the incoherence condition (6.49). Note,
however, that condition (6.49) implies that∥∥∥∥ΨT

Sc ΨS

(
ΨT

S ΨS

)−1
∥∥∥∥

∞
= max

j∈Sc

∥∥∥∥ΨT
j ΨS

(
ΨT

S ΨS

)−1
∥∥∥∥

∞
(6.53)

≤

√
Cmin qn

Cmax
(1− δ) (6.54)

since 1√
n‖A‖∞ ≤ ‖A‖ ≤

√
m ‖A‖∞ for an m× n matrix A. This relates it to

the more standard incoherence conditions that have been used for sparsistency
in the case of the lasso.

The following corollary, which imposes the additional condition that the
number of relevant variables is bounded, follows directly. It makes explicit
how to choose the design parameters qn and λn, and implies a condition on
the fastest rate at which the minimum norm ρ∗n can approach zero.

Corollary 6.1. Suppose that s = O(1), and assume the design conditions (6.47),
(6.48) and (6.49) hold. If the truncation dimension qn, regularization parameter λn,
and minimum norm ρ∗n satisfy

qn � n1/3 (6.55)

λn � log nd
n1/3 (6.56)

1
ρ∗n

= o
(

n1/6

log nd

)
(6.57)

then P
(

Ŝn = S
)
→ 1.

The following proposition clarifies the implications of condition (6.57), by
relating the sup-norm ‖β j‖∞ to the function norm ‖ f j‖2.

Proposition 6.1. Suppose that f (x) = ∑k βkψk(x) is in the Sobolev space of order
ν > 1/2, so that ∑∞

i=1 β2
i i2ν ≤ C2 for some constant C. Then

‖ f ‖2 = ‖β‖2 ≤ c‖β‖
2ν

2ν+1
∞ (6.58)

for some constant c.

For instance, the result of Corollary 6.1 allows the norms of the coefficients
β j to decrease as ‖β j‖∞ = log2(nd)/n1/6. In the case ν = 2, this would
allow the norms ‖ f j‖2 of the relevant functions to approach zero at the rate
log8/5(nd)/n2/15.
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6.2.0.6 Persistence

The previous assumptions are very strong. They can be weakened at the
expense of getting weaker results. In particular, in the section we do not
assume that the true regression function is additive. We use arguments like
those in Juditsky and Nemirovski [2000] and Greenshtein and Ritov [2004] in
the context of linear models. In this section we treat X as random and we use
triangular array asymptotics, that is, the joint distribution for the data can
change with n. Let (X, Y) denote a new pair (independent of the observed
data) and define the predictive risk when predicting Y with v(X) by

R(v) = E(Y− v(X))2. (6.59)

When v(x) = ∑j β jgj(xj) we also write the risk as R(β, g) where β =
(β1, . . . , βd) and g = (g1, . . . , gd). Following Greenshtein and Ritov [2004]
we say that an estimator m̂n is persistent (risk consistent) relative to a class of
functionsMn, if

R(m̂n)− R(m∗n)
P→ 0 (6.60)

where

m∗n = arg min
v∈Mn

R(v) (6.61)

is the predictive oracle. Greenshtein and Ritov [2004] show that the lasso is
persistent for Mn = {`(x) = xT β : ‖β‖1 ≤ Ln} and Ln = o((n/ log n)1/4).
Note that m∗n is the best linear approximation (in prediction risk) inMn but
the true regression function is not assumed to be linear. Here we show a
similar result for SpAM.

In this section, we assume that the SpAM estimator m̂n is chosen to mini-
mize

1
n

n

∑
i=1

(Y(i) −∑
j

β jgj(X(i)
j ))2 (6.62)

subject to ‖β‖1 ≤ Ln and gj ∈ Tj. We make no assumptions about the design
matrix. LetMn ≡Mn(Ln) be defined by

Mn =

{
m : m(x) =

d

∑
j=1

β jgj(xj) : E(gj) = 0, E(g2
j ) = 1, ∑

j
|β j| ≤ Ln

}
and let m∗n = arg minv∈Mn

R(v).

Theorem 6.3. Suppose that d ≤ enξ
for some ξ < 1. Then,

R(m̂n)− R(m∗n) = OP

(
L2

n

n(1−ξ)/2

)
(6.63)

and hence , if Ln = o(n(1−ξ)/4) then SpAM is persistent.
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6.3 muti-task sparse additive models

We now present multi-task extension of the sparse additive models. We start
by recalling some notation. If X has distribution µX, and f is a function of x,
its L2(µX) norm is denoted by

‖ f ‖2 =
∫
X

f 2(x)dµX = E( f 2).

If v = (v1, . . . , vn)T is a vector, define

‖v‖2
n =

1
n

n

∑
j=1

v2
j and ‖v‖∞ = max

j
|vj|.

For a d-dimensional random vector (X1, . . . , Xd), let Hj denote the Hilbert
subspace L2(µXj) of µXj -measurable functions f j(xj) of the single scalar
variable Xj with zero mean, i.e. E[ f j(Xj)] = 0. The inner product on this
space is defined as

〈
f j, gj

〉
= E

[
f j(Xj)gj(Xj)

]
. In this paper, we mainly

study multivariate functions f (x1, . . . , xp) that have an additive form, i.e.,
f (x1, . . . , xp) = α + ∑j f j(xj), with f j ∈ Hj for j = 1, . . . , d. With

H ≡ {1} ⊕H1 ⊕H2 ⊕ . . .⊕Hd

denoting the direct sum Hilbert space, we have that f ∈ H.

6.3.1 Multi-task/Multi-response Sparse Additive Regression

In a K-task regression problem, we have observations

{(X(i),(k), Y(i),(k)), i = 1, . . . , nk, k = 1, . . . , K},

where X(i),(k) = (X(i),(k)
1 , . . . , X(i),(k)

d )T is a d-dimensional covariate vector, the
superscript k indexes tasks and i indexes the i.i.d. samples for each task. In
the following, for notational simplicity, we assume that n1 = . . . = nK = n.
We also assume different tasks are comparable and each Y(k) and X(k)

j has
been standardized, i.e., has mean zero and variance one. This is not really
a restriction of the model since a straightforward weighting scheme can be
adopted to extend our approach to handle noncomparable tasks. We assume
the true model is

E
(

Y(k) |X(k) = x(k)
)

= f (k)(x(k)) ≡
d

∑
j=1

f (k)
j (x(k)

j )

for k = 1, . . . , K, where, for simplicity, we take all intercepts α(k) to be zero.
Let Q f (k)(x, y) = (y− f (k)(x))2 denote the quadratic loss. To encourage com-
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mon sparsity patterns across different function components, we define the
regularization functional ΦK( f ) by

ΦK( f ) =
d

∑
j=1

max
k=1,...,K

‖ f (k)
j ‖. (6.64)

The regularization functional ΦK( f ) naturally combines the idea of the sum
of sup-norms penalty for parametric joint sparsity and the regularization
idea of SpAM for nonparametric functional sparsity; if K = 1, then Φ1( f )
is just the regularization term introduced for (single-task) sparse additive
models by Ravikumar et al. [2009a]. If each f (k)

j is a linear function, then
ΦK( f ) reduces to the sum of sup-norms regularization term as in (6.121).
We shall employ ΦK( f ) to induce joint functional sparsity in nonparametric
multi-task inference.

Using this regularization functional, the multi-task sparse additive model
(MT-SpAM) is formulated as a penalized M-estimator, by framing the follow-
ing optimization problem

f̂ (1), . . . , f̂ (K) = arg min
f (1),..., f (K)

{
1

2n

n

∑
i=1

K

∑
k=1
Q f (k)(X(i),(k), Y(i),(k)) + λΦK( f )

}
(6.65)

where f (k)
j ∈ H(k)

j for j = 1, . . . , p and k = 1, . . . , K, and λ > 0 is a regulariza-
tion parameter. The multi-response sparse additive model (MR-SpAM) has
exactly the same formulation as in (6.65) except that a common design matrix
is used across the K different tasks.

6.3.2 Sparse Multi-Category Additive Logistic Regression

In a K-category classification problem, we are given

{(X(i),(k), Y(i),(k)), i = 1, . . . , nk, k = 1, . . . , K},

where X(i),(k) = (X(i),(k)
1 , . . . , X(i),(k)

d )T is a d-dimensional predictor vector and

Y(i) = (Y(i),(1), . . . , Y(i),(K−1))T

is a (K− 1)-dimensional response vector in which at most one element can
be one, with all the others being zero. Here, we adopt the common “1-of-K”
labeling convention where Y(i),(k) = 1 if X(i) has category k and Y(i),(k) = 0
otherwise; if all elements of Y(i) are zero, then X(i) is assigned the K-th
category.

The multi-category additive logistic regression model is

P(Y(k) = 1 |X = x) =
exp

(
f (k)(x)

)
1 + ∑K−1

k′=1 exp
(

f (k′)(x)
) , k = 1, . . . , K− 1 (6.66)
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where

f (k)(x) = α(k) +
d

∑
j=1

f (k)
j (xj)

has an additive form. We define f = ( f (1), . . . , f (K−1)) to be a discriminant
function and

p(k)
f (x) = P(Y(k) = 1 |X = x)

to be the conditional probability of category k given X = x. The logistic
regression classifier h f (·) induced by f , which is a mapping from the sample
space to the category labels, is simply given by

h f (x) = arg max
k=1,...,K

p(k)
f (x).

If a variable Xj is irrelevant, then all of the component functions f (k)
j are

identically zero, for each k = 1, 2, . . . , K− 1. This motivates the use of the regu-
larization functional ΦK−1( f ) to zero out entire vectors f j = ( f (1)

j , . . . , f (K−1)
j ).

Denoting

` f (x, y) =
K−1

∑
k=1

y(k) f (k)(x)− log

(
1 +

K−1

∑
k′=1

exp f (k′)(x)

)

as the multinomial log-loss, the sparse multi-category additive logistic regres-
sion estimator (SMALR) is thus formulated as the solution to the optimization
problem

f̂ (1), . . . , f̂ (K−1) = arg min
f (1),..., f (K−1)

{
− 1

n

n

∑
i=1

` f (X(i), Y(i)) + λΦK−1( f )

}
(6.67)

where f (k)
j ∈ H(k)

j for j = 1, . . . , d and k = 1, . . . , K− 1.

6.3.3 Simultaneous Sparse Backfitting

We use a blockwise coordinate descent algorithm to minimize the functional
defined in (6.65). We first formulate the population version of the problem by
replacing sample averages by their expectations. We then derive stationary
conditions for the optimum and obtain a population version algorithm for
computing the solution by a series of soft-thresholded univariate conditional
expectations. Finally, a finite sample version of the algorithm can be derived
by plugging in nonparametric smoothers for these conditional expectations.
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For the jth block of component functions f (1)
j , . . . , f (K)

j , let R(k)
j = Y(k) −

∑l 6=j f (k)
l (X(k)

l ) denote the partial residuals. Assuming all but the functions in
the jth block to be fixed, the optimization problem is reduced to

f̂ (1)
j , . . . , f̂ (K)

j (6.68)

= arg min
f (1)
j ,..., f (K)

j

{
1
2

E

[
K

∑
k=1

(
R(k)

j − f (k)
j (X(k)

j )
)2
]

+ λ max
k=1,...,K

‖ f (k)
j ‖

}
.

The following result characterizes the solution to (6.68).

Theorem 6.4. Let P(k)
j = E

(
R(k)

j |X
(k)
j

)
and s(k)

j = ‖P(k)
j ‖, and order the indices

according to s(k1)
j ≥ s(k2)

j ≥ . . . ≥ s(kK)
j . Then the solution to (6.68) is given by

f (ki)
j =


P(ki)

j for i > m∗

1
m∗

[
m∗

∑
i′=1

s(ki′ )
j − λ

]
+

P(ki)
j

s(ki)
j

for i ≤ m∗.
(6.69)

where m∗ = arg maxm
1
m

(
∑m

i′=1 s(ki′ )
j − λ

)
and [·]+ denotes the positive part.

Therefore, the optimization problem in (6.68) is solved by a soft-thresholding
operator, given in equation (6.69), which we shall denote as

( f (1)
j , . . . , f (K)

j ) = Soft(∞)
λ [R(1)

j , . . . , R(K)
j ]. (6.70)

While the proof of this result is lengthy, we sketch the key steps below,
which are a functional extension of the subdifferential calculus approach
of Fornasier and Rauhut [2008] in the linear setting. First, we formulate an
optimality condition in terms of the Gâteaux derivative as follows.

Lemma 6.1. The functions f (k)
j are solutions to (6.68) if and only if f (k)

j − P(k)
j +

λukvk = 0 (almost surely), for k = 1, . . . , K, where uk are scalars and vk are mea-
surable functions of X(k)

j , with

(u1, . . . , uK)T ∈ ∂‖ · ‖∞
∣∣(
‖ f (1)

j ‖,...,‖ f (K)
j ‖

)T and vk ∈ ∂‖ f (k)
j ‖, k = 1, . . . , K.

Here the former one denotes the subdifferential of the convex functional
‖ · ‖∞ evaluated at (‖ f (1)

j ‖, . . . , ‖ f (K)
j ‖)T, it lies in a K-dimensional Euclidean

space. And the latter denotes the subdifferential of ‖ f (k)
j ‖, which is a set of

functions. Next, the following proposition from Rockafellar and Wets [1998]
is used to characterize the subdifferential of sup-norms.
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Lemma 6.2. The subdifferential of ‖ · ‖∞ on RK is

∂‖ · ‖∞
∣∣

x =

B1(1) if x = 0

conv{sign(xk)ek : |xk| = ‖x‖∞} otherwise.

where B1(1) denotes the `1 ball of radius one, conv(A) denotes the convex hull of
set A, and ek is the k-th canonical unit vector in RK.

Using Lemma 6.1 and Lemma 6.2, the proof of Theorem 6.4 proceeds
by considering three cases for the sup-norm subdifferential evaluated at
(‖ f (1)

j ‖, . . . , ‖ f (K)
j ‖)T:

(1) ‖ f (k)
j ‖ = 0 for k = 1, . . . , K;

(2) there exists a unique k, such that ‖ f (k)
j ‖ = maxk′=1,...,K ‖ f (k′)

j ‖ 6= 0;

(3) there exists at least two k 6= k′, such that

‖ f (k)
j ‖ = ‖ f (k′)

j ‖ = max
m=1,...,K

‖ f (m)
j ‖ 6= 0.

The derivations for cases (1) and (2) are relatively straightforward, but for
case (3) we prove the following.

Lemma 6.3. The sup-norm is attained precisely at m > 1 entries if only if m is the
largest number such that

s(km)
j ≥ 1

m− 1

(
m−1

∑
i′=1

s(ki′ )
j − λ

)
.

The proof of Theorem 6.4 then follows from the above lemmas and some
calculus. Based on this result, the data version of the soft-thresholding opera-
tor is obtained by replacing the conditional expectation P(k)

j = E(R(k)
j |X

(k)
j )

by S (k)
j R(k)

j , where S (k)
j is a nonparametric smoother for variable X(k)

j , e.g.,
a local linear or spline smoother; see Figure 40. The resulting simultaneous
sparse backfitting algorithm for multi-task and multi-response sparse additive
models (MT-SpAM and MR-SpAM) is shown in Figure 41. The algorithm for
the multi-response case (MR-SpAM) has S (1)

j = . . . = S (K)
j since there is only

a common design matrix.

6.3.4 Penalized Local Scoring Algorithm for SMALR

We now derive a penalized local scoring algorithm for sparse multi-category
additive logistic regression (SMALR), which can be viewed as a variant of
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SOFT-THRESHOLDING OPERATOR SOFT
(∞)
λ [R(1)

j , . . . , R(K)
j ;S (1)

j , . . . ,S (K)
j ]: DATA

VERSION

Input: Smoothing matrices S (k)
j , residuals R(k)

j for k = 1, . . . , K, regularization param-
eter λ.

(1) Estimate P(k)
j = E

[
R(k)

j |X
(k)
j

]
by smoothing: P̂(k)

j = S (k)
j R(k)

j ;

(2) Estimate norm: ŝ(k)
j = ‖P̂j‖n and order the indices according to

ŝ(k1)
j ≥ ŝ(k2)

j ≥ . . . ≥ ŝ(kK)
j ;

(3) Find m∗ = arg max
m

1
m

(
m

∑
i′=1

s(ki′ )
j − λ

)
and calculate

f̂ (ki)
j =


P̂(ki)

j for i > m∗

1
m∗

[
m∗

∑
i′=1

ŝ(ki′ )
j − λ

]
+

P̂(ki)
j

ŝ(ki)
j

for i ≤ m∗;

(4) Center f̂ (k)
j ← f̂ (k)

j −mean( f̂ (k)
j ) for k = 1, . . . , K.

Output: Functions f̂ (k)
j for k = 1, . . . , K.

Figure 40.: Data version of the soft-thresholding operator.

Newton’s method in function space. At each iteration, a quadratic approxi-
mation to the loss is used as a surrogate functional with the regularization
term added to induce joint functional sparsity. However, a technical difficulty
is that the approximate quadratic problem in each iteration is weighted by
a non-diagonal matrix in function space, thus a trivial extension of the al-
gorithm in [Ravikumar et al., 2007] for sparse binary nonparametric logistic
regression does not apply. To tackle this problem, we use an auxiliary function
to lower bound the log-loss, as in [Krishnapuram et al., 2005].

The population version of the log-loss is L( f ) = E[` f (X, Y)] with

f = ( f (1), . . . , f (K−1)).

A second-order Lagrange form Taylor expansion to L( f ) at f̂ is then

L( f ) = L( f̂ ) + E
[
∇L( f̂ )T( f − f̂ )

]
+

1
2

E
[
( f − f̂ )T H( f̃ )( f − f̂ )

]
(6.71)

for some function f̃ , where the gradient is ∇L( f̂ ) = Y− p f̂ (X) with

p f̂ (X) = (p f̂ (Y(1) = 1 |X), . . . , p f̂ (Y(K−1) = 1 |X))T,
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MULTI-TASK AND MULTI-RESPONSE SPAM

Input: Data (X(i),(k), Y(i),(k)), i = 1, . . . , n, k = 1, . . . , K and regularization parameter
λ.

Initialize: Set f̂ (k)
j = 0 and compute smoothers S (k)

j for j = 1, . . . , p and k = 1, . . . , K;

Iterate until convergence:

For each j = 1, . . . , d:

(1) Compute residuals: R(k)
j = Y(k) −∑k′ 6=j f̂ (k)

k′ for k = 1, . . . , K;

(2) Threshold: f̂ (1)
j , . . . , f̂ (K)

j ← Soft(∞)
λ [R(1)

j , . . . , R(K)
j ;S (1)

j , . . . ,S (K)
j ].

Output: Functions f̂ (k) for k = 1, . . . , K.

Figure 41.: The simultaneous sparse backfitting algorithm for MT-SpAM or MR-SpAM. For
the multi-response case, the same smoothing matrices are used for each k.

and the Hessian is

H( f̃ ) = −diag
(

p f̃ (X)
)

+ p f̃ (X)p f̃ (X)T.

Defining B = −(1/4)IK−1, it is straightforward to show that B � H( f̃ ), i.e.,
H( f̃ )− B is positive-definite. Therefore, we have that

L( f ) ≥ L( f̂ ) + E
[
∇L( f̂ )T( f − f̂ )

]
+

1
2

E
[
( f − f̂ )TB( f − f̂ )

]
. (6.72)

The following lemma results from straightforward calculation.

Lemma 6.4. The solution f that maximizes the righthand side of (6.72) is equivalent

to the solution that minimizes
1
2

E
(
‖Z− A f ‖2

n
)

where A = (−B)1/2 and Z =

A−1(Y− p f̂ ) + A f̂ .

Recalling that f (k) = α(k) + ∑d
j=1 f (k)

j , equation (6.71) and Lemma 6.4 then
justify the use of the auxiliary functional

1
2

K−1

∑
k=1

E

[(
Z′(k) −∑d

j=1 f (k)(Xj)
)2
]

+ λ′ΦK−1( f ) (6.73)

where

Z′(k) = 4
(

Y(k) −P f̂ (Y(k) = 1 |X)
)

+ α̂(k) +
d

∑
j=1

f̂ (k)
j (Xj)

and λ′ =
√

2λ. This is precisely in the form of a multi-response SpAM
optimization problem in equation (6.65). The resulting algorithm, in the finite
sample case, is shown in Figure 42.
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SMALR: SPARSE MULTI-CATEGORY ADDITIVE LOGISTIC REGRESSION

Input: Data (X(i), Y(i)), i = 1, . . . , n and regularization parameter λ.

Initialize: f̂ (k)
j = 0 and

α̂(k) = log

(
n

∑
i=1

Y(i),(k)
/(

n−
n

∑
i=1

K−1

∑
k′=1

Y(i),(k′)

))

for k = 1, . . . , K− 1

Iterate until convergence:

(1) Compute
p(k)

f̂
(X(i)) ≡ P(Y(k) = 1 |X = X(i))

as in (6.66) for k = 1, . . . , K− 1;

(2) Calculate the transformed responses

Z(k)
i = 4

(
Y(i),(k) − p(k)

f̂
(X(i))

)
+ α̂(k) +

d

∑
j=1

f̂ (k)
j (X(i)

j )

for k = 1, . . . , K− 1 and i = 1, . . . , n;

(3) Call subroutines

( f̂ (1), . . . , f̂ (K−1))← MR-SpAM
(
(X(i), Z(k)

i )n
i=1,
√

2λ
)

;

(4) Adjust the intercepts: α(k) ← 1
n

n

∑
i=1

Z(k)
i ;

Output: Functions f̂ (k) and intercepts α̂(k) for k = 1, . . . , K− 1.

Figure 42.: The penalized local scoring algorithm for SMALR.

6.4 theoretical properties of the multi-task spam

The theory of the Multi-task SpAM is a straightforward extension of that
of SpAM. In particular, under the same assumptions as those in Theorems
6.2 and 6.3, we can show that the multi-task SpAM is also sparsistent and
consistent. The main techniques on generalizing the sparsistency and persis-
tency conditions of single-task SpAM to multi-task SpAM have been shown
in Liu and Zhang [2008]. Since the analysis of the multi-task SpAM is a trivial
generalization of the single-task SpAM, we only present the single-task SpAM
analysis in the appendix of this chapter. Note that these proofs have already
appeared in the thesis of Pradeep Ravikumar and in Ravikumar et al. [2009a]
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(with Han Liu as a co-author). We present these proofs in the appendix for
completeness.

6.5 new insights on the smooth sparse backfitting algorithm

The results presented in this chapter show how many of the recently estab-
lished theoretical properties of `1 regularization for linear models extend to
sparse additive models (SpAM). The sparse additive models (SpAM) are a
new class of methods for high-dimensional nonparametric regression and
classification. An efficient algorithm called sparse backfitting has been devel-
oped to fit these models even when the number of covariates is larger than the
sample size. This algorithm is motivated as a coordinate descent procedure to
minimize a population version optimization problem. Such a procedure is not
implementable due to the involvement of unknown population distributions.
To solve this problem, the sparse backfitting algorithm uses the empirical
distributions to approximate the population counterparts. The algorithm is
intuitive and does convergence well in most real-world applications. However,
such a “plug-in” type procedure makes the analysis difficult. We even do
not know under what conditions it converges or under what conditions the
solution is unique. Our theoretical analyses have made use of a particular
form of smoothing, using a truncated orthogonal basis. An important prob-
lem is thus to extend the theory to cover more general classes of smoothing
operators, especially kernel smoothers. Convergence properties of the SpAM
backfitting algorithm should also be investigated; convergence of special cases
of standard backfitting is studied by Buja et al. [1989].

In this section, we show that when using the popular kernel smoothers, a
version of the sparse backfitting algorithm is exactly the coordinate descent
procedure of a data-version of and infinite-dimensional optimization prob-
lem.The key trick is to build a larger Hilbert space which includes all the
observed data vector and the n-tuple smooth functions as its elements. A
Stochastic bilinear form and it’s induced random (semi)-norm can then be
defined using kernels. The infinite-dimensional optimization problems are
formulated using these newly defined random norms.

6.5.1 Population Version of the Sparse Backfitting Algorithm

Let Y, X be random variables of dimension 1 and d respectively and let
{(Y(i), X(i))}n

i=1 be a random sample drawn from (Y, X). Here, we suppose the
covariates Xj take values in a bounded interval Ij and define the product space
I = I1 × . . .× Id. Without loss of generality, we simply assume I = [0, 1]d.
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Recall that the SpAM assumes an additive decomposition of the mean
function, i.e., for all i = 1, . . . , n:

Y(i) = m(X(i)) + εi =
d

∑
j=1

f j(X(i)
j ) + εi where εi i.i.d.∼ N(0, σ2). (6.74)

where we assume each f j is a smooth unknown function lies in a second-
order Sobolev ball with finite raidus. To make the model identifiable, we also
assume

EY = 0, ∀j = 1, . . . , d, E f (Xj) = 0, (6.75)

where the expectation is taken with respect to the probability measures
induced by Y, {Xj}d

j=1.
The population version of the SpAM solves the following optimization

problem, where a population version L2(µ)-norm is applied to regularize the
model.

f̂1, . . . , f̂p = arg min
f1,..., fd

1
2

E

(
Y−

d

∑
j=1

f j(Xj)

)2

+ λ
d

∑
j=1

√
E f 2

j (Xj)

 (6.76)

subject to the identifiability constraints E f j(Xj) = 0 for j = 1, . . . , d. This
problem is not solvable since the distribution of (Y, X) is unknown. In the
following, we consider a data-version algorithm using the kernel smoothers.

6.5.2 Function Space and Semi-Norms

We adopt the general framework from [Mammen et al., 1999], which views the
smoothing procedure as a projection of the data, with respect to appropriate
norms in a suitably defined vector space. Such a normed vector space contains
both the space of data vector and the space of candidate regression functions.
These two subspaces contain all the information relevant to the smoothing
problems and reflect the full structure of smoothing. In particular, this vector
space include both the data vector Y = (Y(1), . . . , Y(n)) and the candidate
smooths f (x) is a product space containing n-tuples of functions,

F =
{
( f i : i = 1, . . . , n) : Here, f i are functions from Rd to R

}
. (6.77)

The data vector Y is an element of F simply by setting f i ≡ Y(i), i = 1, . . . , n.
The subspace of such n-tuples of constant functions are called data subspace,
denoted as FY. For a candidate smooth function f : Rd → R, we write f for
the n-tuple where every entry is f (x), i.e.

f i(x) ≡ f (x), i = 1, . . . , n. (6.78)
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Then, such a subspace is called smoothing function space, denoted as of Ffull,
a sub-subspace which only contains additive functions is called Fadd:

Ffull =
{

f ∈ F : f i does not depend on i
}

Fadd =
{

f ∈ Ffull : f i(x) = f1(x1) + . . . + fd(xd) where f j : R→ R
}

For two n-tuple elments f = ( f 1, . . . , f n) and g = (g1, . . . , gn) on the space F ,
we define an inner product (strictly speaking, bilinear form) as

〈f, g〉∗ =
1
n

n

∑
i=1

∫
f i(x)gi(x)

d

∏
j=1

Kh(X(i)
j − xj)dx (6.79)

where Kh(·) is a nicely defined kernel function having compact support.
The corresponding induced norm (strictly speaking, semi-norm) as

‖f‖∗ =

√√√√∫ 1
n

n

∑
i=1
| f i(x)|2

d

∏
j=1

Kh(X(i)
j − xj)dx. (6.80)

Let

p̂(x) =
1
n

n

∑
i=1

d

∏
j=1

Kh(X(i)
j − xj) (6.81)

be the kernel density estimate of the design density using a product kernel,
Therefore, for n-tuple functions f = ( f 1, . . . , f n)T in FFull (i.e. f 1 = . . . = f n =
f ), we have

‖f‖∗ =
√∫

f 2(x) p̂(x)dx. (6.82)

In the following, we simply use ‖ f ‖∗ to denote ‖f‖∗ if f ∈ Ffull.
Under this framework and using the fact that

E (Y− f (X))2 =
∫

E
[
(Y− f (X))2 |X = x

]
p(x)dx, (6.83)

the data-version SpAM is formulated by approximating the the population
version expectation and norm by

E (Y− f (X))2 (6.84)

≈
∫ ∑n

i=1 ∏d
j=1 Kh(X(i)

j − xj)
(

Y(i) − f (x)
)2

∑n
i=1 ∏d

j=1 Kh(X(i)
j − xj)

p̂(x)dx (6.85)

= ‖Y− f ‖2
∗ (6.86)

and √
E f 2(X) =

√∫
f 2(x) p̂(x)dx ≈ ‖ f ‖∗. (6.87)
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Therefore, the data-version SpAM can be formulated as the following opti-
mization problem:

f̂1, . . . , f̂d = arg min
f1,..., fd

{
‖Y−

d

∑
j=1

f j‖2
∗ + λ

d

∑
j=1
‖ f j‖∗

}
. (6.88)

Note that here f1, . . . , fd are still in the function space. (6.88) can be rewritten
as

f̂1, . . . , f̂d = arg min
f1,..., fd

1
2n

n

∑
i=1

∫
I

(
Y(i) −

d

∑
j=1

f j(xj)

)2 d

∏
j=1

Kh(X(i)
j − xj)dx

+ λ
d

∑
j=1

√
1
n

n

∑
i=1

∫
Ij

f 2
j (xj)Kh(X(i)

j − xj)dxj. (6.89)

This is a penalized least squares problem in an uncountable infinite-dimensional
space with a non-differentiable penalty. We derive a smoothed sparse backfit-
ting algorithm to solve it.

6.5.3 Smooth Sparse Backfitting Using Kernel Smoothers

We start with a simple lemma which characterizes the solution of an uncon-
strained convex optimization problem in the infinite-dimensional space:

Assuming X is a Banach space with its topological dual denoted by X∗, let
f : X → R be a convex functional on X.

Definition 6.1. (Subgradient) An element x∗ ∈ X∗ is a subgradient of the convex
functional f at x if and only if it satisfies

f (y) ≥ f (x) + x∗(y− x) ∀y ∈ X. (6.90)

Let ∂ f (x) be the set of all subgradients at x, if ∂ f (x) is not empty, we call f subdif-
ferentiable at x. If f is subdifferentiable for all x ∈ X, it’s called subdiferentiable.

Proposition 6.2. (Necessary and sufficient condition) Let X be a Banach space and
f : X → R be a convex functional. Then x ∈ X is a global minimizer of f if and only
if

0 ∈ ∂ f (x). (6.91)

Proof. (Sufficiency): If 0 ∈ ∂ f (x), then

f (y) ≥ f (x) + 0(y− x) = f (x) ∀y ∈ X. (6.92)

which implies that x is a global minimizer.
(Necessity): Assume 0 /∈ ∂ f (x), there must exists z ∈ X such that

f (z) < f (x) + 0(z− x) = f (x), (6.93)

therefore x can not be a global minimizer of f . �
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Given the above proposition, we have the next lemma which characterizes
the solution of the smooth sparse backfitting:

Lemma 6.5. (Optimality condition of the smooth sparse backfitting) Let

p̂j(xj) ≡
1
n

n

∑
i=1

Kh(X(i)
j − xj)

and I−j = I1 × · · · × Ij−1 × Ij+1 × · · · × Ip for ∀j = 1, . . . , d, f̂ = ∑d
j=1 f̂ j is the

solution to the problem in (6.88) if and only if there exists η1, . . . , ηd, such that

1
n

n

∑
i=1

∫
I−j

(
Y(i) −∑

k 6=j
f̂k(xk)− f̂ j(xj)

)
∏d

`=1 Kh(X(i)
` − x`)

p̂j(xj)
dx−j = ληj a.s.

where ‖ηj‖∗ ≤ 1 if f j(xj) = 0, otherwise

ηj =
f̂ j(xj)

‖ f̂ j‖∗
. (6.94)

Proof. First, since p̂j(xj) ≡
1
n

n

∑
i=1

Kh(X(i)
j − xj), (6.103) can be re-written as

∫
Ij

1
2n

n

∑
i=1

∫
I−j

(
Y(i) −

d

∑
k=1

fk(xk)

)2
∏d

`=1 Kh(X(i)
` − x`)

p̂j(xj)
dx−j p̂j(xj)dxj

+λ
d

∑
k=1

√∫
Ij

f 2
j (xj) p̂(xj)dxj. (6.95)

From Proposition 6.2, evaluate the subdifferential with respect to f j, and set it to zero.
We have

1
n

n

∑
i=1

∫
I−j

(
Y(i) −∑

k 6=j
fk(xk)− f j(xj)

)
∏d

`=1 Kh(X(i)
` − x`)

p̂j(xj)
dx−j = ληj a.s.

where ηj ∈ ∂

√
1
n

n

∑
i=1

∫
Ij

f 2
j (xj)Kh(X(i)

j − xj)dxj, which satisfies ‖ηj‖∗ ≤ 1 if f j(xj) =

0, otherwise

ηj =
f j(xj)√

1
n

n

∑
i=1

∫
Ij

f 2
j (xj)Kh(X(i)

j − xj)dxj

=
f j(xj)
‖ f j‖∗

(6.96)

�
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From the optimality conditions, for the case f j(xj) 6= 0, we have

n

∑
i=1

Y(i)Kh(X(i)
j − xj)

n

∑
i=1

Kh(X(i)
j − xj)

−∑
k 6=j

∫
Ik

fk(xk)
p̂j,k(xj, xk)

p̂j(xj)
dxk = f j(xj)

(
1 +

λ

‖ f j‖∗

)

where

p̂j,k(xj, xk) =
1
n

n

∑
i=1

Kh(X(i)
j − xj)Kh(X(i)

k − xk). (6.97)

Let f0j(xj) ≡

n

∑
i=1

Y(i)Kh(X(i)
j − xj)

n

∑
i=1

Kh(X(i)
j − xj)

be the one-dimensional univariate kernel

smoother, and define

Pj(xj) ≡ f0j(xj)−∑
k 6=j

∫
Ik

fk(xk)
p̂j,k(xj, xk)

p̂j(xj)
dxk. (6.98)

We then obtain

Pj(xj) = f j(xj)
(

1 +
λ

‖ f j‖∗

)
(6.99)

which implies that

f j(xj) =
(

1− λ

‖Pj‖∗

)
Pj(xj) (6.100)

Therefore, the final updating rule is

f j(xj)←

1− λ√
1
n

n

∑
i=1

∫
Ij

P2
j (xj)Kh(X(i)

j − xj)dxj


+

Pj(xj) (6.101)

where

Pj(xj) = f0j(xj)−∑
k 6=j

∫
Ik

fk(xk)
p̂j,k(xj, xk)

p̂j(xj)
dxk. (6.102)

In which only the one-dimensional and two-dimensional marginal kernel
density estimators are involved in. For the computation, we need to evaluate
the function values on a grid so that the integrals can be easily evaluated.
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6.5.4 Existence and Uniqueness of the Solution

Define

F( f1, . . . , fd) =
1

2n

n

∑
i=1

∫
I

(
Y(i) −

d

∑
j=1

f j(xj)

)2 d

∏
j=1

Kh(X(i)
j − xj)dx

+ λ
d

∑
j=1

√
1
n

n

∑
i=1

∫
Ij

f 2
j (xj)Kh(X(i)

j − xj)dxj.

where λ > 0 and n > 2.
We consider the following optimization problem:

f̂1, . . . , f̂d = arg min
f1,..., fd

F( f1, . . . , fd). (6.103)

This is a penalized least squares problem in an uncountable infinite-dimensional
space with a non-smooth penalty. We want to show that the solution exists
and is unique.

Define

c = inf
f1,..., fd

F( f1, . . . , fd). (6.104)

We know that 0 ≤ c < ∞.
We define a measure µj(·)

µj(E) =
1
n

n

∑
i=1

∫
E

Kh(X(i)
j − xj)dxj. (6.105)

for arbitrary measurable subset E ⊂ Ij.
Denote

Fj =
{

f j : Ij → R |
∫

Ij

f 2
j (xj)µj(dxj) < ∞

}
(6.106)

to be the Hilbert space equipped with the inner product 〈·, ·〉j:

〈 f j, gj〉j =
1
n

n

∑
i=1

∫
Ij

f j(xj)gj(xj)Kh(X(i)
j − xj)dxj.

Let
F = F1 × · · · × Fd

be the d-fold direct-sum Hilbert space equipped with the inner product 〈·, ·〉:

〈( f1, . . . , fd), (g1, . . . , gd)〉 =
d

∑
j=1
〈 f j, gj〉j (6.107)

where ( f1, . . . , fd), (g1, . . . , gd) ∈ F ,
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Proposition 6.3. F is a Hilbert space equipped with an inner product defined in
(6.107).

Proof. For any ( f1, . . . , fd) ∈ F , we have

√
〈( f1, . . . , fd), ( f1, . . . , fd)〉 =

√√√√ d

∑
j=1
〈 f j, f j〉j < ∞. (6.108)

�

Proposition 6.4. F( f1, . . . , fd) is a lower semi-continuous function with respect to
weak convergence.

Proof. It’s obvious that F(·) is a (strongly) continuous function, which implies (strongly)
lower semi-continuity. Further, sinceF is a Hilbert space (which is a reflexive Banach
space), the result follows from the convexity of F(·). �

Theorem 6.5. (Existence and Uniqueness) There exists a unique ( f ∗1 , . . . , f ∗d ) ∈ C,
such that

F( f ∗1 , . . . , f ∗d ) = c. (6.109)

Proof. (Existence) First, we show the existence of a minimizer.
Let {( f (k)

1 , . . . , f (k)
d )}∞

k=1 ∈ F be a minimizing sequence of F, i.e.

lim
k→∞

F
(

f (k)
1 , . . . , f (k)

d

)
= c. (6.110)

Therefore, for large enough k, we have

0 ≤ F
(

f (k)
1 , . . . , f (k)

d

)
≤ c + 1. (6.111)

Therefore,

C =
{√
〈( f (k)

1 , . . . , f (k)
d ), ( f (k)

1 , . . . , f (k)
d )〉 ≤ c + 1

}
is bounded convex set and is also (strongly) convex. This implies that C must be
weakly closed.

Since C is bounded and weakly closed, it follows that {( f (k)
1 , . . . , f (k)

d )}∞
k=1 has a

weakly convergent subsequence

{( f (k`)
1 , . . . , f (k`)

d )}∞
`=1

w→ ( f ∗1 , . . . , f ∗d ). (6.112)

Next, since F(·) is lower semi-continuous with respect to weak convergence, we have

c ≤ F( f ∗1 , . . . , f ∗d ) (6.113)

≤ lim inf
`→∞

F( f (k`)
1 , . . . , f (k`)

d ) (6.114)

= lim
`→∞

F( f (k`)
1 , . . . , f (k`)

d ) (6.115)

= c. (6.116)
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This proves the existence result.
(Uniqueness) To show the uniqueness, it suffices to prove that F(·) is strictly con-

vex. This trivially follows from the fact that√
1
n

n

∑
i=1

∫
Ij

f 2
j (xj)Kh(X(i)

j − xj)dxj (6.117)

is a strictly convex functional of f j ∈ Fj. �

6.6 experimental results

In this section, we first use simulated data to investigate the performance
of the MT-SpAM simultaneous sparse backfitting algorithm. We then apply
SMALR to a tumor classification and biomarker identification problem. In
the next section, we present an application in which we use the MT-SpAM to
predictive brain activity patterns and feature selection.

In all experiments, the data are rescaled to lie in the d-dimensional cube
[0, 1]d. We use local linear smoothing with a Gaussian kernel. To choose the
regularization parameter λ, we simply use J-fold cross-validation or the GCV
score from [Ravikumar et al., 2007] extended to the multi-task setting:

GCV(λ) =
n

∑
i=1

K

∑
k=1

Q f̂ (k)(X(i),(k), Y(i),(k)))

(n2K2 − (nK)
df(λ))2

where df(λ) = ∑K
k=1 ∑d

j=1 ν
(k)
j I

(
‖ f̂ (k)

j ‖n 6= 0
)

, and ν
(k)
j = trace(S (k)

j ) is the

effective degrees of freedom for the univariate local linear smoother on the jth

variable.

6.6.1 Synthetic Data

We generated n = 100 observations from a 10-dimensional three-task additive
model with four relevant variables:

Y(i),(k) =
4

∑
j=1

f (k)
j (x(i),(k)

j ) + ε
(k)
i , k = 1, 2, 3,

where ε
(k)
i ∼ N(0, 1); the component functions f (k)

j are plotted in Figure 43.
The 10-dimensional covariates are generated as

X(k)
j =

(W(k)
j + tU(k))

1 + t
, j = 1, . . . , 10

where W(k)
1 , . . . , W(k)

10 and U(k) are i.i.d. sampled from Uniform(−2.5, 2.5).
Thus, the correlation between Xj and Xj′ is t2/(1 + t2) for j 6= j′.
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The results of applying MT-SpAM with the bandwidths h = (0.08, . . . , 0.08)
and regularization parameter λ = 0.25 are summarized in Figure 43. The
upper 12 figures show the 12 relevant component functions for the three tasks;
the estimated function components are plotted as solid black lines and the
true function components are plotted using dashed red lines. For all the other
variables (from dimension 5 to dimension 10), both the true and estimated
components are zero. The middle three figures show regularization paths
as the parameter λ varies; each curve is a plot of the maximum empirical
L1 norm of the component functions for each variable, with the red vertical
line representing the selected model using the GCV score. As the correlation
increases (t increases), the separation between the relevant dimensions and
the irrelevant dimensions becomes smaller. Using the same setup but with
one common design matrix, we also compare the quantitative performance
of MR-SpAM with MARS [Friedman, 1991], which is a popular method for
multi-response additive regression. Using 100 simulations, the table illustrates
the number of times the models are correctly identified and the mean squared
error with the standard deviation in the parentheses. (The MARS simulations
are carried out in R, using the default options of the mars function in the mda

library.)

6.6.2 Gene Microarray Data

Here we apply the sparse multi-category additive logistic regression model
to a microarray dataset for small round blue cell tumors (SRBCT) [Khan
et al., 2001]. The data consist of expression profiles of 2,308 genes [Khan
et al., 2001] with tumors classified into 4 categories: neuroblastoma (NB),
rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL), and the Ewing
family of tumors (EWS). The dataset includes a training set of size 63 and a
test set of size 20. These data have been analyzed by different groups. The
main purpose is to identify important biomarkers, which are a small set of
genes that can accurately predict the type of tumor of a patient. To achieve
100% accuracy on the test data, Khan et al. [2001] use an artificial neural
network approach to identify 96 genes. Tibshirani et al. [2002] identify a set
of only 43 genes, using a method called nearest shrunken centroids. Zhang
et al. [2008] identify 53 genes using the sup-norm support vector machine.

In our experiment, SMALR achieves 100% prediction accuracy on the
test data with only 20 genes, which is a much smaller set of predictors
than identified in the previous approaches. We follow the same procedure
as in [Zhang et al., 2008], and use a very simple screening step based on
the marginal correlation to first reduce the number of genes to 500. The
SMALR model is then trained using a plugin bandwidth h0 = 0.08, and the
regularization parameter λ is tuned using 4-fold cross validation. The results
are tabulated in Figure 44. In the left figure, we show a “heat map” of the
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Model t = 0 t = 1 t = 2 t = 3 t = 0 t = 1 t = 2 t = 3

MR−SpAM 89 80 47 37 7.43 (0.71) 5.82 (0.60) 3.83 (0.37) 3.07 (0.30)

MARS 0 0 0 0 8.66 (0.78) 7.52 (0.61) 5.36 (0.40) 4.64 (0.35)

Figure 43.: (Top) Estimated vs. true functions from MT-SpAM; (Middle) Regularization paths
using MT-SpAM. (Bottom) Quantitative comparison between MR-SpAM and
MARS

selected variables on the training set. The rows represent the selected genes,
with their cDNA chip image id. The patients are grouped into four categories
according to the corresponding tumors, as illustrated in the vertical groupings.
The genes are ordered by hierarchical clustering of their expression profiles.
The heatmap clearly shows four block structures for the four tumor categories.
This suggests visually that the 20 genes selected are highly informative of
the tumor type. In the middle of Figure 44, we plot the fitted discriminant
functions of different genes, with their image ids listed on the plot. The
values k = 1, 2, 3 under each subfigure indicate the discriminant function
the plot represents. We see that the fitted functions are nonlinear. The right
subfigure illustrates the total number of misclassified samples using 4-fold
cross validation, the λ values 0.3, 0.4 are both zero, for the purpose of a sparser
biomarker set, we choose λ = 0.4. Interestingly, only 10 of the 20 identified
genes from our method are among the 43 genes selected using the shrunken
centroids approach of Tibshirani et al. [2002]. 16 of them are are among the
96 genes selected by neural network approach of Khan et al. [2001]. This
non-overlap may suggest some further investigation.
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Figure 44.: SMALR results on gene data: heat map (left), marginal fits (center), and CV score
(right).

6.7 a case study of mt-spam : neural semantic basis discovery

In this section, we present a case study of the MT-SpAM by applying it to
a problem in cognitive neuroscience. Specifically, we consider the task of
predicting a person’s neural activity in response to an arbitrary word in
English as described in Mitchell et al. [2008], Liu et al. [2009b]. Their goal
is to predict the neural image recorded using functional magnetic resonance
imaging (fMRI) when a person thinks about a given word. To achieve this goal,
they adopt a two-stage procedure as presented in Figure 45. Given a stimulus
word w, the first step encodes the meaning of w in terms of intermediate
semantic features whose values are computed from the co-currences of w with
a semantic basis in a large text corpus. The second step predicts the neural fMRI
activation at each voxel of the brain, as a sum of neural activations contributed
by each of the intermediate semantic features. A voxel represents a 1-3 mm3

volume in the brain and is the basic spatial unit of measurement in fMRI. The
training process use a small number of words to learn a linear model that
maps the intermediate semantic features to neural activation images while a
person is thinking about those training words.

In Mitchell et al. [2008], 25 sensory-action verbs are selected as the semantic
basis as shown in Table 4. These 25 verbs are hand-crafted based on domain
knowledge from the cognitive neuroscience literature. For example, words
related to foods such as apples and oranges have frequent co-occurrences with
the word eat but few co-occurrences with the word wear. Conversely, words
related to clothes such as shirt or dress co-occur frequently with the word
wear, but not the word eat. Thus eat and wear are example basis words used to
encode relationships of a broad set of other words. A natural question is: What
is the optimal basis of words to represent semantic meaning across many concepts?

Rather than relying on models that require manual selection of a set of
words, MT-SpAM leads to models that will perform variable selection to auto-
matically learn a semantic basis of word meaning. In this way, we not only
want to predict neural activity well, but also give insights into how the brain
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"apple"
predicted 
activities 

for "apple"

stimulus word

intermediate semantic features

mapping learned from fMRI data

(Mitchell et al., Science, 2008)

Figure 45.: Model for predicting fMRI activation for a stimuli

See Eat Run Say Enter

Hear Touch Push Fear Drive

Listen Rub Fill Open Wear

Taste Approach Move Lift Break

Smell Manipulate Ride Near Clean

Table 4.: The semantic basis used in Mitchell et al. (2008)

represents the meaning of different concepts. The hope is that learning directly
from data could lead to new semantic discovery in cognitive neuroscience.

6.7.1 Datasets

For our study, we utilize the two datasets described in Mitchell et al. [2008].
The first dataset is collected using fMRI. First, we select 60 words as shown
in Table 5 as stimulus words. The 60 words are composed of nouns from 12

categories with 5 exemplars per category. For example, a bodypart category
includes Arm, Eye, Foot, Hand, Leg, a tools category includes the words Chisel,
Hammer, Pliers, Saw, Screwdriver, and a furniture category includes Bed, Chair,
Dresser, Desk, Table, etc. Then nine participants are presented with 60 different
words and are asked to think about each word for several seconds while their
neural activities were recorded. So that there are altogether n = 60 fMRI
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images taken for each participant1. A typical fMRI image contains activities
in over 20,000 voxels. We select the top K = 500 voxel responses using the
stability criterion score described in Mitchell et al. [2008].

bear cat cow dog horse

arm eye foot hand leg

apartment barn church house igloo

arch chimney closet door window

coat dress pants shirt skirt

bed chair desk dresser table

ant bee beetle butterfly fly

bottle cup glass knife spoon

bell key refrigerator telephone watch

chisel hammer pliers saw screwdriver

carrot celery corn lettuce tomato

airplane bicycle car train truck

Table 5.: The 60 stimulus words presented during the fMRI studies. Each row represents a
category

The second dataset is a symmetric matrix of text co-occurrences between
the 5,000 most frequent words in English. These co-occurrences are derived
from the Google Trillion Word Corpus2. The meaning of a given stimulus
word is represented by a 5,000 dimensional feature vector of co-occurrences
(normalized to unit length row norm). Note that the dimension of feature
vector, i.e. 5000, is too high for our problem, considering that only 60 training
samples are available. Typically, a smaller representation is desired such as
hand-crafted 25-verb basis as described above. However, including merely
25-verb basis is too biased. As a compromise, we take the following steps to
reduce the size of semantic basis. We remove the stop words, i.e. meaningless
frequent words like “the”. If both single and plural form of a noun appear in
our 5,000 words, we only keep one of them. Similarly, if original, gerundial
and past tense of a verb co-exist, only one of them will be left. Moreover, we
choose those words with higher number of hits via Google search and try
to balance the number of nouns, verbs, adjectives, adverbs, etc. Finally, 250

words are selected as our semantic basis.

1 Each image is actually the average of 6 different recordings of each word.
2 http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
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Now, we show that the problem of learning a semantic basis can be formu-
lated into a MT-SpAM problem. The goal of learning a semantic basis is to
find a small common set of predictor variables that will predict the neural
response well across multiple voxels, where each predictor variable is the text
co-occurrences with a particular word from the our selected words. Therefore,
for each participant, let the response vector {Y(k)}K

k=1 represent the neural
activations at a single voxel k, where each voxel indicates a task and K = 500
is the number of tasks. All these tasks share the common design columns
{Xj}d

j=1 ∈ Rn, representing the co-occurrences of n = 60 training words with
d = 250 other common English words in the Google Corpus. Therefore, this
is a multitask sparse learning problem with a K = 500 tasks and d = 250
features. More precisely, given a new stimulus word w and its co-occurrence
with semantic basis {Xj}d

j=1, the predicted neural activation Ŷ(k) at voxel k
takes the following additive form:

Ŷ(k) =
d

∑
j=1

f̂ (k)
j (Xj), (6.118)

where f̂ (k)
j are learned functions by MT-SpAM and note that the model is

sparse in the sense that many blocks of competent functions f̂ are zeros.
After learning the multi-task sparse additive model using (6.65), given a

new stimulus word w, the predicted neural activation Y(k) at voxel k takes the
following form:

Y(k) =
d

∑
j=1

f̂ (k)
j

(
Xj(w)

)
, (6.119)

where Xj(w) is the co-currences between word w and the j-th dictionary word.

f̂ (k)
j is the learned component function indicating the amount of contribution

of jth intermediate semantic feature in activation of voxel k.

6.7.2 Results

To evaluate our methods and compare them to existing results, we use exactly
the same experimental protocols described in Mitchell et al. [2008]. For a
fair comparison, instead of using the hand-crafted 25 verbs, we use MT-
SpAM to select a 25 words’ semantic basis. To reduce the large estimation bias
introduced by sparse model, after finding semantic basis, we adopt backfitting
procedure to perform function estimation only on the 25 words in sematic
basis. The evaluation is based on the leave-two-out-cross-validation procedure:

We repeat this experiment for each of the nine different participants in the
fMRI study and use the same method in Mitchell et al. Mitchell et al. [2008]
to ensure consistency while testing various semantic features.
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a Create a 60 × 250 design matrix of semantic features using co-occurrences
between the 60 training words and our selected 250 most common words.

b Select 2 words out of 60 for testing and use the other 58 words for train-
ing. Using (6.121), learn the function f (k)

j by setting each {Xj}250
j=1 to be the

58 × 1 vector of co-occurrences for each of the 250 basis words and each
Y(k) to be the 58 × 1 column vector for each of the top K = 500 voxel re-
sponses. In the language of MT-SpAM, this problem corresponds to the scale
n = 58, d = 250, K = 500. The regularization parameter here can be set to
choose the desired number of non-zero blocks of competent functions. Each
non-zero block corresponds to a word from the original set of 250. We train the
full path and pick regularization parameter to yield 25 non-zero blocks as the
new semantic basis so that the model is easier to interpret and compare to the
existing results.

c Create a new matrix of semantic features of the size 58× 25, where 25 is the
size of new semantic basis. Train a additive model using backfitting to predict
each of the 500 voxels from the semantic feature basis.

d For each of the two test examples, predict the neural response of the 500 se-
lected voxels. Compute the cosine similarity of each prediction with each of
the held out images. Based on the combined similarity scores, choose which
prediction goes with each held out image. Test if the joint labeling was correct.
This leads to an output of 0 or 1. For more details, see Mitchell et al. [2008].

e Repeat steps b-d for all (60
2 ) possible pairs of words (1,770 total). Count the

number of incorrect labelings in step e to determine the accuracy of the basis
set.

Figure 46.: The leave-two-out-cross-validation protocols

We compare MT-SpAM with several other methods. The first method
directly use the hand-crafted 25 words in Table 7 as the semantic basis instead
of adopting MT-SpAM to perform word selection in semantic basis. It assumes
additive model as in (6.118) and the component functions f̂ (k)

j are learned by
backfitting. The second and third methods are based on linear model. The
second one is proposed in Liu et al. [2009b] which adopts the same protocols
as in Figure 46 but replaces MT-SpAM by multi-task Lasso (MT-Lasso) in
step b and backfitting by ridge regression in step c. More precisely, Liu et al.
[2009b] assumes that given a new stimulus word and its co-occurrence with
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the sematic basis {Xj}
p
j=1, the predicted neural activation Ŷ(k) at voxel k takes

the following linear form:

Ŷ(k) =
d

∑
j=1

β̂
(k)
j Xj, (6.120)

where β̂k
j are learned by the following MT-Lasso optimization problem:

β̂ = min
β

{
1
2

K

∑
k=1
‖Y(k)−

d

∑
j=1

β
(k)
j X(k)

j ‖
2
2+λ

d

∑
j=1

max
k
|β(k)

j |
}

. (6.121)

The last one is proposed in Mitchell et al. [2008] which directly use the hand-
crafted 25 words in Table 7 as semantic basis and train a linear model as in
(6.120) by ridge regression.

Our experiments simply use the univariate kernel smoothers with Gaussian
kernels to fit MT-SpAM. We conduct sparse backfitting with plug-in band-
widths according to Scott’s rule [Scott, 1992, p.152]. More precisely, we adopt
diagonal bandwidth matrix H = diag(h1, . . . , hd) with hj = cn−1/5σ̂j, where c
is predefined constant and σ̂j is the estimated standard deviation for Xj. Ac-
cording to our experience, we prefer smaller bandwidth for variable selection
and larger bandwidth for function estimation in fMRI study. Therefore, we
set c = 1 for MT-SpAM and c = 5 for backfitting procedure.

The comparison result are presented in Table 6 and Figure 47.

Participant Index 1 2 3 4 5 6 7 8 9

MT-SpAM 0.8689 0.8260 0.8345 0.7695 0.8068 0.7599 0.7379 0.8429 0.8034

Additive (Handcraft) 0.8232 0.7492 0.7785 0.7299 0.8175 0.7989 0.7718 0.7554 0.8458

MT-Lasso 0.7576 0.7785 0.7390 0.6723 0.7429 0.7130 0.7401 0.7780 0.6215

Linear (Handcraft) 0.8090 0.7599 0.7610 0.6825 0.7712 0.8181 0.7057 0.6667 0.7972

Table 6.: Accuracies for 9 fMRI participants

The experimental result shows that the nonparametric methods (MT-SpAM
and Additive(Handcraft)) provide much higher accuracy than linear model
based methods (MT-Lasso and Linear(Handcraft)). It shows that brain activity
should NOT be modeled based on linear assumption. Nonparametric methods
might lead to better results in neuroscience study. A typical nonlinear estimated
function components for a single task is plotted in Figure 48.

Comparing the MT-SpAM to the additive model with hand-crafted features,
we see that on participants 1, 2, 3, 4, 8, MT-SpAM outperforms the hand-
crafted features; on participant 5, the accuracy is comparable between two
methods. From the box plot, the average accuracy of MT-SpAM is slightly
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Figure 47.: Bar and Box plots for accuracies for 9 fMRI participants
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Figure 48.: The 25 estimated component functions using the MT-SpAM

higher than hand-crafted features. It is exciting that the MT-SpAM can often
meet or exceed the performance of the hand-crafted features using far fewer
assumptions about neuroscience.

Moreover, we show one sample of 25 basis words learned by MT-SpAM in
Table 7. It is easy to see relationships between many of the words in the basis
set and the 60 stimulus words in Table 5. For example, the model learned hotel
and accommodation as basis words which are closely related to the building
category (apartment, house, etc.) in 60 stimulus words. The basis word floor is
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a part of building as stimulus words (door, window, etc.); basis word facilities
is a general concept of the words (hammer, pilers, etc.); basis word shipping is
highly correlated with the transportation category (airplane, train, etc.); basis
word bedroom clearly refers to words in the furniture category (bed, dresser,
etc.).

accommodation areas bedroom bits built

chairs checked cut eye facilities

floor garage green hotel maintenance

metal oil orange residential shipping

soft spaces stick thin usually

Table 7.: An example of 25 learned semantic basis words.

6.8 conclusions

We have presented new approaches to fitting sparse nonparametric multi-
task regression models and sparse multi-category classification models. The
usefulness of these methods have been demonstrated on applications from
genomics and cognitive neuroscience. A possible direction for future work is
to develop procedures for automatic bandwidth selection in each dimension.
We have used plug-in bandwidths and truncation dimensions qn in our
experiments and theory. It is of particular interest to develop procedures
that are adaptive to different levels of smoothness in different dimensions. It
would also be of interest is to consider more general penalties of the form
pλ(‖ f j‖), as in Fan and Li [2001].

Finally, we note that while we have considered basic additive models that
allow functions of individual variables, it is natural to consider interactions,
as in the functional ANOVA model. One challenge is to formulate suitable
incoherence conditions on the functions that enable regularization based
procedures or greedy algorithms to recover the correct interaction graph. In
the parametric setting, one result in this direction is Wainwright et al. [2007].

6.9 appendix: technical proofs

The proof of Theorem 6.2 has appeared in Ravikumar et al. [2009a], we omit
it in this thesis.
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Proof of Theorem 6.3. We begin with some notation. If M is a class of functions
then the L∞ bracketing number N[ ](ε,M) is defined as the smallest number of pairs
B = {(`1, u1), . . . , (`k, uk)} such that

∥∥uj − `j
∥∥

∞ ≤ ε, 1 ≤ j ≤ k, and such that for
every m ∈ M there exists (`, u) ∈ B such that ` ≤ m ≤ u. For the Sobolev space
Tj,

log N[ ](ε, Tj) ≤ K
(

1
ε

)1/2

(6.122)

for some K > 0. The bracketing integral is defined to be

J[ ](δ,M) =
∫ δ

0

√
log N[ ](u,M)du. (6.123)

From Corollary 19.35 of van der Vaart [1998],

E

(
sup
g∈M
|µ̂(g)− µ(g)|

)
≤

C J[ ](‖F‖∞ ,M)
√

n
(6.124)

for some C > 0, where F(x) = supg∈M |g(x)|, µ(g) = E(g(X)) and µ̂(g) =
n−1 ∑n

i=1 g(Xi).
Set Z ≡ (Z0, . . . , Zd) = (Y, X1, . . . , Xd) and note that

R(β, g) =
d

∑
j=0

d

∑
k=0

β jβkE(gj(Zj)gk(Zk)) (6.125)

where we define g0(z0) = z0 and β0 = −1. Also define

R̂(β, g) =
1
n

n

∑
i=1

d

∑
j=0

d

∑
k=0

β jβkgj(Z(i)
j )gk(Z(i)

k ). (6.126)

Hence m̂n is the minimizer of R̂(β, g) subject to the constraint ∑j β jgj(xj) ∈ Mn(Ln)
and gj ∈ Tj. For all (β, g),

|R̂(β, g)− R(β, g)| ≤ ‖β‖2
1 max

jk
sup

gj∈Sj,gk∈Sk

|µ̂jk(g)− µjk(g)| (6.127)

where µ̂jk(g) = n−1 ∑n
i=1 ∑jk gj(Z(i)

j )gk(Z(i)
k ) and µjk(g) = E(gj(Zj)gk(Zk)).

From (6.122) it follows that

log N[ ](ε,Mn) ≤ 2 log dn + K
(

1
ε

)1/2

. (6.128)

Hence, J[ ](C,Mn) = O(
√

log dn) and it follows from (6.124) and Markov’s in-
equality that

max
jk

sup
gj∈Sj,gk∈Sk

|µ̂jk(g)−µjk(g)| = OP

(√
log dn

n

)
= OP

(
1

n(1−ξ)/2

)
. (6.129)
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We conclude that

sup
g∈M
|R̂(g)− R(g)| = OP

(
L2

n

n(1−ξ)/2

)
. (6.130)

Therefore,

R(m∗) ≤ R(m̂n) ≤ R̂(m̂n) + OP

(
L2

n

n(1−ξ)/2

)
≤ R̂(m∗) + OP

(
L2

n

n(1−ξ)/2

)
≤ R(m∗) + OP

(
L2

n

n(1−ξ)/2

)
and the conclusion follows. �





7
GREEDY NONPARAMETRIC REGRESSION

This chapter studies the forward greedy strategy in sparse non-
parametric regression. For additive models, we propose an algorithm
called additive forward regression; for general multivariate models,
we propose an algorithm called generalized forward regression. Both
algorithms simultaneously conduct estimation and variable selection
in nonparametric settings for the high dimensional sparse learning
problem. Our main emphasis is empirical: on both simulated and real
data, these two simple greedy methods can clearly outperform sev-
eral state-of-the-art competitors, including LASSO, the sparse additive
model (SpAM) we introduced in the previous chapter, and a recently
proposed adaptive parametric forward-backward algorithm called Foba.
We also provide some theoretical justifications of specific versions of
the additive forward regression.

7.1 introduction

At present, there are two major approaches to fit sparse linear models: convex
regularization and greedy pursuit. The convex regularization approach regu-
larizes the model by adding a sparsity constraint, leading to methods like
LASSO [Tibshirani, 1996, Chen et al., 1998] or the Dantzig selector [Candes
and Tao, 2007]. The greedy pursuit approach regularizes the model by itera-
tively selecting the current optimal approximation according to some criteria,
leading to methods like the matching pursuit [Mallat and Zhang, 1993] or
orthogonal matching pursuit (OMP) [Tropp, 2004].

As we have explained in the previous chapter, substantial progress has been
made recently on applying the convex regularization idea to fit sparse additive
models. For splines, Lin and Zhang [2006] propose a method called COSSO,
which uses the sum of reproducing kernel Hilbert space norms as a sparsity
inducing penalty, and can simultaneously conduct estimation and variable
selection; Ravikumar et al. [2007, 2009a] develop a method called SpAM.
The population version of SpAM can be viewed as a least squares problem
penalized by the sum of L2(P)-norms; Meier et al. [2009] develop a similar
method using a different sparsity-smoothness penalty, which guarantees
the solution to be a spline. All these methods can be viewed as different
nonparametric variants of LASSO. They have similar drawbacks: (i) it is hard

187
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to extend them to handle general multivariate regression where the mean
functions are no longer additive; (ii) due to the large bias induced by the
regularization penalty, the model estimation is suboptimal. One way to avoid
this is to resort to two-stage procedures as in Liu and Zhang [2009], but the
method becomes less robust due to the inclusion of an extra tuning parameter
in the first stage.

In contrast to the convex regularization methods, greedy pursuit approaches
do not suffer from such problems. Instead of trying to formulate the whole
learning task into a global convex optimization, the greedy pursuit approaches
adopt iterative algorithms with a local view. During each iteration, only
a small number of variables are actually involved in the model fitting so
that the whole inference only involves low dimensional models. Thus they
naturally extend to the general multivariate regression and do not induce large
estimation bias, which makes them especially suitable for high dimensional
nonparametric inference. However, the greedy pursuit approaches do not
attract as much attention as the convex regularization approaches in the
nonparametric literature. For additive models, the only work we know of
are the sparse boosting [Bühlmann and Yu, 2006] and multivariate adaptive
regression splines (MARS) [Friedman, 1991]. These methods mainly target on
additive models or lower-order functional ANOVA models, but without much
theoretical analysis. For general multivariate regression, the only available
method we are aware of is rodeo [Lafferty and Wasserman, 2008]. However,
rodeo requires the total number of variables to be no larger than a double-
logarithmic of the data sample size, and does not explicitly identify relevant
variables.

In this chapter, we propose two greedy algorithms for sparse nonparamet-
ric learning in high dimensions. By extending the idea of the orthogonal
matching pursuit to nonparametric settings, the main contributions of our
work include: (i) we formulate two greedy nonparametric algorithms: additive
forward regression (AFR) for sparse additive models and generalized forward
regression (GFR) for general multivariate regression models. Both of them can
simultaneously conduct estimation and variable selection in high dimensions.
Additive forward regression can be viewed as a slight variant of the sparse
boosting method of Bühlmann and Yu [2006]. (ii) We present theoretical re-
sults for AFR using specific smoothers. (iii) We report thorough numerical
results on both simulated and real-world datasets to demonstrate the supe-
rior performance of these two methods over the state-of-the-art competitors,
including LASSO, SpAM, and an adaptive parametric forward-backward
algorithm called Foba [Zhang, 2008].

The rest of this chapter is organized as follows: in the next section we review
the basic problem formulation and notations. In Section 7.3 we present the
AFR algorithm, in section 7.4, we present the GFR algorithm. Some theoretical
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results are given in Section 7.5. In Section 7.6 we present numerical results on
both simulated and real datasets, followed by a concluding section at the end.

7.2 sparse nonparametric learning in high dimensions

We begin by introducing some notation. Assuming n data points

Dn =
{
(X(i), Y(i))

}n

i=1

are observed from a high dimensional regression model

Y(i) = m(X(i)) + ε(i), ε(i) ∼ N(0, σ2) i = 1, . . . , n, (7.1)

where X(i) = (X(i)
1 , . . . , X(i)

d )T ∈ Rd is a d-dimensional design point, m :
Rd → R is an unknown smooth mean function. Here we assume m lies
in a d-dimensional second order Sobolev ball with finite radius. In the se-
quel, we denote the response vector (Y(1), . . . , Y(n))T by Y and the vector
(X(1)

j , . . . , X(n)
j )T by Xj for 1 ≤ j ≤ d.

We assume m is functional sparse, i.e. there exists an index set S ⊂ {1, . . . , d},
such that

(General) m(x) = m(xS), (7.2)

where |S| = r � d and xS denotes the sub-vector of x with elements indexed
by S.

Sometimes, the function m can be assumed to have more structures to obtain
a better estimation result. The most popular one is additivity assumption
Hastie and Tibshirani [1999]. In this case, m decomposes into the sum of r
univariate functions

{
mj
}

j∈S:

(Additive) m(x) = α + ∑j∈S mj(xj), (7.3)

where each component function mj is assumed to lie in a second order Sobolev
ball with finite radius so that each element in the space is smooth enough.
For the sake of identifiability, we also assume Emj(Xj) = 0 for j = 1, . . . , d,
where the expectation is taken with respect to the marginal distribution of Xj.

Given the models in (7.2) or (7.3), we have two tasks: function estimation and
variable selection. For the first task, we try to find an estimate m̂, such that
‖m̂−m‖ → 0 as n goes to infinity, where ‖ · ‖ is some function norm. For the
second task, we try to find an estimate Ŝ, which is an index set of variables,
such that P

(
S ⊂ Ŝ

)
→ 1 as n goes to infinity.
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7.3 additive forward regression

In this section, we assume the true model is additive, i.e. m(x) = α +
∑j∈S mj(xj). In general, if the true index set for the relevant variables is known,
the backfitting algorithm can be directly applied to estimate m̂ [Hastie and Tib-
shirani, 1999]. It is essentially a Gauss-Seidel iteration for solving a set of nor-
mal equations in a function space. Within each iteration, it only estimates the
smooth univariate function for one variable while holding all the others fixed,
then cycles through the next variable. In particular, we denote the estimates
on the jth variable Xj to be m̂j ≡ (m̂j(X(1)

j ), . . . , m̂j(X(n)
j ))T ∈ Rn. Then m̂j can

be estimated by regressing the partial residual vector Rj = Y− α−∑k 6=j m̂k
on the variable Xj. This can be calculated by m̂j = SjRj, where Sj : Rn → Rn

is a smoothing matrix, which only depends on X(1), . . . , X(n) but not on Y.
Once m̂j is updated, the algorithm holds it fixed and repeats this process by
cycling through each variable until convergence. Under mild conditions on
the smoothing matrices S1, . . . ,Sd, the backfitting algorithm is a first order
algorithm that guarantees to converge [Buja et al., 1989] and achieves the
minimax rate of convergence as if only estimating a univariate function. How-
ever, for sparse learning problems, since the true index set is unknown, the
backfitting algorithm no longer works due to the uncontrolled estimation
variance.

By extending the idea of the orthogonal matching pursuit to sparse additive
models, we design a forward greedy algorithm called the additive forward
regression (AFR), which only involves a few variables in each iteration. Under
this framework, we only need to conduct the backfitting algorithm on a small
set of variables. Thus the variance can be well controlled. The algorithm is
described in Figure 49, where we use 〈·, ·〉n to denote the inner product of
two vectors.

The algorithm uses an active set A to index the variables included in the
model during each iteration and then performs a full optimization over all
“active” variables via the backfitting algorithm. The main advantage of this
algorithm is that during each iteration, the model inference is conducted in
low dimensions and thus avoids the curse of dimensionality. The stopping
criterion is controlled by a predefined parameter η which is equivalent to
the regularization tuning parameter in convex regularization methods. Other
stopping criteria, such as the maximum number of steps, can also be adopted.
In practice, we always recommend to use data-dependent technique, such as
cross-validation, to automatically tune this parameter.

Moreover, the smoothing matrix Sj can be fairly general, e.g. univariate local
linear smoothers as described below, kernel smoothers or spline smoothers
[Wahba, 1990], etc.



7.4 G E N E R A L I Z E D F O RWA R D R E G R E S S I O N 191

Input:
{
(X(i), Y(i))

}n

i=1
and η > 0

let A(0) = ∅, α = ∑n
i=1 Y(i)/n and the residual R(0) = Y− α

for k = 1, 2, 3, . . .

for each j 6∈ A(k−1), estimate m̂j by smoothing: m̂j = SjR(k−1)

let j(k) = arg max
j 6∈A(k−1)

|〈m̂j, R(k−1)〉n|

let A(k) = A(k−1) ∪ j(k)

estimateM(k) = {mj : j ∈ A(k)} by the backfitting algorithm

compute the residual R(k) = Y− α−∑mj∈M(k) mj(Xj)

if (‖R(k−1)‖2
2 − ‖R(k)‖2

2)/n ≤ η

k = k− 1

break

end if

end for

Output: selected variables A(k) and estimated component functions

M(k) = {mj : j ∈ A(k)}.

Figure 49.: The Additive Forward Regression Algorithm

7.4 generalized forward regression

This section only assume m(x) to be functional sparse, i.e. m(x) = m(xS),
without restricting the model to be additive. In this case, to find a good
estimate m̂ becomes more challenging.

To estimate the general multivariate mean function m(x), one of the most
popular methods is the local linear regression: given an evaluation point
x = (x1, . . . , xd)T, the estimate m̂(x) is the solution α̂x to the following locally
kernel weighted least squares problem:

min
αx ,βx

n

∑
i=1

{
Y(i) − αx − βT

x (X(i) − x)
}2 d

∏
j=1

Khj(X(i)
j − xj), (7.4)

where K(·) is a one dimensional kernel function and the kernel weight
function in (7.4) is taken as a product kernel with the diagonal bandwidth
matrix H1/2 = diag{h1, . . . , hd}. Such a problem can be re-casted as a standard
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Input:
{
(X(i), Y(i))

}n

i=1
and η > 0

let A(0) = ∅, α = ∑n
i=1 Y(i)/n and δ(0) = ∑n

i=1(Y(i) − α)2/n

for k = 1, 2, 3, . . .

let j(k) = arg min
j 6∈A(k−1)

∑n
i=1

(
Y(i) − S(A(k−1) ∪ j)X(i)Y

)2
/n

let A(k) = A(k−1) ∪ j(k)

let δ(k) = ∑n
i=1

(
Y(i) − S(A(k))X(i)Y

)2
/n

if (δ(k−1) − δ(k)) ≤ η

k = k− 1

break

end if

end for

Output: selected variables A(k) and local linear estimates

(S(A(k))X(1)Y, . . . ,S(A(k))X(n)Y).

Figure 50.: The Generalized Forward Regression Algorithm

weighted least squares regression. Therefore a closed-form solution to the the
local linear estimate can be explicitly given by

α̂x = eT
1 (XT

x WxXx)−1XT
x WxY = SxY,

where e1 = (1, 0, . . . , 0)T is the first canonical vector in Rd+1 and

Wx = diag

{
d

∏
j=1

Khj(X(1)
j − xj), . . . ,

d

∏
j=1

Khj(X(n)
j − xj)

}

and

Xx =


1 (X(1) − x)T

...
...

1 (X(n) − x)T

 . (7.5)

Here, Sx is the local linear smoothing matrix. Note that if we constrain βx = 0,
then the local linear estimate reduces to the kernel estimate. The pointwise
rate of convergence of such an estimate has been characterized in Fan and
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Gijbels [1996]: |m̂(x) − m(x)|2 = OP(n−4/(4+d)), which is extremely slow
when d > 10.

To handle the large d case, we again extend the idea of the orthogonal
matching pursuit to this setting. For an index subset A ⊂ {1, . . . , d} and the
evaluation point x, the local linear smoother restricted on A is denoted as
S(A) and

S(A)x = eT
1

(
X(A)T

x W(A)xX(A)x

)−1
X(A)T

x W(A)x,

where W(A)x is a diagonal matrix whose diagonal entries are the product of
univariate kernels over the set A and X(A)x is a submatrix of Xx that only
contains the columns indexed by A.

Given these definitions, the generalized forward regression (GFR) algorithm is
described in Figure 50. Similar to AFR, GFR also uses an active set A to index
the variables included in the model. Such mechanism allows all the statistical
inference to be conducted only in low-dimensional spaces. The GFR algorithm
using the multivariate local linear smoother can be computationally heavy for
very high dimensional problems. However, GFR is a generic framework and
can be equipped with arbitrary multivariate smoothers, e.g. kernel/Nearest
Neighbor/spline smoothers. These smoothers lead to much better scalability.
The only reason we use the local linear smoother as an illustrative example in
this paper is due to its popularity and potential advantage on correcting the
boundary bias.

7.5 theoretical properties

In this section, we provide the theoretical properties of the additive forward
regression estimates using the spline smoother. Due to the asymptotic equiva-
lence of the spline smoother and the local linear smoother [Silverman, 1984],
we deduce that these results should also hold for the local linear smoother.
Our main result in Theorem 7.1 says when using the spline smoother with
certain truncation rate to implement AFR algorithm, the resulting estimator is
consistent with a certain rate. When the underlying true component functions
do not go to zeroes too fast, we also achieve variable selection consistency.
Our analysis relies heavily on Barron et al. [2008].

Theorem 7.1. Assuming there exists some ξ > 0 which can be arbitrarily large, such
that p = O(nξ). For ∀j ∈ {1, . . . , d}, we assume mj lies in a second-order Sobolev
ball with finite radius, and m = α + ∑d

j=1 mj. For the additive forward regression

algorithm using the spline smoother with a truncation rate at n1/4, after (n/log n)1/2

steps, we obtain that

‖m− m̂‖2 = OP

(√
log n

n

)
. (7.6)
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Furthermore, if we also assume

min
j∈S
‖mj‖ = Ω

((
log n

n

)1/4
)

,

then P
(

S ⊂ Ŝ
)
→ 1 as n goes to infinity. Here, Ŝ is the index set for nonzero

component functions in m̂.

The rate for ‖m̂−m‖2 obtained from Theorem 7.1 is only O(n−1/2), which
is slower than the minimax rate O(n−4/5). This is mainly an artifact of our
analysis instead of a drawback of the additive forward regression algorithm.
In fact, if we perform a basis expansion for each component function to first
cast the problem to be a finite dimensional linear model with group structure,
under some more stringent smallest eigenvalue conditions on the augmented
design as in Zhang [2009], we can show that AFR using spline smoothers
can actually achieves the minimax rate O(n−4/5) up to a logarithmic factor. A
detailed treatment of this issue is beyond the scope of this chapter.

Proof. We first describe an algorithm named group orthogonal greedy algorithm
(GOGA), which solves a noiseless function approximation problem in a direct-sum
Hilbert space. AFR can then be viewed as an empirical realization of such an “ideal”
algorithm.

GOGA is a group extension of the orthogonal greedy algorithm (OGA) in Barron
et al. [2008]. For j = 1, . . . , d, let Hj be a Hilbert space of continuous functions
with a Hamel basis Dj. Then for a function m in the direct-sum Hilbert space H =
H1 +H2 + . . . +Hd, we want to approximate m using the union of many truncated
bases D = D′1 ∪ . . . ∪D′d, where for all j, D′j ⊂ Dj.

We equip an inner product 〈·, ·〉 on H: ∀ f , g ∈ H, 〈 f , g〉 =
∫

f (X)g(X)dPX

where PX is the marginal distribution for X. Let ‖ · ‖ be the norm induced by the inner
product 〈·, ·〉 on H. GOGA begins by setting m(0) = 0, and then recursively defines
the approximant m(k) based on m(k−1) and its residual r(k−1) ≡ m− m(k−1). More
specifically: we proceed as the following: define f (k)

j to be the projection of r(k−1)

onto the truncated basis D′j, i.e. f (k)
j = arg ming∈D′j ‖r

(k−1) − g‖2. We calculate j(k)

as

j(k)
∗ = arg max

j
|〈r(k−1), f (k)

j 〉| (7.7)

m(k) can then be calculated by projecting m onto the additive function space generated
by A(k) = D′j(1) + · · ·+D′j(k) :

m̂(k) = arg min
g∈span(A(k))

‖m− g‖2. (7.8)
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AFR using regression splines is exactly GOGA when there is no noise. For noisy
samples, we replace the unknown function m by its n-dimensional output vector Y,
and replace the inner product 〈·, ·〉 by 〈·, ·〉n, which is defined as

〈 f , g〉n =
1
n

n

∑
i=1

f (X(i))g(X(i)). (7.9)

The projection of the current residual vector onto each dictionary D′j is replaced by
the corresponding nonparametric smoothers.

Considering any function m ∈ H, we proceed in the same way as in Barron et al.
[2008], but replacing the OGA arguments in their analysis by those of GOGA. The
desired results of the theorem follow from a simple argument on bounding the random
random covering number of spline spaces. �

7.6 experimental results

In this section, we present numerical results for AFR and GFR applied to
both synthetic and real data. The main conclusion is that, in many cases,
their performance on both function estimation and variable selection can
clearly outperform those of LASSO, Foba, and SpAM. For all the reported
experiments, we use local linear smoothers to implement AFR and GFR. The
results for other smoothers, such as smoothing splines, are similar. Note that
different bandwidth parameters will have big effects on the performances of
local linear smoothers. Our experiments simply use the plug-in bandwidths
according to Fan and Gijbels [1996] and set the bandwidth for each variable
to be the same. For AFR, the bandwidth h is set to be 1.06n−1/5 and for GFR,
the bandwidth is varying over each iteration such that h = 1.06n−1/(4+|A|),
where |A| is the size of the current active set.

For an estimate m̂, the estimation performance for the synthetic data is
measured by the mean square error (MSE), which is defined as

MSE(m̂) =
1
n

n

∑
i=1

(
m(X(i))− m̂(X(i))

)2
.

For the real data, since we do not know the true function m(x), we approxi-
mate the mean squared error using 5-fold cross-validation scores.

7.6.1 The Synthetic Data

For the synthetic data experiments, we consider the compound symmetry co-
variance structure of the design matrix X ∈ Rn×p with n = 400 and d = 20.
Each dimension Xj is generated according to

Xj =
Wj + tU

1 + t
, j = 1, . . . , d,
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where W1, . . . , Wd and U are i.i.d. sampled from Uniform(0,1). Therefore the
correlation between Xj and Xk is t2/(1 + t2) for j 6= k. We assume the true
regression functions have r = 4 relevant variables:

Y = m(X) + ε = m(X1, . . . , X4) + ε. (7.10)

To evaluate the variable selection performance of different methods, we
generate 50 designs and 50 trials for each design. For each trial, we run the
greedy forward algorithm r steps. If all the relevant variables are included
in, the variable selection task for this trial is said to be successful. We report
the mean and standard deviation of the success rate in variable selection for
various correlation between covariates by varying the values of t.

We adopt some synthetic examples as in Lin and Zhang [2006] and de-
fine the following four functions: g1(x) = x, g2(x) = (2x − 1)2, g3(x) =
sin(2πx)/(2− sin(2πx)), and

g4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin2(2πx) (7.11)

+0.4 cos3(2πx) + 0.5 sin3(2πx).

The following four regression models are studied. The first model is linear;
the second is additive; the third and forth are more complicated nonlinear
models with at least two way interactions:

(Model1) : Y(i) = 2X(i)
1 + 3X(i)

2 + 4X(i)
3 + 5X(i)

4 + 2N(0, 1), with t = 1 ;

(Model2) : Y(i) = 5g1(X(i)
1 ) + 3g2(X(i)

2 ) + 4g3(X(i)
3 ) + 6g4(X(i)

4 ) + 4N(0, 1),

with t = 1 ;

(Model3) : Y(i) = exp(2X(i)
1 X(i)

2 + X(i)
3 ) + 2X(i)

4 + N(0, 1), with t = 0.5 ;

(Model4) : Y(i) = ∑4
j=1 gj(X(i)

j ) + g1(X(i)
3 X(i)

4 ) + g2((X(i)
1 + X(i)

3 )/2)

+g3(X(i)
1 X(i)

2 ) + N(0, 1), with t = 0.5.

Compared with LASSO, Foba, and SpAM, the estimation performance using
MSE as evaluation criterion is presented in Figure 51. And Table 8 shows the
rate of success for variable selection of these models with different correlations
controlled by t.

From Figure 51, we see that AFR and GFR methods provide very good
estimates for the underlying true regression functions as compared to others.
Firstly, LASSO and SpAM perform very poorly when the selected model is
very sparse. This is because they are convex regularization based approaches:
to obtain a very sparse model, they induce very large estimation bias. On
the other hand, the greedy pursuit based methods like Foba, AFR and GFR
do not suffer from such a problem. Secondly, when the true model is linear,
all methods perform similarly. For the nonlinear true regression function,
AFR, GFR and SpAM outperform LASSO and Foba. It is expectable since
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Figure 51.: Performance of the different algorithms on synthetic data: MSE versus sparsity
level

LASSO and Foba are based on linear assumptions. Furthermore, we notice
that when the true model is additive (Model 2) or nearly additive (Model 4),
AFR performs the best. However, for the non-additive general multivariate
regression function (Model 3), GFR performs the best. For all examples, when
more and more irrelevant variables are included in the model, SpAM has a
better generalization performance due to the regularization effect.

The variable selection performances of different methods in Table 8 are very
similar to their estimation performances. We observe that, when correlation
parameter t becomes larger, the performances of all methods decrease. But
SpAM is most sensitive to the correlation increase. In all models, the per-
formance of SpAM can decrease more than 70% for the larger t; in contrast,
AFR and GFR are more robust to the increased correlation between different
covariates. Another interesting observation is on model 4. From the previous
discussion, on this model, AFR achieves a better estimation performance.
However, when comparing the variable selection performance, GFR is the
best. This suggests that for nonparametric inference, the goals of estimation



198 GREEDY NONPARAMETRIC REGRESSION

Table 8.: Comparison of variable selection

Model 1 LASSO(sd) Foba SpAM AFR GFR

t = 0 1.000 (0.0000) 1.000 (0.0000) 0.999 (0.0028) 0.999 (0.0039) 0.990 (0.0229)

t = 1 0.879 (0.0667) 0.882 (0.0557) 0.683 (0.1805) 0.879 (0.0525) 0.839 (0.0707)

t = 2 0.559 (0.0913) 0.553 (0.0777) 0.190 (0.1815) 0.564 (0.0739) 0.515 (0.0869)

Model 2 LASSO(sd) Foba SpAM AFR GFR

t = 0 0.062 (0.0711) 0.069 (0.0774) 0.842 (0.1128) 0.998 (0.0055) 0.769 (0.1751)

t = 1 0.056 (0.0551) 0.060 (0.0550) 0.118 (0.0872) 0.819 (0.1293) 0.199 (0.2102)

t = 2 0.004 (0.0106) 0.029 (0.0548) 0.008 (0.0056) 0.260 (0.1439) 0.021 (0.0364)

Model 3 LASSO(sd) Foba SpAM AFR GFR

t = 0 0.997 (0.0080) 0.999 (0.0039) 0.980 (0.1400) 1.000 (0.0000) 1.000 (0.0000)

t = 1 0.818 (0.1137) 0.802 (0.1006) 0.934 (0.1799) 1.000 (0.0000) 0.995 (0.0103)

t = 2 0.522 (0.1520) 0.391 (0.1577) 0.395 (0.3107) 0.902 (0.1009) 0.845 (0.1623)

Model 4 LASSO(sd) Foba SpAM AFR GFR

t = 0 0.043 (0.0482) 0.043 (0.0437) 0.553 (0.1864) 0.732 (0.1234) 0.967 (0.0365)

t = 0.5 0.083 (0.0823) 0.049 (0.0511) 0.157 (0.1232) 0.126 (0.0688) 0.708 (0.1453)

t = 1 0.048 (0.0456) 0.085 (0.0690) 0.095 (0.0754) 0.192 (0.0679) 0.171 (0.1067)

consistency and variable selection consistency might not be always coherent.
Some tradeoffs might be needed to balance them.

7.6.2 The real data

In this subsection, we compare five methods on three real datasets: Boston
Housing, AutoMPG, and Ionosphere data set 1. Boston Housing contains 556
data points, with 13 features; AutoMPG 392 data points (we delete those
with missing values), with 7 features and Ionosphere 351 data points, with 34
features and the binary output. We treat Ionosphere as a regression problem
although the response is binary. We run 10 times 5-fold cross validation

1 Available from UCI Machine Learning Database Repository: http:archive.ics.uci.edu/ml.

http:archive.ics.uci.edu/ml.
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on each dataset and plot the mean and standard deviation of MSE versus
different sparsity levels in Figure 52.
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Figure 52.: Performance of the different algorithms on real datasets: CV error versus sparsity
level

From Figure 52, since all the error bars are tiny, we deem all the results
significant. On the Boston Housing and AutoMPG datasets, the generalization
performances of AFR and GFR are clearly better than LASSO, Foba, and
SpAM. For all these datasets, if we prefer very sparse models, the perfor-
mance of the greedy methods are much better than the convex regularization
methods due to the much less bias being induced. On the Ionosphere data,
we only need to run GFR up to 15 selected variables, since the generalization
performance with 15 variables is already worse than the null model due to
the curse of dimensionality. Both AFR and GFR on this dataset achieve the
best performances when there are no more than 10 variables included; while
SpAM achieves the best CV score with 25 variables. However, this is not to
say that the true model is not sparse. The main reason that SpAM can achieve
good generalization performance when many variables included is due to
its regularization effect. We think the true model should be sparse but not
additive. Similar trend among different methods has also appeared in Model
4 of previous synthetic datasets.

7.7 conclusions and discussions

We presented two new greedy algorithms for nonparametric regression with
either additive mean functions or general multivariate regression functions.
Both methods utilize the iterative forward stepwise strategy, which guarantees
the model inference is always conducted in low dimensions in each itera-
tion. These algorithms are very easy to implement and have good empirical
performance on both simulated and real datasets.

One thing worthy to note is: people sometimes criticize the forward greedy
algorithms since they can never have the chance to correct the errors made
in the early steps. This is especially true for high dimensional linear models,
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which motivates the outcome of some adaptive forward-backward procedures
such as Foba [Zhang, 2008]. We addressed a similar question: Whether a
forward-backward procedure also helps in the nonparametric settings? AFR
and GFR can be trivially extended to be forward-backward procedures using
the same way as in Zhang [2008]. We conducted a comparative study to see
whether the backward steps help or not. However, the backward step happens
very rarely and the empirical performance is almost the same as the purely
forward algorithm. This is very different from the linear model cases, where
the backward step can be crucial. In summary, in the nonparametric settings,
the backward ingredients will cost much more computational efforts with
very tiny performance improvement.

A very recent research strand is to learn nonlinear models by the multiple
kernel learning machinery Bach [2008a,b], another future work is to compare
our methods with the multiple kernel learning approach from both theoretical
and computational perspectives.



8
MDRT: MULTIVARIATE DYADIC REGRESSION TREES

In this chapter, we propose a new nonparametric learning method
based on multivariate dyadic regression trees (MDRTs). Unlike tra-
ditional dyadic decision trees (DDTs) or classification and regression
trees (CARTs), MDRTs are constructed using penalized empirical risk
minimization with a novel sparsity-inducing penalty. Theoretically, we
show that MDRTs can simultaneously adapt to the unknown spar-
sity and smoothness of the true regression functions, and achieve the
nearly optimal rates of convergence (in a minimax sense) for the class
of (α, C)-smooth functions. Empirically, MDRTs can simultaneously
conduct function estimation and variable selection in high dimensions.
To make MDRTs applicable for large-scale learning problems, we pro-
pose a greedy heuristic algorithm and a more effective randomization
scheme. The superior performance of MDRTs are demonstrated on both
synthetic and real datasets.

8.1 introduction

Many application problems need to simultaneously predict several quantities
using a common set of variables, e.g. predicting multi-channel signals within
a time frame, predicting concentrations of several chemical constitutes using
the mass spectra of a sample, or predicting expression levels of many genes
using a common set of phenotype variables. These problems can be naturally
formulated in terms of multivariate regression.

In particular, let
{
(X(1), Y(1)), . . . , (X(n), Y(n))

}
be n independent and iden-

tically distributed pairs of data with X(i) ∈ X ⊂ Rd and Y(i) ∈ Y ⊂ Rp for i =
1, . . . , n. Moreover, we denote the jth dimension of Y by Yj = (Y(1)

j , . . . , Y(n)
j )T

and kth dimension of X by Xk = (X(1)
k , . . . , X(n)

k )T. Without loss of generality,
we assume X = [0, 1]d and the true model on Yj is :

Y(i)
j = f j(X(i)) + ε

(i)
j , i = 1, . . . , n, (8.1)

where f j : Rd → R is a smooth function. In the sequel, let f = ( f1, . . . , fp),
where f : Rd → Rp is a p-valued smooth function. The vector form of (9.20)
then becomes Y(i) = f (X(i)) + ε(i), i = 1, . . . , n. We also assume that the

201
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noise terms {ε(i)
j }i,j are independently distributed and bounded almost surely.

This is a general setting of the nonparametric multivariate regression. From
the minimax theory, we know that estimating f in high dimensions is very
challenging. For example, when f1, . . . , fp lie in a d-dimensional Sobolev ball
with order α and radius C, denoted as W(α, C), the minimax risk is

inf
f̂

sup
f1,..., fp∈W(α,C)

R( f̂ , f ), (8.2)

where

R( f̂ , f ) = E

p

∑
j=1

∫
X
| f̂ j(X)− f (X)|2dµ(X)

is the L2-risk (w.r.t. the Lebesgue measure µ(·)) of an estimate f̂ constructed
from the observed samples. It is well known that the best convergence rate for
the minmax risk (8.3) is p · n−2α/(2α+d). For fixed α, such rate can be extremely
slow when d becomes large. For example, if f1, . . . , fp ∈W(α, C), then

lim inf
n→∞

1
p
· n2α/(2α+d) inf

f̂
sup

f1,..., fp∈W(α,C)
R( f̂ , f ) > 0, (8.3)

In this chapter, wherever possible, we suppress the dependence of f̂ on n.
Thus the best rate is of convergence is p · n−2α/(2α+d). For fixed α, such a rate
is not practical when d is large.

However, in many real world applications, the true regression function f
may depend only on a small set of variables. In other words, the problem is
jointly sparse:

f (X) = f (XS) = ( f1(XS), . . . , fp(XS)),

where XS = (Xk : k ∈ S), S ⊂ {1, . . . , d} is a subset of covariates with size
r = |S| � d. If S has been given, the minimax lower bound can be improved
to be p · n−2α/(2α+r), which is the best possible rate can be expected. For sparse
learning problems, our task is to develop an estimator, which adaptively
achieves this faster rate of convergence without knowing S in advance.

Previous research on these problems can be roughly divided into three cat-
egories: (i) parametric linear models, (ii) nonparametric additive models, and
(iii) nonparametric tree models. The methods in the first category assume that
the true models are linear and use some block-norm regularization to induce
jointly sparse solutions [Turlach et al., 2005, Liu and Zhang, 2009, Obozinski
et al., 2009, Chen et al., 2009]. If the linear model assumptions are correct,
accurate estimates can be obtained. However, given the increasing complexity
of modern applications, conclusions inferred under these restrictive linear
model assumptions can be misleading. As has been discussed in the previous
chapters, significant progress has been made on inferring nonparametric



8.1 I N T RO D U C T I O N 203

additive models with joint sparsity constraints [Friedman, 1991, Liu et al.,
2008]. For additive models, each f j(X) is assumed to have an additive form:
f j(X) = ∑d

k=1 f jk(Xk). Although they are more flexible than linear models, the
additivity assumptions might still be too stringent for real world applications.

A family of more flexible nonparametric methods are based on tree models.
One of the most popular tree methods is the classification and regression
tree (CART) [Breiman et al., 1984]. It first grows a full tree by orthogonally
splitting the axes at locally optimal splitting points, then prunes back the full
tree to form a subtree. Theoretically, CART is hard to analyze unless strong
assumptions have been enforced [Gey and Nedelec, 2005]. In contrast to CART,
dyadic decision trees (DDTs) are restricted to only axis-orthogonal dyadic
splits, i.e. each dimension can only be split at its midpoint. For a broad range
of classification problems, Scott and Nowak [2006b] showed that DDTs using
a special penalty can attain nearly optimal rate of convergence in a minimax
sense. Blanchard et al. [2007b] proposed a dynamic programming algorithm
for constructing DDTs when the penalty term has an additive form, i.e. the
penalty of the tree can be written as the sum of penalties on all terminal nodes.
Though intensively studied for classification problems, the dyadic decision
tree idea has not drawn as much attention in the regression settings. One of
the closest results we are aware of is Castro et al. [2005], in which a single
response dyadic regression procedure is considered for non-sparse learning
problems. Another interesting tree model, “Bayesian Additive Regression
Trees (BART)”, is proposed under Bayesian framework [Chipman et al., 2006],
which is essentially a “sum-of-trees” model. Most of the existing work adopt
the number of terminal nodes as the penalty. Such penalty cannot lead to
sparse models since a tree with a small number of terminal nodes might still
involve too many variables.

To obtain sparse models, we propose a new nonparametric method based
on multivariate dyadic regression trees (MDRTs). Similar to DDTs, MDRTs are
also constructed using penalized empirical risk minimization. The novelty of
MDRT is to introduce a sparsity-inducing term in the penalty, which explicitly
induces very sparse solutions. Our contributions are two-fold: (i) Theoretically,
we show that MDRTs can simultaneously adapt to the unknown sparsity and
smoothness of the true regression functions, and achieve the nearly optimal
rate of convergence for the class of (α, C)-smooth functions. (ii) Empirically,
to avoid computationally prohibitive exhaustive search in high dimensions,
we propose a two-stage greedy algorithm and its randomized version that
achieve good performance in both function estimation and variable selection.
Note that our theory and algorithm can also be adapted to univariate sparse
regression problem, which is a special case of the multivariate one. The reason
why we propose MDRT is due to its generality. To the best of our knowledge,
this is the first time such a sparsity-inducing penalty is equipped to tree
models for solving sparse regression problems.
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The rest of this chapter is organized as follows. Section 8.2 presents MDRTs
in detail. Section 8.3 studies the statistical properties of MDRTs. Section 8.4
presents the algorithms which approximately compute the MDRT solutions.
Section 8.5 reports empirical results of MDRTs and their comparison with
CARTs. Conclusions are made in the last section.

8.2 multivariate dyadic regression trees

We adopt the notation in Scott and Nowak [2006b]. A MDRT T is a multivariate
regression tree that recursively divides the input space X by means of axis-
orthogonal dyadic splits. The nodes of T are associated with hyperrectangles
(cells) in X = [0, 1]d. The root node corresponds to X itself. If a node is
associated to the cell B = ∏d

j=1[aj, bj], after being dyadically split on the
dimension k, the two children are associated to the subcells Bk,1 and Bk,2:

Bk,1 =
{

X(i) ∈ B |X(i)
k ≤

ak + bk

2

}
and Bk,2 = B \ Bk,1.

The set of terminal nodes of a MDRT T is denoted as term(T). Let Bt be
the cell in X induced by a terminal node t, the partition induced by term(T)
can be denoted as π(T) = {Bt|t ∈ term(T)}.

For each terminal node t, we can fit a multivariate m-th order polynomial
regression on data points falling in Bt. Instead of using all covariates, such
a polynomial regression is only fitted on a set of active variables, which is
denoted as A(t). For each node b ∈ T (not necessarily a terminal node), A(b)
can be an arbitrary subset of {1, . . . , d} satisfying two rules:

1. If a node is dyadically split perpendicular to the axis k, k must belong
to the active sets of its two children.

2. For any node b, let par(b) be its parent node, then A(par(b)) ⊂ A(b).

For a MDRT T, we define Fm
T to be the class of p-valued measurable m-th

order polynomials corresponding to π(T). Furthermore, for a dyadic integer
N = 2L, let TN be the collection of all MDRTs such that no terminal cell has a
side length smaller than 2−L.

Given integers M and N, let FM,N be defined as

FM,N = ∪0≤m≤M ∪T∈TN F
m
T .

The final MDRT estimator with respect to FM,N , denoted as f̂ M,N , can then
be defined as

f̂ M,N = arg min
f∈FM,N

1
n

n

∑
i=1
‖Y(i) − f (X(i))‖2

2 + pen( f ). (8.4)
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To define in detail pen( f ) for f ∈ FM,N , let T and m be the MDRT and the
order of polynomials corresponding to f , pen( f ) then takes the following
form:

pen( f ) = λ · p
n
(

log n(rT + 1)m(NT + 1)rT + |π(T)| log d
)
, (8.5)

where λ > 0 is a regularization parameter, rT = | ∪t∈term(T)A(t)| corresponds
to the number of relevant dimensions and

NT = min{s ∈ {1, 2, . . . , N} | T ∈ Ts}.

There are two terms in (8.5) within the parenthesis. The latter one penalizing
the number of terminal nodes |π(T)| has been commonly adopted in the
existing tree literature. The former one is novel. Intuitively, it penalizes non-
sparse models since the number of relevant dimensions rT appears in the
exponent term. In the next section, we will show that this sparsity-inducing
term is derived by bounding the VC-dimension of the underlying subgraph
of regression functions. Thus it has a very intuitive interpretation.

8.3 statistical properties

In this section, we present theoretical properties of the MDRT estimator. Our
main technical result is Theorem 8.1, which provides the nearly optimal rate
of the MDRT estimator.

To evaluate the algorithm performance, we use the L2-risk with respect to
the Lebesgue measure µ(·), which is defined as

R( f̂ , f ) = E

p

∑
j=1

∫
X
| f̂ j(X)− f j(X)|2dµ(X),

where f̂ is the function estimate constructed from n observed samples. Note
that all the constants appear in this section are generic constants, i.e. their
values can change from one line to another in the analysis.

Let N0 = {0, 1, . . .} be the set of natural number, we first define the class of
(α, C)-smooth functions.

Definition 8.1. ((α, C)-smoothness) Let α = q + β for some q ∈ N0, 0 < β ≤ 1,
and let C > 0. A function g : Rd → R is called (α, C)-smooth if for every α =

(α1, . . . , αd), αi ∈ N0, ∑d
j=1 αj = q, the partial derivative

∂qg
∂xα1

1 . . . ∂xαd
d

exists and

satisfies, for all X, Z ∈ Rd,∣∣∣∣∣ ∂qg(X)
∂xα1

1 . . . ∂xαd
d
− ∂qg(Z)

∂xα1
1 . . . ∂xαd

d

∣∣∣∣∣ ≤ C · ‖X− Z‖β
2 .

In the following, we denote the class of (α, C)-smooth functions by D(α, C).
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Assumption 8.1. We assume f1, . . . , fp ∈ D(α, C) for some α, C > 0 and for all
j ∈ {1, . . . , p}, f j(X) = f j(XS) with r = |S| � d.

Theorem 3.2 of Györfi et al. [2002] shows that the minimax rate of conver-
gence for class D(α, C) is exactly the same as that for class of d-dimensional
Sobolev ball with order α and radius C.

Proposition 8.1. (Györfi et al. [2002] )

lim inf
n→∞

1
p
· n2α/(2α+d) inf

f̂
sup

f1,..., fp∈D(α,C)
R( f̂ , f ) > 0.

Therefore, the minimax rate of convergence is p · n−2α/(2α+d). Similarly, if
the problem is jointly sparse with the index set S and r = |S| � d, the best
rate of convergence can be improved to p · n−2α/(2α+r) when S is given.

The following is another technical assumption needed for the main theorem.

Assumption 8.2. Let 1 ≤ γ < ∞. We assume that

max
1≤j≤p

sup
X
| f j(X)| ≤ γ and max

1≤i≤n
‖Y(i)‖∞ ≤ γ a.s.

This condition is mild. Indeed, we can even allow γ to increase with the
sample size n at a certain rate. This will not affect the final result. For example,
when {ε(i)

j }i,j are i.i.d. Gaussian random variables, this assumption easily

holds with γn = O(
√

log n), which only contributes a logarithmic term to the
final rate of convergence.

The next assumption specifies the scaling of the relevant dimension r and
ambient dimension d with respect to the sample size n.

Assumption 8.3. r = O(1) and d = O(exp(nξ)) for some 0 < ξ < 1.

Here, r = O(1) is crucial, since even if r increases at a logarithmic rate with
respect to n, i.e. r = O(log n), it is hopeless to get any consistent estimator
for the class D(α, C) since n−(1/ log n) = 1/e. On the other hand, the ambient
dimension d can increase exponentially fast with the sample size, which is a
realistic scaling for high dimensional settings.

The following is the main theorem.

Theorem 8.1. Under Assumptions 9.1 to 9.3, there exist a positive number λ that only
depends on α, γ and r, such that

pen( f ) = λ · p
n
(
(log n)(rT + 1)m(NT + 1)rT + |π(T)| log d

)
, (8.6)

For large enough M, N, the solution f̂ M,N obtained from (8.4) satisfies

R( f̂ M,N , f ) ≤ c · p ·
(

log n + log d
n

)2α/(2α+r)

, (8.7)

where c is some generic constant.
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Remark 8.1. As discussed in Proposition 8.1, the obtained rate of convergence in
(8.7) is nearly optimal up to a logarithmic term.

Remark 8.2. Since the estimator defined in (8.4) does not need to know the smooth-
ness α and the sparsity level r in advance, MDRTs are simultaneously adaptive to the
unknown smoothness and sparsity level.

Proof of Theorem 1: To find an upper bound of R( f̂ M,N , f ), we need to
analyze and control the approximation and estimation errors separately. Our
analysis closely follows the least squares regression analysis in Györfi et al.
[2002] and some specific coding scheme of trees in Scott and Nowak [2006b].

Without loss of generality, we always assume f̂ M,N obtained from (8.4)
satisfies the condition that max1≤j≤p supX | f

M,N
j (X)| ≤ γ. if this is not true,

we can always truncate f̂ M,N at the rate γ and obtain the desired result in
Theorem 8.1.

Let Sm
T be the class of scalar-valued measurable m-th order polynomials

corresponding to π(T), and let Gm
T be the class of all subgraphs of functions

of Sm
T , i.e.

Gm
T =

{
(Z, t) ∈ Rd ×R; t ≤ g(Z); g ∈ Sm

T

}
.

Let VGm
T

be the VC-dimension of Gm
T , we have the following lemma:

Lemma 8.1. Let rT and NT be defined as in (8.5), we know that

VGm
T
≤ (rT + 1)m · (NT + 1)rT . (8.8)

Sketch of Proof: From Theorem 9.5 of Györfi et al. [2002], we only need to
show the dimension of Gm

T is upper bounded by the R.H.S. of (8.8). By the def-
inition of rT and NT, the result follows from a straightforward combinatorial
analysis. �

The next lemma provides an upper bound of the approximation error for
the class D(α, C).

Lemma 8.2. Let f = ( f1, . . . , fp) be the true regression function, there exists a set
of piecewise polynomials h1, . . . , hp ∈ ∪T∈TK Sm

T

∀j ∈ {1, . . . , p}, sup
X∈X
| f j(X)− hj(X)| ≤ cK−α

where K ≤ N, c is a generic constant depends on r.

Sketch of Proof: This is a standard approximation result using multivariate
piecewise polynomials. The main idea is based on a multivariate Taylor
expansion of the function f j at a given point X0. Then try to utilize Definition
8.1 to bound the remainder terms. For the sake of brevity, we omit the technical
details. �



208 MDRT: MULTIVARIATE DYADIC REGRESSION TREES

The next lemma is crucial, it provides an oracle inequality to bound the
risk using an approximation term and an estimation term. Its analysis follows
from a simple adaptation of Theorem 12.1 on page 227 of Györfi et al. [2002].

First, we define

R̃(g, f ) =
p

∑
j=1

∫
X
|gj(X)− f j(X)|2dµ(X).

Lemma 8.3. Györfi et al. [2002] Choose

pen( f ) ≥ 5136 · p γ4

n

(
log(120eγ4n)VGm

T
+

[[T]] log 2
2

)
(8.9)

for some prefix code [[T]] > 0 satisfying ∑T∈TN
2−[[T]] ≤ 1. Then, we have

R( f̂ M,N , f ) ≤ 12840 · p · γ4

n
+ 2 inf

T∈TN
inf

g∈FM,N

{
p · pen(g) + R̃(g, f )

}
.(8.10)

One appropriate prefix code [[T]] for each MDRT T is proposed in Scott
and Nowak [2006b], which specifies that [[T]] = 3|π(T)| − 1 + (|π(T)| −
1) log d/ log 2. A simpler upper bound for [[T]] is

[[T]] ≤ (3 + log d/ log 2)|π(T)|. (8.11)

Remark 8.3. The derived constants in the Lemma 8.3 will be pessimistic due to the
very large numerical values. This may result in selecting oversimplified tree structures.
In practice, we always use cross-validation to choose the tuning parameters.

To prove Theorem 8.1, first, using Assumption 9.1 and Lemma 8.2, we
know that for any K ≤ N, there must exists generic constants c1, c2, c3 and
a function f ′ that is conformal with a MDRT T′ ∈ TK, satisfying f ′(X) =
f ′(XS) and |π(T′)| ≤ (K + 1)r such that

R̃( f ′, f ) ≤ c1 · p · K−2α, (8.12)

and

pen( f ′) ≤ c2
(log n)(r + 1)M(K + 1)r

n
+ c3

log d(K + 1)r

n
. (8.13)

The desired result then follows by plugging (8.12) and (8.13) into (8.10) and
balancing these three terms.

8.4 computational algorithm

Exhaustive search of f̂ M,N in the MDRT space has similar complexity as that
of DDTs and could be computationally very expansive. To make MDRTs
scalable for high dimensional massive datasets, using similar ideas as CARTs,
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we propose a two-stage procedure: (1) we grow a full tree in a greedy manner;
(2) we prune back the full tree to from the final tree. Before going to the detail
of the algorithm, we firstly introduce some necessary notations.

Given a MDRT T, denote the corresponding multivariate m-th order polyno-
mial fit on π(T) by f̂ m

T = { f̂ m
t }t∈π(T), where f̂ m

t is the m-th order polynomial
regression fit on the partition Bt. For each X(i) falling in Bt, let f̂ m

t (X(i),A(t))
be the predicted function value for X(i). We denote the the local squared error
(LSE) on node t by R̂m(t,A(t)):

R̂m(t,A(t)) =
1
n ∑

X(i)∈Bt

‖Y(i) − f̂ m
t (X(i),A(t))‖2

2.

It is worthwhile noting that R̂m(t,A(t)) is calculated as the average with
respect to the total sample size n, instead of the number of data points
contained in Bt. The total MSE of the tree R̂(T) can then be computed by the
following equation:

R̂(T) = ∑t∈term(T) R̂m(t,A(t)).

The total cost of T, which is defined as the the right hand side of (8.4), then
can be written as:

Ĉ(T) = R̂(T) + pen( f̂ m
T ). (8.14)

Our goal is to find the tree structure with the polynomial regression on each
terminal node that can minimize the total cost.

The first stage is tree growing, in which a terminal node t is first selected in
each step. We then perform one of two actions a1 and a2:
a1: adding another dimension k 6∈ A(t) to A(t), and refit the regression

model on all data points falling in Bt;
a2: dyadically splitting t perpendicular to the dimension k ∈ A(t).

In each tree growing step, we need to decide which action to perform. For
action a1, we denote the drop in LSE as:

∆R̂m
1 (t, k) = R̂m(t,A(t))− R̂m(t,A(t) ∪ {k}). (8.15)

For action a2, let sl(t(k)) be the side length of Bt on dimension k ∈ A(t). If
sl(t(k)) > 2−L, the dimension k of Bt can then be dyadically split. In this case,
let t(k)

L and t(k)
R be the left and right child of node t. The drop in LSE takes the

following form:

∆R̂m
2 (t, k) = R̂m(t,A(t))− R̂m(t(k)

L ,A(t)− R̂m(t(k)
R ,A(t)). (8.16)

For each terminal node t, we greedily perform the action a∗ on the dimen-
sion k∗, which are determined by

(a∗, k∗) = argmax
a∈{1,2},k∈{1...d}

∆R̂m
a (t, k). (8.17)
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In high dimensional setting, the above greedy procedure may not lead to
the optimal tree since successively locally optimal splits cannot guarantee the
global optimum. Once an irrelevant dimension has been added in or split,
the greedy procedure can never fix the mistake. To make the algorithm more
robust, we propose a randomized scheme. Instead of greedily performing the
action on the dimension that leads the maximum drop in LSE, we randomly
choose which action to perform according to a multinomial distribution. In
particular, we normalize ∆R̂ such that:

2

∑
a=1

∑
k

∆R̂m
a (t, k) = 1. (8.18)

And a sample (a∗, k∗) is drawn from multinomial(1, ∆R̂). The action a∗ is then
performed on the dimension k∗. In general, when the randomized scheme is
adopted, we need to repeat our algorithm many times to pick the best tree.

The second stage is cost complexity pruning. For each step, we either merge
a pair of terminal nodes or remove a variable from the active set of a terminal
node such that the resulted tree has the smaller cost. We repeat this process
until the tree becomes a single root node with an empty active set. The tree
with the minimum cost in this process is returned as the final tree.

The pseudocode for the growing stage and cost complexity pruning stage
are presented in Appendix. Moreover, to avoid a cell with too few data points,
we pre-define a quantity nmax. Let n(t) be the the number of data points fall
into Bt, if n(t) ≤ nmax, Bt will no longer be split. It is worthwhile noting
that we ignore those actions that lead to ∆R = 0. In addition, whenever we
perform the mth order polynomial regression on the active set of a node, we
need to make sure it is not rank deficient.

8.5 experimental results

In this section, we present numerical results for MDRTs applied to both
synthetic and real datasets. We compare five methods:

1 Greedy MDRT with M = 1 (MDRT(G, M=1));

2 Randomized MDRT with M = 1 (MDRT(R, M=1));

3 Greedy MDRT with M = 0 (MDRT(G, M=0));

4 Randomized MDRT with M = 0 (MDRT(R, M=0));

5 CART: Classification and Regression Trees

For randomized scheme, we run 50 random trials and pick the minimum cost
tree.
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As for CART, we adopt the MATLAB package from Martinez and Martinez
[2008], which fits piecewise constant on each terminal node with the cost com-
plexity criterion: Ĉ(T) = R̂(T) + ρ

p
n |π(T)|, where ρ is the tuning parameter

playing the same role as λ in (8.5).

8.5.1 Synthetic Data

For the synthetic data experiment, we consider the high dimensional compound
symmetry covariance structure of the design matrix with n = 200 and d = 100.
Each dimension Xj is generated according to

Xj =
Wj + tU

1 + t
, j = 1, . . . , d,

where W1, . . . , Wd and U are i.i.d. sampled from Uniform(0,1). Therefore the
correlation between Xj and Xk is t2/(1 + t2) for j 6= k.

We study three models as shown below: the first one is linear; the second
one is nonlinear but additive; the third one is nonlinear with three-way
interactions. All these models only involve four relevant variables. The noise
terms, denoted as ε , are independently drawn from a standard normal
distribution.

Model 1: Y(i)
1 = 2X(i)

1 + 3X(i)
2 + 4X(i)

3 + 5X(i)
4 + ε

(i)
1

Y(i)
2 = 5X(i)

1 + 4X(i)
2 + 3X(i)

3 + 2X(i)
4 + ε

(i)
2

Model 2: Y(i)
1 = exp(X(i)

1 ) + (X(i)
2 )2 + 3X(i)

3 + 2X(i)
4 + ε

(i)
1

Y(i)
2 = (X(i)

1 )2 + 2X(i)
2 + exp(X(i)

3 ) + 3X(i)
4 + ε

(i)
2

Model 3: Y(i)
1 = exp(2X(i)

1 X(i)
2 + X(i)

3 ) + X(i)
4 + ε

(i)
1

Y(i)
2 = sin(X(i)

1 X(i)
2 ) + (X(i)

3 )2 + 2X(i)
4 + ε

(i)
2

We compare the performances of different methods using two criteria: (i)
variable selection and (ii) function estimation. For each model, we generate
100 designs and an equal-sized validation set per design. For more detailed
experiment protocols, we set nmax = 5 and L = 6. By varying the values of λ

or ρ from large to small, we obtain a full regularization path. The tree with
the minimum MSE on the validation set is then picked as the best tree. For
criterion (i), if the variables involved in the best tree are exactly the first four
variables, the variable selection task for this design is deemed as successful.
The numerical results are presented in Table 9. For each method, the three
quantities reported in order are the number of success out of 100 designs, the
mean and standard deviation of the MSE on the validation set. Note that we
omit “MDRT” in Table 9 due to space limitations.

From Table 9, the performance of MDRT with M = 1 is dominantly better
in both variable selection and estimation than those of the others. For linear
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Table 9.: Comparison of Variable Selection and Function Estimation on Synthetic Datasets

Model 1 R, M=1 G, M=1 R, M=0 G, M=0 CART

t = 0 100 2.03 (0.14) 100 2.08 (0.15) 100 5.84 (0.51) 97 5.74 (0.54) 52 6.17 (0.55)

t = 0.5 100 2.05 (0.14) 100 2.06 (0.15) 76 5.42 (0.53) 68 5.36 (0.60) 29 5.48 (0.51)

t = 1 100 2.05 (0.13) 100 2.05 (0.16) 19 5.40 (0.60) 20 5.56 (0.69) 3 5.30 (0.58)

Model 2 R, M=1 G, M=1 R, M=0 G, M=0 CART

t = 0 100 2.07 (0.13) 100 2.06 (0.15) 39 3.21 (0.26) 31 3.22 (0.28) 25 3.52 (0.31)

t = 0.5 96 2.05 (0.15) 93 2.09 (0.17) 17 3.10 (0.25) 11 3.15 (0.26) 5 3.20 (0.27)

t = 1 76 2.09 (0.14) 68 2.21 (0.19) 2 3.17 (0.30) 2 3.16 (0.26) 1 3.16 (0.27)

Model 3 R, M=1 G, M=1 R, M=0 G, M=0 CART

t = 0 98 2.68 (0.31) 95 2.67 (0.47) 75 3.90 (0.47) 63 4.03 (0.54) 29 4.35 (0.73)

t = 0.5 84 2.56 (0.21) 86 2.52 (0.25) 32 3.63 (0.47) 32 3.60 (0.40) 15 3.69 (0.38)

t = 1 65 2.51 (0.26) 50 2.62 (0.23) 3 3.75 (0.45) 4 3.88 (0.51) 2 3.66 (0.38)

models, MDRT with M = 1 always select the correct variables even for large ts.
For variable selection, MDRT with M = 0 has a better performance compared
with CART due to its sparsity-inducing penalty. In contrast, CART is more
flexible in the sense that its splits are not necessarily dyadic. As a consequence,
they are comparable in function estimation. Moreover, the performance of
randomized scheme is slightly better than its deterministic version in variable
selection. Another observation is that, when t becomes larger, although the
performance of variable selection decreases on all methods, the estimation
performance becomes slightly better. This might be counter-intuitive at the
first sight. In fact, with the increase of t, all methods tend to select more
variables. Due to the high correlations, even the irrelevant variables are
also helpful in predicting the responses. This is a common effect due to
“collinearlity” or “concurvity”.

8.5.2 Real Data

In this subsection, we compare these methods on three real datasets. The first
dataset is the Chemometrics data (Chem for short), which has been extensively
studied in Breiman and Friedman [1997]. The data are from a simulation
of a low density tubular polyethylene reactor with n = 56, d = 22 and
p = 6. Following the same procedures in Breiman and Friedman [1997],
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Table 10.: Testing MSE on Real Datasets

R, M=1 G, M=1 R, M=0 G, M=0 CART

Chem 0.15 (0.09) 0.18 (0.12) 0.38 (0.18) 0.52 (0.06) 0.40 (0.09)

Housing 20.18 (2.94) 21.60 (2.83) 24.67 (2.05) 29.46 (1.95) 25.91 (3.05)

Space_ga 0.054 (7.8e-4) 0.055 (8.0e-4) 0.068 (7.2e-4) 0.068 (9.2e-4) 0.064 (8.3e-4)

we log-transformed the responses because they are skewed. The second
dataset is Boston Housing 1 with n = 506, d = 10 and p = 1. We add
10 irrelevant variables randomly drawn from Uniform(0,1) to evaluate the
variable selection performance. The third one, Space_ga2, is an election data
with spatial coordinates on 3107 US counties. Our task is to predict the x, y
coordinates of each county given 5 variables regarding voting information.
For Space_ga, we normalize the responses to [0, 1]. Similarly, we add other 15

irrelevant variables randomly drawn from Uniform(0,1). For all these datasets,
we scale the input variables into a unit cube.

For evaluation purpose, each dataset is randomly split such that half data
are used for training and the other half for testing. We run a 5-fold cross-
validation on the training set to pick the best tuning parameter λ∗ and ρ∗. We
then train MDRTs and CART on the entire training data using λ∗ and ρ∗. We
repeat this process 20 times and report the mean and standard deviation of
the testing MSE in Table 10. nmax is set to be 5 for the first dataset and 20

for the latter two. For all datasets, we set L = 6. Moreover, for randomized
scheme, we run 50 random trials and pick the minimum cost tree.

From Table 10, we see that MDRT with M = 1 has the best estimation
performance. Moreover, randomized scheme does improve the performance
compared to the deterministic counterpart. In particularly, such an improve-
ment is quite significant when M = 0. The performance of MDRT(G, M=0) is
always worse than CART since CART can have more flexible splits. However,
using randomized scheme, the performance of MDRT(R, M=0) achieves a
comparable performance as CART.

As for variable selection of Housing data, in all the 20 runs, MDRT(G, M=1)
and MDRT(R, M=1) never select the artificially added variables. However,
for the other three methods, nearly 10 out of 20 runs involve at least one
extraneous variable. In particular, we compare our results with those reported
in Ravikumar et al. [2007]. They find that there are 4 (indus, age, dis, tax)
irrelevant variables in the Housing data. Our experiments confirm this result
since in 15 out of the 20 trials, MDRT(G, M=1) and MDRT(R, M=1) never
select these four variables. Similarly, for Space_ga data, there are only 2 and 1

1 Available from UCI Machine Learning Database Repository: http:archive.ics.uci.edu/ml
2 Available from StatLib: http:lib.stat.cmu.edu/datasets/

http:archive.ics.uci.edu/ml
http:lib.stat.cmu.edu/datasets/
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times that MDRT(G, M=1) and MDRT(R, M=1) involve the artificially added
variables.

8.6 conclusions

We propose a novel sparse learning method based on multivariate dyadic re-
gression trees (MDRTs). Our approach adopts a new sparsity-inducing penalty
that simultaneously conduct function estimation and variable selection. Some
theoretical analysis and practical algorithms have been developed. To the best
of our knowledge, it is the first time that such a penalty is introduced in the
tree literature for high dimensional sparse learning problems.

8.7 appendix : pseudo-code for greedy tree learning algorithms

Algorithm 8.7.1 Tree Growing
Input: {X(i), Y(i)}n

i=1, m, nmax, L, deterministic
Build the initial tree T with a single root node r containing all the data points and set
A(r)← ∅
while ∃t ∈ term(T) such that n(t) > nmax or |A(t)| < d do

if |A(t)| < d then
for all dimension k 6∈ A(t) do

calculate ∆R̂m
1 (t, k) according to (8.15)

if n(t) > nmax then
for all dimension k ∈ A(t) do

if sl(t(k)) ≥ 2−L+1 then
calculate ∆R̂m

2 (t, k) according to (8.16)
if deterministic then

(a∗, k∗) = argmax
a∈{1,2},k∈{1...d}

∆R̂m
a (t, k)

else
Normalize ∆R̂ according to (8.18). Draw the sample (a∗, k∗) from the multinomial(1,
∆R̂)

if a∗ = 1 then
Dyadically split the cell represented by node t perpendicular to dimension k∗ and
update T

else
A(t)← A(t) ∪ {k}

Output: Tree T

Note the boolean variable deterministic indicates whether the procedure is
purely greedy or randomized.
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Algorithm 8.7.2 Cost Complexity Pruning
Input: Tree T, parameter λ for calculating Ĉ(T)

i← 1, T1 ← T
while Ti has more than one node OR Ti only has the root node r with A(r) 6= ∅ do

T(1) ← argmin
tL ,tR∈term(Ti)

Ĉ( Tree obtained by merging

tL, tR in Ti)

T(2) ← argmin
t∈term(Ti),k∈A(t)\A(par(t))

Ĉ( Tree obtained

by removing the dimension k from A(t))

Ti+1 ← argmin
T(l)∈{1,2}

Ĉ(T(l))

i← i + 1
i∗ ← argmin

i
Ĉ(Ti)

Output: Optimal Tree Ti∗





9
GRAPH-VALUED REGRESSION

Undirected graphical models encode in a graph G the dependence
structure of a random vector Y. In many applications, it is of interest
to model Y given another random vector X as input. We refer to the
problem of estimating the graph G(x) of Y conditioned on X = x as
“graph-valued regression.” In this chapter, we propose a semiparametric
method for estimating G(x) that builds a tree on the X space just as in
CART (classification and regression trees), but at each leaf of the tree
estimates a graph. We call the method “Graph-optimized CART,” or Go-
CART. We study the theoretical properties of Go-CART using dyadic
partitioning trees, establishing oracle inequalities on risk minimization
and tree partition consistency. We also demonstrate the application
of Go-CART to a meteorological dataset, showing how graph-valued
regression can provide a useful tool for analyzing complex data.

9.1 introduction

Let Y be a p-dimensional random vector with distribution P. A common way
to study the structure of P is to construct the undirected graph G = (V, E),
where the vertex set V corresponds to the p components of the vector Y. The
edge set E is a subset of the pairs of vertices, where an edge between Yj and Yk
is absent if and only if Yj is conditionally independent of Yk given all the other
variables. Suppose now that Y and X are both random vectors, and let P(· |X)
denote the conditional distribution of Y given X. In a typical regression
problem, we are interested in the conditional mean µ(x) = E (Y |X = x).
But if Y is multivariate, we may also be interested in how the structure of
P(· |X) varies as a function of X. In particular, let G(x) be the undirected
graph corresponding to P(· |X = x). We refer to the problem of estimating
G(x) as graph-valued regression.

Let G = {G(x) : x ∈ X} be a set of graphs indexed by x ∈ X , where X
is the domain of X. Then G induces a partition of X , denoted as X1, . . . ,Xm,
where X(1) and x2 lie in the same partition element if and only if G(X(1)) =
G(x2). Graph-valued regression is thus the problem of estimating the partition
and estimating the graph within each partition element.

We present three different partition-based graph estimators; two that use
global optimization, and one based on a greedy splitting procedure. One of

217
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the optimization based schemes uses penalized empirical risk minimization;
the other uses held-out risk minimization. As we show, both methods enjoy
strong theoretical properties under relatively weak assumptions; in particular,
we establish oracle inequalities on the excess risk of the estimators, and tree
partition consistency (under stronger assumptions) in Section 10.4. While
the optimization based estimates are attractive, they do not scale well com-
putationally when the input dimension is large. An alternative is to adapt
the greedy algorithms of classical CART, as we describe in Section 9.3.3. In
Section 10.5 we present experimental results on both synthetic data and a
meteorological dataset, demonstrating how graph-valued regression can be
an effective tool for analyzing high dimensional data with covariates.

9.2 graph-valued regression

Let Y(1), . . . , Y(n) be a random sample of vectors from P, where each Y(i) ∈ Rp.
We are interested in the case where p is large and, in fact, may diverge with n
asymptotically. One way to estimate G from the sample is the graphical lasso
or glasso [Yuan and Lin, 2007, Friedman et al., 2007, Banerjee et al., 2008],
where one assumes that P is Gaussian with mean µ and covariance matrix
Σ. Missing edges in the graph correspond to zero elements in the precision
matrix Ω = Σ−1 [Whittaker, 1990, Edwards, 1995, Lauritzen, 1996]. A sparse
estimate of Ω is obtained by solving

Ω̂ = arg min
Ω�0

{
tr(SΩ)− log |Ω|+ λ‖Ω‖1

}
(9.1)

where Ω is positive definite, S is the sample covariance matrix, and ‖Ω‖1 =
∑j,k |Ωjk| is the elementwise `1-norm of Ω. Friedman et al. [2007] develop a
efficient algorithm for finding Ω̂ that involves estimating a single row (and
column) of Ω in each iteration by solving a lasso regression. The theoretical
properties of Ω̂ have been studied by Rothman et al. [2008] and Ravikumar
et al. [2009b]. In practice, it seems that the glasso yields reasonable graph
estimators even if Y is not Gaussian; however, proving conditions under which
this happens is an open problem.

We briefly mention three different strategies for estimating G(x), the graph
of Y conditioned on X = x, each of which builds upon the glasso.

Parametric Estimators. Assume that Z = (X, Y) is jointly multivariate Gaus-
sian with covariance matrix

Σ =

 ΣX ΣXY

ΣYX ΣY

 .

We can estimate ΣX, ΣY, and ΣXY by their corresponding sample quantities
Σ̂X, Σ̂Y, and Σ̂XY, and the marginal precision matrix of X, denoted as ΩX, can
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be estimated using the glasso. The conditional distribution of Y given X = x
is obtained by standard Gaussian formulas. In particular, the conditional
covariance matrix of Y |X is Σ̂Y|X = Σ̂Y − Σ̂YXΩ̂XΣ̂XY and a sparse estimate
of Ω̂Y|X can be obtained by directly plugging Σ̂Y|X into glasso. However, the
estimated graph does not vary with different values of X.

Kernel Smoothing Estimators. We assume that Y given X is Gaussian, but
without making any assumption about the marginal distribution of X. Thus
Y |X = x ∼ N(µ(x), Σ(x)). Under the assumption that both µ(x) and Σ(x)
are smooth functions of x, we estimate Σ(x) via kernel smoothing:

Σ̂(x) =
n

∑
i=1

K

(
‖x− X(i)‖

h

)(
Y(i) − µ̂(x)

) (
Y(i) − µ̂(x)

)T

n

∑
i=1

K

(
‖x− X(i)‖

h

)
where K is a kernel (e.g. the probability density function of the standard
Gaussian distribution), ‖ · ‖ is the Euclidean norm, h > 0 is a bandwidth and

µ̂(x) =
n

∑
i=1

K

(
‖x− X(i)‖

h

)
Y(i)

/ n

∑
i=1

K

(
‖x− X(i)‖

h

)
.

Now we apply glasso in (9.1) with S = Σ̂(x) to obtain an estimate of G(x). This
method is appealing because it is simple and very similar to nonparametric
regression smoothing; the method was analyzed for one-dimensional X by
Zhou et al. [2010]. However, while it is easy to estimate G(x) at any given x,
it requires global smoothness of the mean and covariance functions. It is also
computationally challenging to reconstruct the partition X1, . . . ,Xm.

Partition Estimators. In this approach, we partition X into finitely many
connected regions X1, . . . ,Xm. Within each Xj, we apply the glasso to get
an estimated graph Ĝj. We then take Ĝ(x) = Ĝj for all x ∈ Xj. To find the
partition, we appeal to the idea used in CART (classification and regression
trees) [Breiman et al., 1984]. We take the partition elements to be recursively
defined hyperrectangles. As is well-known, we can then represent the partition
by a tree, where each leaf node corresponds to a single partition element. In
CART, the leaves are associated with the means within each partition element;
while in our case, there will be an estimated undirected graph for each leaf
node. We refer to this method as Graph-optimized CART, or Go-CART. The
remainder of this paper is devoted to the details of this method.

9.3 graph-optimized cart

Let X ∈ Rd and Y ∈ Rp be two random vectors, and let

Dn =
{
(X(1), Y(1)), . . . , (X(n), Y(n))

}
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be n i.i.d. samples from the joint distribution of (X, Y). The domains of X and
Y are denoted by X and Y respectively; and for simplicity we take X = [0, 1]d.
We assume that

Y |X = x ∼ Np(µ(x), Σ(x)) (9.2)

where µ : Rd → Rp is a vector-valued mean function and Σ : Rd → Rp×p is a
matrix-valued covariance function. We also assume that for each x, Ω(x) =
Σ(x)−1 is a sparse matrix, i.e., many elements of Ω(x) are zero. In addition,
Ω(x) may also be a sparse function of x, i.e., Ω(x) = Ω(xR) for some R ⊂
{1, . . . , d} with cardinality |R| � d. The task of graph-valued regression is
to find a sparse inverse covariance Ω̂(x) to estimate Ω(x) for any x ∈ X ; in
some situations the graph of Ω(x) is of greater interest than the entries of
Ω(x) themselves.

Go-CART is a partition-based conditional graph estimator. We partition
X into finitely many connected regions X1, . . . ,Xm, and within each Xj we
apply the glasso to estimate a graph Ĝj. We then take Ĝ(x) = Ĝj for all
x ∈ Xj. To find the partition, we restrict ourselves to dyadic splits, as studied
by Scott and Nowak [2006a], Blanchard et al. [2007a]. The primary reason
for such a choice is the computational and theoretical tractability of dyadic
partition-based estimators.

9.3.1 Dyadic Partitioning Tree

Let T denote the set of dyadic partitioning trees (DPTs) defined over X =
[0, 1]d, where each DPT T ∈ T is constructed by recursively dividing X by
means of axis-orthogonal dyadic splits. Each node of a DPT corresponds
to a hyperrectangle in [0, 1]d. If a node is associated to the hyperrectangle
A = ∏d

l=1[al , bl ], then after being dyadically split along dimension k, the two
children are associated with the sub-hyperrectangles

A(k)
L = ∏

l<k
[al , bl ]× [ak,

ak + bk

2
]×∏

l>k
[al , bl ] and A(k)

R = A\A(k)
L .

Given a DPT T, we denote by Π(T) = {X1, . . . ,XmT} the partition of X
induced by the leaf nodes of T. For a dyadic integer N = 2K where K ∈
{0, 1, 2, . . .}, we define TN to be the collection of all DPTs such that no partition
has a side length smaller than 2−K. Let I(·) denote the indicator function.
We denote µT(x) and ΩT(x) as the piecewise constant mean and precision
functions associated with T:

µT(x) =
mT

∑
j=1

µXj · I
(
x ∈ Xj

)
and ΩT(x) =

mT

∑
j=1

ΩXj · I
(
x ∈ Xj

)
, (9.3)

where µXj ∈ Rp and ΩXj ∈ Rp×p are the mean vector and precision matrix
for Xj.
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9.3.2 Go-CART: Risk Minimization Estimator

Before formally defining our graph-valued regression estimators, we re-
quire some further definitions. Given a DPT T with an induced partition
Π(T) = {Xj}mT

j=1 and corresponding mean and precision functions µT(x)
and ΩT(x), the negative conditional log-likelihood risk R(T, µT, ΩT) and its
sample version R̂(T, µT, ΩT) are defined as follows:

R(T, µT, ΩT) = (9.4)
mT

∑
j=1

E

[(
tr
[
ΩXj

(
(Y− µXj)(Y− µXj)

T
)]
− log |ΩXj |

)
· I
(
X ∈ Xj

)]
,

R̂(T, µT, ΩT) = (9.5)

1
n

n

∑
i=1

mT

∑
j=1

[(
tr
[
ΩXj

(
(Y(i) − µXj)(Y(i) − µXj)

T
)]
−log |ΩXj |

)
· I
(
X(i)∈Xj

)]
.

Let [[T]] > 0 denote a prefix code over all DPTs T ∈ TN satisfying

∑
T∈TN

2−[[T]] ≤ 1.

One such prefix code [[T]] is proposed in Scott and Nowak [2006a], and takes
the form

[[T]] = 3|Π(T)| − 1 + (|Π(T)| − 1) log d/ log 2.

A simple upper bound for [[T]] is

[[T]] ≤ (3 + log d/ log 2)|Π(T)|. (9.6)

Our analysis will assume that the conditional means and precision matrices
are bounded in the ‖ · ‖∞ and ‖ · ‖1 norms; specifically we suppose there is
a positive constant B and a sequence L1,n, . . . , LmT ,n, where each Lj,n ∈ R+ is
a function of the sample size n, and we define the domains of each µXj and
ΩXj as

Mj = {µ ∈ Rp : ‖µ‖∞ ≤ B} ,

Λj =
{

Ω ∈ Rp×p : Ω is P.D., symmetric, and ‖Ω‖1 ≤ Lj,n
}

. (9.7)

With this notation in place, we can now define two estimators.

Definition 9.1. The penalized empirical risk minimization Go-CART estimator is de-
fined as

T̂,
{

µ̂X̂j
, Ω̂X̂j

}mT̂

j=1
= argminT∈TN ,µXj∈Mj,ΩXj∈Λj

{
R̂(T, µT, ΩT) + pen(T)

}
(9.8)

where R̂ is defined in (9.5) and

pen(T) = γn ·mT

√
[[T]] log 2 + 2 log(np)

n
.
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Empirically, we may always set the dyadic integer N to be a reasonably
large value; the regularization parameter γn is responsible for selecting a
suitable DPT T ∈ TN . Once T is chosen, the tuning parameters L1,n, . . . , LmT ,n

corresponding each partition element of T need to be determined in a data-
dependent way. We will discuss further details about this in the next section.

We can also formulate an estimator by minimizing held-out risk. Practically,
we split the data into two partitions; we use

D1 = {(X(1), Y(1)), . . . , (X(n1), Y(n1))}

for training and

D2 = {(X̃(1), Ỹ(1)), . . . , (X̃(n2), Ỹ(n2)))}

for validation with n1 + n2 = n. The held-out negative log-likelihood risk is
then given by

R̂out(T, µT, ΩT) (9.9)

=
1
n2

n2

∑
i=1

mT

∑
j=1

{(
tr
[
ΩXj

(
(Ỹ(i)−µXj)(Ỹ

(i)−µXj)
T
)]
−log |ΩXj |

)
· I
(
X̃(i)∈Xj

)}
.

Definition 9.2. For each DPT T define

µ̂T, Ω̂T = argminµXj∈Mj,ΩXj∈Λj
R̂(T, µT, ΩT) (9.10)

where R̂ is defined in (9.5) but only evaluated on {(X(1), Y(1)), . . . , (X(n1), Y(n1))}.
The held-out risk minimization Go-CART estimator is

T̂ = argminT∈TN
R̂out(T, µ̂T, Ω̂T). (9.11)

where R̂out is defined in (9.9) but only evaluated on D2.

9.3.3 Go-CART: Greedy Partitioning

The above procedures require us to find an optimal dyadic partitioning tree
within TN . Although dynamic programming can be applied, as in [Blanchard
et al., 2007a], the computation does not scale to large input dimensions d. We
now propose a simple yet effective greedy algorithm to find an approximate
solution (T̂, µ̂T, Ω̂T). We focus on the held-out risk minimization form as
in Definition 9.2, due to its superior empirical performance. But note that
our greedy approach is generic and can easily be adapted to the penalized
empirical risk minimization form.

First, consider the simple case that we are given a dyadic tree structure
T which induces a partition Π(T)={X1, . . . ,XmT} on X . For any partition
element Xj, we estimate the sample mean using D1:

µ̂Xj =
1

∑n1
i=1 I

(
X(i) ∈ Xj

) n1

∑
i=1

Y(i) · I
(

X(i) ∈ Xj

)
.
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The glasso is then used to estimate a sparse precision matrix Ω̂Xj . More
precisely, let Σ̂Xj be the sample covariance matrix for the partition element Xj,
given by

Σ̂Xj =
1

∑n1
i=1 I

(
X(i) ∈ Xj

) n1

∑
i=1

(
Y(i) − µ̂Xj

) (
Y(i) − µ̂Xj

)T
· I
(

X(i) ∈ Xj

)
.

The estimator Ω̂Xj is obtained by optimizing

Ω̂Xj = arg min
Ω�0

{tr(Σ̂Xj Ω)− log |Ω|+ λj‖Ω‖1},

where λj is in one-to-one correspondence with Lj,n in (9.7). In practice, we
run the full regularization path of the glasso, from large λj, which yields
very sparse graph, to small λj, and select the graph that minimizes the
held-out negative log-likelihood risk. To further improve the model selection
performance, we refit the parameters of the precision matrix after the graph
has been selected. That is, to reduce the bias of the glasso, we first estimate the
sparse precision matrix using `1-regularization, and then we refit the Gaussian
model without `1-regularization, but enforcing the sparsity pattern obtained
in the first step. Liu et al. [2010c] demonstrate that such a refitting step will
yield a significantly better model selection performance when estimating
graphs.

The natural, standard greedy procedure starts from the coarsest partition
X = [0, 1]d and then computes the decrease in the held-out risk by dyad-
ically splitting each hyperrectangle A along dimension k ∈ {1, . . . d}. The
dimension k∗ that results in the largest decrease in held-out risk is selected.
More precisely, let slk(A) be the side length of A on the dimension k. If
slk(A) > 2−K, where K = log2 N, we dyadically split A along the dimension
k. In this case, let A(k)

L and A(k)
R be the two resulting sub-hyperrectangles. The

decrease in held-out risk takes the form

∆R̂(k)
out(A, µ̂A, Ω̂A) (9.12)

= R̂out(A, µ̂A, Ω̂A)− R̂out(A(k)
L , µ̂A(k)

L
, Ω̂A(k)

L
)− R̂out(A(k)

R , µ̂A(k)
R

, Ω̂A(k)
R

).

Note that if splitting any dimension k of A leads to an increase in the risk,
we set a Boolean variable S(A) = False which indicates that the partition
element A should no longer be split and hence A should be a partition
element of Π(T). The greedy Go-CART, as presented in Algorithm 9.3.1,
recursively applies the previous procedure to split each partition element
until all the partition elements cannot be further split. Note that we also
record the dyadic partition tree structure in the implementation.

This greedy partitioning method parallels the classical algorithms for clas-
sification and regression trees that have been used in statistical learning for
decades. However, the strength of the procedures given in Definitions 9.1
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Algorithm 9.3.1 Greedy Go-CART using Dyadic Partitioning

Input: training data {X(i), Y(i)}n1
i=1, held-out validation data {X̃(i), Ỹ(i)}n2

i=1, and an inte-
ger K.
Start from X = [0, 1]d. Set the Boolean variable S(X ) = True and estimate µ̂X , Ω̂X
while exists a hyperrectangle A such that S(A) = True do

for all dimensions k ∈ {1, . . . d} do
if slk(A) ≥ 2−K+1 then

Calculate ∆R̂(k)
out(A, µ̂A, Ω̂A) according to (9.12)

else
Set ∆R̂(k)

out(A, µ̂A, Ω̂A) = −∞

Determine the best splitting dimension k∗ = arg maxk∈{1,...,d} ∆R̂(k)
out(A, µ̂A, Ω̂A)

if ∆R̂(k∗)
out (A, µ̂A, Ω̂A) > 0 then

Dyadically splitA along dimension k∗, yielding two hyperrectanglesA(k∗)
L andA(k∗)

R .

Estimate µ̂
A(k∗)

L
, Ω̂
A(k∗)

L
, µ̂
A(k∗)

R
, Ω̂
A(k∗)

R
and set S(A(k∗)

L ) = S(A(k∗)
R ) = True.

else
Set S(A) = False and put A into the final partition set.

Output: Partition Π(T̂) = {Xj}
mT̂
j=1 and the corresponding DPT T̂ with the estimated µ̂Xj .

and 9.2 is that they lend themselves to a theoretical analysis under rela-
tively weak assumptions, as we show in the following section. The theoretical
properties of greedy Go-CART are left to future work.

9.4 theoretical properties

We define the oracle risk R∗ over TN as

R∗ = R(T∗, µ∗T, Ω∗T) = inf
T∈TN ,µXj∈Mj,ΩXj∈Λj

R(T, µT, ΩT).

Note that T∗, µ∗T∗ , and Ω∗T∗ might not be unique, since the finest partition
always achieves the oracle risk. To obtain oracle inequalities, we make the
following two technical assumptions.

Assumption 9.1. Let T ∈ TN be an arbitrary DPT which induces a partition Π(T) =
{X1, . . . ,XmT} on X , we assume that there exists a constant B, such that

max
1≤j≤mT

‖µXj‖∞ ≤ B and max
1≤j≤mT

sup
Ω∈Λj

log |Ω| ≤ Ln

where Λj is defined in (9.7) and Ln = max1≤j≤mT Lj,n, where Lj,n is the same as in
(9.7). We also assume that

Ln = o(
√

n).
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Assumption 9.2. Let Y = (Y1, . . . , Yp)T ∈ Rp. For any A ⊂ X , we define

Zk`(A) = YkY` · I(X ∈ A)−E(YkY` · I(X ∈ A)) (9.13)

Zj(A) = Yj · I(X ∈ A)−E(Yj · I(X ∈ A)). (9.14)

We assume there exist constants M1, M2, v1, and v2, such that

sup
k,`,A

E|Zk`(A)|m ≤ m!Mm−2
2 v2

2
and sup

j,A
E|Zj(A)|m ≤

m!Mm−2
1 v1

2

for all m ≥ 2.

Theorem 9.1. Let T ∈ TN be a DPT that induces a partition Π(T) = {X1, . . . ,XmT}
on X . For any δ ∈ (0, 1), let T̂, µ̂T̂, Ω̂T̂ be the estimator obtained using the penalized
empirical risk minimization Go-CART in Definition 9.1, with a penalty term pen(T)
of the form

pen(T) = (C1 + 1)LnmT

√
[[T]] log 2 + 2 log p + log(48/δ)

n
(9.15)

where C1 = 8
√

v2 + 8B
√

v1 + B2. Then for sufficiently large n, the excess risk in-
equality

R(T̂, µ̂T̂, Ω̂T̂)− R∗ (9.16)

≤ inf
T∈TN

{
2pen(T) + inf

µXj∈Mj,ΩXj∈Λj
(R(T, µT, ΩT)− R∗)

}
(9.17)

holds with probability at least 1− δ.

A similar oracle inequality holds when using the held-out risk minimization
Go-CART.

Theorem 9.2. Let T ∈ TN be a DPT which induces a partition Π(T) = {X1, . . . ,XmT}
on X . For any δ ∈ (0, 1), we define φn(T) to be a function of n and T:

φn(T) = (C2 +
√

2)LnmT

√
[[T]] log 2 + 2 log p + log(384/δ)

n

where C2 = 8
√

2v2 + 8B
√

2v1 +
√

2B2 and Ln = max1≤j≤mT Lj,n. Partition the
data into

D1 = {(X(1), Y(1)), . . . , (X(n1), Y(n1))}
and

D2 = {(X̃(1), Ỹ(1)), . . . , (X̃(n2), Ỹ(n2))}
with sizes n1 = n2 = n/2. Let T̂, µ̂T̂, Ω̂T̂ be the estimator constructed using the
held-out risk minimization criterion of Definition 9.2. Then, for sufficiently large n,
the excess risk inequality

R(T̂, µ̂T̂, Ω̂T̂)− R∗ (9.18)

≤ inf
T∈TN

{
3φn(T) + inf

µXj∈Mj,ΩXj∈Λj
(R(T, µT, ΩT)− R∗)

}
+ φn(T̂) (9.19)

holds with probability at least 1− δ.
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Note that in contrast to the statement in Theorem 9.1, Theorem 9.2 results
in a stochastic upper bound due to the extra φn(T̂) term, which depends on
the complexity of the final estimate T̂. The proofs of both theorems are given
in the appendix.

We now temporarily make the strong assumption that the model is correct,
so that Y given X is conditionally Gaussian, with a partition structure that is
given by a dyadic tree. We show that with high probability, the true dyadic
partition structure can be correctly recovered.

Assumption 9.3. The true model is

Y |X = x ∼ Np(µ∗T∗(x), Ω∗T∗(x)) (9.20)

where T∗ ∈ TN is a DPT with induced partition Π(T∗) = {X 0
j }

mT∗
j=1 and

µ∗T∗(x) =
mT∗

∑
j=1

µ∗j I(x ∈ X 0
j ), Ω∗T∗(x) =

mT∗

∑
j=1

Ω∗j I(x ∈ X 0
j ).

Under this assumption, clearly

R(T∗, µ∗T∗ , Ω∗T∗) = inf
T∈TN ,µT ,ΩT∈MT

R(T, µT, ΩT), (9.21)

whereMT is given by

MT =
{

µ(x) =
mT

∑
j=1

µXj I(x ∈ Xj), Ω(x) =
mT

∑
j=1

ΩXj I(x ∈ Xj) :

where µXj ∈ Mj, ΩXj ∈ Λj, Π(T) = {Xj}mT
j=1

}
.

Let T1 and T2 be two DPTs, if Π(T1) can be obtained by further split the
hyperrectangles within Π(T2), we say Π(T2) ⊂ Π(T1). We then have the
following definitions:

Definition 9.3. A tree estimation procedure T̂ is tree partition consistent in case

P
(

Π(T∗) ⊂ Π(T̂)
)
→ 1 as n→ ∞. (9.22)

Note that the estimated partition may be finer than the true partition.
Establishing a tree partition consistency result requires further technical
assumptions. The following assumption specifies that for arbitrary adjacent
subregions of the true dyadic partition, either the means or the variances
should be sufficiently different. Without such an assumption, of course, it is
impossible to detect the boundaries of the true partition.

Assumption 9.4. Let X 0
i and X 0

j be adjacent partition elements of T∗, so that they

have a common parent node within T∗. Let Σ∗X 0
i

= (Ω∗X 0
i
)−1. We assume there exist

positive constants c1, c2, c3, c4, such that either

2 log

∣∣∣∣∣∣
Σ∗X 0

i
+ Σ∗X 0

j

2

∣∣∣∣∣∣− log |Σ∗X 0
i
| − log |Σ∗X 0

j
| ≥ c4 (9.23)
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or ‖µ∗X 0
i
− µ∗X 0

j
‖2

2 ≥ c3. We also assume

ρmin(Ω∗X 0
j
) ≥ c1, ∀j = 1, . . . , mT∗ , (9.24)

where ρmin(·) denotes the smallest eigenvalue. Furthermore, for any T ∈ TN and
any A ∈ Π(T), we have P (X ∈ A) ≥ c2.

Theorem 9.3. Under the above assumptions, we have

inf
T∈TN , Π(T∗)*Π(T)

inf
µT , ΩT∈MT

R(T, µT, ΩT)−R(T∗, µ∗T∗ , Ω∗T∗) > min{ c1c2c3

2
, c2c4}

where c1, c2, c3, c4 are defined in Assumption 9.4. Moreover, the Go-CART estimator
in both the penalized risk minimization and held-out risk minimization form is tree
partition consistent.

This result shows that, with high probability, we obtain a finer partition
than T∗; the assumptions do not, however, control the size of the resulting
partition. The proof of this result appears in the appendix.

9.5 experimental results

We evaluate the performance of the greedy Go-CART learning algorithm in
Section 9.3.3 on both synthetic datasets and a meteorological dataset. In each
experiment, we set the dyadic integer to N = 210 to ensure that we can obtain
fine-tuned partitions of the input space X . Furthermore, we always ensure
that the region (hyperrectangle) represented by each leaf node contains at
least 10 data points to guarantee reasonable estimates of the sample means
and sparse inverse covariance matrices.

9.5.1 Synthetic Data

We generate n data points X(1), . . . , X(n) ∈ Rd with n = 10, 000 and d = 10
uniformly distributed on the unit hypercube [0, 1]d. We split the square [0, 1]2

defined by the first two dimensions into 22 subregions, as shown in Figure
53(a). For the t-th subregion where 1 ≤ t ≤ 22, we generate an Erdös-Rényi
random graph Gt = (Vt, Et) with p = 20 vertices and |E| = 10 edges,
with maximum node degree four. As an illustration, the random graphs for
subregion 4 (the smallest region), 17 (middle region) and 22 (large region) are
presented in Figures 53(b), (c) and (d), respectively. For each graph Gt, we
generate an inverse covariance matrix Ωt according to:

Ωt
i,j =


1 if i = j,

0.245 if (i, j) ∈ Et,

0 otherwise,
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where 0.245 guarantees positive-definiteness of Ωt when the maximum node
degree is four.
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Figure 53.: (a) The 22 subregions defined on [0, 1]2. The horizontal axis corresponds to the
first dimension denoted as X1 while the vertical axis corresponds to the second
dimension denoted as X2. The bottom left point corresponds to [0, 0] and the upper
right point corresponds to [1, 1]. (b) The true graph for subregion 4. (c) The true
graph for subregion 17. (d) The true graph for subregion 22.

To each data point X(i) in the t-th subregion we associate a 20-dimensional
response vector Y(i) generated from a multivariate Gaussian distribution
N20

(
0,
(
Ωt)−1). We also create an equally-sized held-out dataset in the same

manner based on {Ωt}22
t=1.

We apply Algorithm 9.3.1 to this synthetic dataset. The estimated dyadic
tree structure and its induced partitions are presented in Figure 54. Estimated
graphs for some nodes are also illustrated. Note that the label for each
subregion in subplot (c) is the leaf node ID of the tree in subplot (a). We
conduct 100 Monte-Carlo simulations and find that in 82 out of 100 runs our
algorithm perfectly recovers the ground truth partition of the X1-X2 plane,
and never wrongly splits on any of the irrelevant dimensions, ranging from X3

to X10. Moreover, the estimated graphs have interesting patterns. Even though
the graphs within each subregion are sparse, the estimated graph obtained by
pooling all the data together is highly dense. As the algorithm progresses, the
estimated graphs become more sparse. However, for the immediate parent
nodes of the true subregions, the graphs become denser again.

Out of the 82 simulations where we correctly identify the tree structure,
we list the graph estimation performance for subregions 1, 4, 17, 18, 21, 22 in
terms of precision, recall, and F1-score. Let Ê be the estimated edge set while
E be the true edge set. These criteria are defined as:

precision =
|Ê ∩ E|
|Ê|

, recall =
|Ê ∩ E|
|E| , F1-score = 2 · precision · recall

precision + recall
.

We see that for a larger subregion, it is easier to obtain better recovery
performance, while good recovery for a very small region is more challenging.
Of course, in the smaller regions there is less data; In Figure 53(a), there are
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Figure 54.: (a) The estimated dyadic tree structure; (b) the induced partition on [0, 1]2 and the
number labeled on each subregion corresponds to each leaf node ID of the tree
in (a); (c) the held-out negative log-likelihood risk for each split. The order of the
splits corresponds the ID of the tree node (from small to large)

only 10000/64 ≈ 156 data points appear in subregion 1 (the smallest one). In
contrast, approximately 10000/16 = 625 data points fall inside subregion 18,
so that the graph corresponding to this region can be better estimated.

We also plot the held-out risk in the subplot (c). As can be seen, the first
few splits lead to the most significant decrease in the held-out risk.

Table 11.: The graph estimation performance over different subregions

Mean values over 100 runs (Standard deviation)

subregion region 1 region 4 region 17 region 18 region 21 region 22

Precision 0.8327 (0.15) 0.8429 (0.15) 0.9821 (0.05) 0.9853 (0.04) 0.9906 (0.04) 0.9899 (0.05)

Recall 0.7890 (0.16) 0.7990 (0.18) 1.0000 (0.00) 1.0000 (0.00) 1.0000 (0.00) 1.0000 (0.00)

F1 − score 0.7880 (0.11) 0.7923 (0.12) 0.9904 (0.03) 0.9921 (0.02) 0.9949 (0.02) 0.9913 (0.02)

9.5.1.1 Further Simulations

To further demonstrate the performance of the method, this section presents
simulations where the true conditional covariance matrix is continuous in X.
We compare the graphs estimated by our method to the single graph obtained
by applying the glasso directly to the entire dataset.
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In this subsection, we consider the case where X lies on a one dimensional
chain. More precisely, we generate n equally spaced points X(1), . . . , X(n) ∈ R

with n = 10, 000 on [0, 1]. We generate an Erdös-Rényi random graph G1 =
(V1, E1) with p = 20 vertices, |E| = 10 edges, and maximum node degree
four. Then, we simulate the output Y(1), . . . , Y(n)] ∈ Rp as follows:

1. For t = 2 to T, we construct the graph Gt = (Vt, Et) as follows: (a) with
probability 0.05, remove one edge from Gt−1 and (b) with probability
0.05, add one edge to the graph generated in (a). We make sure that the
total number of edges is between 5 and 15, and that the maximum node
degree four.

2. For each graph Gt, generate the inverse covariance matrix Ωt:

Ωt(i, j) =


1 if i = j,

0.245 if (i, j) ∈ Et,

0 otherwise,

where 0.245 guarantees positive-definiteness of Ωt under the degree
constraint.

3. For each t, we sample yt from a multivariate Gaussian distribution with
mean µ = (0, . . . , 0) ∈ Rp and covariance matrix Σt = (Ωt)−1.

We generate an equal-sized held-out dataset in the same manner, using the
same µ and Σt. Greedy Go-CART is used to estimate the dyadic tree structure
and corresponding inverse covariance matrices; these are displayed in Figure
55.

9.5.2 Chain Structure

To examine the recovery quality of the underlying graph structure, we com-
pare our estimated graphs to the graph estimated by directly applying the
glasso to the entire dataset. Comparisons in terms of precision, recall and
F1-score are given in Figure 56 (a), (b) and (c) respectively. As we can see, the
partition-based method achieves much higher precision and F1-Score. As for
recall, glasso is slightly better, due to the fact that the glasso graphs estimated
on the entire data are very dense, as shown in 56 (d). The dense graphs lead
to fewer false negatives (thus large recall) but many false positives (thus small
precision).

9.5.3 Two-way Grid Structure

In this section, we apply Go-CART to a two dimensional design X. The un-
derlying graph structures and Y are generated in manner similar to that
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Figure 55.: (a) Estimated tree structure; (b) corresponding partitions
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Figure 56.: Comparison of our algorithm with glasso (a) Precision; (b) Recall; (c) F1-score;
(d) Estimated graph by applying glasso on the entire dataset
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used in the previous section. In particular, we generate equally spaced
X(1), . . . , X(n) ∈ R2 with n = 10, 000 on the unit two-dimensional grid [0, 1]2.
We generate an Erdös-Rényi random graph G1,1 = (V1,1, E1,1) with p = 20
vertices, |E| = 10 edges, and maximum node degree four, then construct
the graphs for each x along diagonals. More precisely, for each pair of i, j,
where 1 ≤ i ≤ 100 and 1 ≤ j ≤ 100, we randomly select either Gi−1,j (if it
exists) or Gi,j−1 (if it exists) with equal probability as the basis graph. Then,
we construct the graph Gi,j = (Vi,j, Ei,j) by removing one edge and adding
one edge with probability 0.05 based on the selected basis graph, taking care
that the number of edges is between 5 and 15 and the maximum degree is
still four. Given the underlying graphs, we generate the covariance matrix
and output Y in the same way as in the last section.

We apply the greedy algorithm to learn the dyadic tree structure and
corresponding inverse covariance matrices, shown in Figure 57. We plot the
F1-score obtained by glasso on the entire data compared against the our
method in Figure 58. It is seen that for most x, the partitioning method
achieves significantly higher F1-score than directly applying the glasso. Note
that since the graphs near the middle part of the diagonal (the line connecting
[0, 1] and [1, 0]) have the greatest variability, the F1-scores for both methods
are low in this region.
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Figure 57.: (a) Estimated tree structure; (b) estimated partitions where the labels correspond
to the index of the leaf node in (a)

9.5.4 Climate Data Analysis

In this section, we use graph-valued regression to analyze a meteorology
dataset [Lozano et al., 2009] that contains monthly data of 18 different me-
teorological factors from 1990 to 2002. We use the data from 1990 to 1995 as
the training data and the data from 1996 to 2002 as the held-out validation
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Figure 58.: (a) Color map of F1-score for glasso run on the entire dataset; (b) color map of F1-
score for Go-CART. Red indicates large values (approaching 1) and blue indicates
small values (approaching 0), as shown in the color bar.

data. The observations span 125 locations in the US on an equally spaced grid
between latitude 30.475 and 47.975 and longitude -119.75 to -82.25. The 18

meteorological factors measured for each month include levels of CO2, CH4, H2,
CO, average temperature (TMP) and diurnal temperature range (DTR), min-
imum temperate (TMN), maximum temperature (TMX), precipitation (PRE),
vapor (VAP), cloud cover (CLD), wet days (WET), frost days (FRS), global solar
radiation (GLO), direct solar radiation (DIR), extraterrestrial radiation (ETR), ex-
traterrestrial normal radiation (ETRN) and UV aerosol index (UV). For further
detail, see Lozano et al. [2009].

As a baseline, we estimate a sparse graph on the data from all 125 locations,
using the glasso algorithm; the estimated graph is shown in Figure 59 (b). It
is seen that there is no edge connecting to any of the greenhouse gas factors
CO2, CH4, H2 or CO. This apparently contradicts basic domain knowledge that
these four factors should correlate with the solar radiation factors (including
GLO, DIR, ETR, ETRN, and UV), according to the IPCC report IPCC [2007], one
of the most authoritative reports in the field of meteorology. The reason for
the missing edges in the pooled data may be that positive correlations at one
location are canceled by negative correlations at other locations.

Treating the longitude and latitude of each site as two-dimensional covari-
ate X, and the meteorology data of the p = 18 factors as the response Y, we
estimate a dyadic tree structure using the greedy algorithm. The result is a
partition with 87 subregions, shown in Figure 59, with the corresponding
dyadic partition tree is shown in Figure 60. The graphs for subregion 2 (corre-
sponding to the strip of land from Los Angles, California to Phoenix, Arizona)
and subregion 3 (Bakersfield, California to Flagstaff, Arizona) are shown in
subplot (a) of Figure 59. The graphs for these two adjacent subregions are
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Figure 59.: Analysis of the climate data. (a) Estimated partitions for 125 locations projected
to the US map, with the estimated graphs for subregions 2, 3, and 65; (b) estimated
graph with data pooled from all 125 locations; (c) the re-scaled partition pattern
induced by the dyadic tree structure.

quite similar, suggesting spatial smoothness of the learned graphs. Moreover,
for both graphs, CO is connected to solar radiation factors in either a direct or
indirect way, and H2 is connected to UV, which is accordance with Chapter 7 of
the IPCC report IPCC [2007]. In contrast, for subregion 65, which corresponds
to the border of South Dakota and Nebraska; here the graph is quite different.
In general, it is found that the graphs corresponding to the locations along the
coasts are sparser than those corresponding to the locations in the mainland.

Such observations, which require validation and interpretation by domain
experts, are examples of the capability of graph-valued regression to provide
a useful tool for high dimensional data analysis.

9.6 conclusions

In this chapter, we present Go-CART, a partition-based estimator of the family
of undirected graphs associated with a high dimensional conditional dis-
tribution. Dyadic partitioning estimators, either using penalized empirical
risk minimization or data splitting, are attractive due to their simplicity and
theoretical guarantees. We derive finite sample oracle inequalities on excess
risk, together with a tree partition consistency result. Our theory allows the
scale of the graphs to increase with the sample size, which is relevant since the
methods are targeted at high dimensional data analysis applications. Greedy
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Figure 60.: The estimated dyadic tree structure on the climate data.

partitioning estimators are proposed that are computationally attractive, com-
bining classical greedy algorithms for decision trees with recent advances in
`1-regularization techniques for graph selection. The practical potential of
Go-CART is indicated by experiments on a meteorology dataset. A theoretical
analysis of greedy Go-CART is one of several interesting directions for future
work.

9.7 appendix: technical proofs

9.7.0.1 Proof of Theorem 9.1

For any T ∈ TN , we denote

Sj,n =
1
n

n

∑
i=1

(Y(i) − µXj)(Y(i) − µXj)
T · I(X(i) ∈ Xj) (9.25)

S̄j = E(Y− µXj)(Y− µXj)
T · I(X ∈ Xj). (9.26)
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We then have∣∣∣R(T, µT, ΩT)− R̂(T, µT, ΩT)
∣∣∣

≤
∣∣∣∣ m

∑
j=1

tr
[
ΩXj

(
Sj,n − S̄j

)]∣∣∣∣ (9.27)

+
∣∣∣∣ m

∑
j=1

log |ΩXj | ·
[ 1

n

n

∑
i=1

I(X(i) ∈ Xj)−EI(X ∈ Xj)
]∣∣∣∣ (9.28)

≤
m

∑
j=1
‖ΩXj‖1 ·

∥∥Sj,n − S̄j
∥∥

∞︸ ︷︷ ︸
A1

(9.29)

+
m

∑
j=1

∣∣∣log |ΩXj |
∣∣∣ · ∣∣∣∣ 1n n

∑
i=1

I(X(i) ∈ Xj)−EI(X ∈ Xj)
∣∣∣∣︸ ︷︷ ︸

A2

. (9.30)

We now analyze the terms A1 and A2 separately.
For A2, using the Hoeffding’s inequality, for ε > 0, we get

P

(∣∣∣∣ 1n n

∑
i=1

I(X(i) ∈ Xj)−EI(X ∈ Xj)
∣∣∣∣ > ε

)
≤ 2 exp

(
−2nε2) , (9.31)

which implies that,

P

(
sup
T∈TN

∣∣∣∣ 1n n

∑
i=1

I(X(i) ∈ Xj)−EI(X ∈ Xj)
∣∣∣∣/εT > 1

)
(9.32)

≤ 2 ∑
T∈TN

exp
(
−2nε2

T
)

, (9.33)

where εT means ε is a function of T. For any δ ∈ (0, 1), we have, with
probability at least 1− δ/4,

∀T ∈ TN ,
∣∣∣∣ 1n n

∑
i=1

I(X(i) ∈ Xj)−EI(X ∈ Xj)
∣∣∣∣ ≤

√
[[T]] log 2 + log(8/δ)

2n

where [[T]] > 0 is the prefix code of T given in (9.6).
From Assumption 9.1, since ΩXj ∈ Λj, we have that

max
1≤j≤mT

log
∣∣∣ΩXj

∣∣∣ ≤ Ln (9.34)

Therefore, with probability at least 1− δ/4,

A2 ≤ LnmT

√
[[T]] log 2 + log(8/δ)

2n
. (9.35)
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Next, we analyze the term A1. Since

max
1≤j≤mT

‖ΩXj‖1 ≤ Ln. (9.36)

we only need to bound the term
∥∥Sj,n − S̄j

∥∥
∞. By Assumption 9.2 and the

union bound, we have, for any ε > 0,

P
(∥∥Sj,n − S̄j

∥∥
∞ > ε

)
≤ P

(∥∥∥ 1
n

n

∑
i=1

Y(i)yT
i I(X(i) ∈ Xj)−E

[
YYT I(X ∈ Xj)

]∥∥∥
∞

>
ε

4

)
(9.37)

+ P

(∥∥∥ 1
n

n

∑
i=1

Y(i)µT
Xj

I(X(i) ∈ Xj)−E
[
YµT
Xj

I(X ∈ Xj)
]∥∥∥

∞
>

ε

4

)
(9.38)

+ P

(∥∥∥ 1
n

n

∑
i=1

µXj y
T
i I(X(i) ∈ Xj)−E

[
µXjY

T I(X ∈ Xj)
]∥∥∥

∞
>

ε

4

)
(9.39)

+ P

(∥∥∥ 1
n

n

∑
i=1

µXj µ
T
Xj

I(X(i) ∈ Xj)−E
[
µXj µ

T
Xj

I(X ∈ Xj)
]∥∥∥

∞
>

ε

4

)
.(9.40)

Using the fact that ‖µ‖∞ ≤ B and the Assumption 9.2, we can apply Bern-
stein’s exponential inequality on (9.37), (9.38), and (9.39). Also, since the
indicator function is bounded, we can apply Hoeffding’s inequality on (9.40).
In this way we obtain

P
(∥∥Sj,n − S̄j

∥∥
∞ > ε

)
(9.41)

≤ 2p2 exp
(
− 1

32

(
nε2

v2 + M2ε

))
(9.42)

+4p2 exp
(
− 1

32B2

(
nε2

v1 + M1ε

))
+ 2p2 exp

(
−2nε2

B4

)
. (9.43)

Therefore, for any δ ∈ (0, 1), we have, for any ε→ 0 as n goes to infinity, with
probability at least 1− δ/4

∀T ∈ TN ,
∥∥Sj,n − S̄j

∥∥
∞ (9.44)

≤ (8
√

v2) ·
√

[[T]] log 2 + 2 log p + log(24/δ)
n

(9.45)

+ (8B
√

v1) ·
√

[[T]] log 2 + 2 log p + log(48/δ)
n

(9.46)

+ B2 ·
√

[[T]] log 2 + 2 log p + log(24/δ)
2n

. (9.47)

Combined with (9.36), we get that

A1 ≤ C1LnmT

√
[[T]] log 2 + 2 log p + log(48/δ)

n
(9.48)

where C1 = 8
√

v2 + 8B
√

v1 + B2.
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Since the above analysis holds uniformly over TN , when choosing

pen(T) = (C1 + 1)LnmT

√
[[T]] log 2 + 2 log p + log(48/δ)

n
, (9.49)

we then get, with probability at least 1− δ/2,

sup
T∈TN ,µj∈Mj,Ωj∈Λj

∣∣∣R(T, µT, ΩT)− R̂(T, µT, ΩT)
∣∣∣ ≤ pen(T) (9.50)

for large enough n.
Given a DPT T, we define

µo
T, Ωo

T = arg min
µT∈Mj,ΩT∈Λj

R(T, µT, ΩT). (9.51)

From the uniform deviation inequality in (9.50), we have, for large enough n:
for any δ ∈ (0, 1), with probability at least 1− δ,

R(T̂, µ̂T̂, Ω̂T̂) ≤ R̂(T̂, µ̂T̂, Ω̂T̂) + pen(T̂) (9.52)

= inf
T∈TN ,µXj∈Mj,ΩXj∈Λj

{
R̂(T, µT, ΩT) + pen(T)

}
(9.53)

≤ inf
T∈TN

{
R̂(T, µ0

T, Ω0
T) + pen(T)

}
(9.54)

≤ inf
T∈TN

{
R(T, µ0

T, Ω0
T) + 2pen(T)

}
(9.55)

= inf
T∈TN

{
inf

µXj∈Mj,ΩXj∈Λj
(R(T, µT, ΩT) + 2pen(T)

}
. (9.56)

The desired result of the theorem follows by subtracting R∗ from both sides.

9.7.0.2 Proof of Theorem 9.2

From (9.50) we have, for large enough n, on the dataset D1, with probability
at least 1− δ/4

sup
T∈TN ,µj∈Mj,Ωj∈Λj

∣∣∣R(T, µT, ΩT)− R̂(T, µT, ΩT)
∣∣∣ ≤ φn(T). (9.57)

Following the same line of analysis, we can also get that on the validation
dataset D2, with probability at least 1− δ/4,

sup
T∈TN

∣∣∣R(T, µ̂T, Ω̂T)− R̂out(T, µ̂T, Ω̂T)
∣∣∣ ≤ φn(T) (9.58)

for large enough n. Here µ̂T, Ω̂T are as defined in (9.10).
Given a DPT T, we define

µo
T, Ωo

T = arg min
µT∈Mj,ΩT∈Λj

R(T, µT, ΩT). (9.59)
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Using the fact that

T̂ = argminT∈TN
R̂out(T, µ̂T, Ω̂T), (9.60)

we have, for large enough n and any δ ∈ (0, 1), with probability at least 1− δ,

R(T̂, µ̂T̂, Ω̂T̂) ≤ R̂out(T̂, µ̂T̂, Ω̂T̂) + φn(T̂) (9.61)

= inf
T∈TN

R̂out(T, µ̂T, Ω̂T) + φn(T̂) (9.62)

≤ inf
T∈TN

{
R(T, µ̂T, Ω̂T) + φn(T)

}
+ φn(T̂) (9.63)

≤ inf
T∈TN

{
R̂(T, µ̂T, Ω̂T) + φn(T) + φn(T)

}
+ φn(T̂) (9.64)

≤ inf
T∈TN

{
R̂(T, µ0

T, Ω0
T) + φn(T) + φn(T)

}
+ φn(T̂) (9.65)

≤ inf
T∈TN

{
3φn(T) + inf

µXj∈Mj,ΩXj∈Λj
R(T, µT, ΩT)

}
+ φn(T̂).

The result follows by subtracting R∗ from both sides.

9.7.0.3 Proof of Theorem 9.3

For any T ∈ TN , Π(T∗) * Π(T), there must exist a subregion X ′ ∈ Π(T)
such that no A ∈ Π(T∗) satisfies X ′ ⊂ A. We can thus find a minimal class
of disjoint subregions {X 0

1 , . . . ,X 0
k′} ∈ Π(T∗), such that

X ′ ⊂ ∪k′
i=1X 0

i , (9.66)

where k′ ≥ 2. We define X ∗i = X0
i ∩ X ′ for i = 1, . . . , k′. Then we have

X ′ = ∪k′
i=1X ∗i . (9.67)

Let {µ∗X ∗j , Ω∗X ∗j }
k′
j=1 be the true parameters on X 0

1 , . . . ,X 0
k′ . We denote by

R(X ′, µ∗T∗ , Ω∗T∗) the risk of µ∗T∗ and Ω∗T∗ on the subregion X ′, so that

R(X ′, µ∗T∗ , Ω∗T∗)

=
k′

∑
j=1

E

[(
tr
[
Ω∗X ∗j

(
(Y− µ∗X ∗j

)(Y− µ∗X ∗j
)T)]− log |Ω∗X ∗j |

)
· I(X ∈ X ∗j )

]

= pP
(
X ∈ X ′

)
−

k′

∑
j=1

P
(

X ∈ X ∗j
)

log |Ω∗X ∗j |. (9.68)

Since the DPT T does not further partition X ′, we have, for any µT, ΩT ∈ MT

R(X ′, µT, ΩT)

=
k′

∑
j=1

E

[(
tr
[
ΩT

(
(Y− µT)(Y− µT)T

)]
− log |ΩT|

)
· I(X ∈ X ∗j )

]

=
k′

∑
j=1

E

[(
tr
[
ΩT

(
(Y− µT)(Y− µT)T

)])
· I(X ∈ X ∗j )

]
−P(X ∈ X ′)log |ΩT|.
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Using the decomposition

(Y− µT)(Y− µT)T

= (Y− µ∗X ∗j
)(Y− µ∗X ∗j

)T + (Y− µ∗X ∗j
)(µ∗X ∗j

− µT)T (9.69)

+(µ∗X ∗j
− µT)(Y− µ∗X ∗j

)T + (µ∗X ∗j
− µT)(µ∗X ∗j

− µT)T, (9.70)

we obtain

k′

∑
j=1

E

[(
tr
[
ΩT

(
(Y− µT)(Y− µT)T

)])
· I(X ∈ X ∗j )

]

=
k′

∑
j=1

P
(

X ∈ X ∗j
) [

tr(ΩT(Ω∗j )
−1) + tr(ΩT(µ∗X ∗j

− µT)(µ∗X ∗j
− µT)T)

]
.

Using the bound

R(X ′, µT, ΩT) ≥ max{R(X ′, µ∗T∗ , ΩT), R(X ′, µT, Ω∗T∗)}, (9.71)

we proceed by cases.
Case 1: The µ’s are different. We know that

inf
µT ,ΩT∈MT

R(X ′, µT, ΩT)− R(X ′, µ∗T∗ , Ω∗T∗) (9.72)

≥ inf
µT

R(X ′, µT, Ω∗T∗)− R(X ′, µ∗T∗ , Ω∗T∗)

= inf
µT

k′

∑
j=1

P
(

X ∈ X ∗j
)

(µ∗X ∗j
− µT)TΩ∗X ∗j (µ∗X ∗j

− µT)

≥ c1c2 inf
µT

k′

∑
j=1
‖µ∗X ∗j − µT‖2

2

where the last inequality follows from that fact that

ρmin(Ω∗X ∗j ) ≥ c1, P
(

X ∈ X ∗j
)
≥ c2.

It’s easy to see that a lower bound of the last term is achieved at µ̄T,

µ̄T =
1
k′

k′

∑
j=1

µ∗X ∗j
. (9.73)

Furthermore, for any two DPTs T and T′, if Π(T) ⊂ Π(T′) it’s clear that

inf
µT ,ΩT∈MT

R(T, µT, ΩT) ≥ inf
µT′ ,ΩT′∈MT′

R(T′, µT′ , ΩT′). (9.74)

Therefore, in the sequel, without loss of generality we only need to consider
the case k′ = 2.
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The result in this case then follows from the fact that
2

∑
j=1
‖µ∗X ∗j − µ̄T‖2

2 =
1
2
‖µX ∗1 − µX ∗2 ‖

2
2 ≥

c3

2
. (9.75)

Case 2: The Ω’s are different. In this case, we have

inf
µT ,ΩT∈MT

R(X ′, µT, ΩT)− R(X ′, µ∗T∗ , Ω∗T∗) (9.76)

≥ inf
ΩT

R(X ′, µ∗T∗ , ΩT)− R(X ′, µ∗T∗ , Ω∗T∗) (9.77)

= inf
ΩT

k′

∑
j=1

P
(

X ∈ X ∗j
) (

tr
[
Ω−1
X ∗j

(ΩT −Ω∗X ∗j )
]
−
(

log |ΩT| − log |Ω∗X ∗j |
))

≥ c2 inf
ΩT

k′

∑
j=1

(
tr
[
Ω−1
X ∗j

(ΩT −Ω∗X ∗j )
]
−
(

log |ΩT| − log |Ω∗X ∗j |
))

(9.78)

≥ c2 inf
ΣT

k′

∑
j=1

tr
[
Σ∗X ∗j (Σ−1

T −Ω∗X ∗j )
]
+ log

|ΣT|
|Σ∗X ∗j |

 (9.79)

= c2 inf
ΣT

k′

∑
j=1

tr
(

Σ∗X ∗j Σ−1
T

)
+ log

|ΣT|
|Σ∗X ∗j |

− p

 (9.80)

where ΣT = Ω−1
T .

As before, we only need to consider the case k′ = 2. A lower bound of the
last term is achieved at

Σ̄T =
ΣX ∗1 + ΣX ∗2

2
. (9.81)

Plugging in Σ̄T, we get

inf
ΣT

2

∑
j=1

tr
(

Σ∗X ∗j Σ−1
T

)
+ log

|ΣT|
|Σ∗X ∗j |

− p


≥

2

∑
j=1

tr
(

Σ∗X ∗j Σ̄−1
T

)
+ log

|Σ̄T|
|Σ∗X ∗j |

− p

 (9.82)

= tr
(
(2Σ̄T − ΣX ∗2 )Σ̄−1

T

)
+ log

|Σ̄T|
|ΣX ∗1 |

− p + tr
(

ΣX ∗2 Σ̄−1
T

)
+ log

|Σ̄T|
|ΣX ∗2 |

− p

= log
|Σ̄T|
|ΣX ∗1 |

+ log
|Σ̄T|
|ΣX ∗2 |

(9.83)

= 2 log
∣∣∣∣ΣX ∗1 + ΣX ∗2

2

∣∣∣∣− log |ΣX ∗1 | − log |ΣX ∗2 | (9.84)

≥ c4 (9.85)

where the last inequality follows from the given assumption.
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Therefore, we have

inf
µT ,ΩT∈MT

R(X ′, µT, ΩT)− R(X ′, µ∗T∗ , Ω∗T∗) ≥ c2c4. (9.86)

The theorem is obtained by combining the two cases.
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10
STARS: STABILITY APPROACH FOR REGULARIZATION
SELECTION

All the methods discussed in this thesis have at least one tuning
parameter. A challenging problem is to choose the regularization pa-
rameter in a data-dependent way. The standard techniques include
K-fold cross-validation (K-CV), Akaike information criterion (AIC), and
Bayesian information criterion (BIC). Though cross-validtion works fine
for high dimesional supervised methods, these methods are not suitable
in high dimensional unsupervised settings. In this chapter, we present
StARS: a new stability-based method for choosing the regularization
parameter in high dimensional inference. The method is quite general
and can be applied to different kinds of parametric and nonparametric
models. In this chapter, we only consider the problem of estimating
high dimensional undirected graphs as a pilot study. The method has
a clear interpretation: we use the least amount of regularization that
simultaneously makes a graph sparse and replicable under random
sampling. This interpretation requires essentially no conditions. Under
mild conditions, we show that StARS is partially sparsistent in terms of
graph estimation: i.e. with high probability, all the true edges will be
included in the selected model even when the graph size diverges with
the sample size. Empirically, the performance of StARS is compared
with the state-of-the-art model selection procedures, including K-CV,
AIC, and BIC, on both synthetic data and a real microarray dataset.
StARS outperforms all these competing procedures.

10.1 introduction

Undirected graphical models have emerged as a useful tool because they
allow for a stochastic description of complex associations in high-dimensional
data. For example, biological processes in a cell lead to complex interactions
among gene products. It is of interest to determine which features of the
system are conditionally independent. Such problems require us to infer an
undirected graph from i.i.d. observations. Each node in this graph corresponds
to a random variable and the existence of an edge between a pair of nodes
represent their conditional independence relationship.

245
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Gaussian graphical models [Dempster, 1972, Whittaker, 1990, Edwards,
1995, Lauritzen, 1996] are by far the most popular approach for learning high
dimensional undirected graph structures. Under the Gaussian assumption,
the graph can be estimated using the sparsity pattern of the inverse covariance
matrix. If two variables are conditionally independent, the corresponding
element of the inverse covariance matrix is zero. In many applications, esti-
mating the the inverse covariance matrix is statistically challenging because
the number of features measured may be much larger than the number of col-
lected samples. To handle this challenge, the graphical lasso or glasso [Friedman
et al., 2007, Yuan and Lin, 2007, Banerjee et al., 2008] is rapidly becoming a
popular method for estimating sparse undirected graphs. To use this method,
however, the user must specify a regularization parameter λ that controls the
sparsity of the graph. The choice of λ is critical since different λ’s may lead to
different scientific conclusions of the statistical inference. Other methods for
estimating high dimensional graphs include [Meinshausen and Bühlmann,
2006, Peng et al., 2009, Liu et al., 2009a]. They also require the user to specify
a regularization parameter.

The standard methods for choosing the regularization parameter are AIC
[Akaike, 1973], BIC [Schwarz, 1978] and cross validation [Efron, 1982]. Though
these methods have good theoretical properties in low dimensions, they are
not suitable for high dimensional problems. In regression, cross-validation
has been shown to overfit the data [Wasserman and Roeder, 2009]. Likewise,
AIC and BIC tend to perform poorly when the dimension is large relative to
the sample size. Our simulations confirm that these methods perform poorly
when used with glasso.

A new approach to model selection, based on model stability, has recently
generated some interest in the literature [Lange et al., 2004]. The idea, as
we develop it, is based on subsampling [Politis et al., 1999] and builds on
the approach of Meinshausen and Bühlmann [2010]. We draw many random
subsamples and construct a graph from each subsample (unlike K-fold cross-
validation, these subsamples are overlapping). We choose the regularization
parameter so that the obtained graph is sparse and there is not too much vari-
ability across subsamples. More precisely, we start with a large regularization
which corresponds to an empty, and hence highly stable, graph. We gradually
reduce the amount of regularization until there is a small but acceptable
amount of variability of the graph across subsamples. In other words, we
regularize to the point that we control the dissonance between graphs. The
procedure is named StARS: Stability Approach to Regularization Selection.
We study the performance of StARS by simulations and theoretical analysis
in Sections 4 and 5. Although we focus here on graphical models, StARS
is quite general and can be adapted to other settings including regression,
classification, clustering, and dimensionality reduction.
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In the context of clustering, results of stability methods have been mixed.
Weaknesses of stability have been shown in [Ben-david et al., 2006]. However,
the approach was successful for density-based clustering [Rinaldo and Wasser-
man, 2009a]. For graph selection, Meinshausen and Bühlmann [2010] also
used a stability criterion; however, their approach differs from StARS in its
fundamental conception. They use subsampling to produce a new and more
stable regularization path then select a regularization parameter from this
newly created path, whereas we propose to use subsampling to directly select
one regularization parameter from the original path. Our aim is to ensure
that the selected graph is sparse, but inclusive, while they aim to control the
familywise type I errors. As a consequence, their goal is contrary to ours:
instead of selecting a larger graph that contains the true graph, they try to
select a smaller graph that is contained in the true graph. As we will discuss
in Section 3, in specific application domains like gene regulatory network
analysis, our goal for graph selection is more natural.

In Section 10.2 we review the basic notion of estimating high dimensional
undirected graphs; in Section 10.3 we develop StARS; in Section 10.4 we
present a theoretical analysis of the proposed method; and in Section 10.5 we
report experimental results on both simulated data and a gene microarray
dataset, where the problem is to construct gene regulatory network based on
natural variation of the expression levels of human genes.

10.2 estimating a high-dimensional undirected graph

Let X =
(
X1, . . . , Xd

)T be a random vector with distribution P. The undi-
rected graph G = (V, E) associated with P has vertices V = {X1, . . . , Xd} and
a set of edges E corresponding to pairs of vertices. In this paper, we also
interchangeably use E to denote the adjacency matrix of the graph G. The
edge corresponding to Xj and Xk is absent if Xj and Xk are conditionally inde-
pendent given the other coordinates of X. The graph estimation problem is to
infer E from i.i.d. observed data X(1), . . . , X(n) where X(i) = (X(i)

1 , . . . , X(i)
d )T.

Suppose now that P is Gaussian with mean vector µ and covariance matrix
Σ. Then the edge corresponding to Xj and Xk is absent if and only if Ωjk = 0
where Ω = Σ−1. Hence, to estimate the graph we only need to estimate the
sparsity pattern of Ω. When d could diverge with n, estimating Ω is difficult.
A popular approach is the graphical lasso or glasso [Friedman et al., 2007, Yuan
and Lin, 2007, Banerjee et al., 2008]. Using glasso, we estimate Ω as follows:
Ignoring constants, the log-likelihood (after maximizing over µ) can be written
as

`(Ω) = log |Ω| − trace
(
Σ̂Ω
)
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where Σ̂ is the sample covariance matrix. With a positive regularization param-
eter λ, the glasso estimator Ω̂(λ) is obtained by minimizing the regularized
negative log-likelihood

Ω̂(λ) = arg min
Ω�0

{
−`(Ω) + λ||Ω||1

}
(10.1)

where ||Ω||1 = ∑j,k |Ωjk| is the elementwise `1-norm of Ω. The estimated
graph Ĝ(λ) = (V, Ê(λ)) is then easily obtained from Ω̂(λ): for i 6= j, an
edge (i, j) ∈ Ê(λ) if and only if the corresponding entry in Ω̂(λ) is nonzero.
Friedman et al. [2007] give a fast algorithm for calculating Ω̂(λ) over a
grid of λs ranging from small to large. By taking advantage of the fact
that the objective function in (10.1) is convex, their algorithm iteratively
estimates a single row (and column) of Ω in each iteration by solving a lasso
regression [Tibshirani, 1996]. The resulting regularization path Ω̂(λ) for all λs
has been shown to have excellent theoretical properties [Rothman et al., 2008,
Ravikumar et al., 2009b]. For example, Ravikumar et al. [2009b] show that,
if the regularization parameter λ satisfies a certain rate, the corresponding
estimator Ω̂(λ) could recover the true graph with high probability. However,
these types of results are either asymptotic or non-asymptotic but with very
large constants. They are not practical enough to guide the choice of the
regularization parameter λ in finite-sample settings.

10.3 regularization selection

In Equation (10.1), the choice of λ is critical because λ controls the sparsity
level of Ĝ(λ). Larger values of λ tend to yield sparser graphs and smaller
values of λ yield denser graphs. It is convenient to define Λ = 1/λ so that
small Λ corresponds to a more sparse graph. In particular, Λ = 0 corresponds
to the empty graph with no edges. Given a grid of regularization parameters
Gn = {Λ1, . . . , ΛK}, our goal of graph regularization parameter selection is to
choose one Λ̂ ∈ Gn, such that the true graph E is contained in Ê(Λ̂) with high
probability. In other words, we want to “overselect” instead of “underselect”.
Such a choice is motivated by application problems like gene regulatory
networks reconstruction, in which we aim to study the interactions of many
genes. For these types of studies, we tolerant some false positives but not
false negatives. Specifically, it is acceptable that an edge presents but the two
genes corresponding to this edge do not really interact with each other. Such
false positives can generally be screened out by more fine-tuned downstream
biological experiments. However, if one important interaction edge is omitted
at the beginning, it’s very difficult for us to re-discovery it by follow-up
analysis. There is also a tradeoff: we want to select a denser graph which
contains the true graph with high probability. At the same time, we want the
graph to be as sparse as possible so that important information will not be
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buried by massive false positives. Based on this rationale, an “underselect”
method, like the approach of Meinshausen and Bühlmann [2010], does not
really fit our goal. In the following, we start with an overview of several
state-of-the-art regularization parameter selection methods for graphs. We
then introduce our new StARS approach.

10.3.1 Existing Methods

The regularization parameter is often chosen using AIC or BIC. Let Ω̂(Λ)
denote the estimator corresponding to Λ. Let df(Λ) denote the degree of
freedom (or the effective number of free parameters) of the corresponding
Gaussian model. AIC chooses Λ as

(AIC) Λ̂ = arg min
Λ∈Gn

{
−2`

(
Ω̂(Λ)

)
+ 2df(Λ)

}
, (10.2)

and BIC chooses Λ as

(BIC) Λ̂ = arg min
Λ∈Gn

{
−2`

(
Ω̂(Λ)

)
+ df(Λ) · log n

}
. (10.3)

The usual theoretical justification for these methods assumes that the dimen-
sion d is fixed as n increases; however, in the case where d > n this justification
is not applicable. In fact, it’s even not straightforward how to estimate the
degree of freedom df(Λ) when d is larger than n . A common practice is to
calculate df(Λ) as df(Λ) = m(Λ)(m(Λ)− 1)/2 + p where m(Λ) denotes the
number of nonzero elements of Ω̂(Λ). As we will see in our experiments, AIC
and BIC tend to select overly dense graphs in high dimensions.

Another popular method is K-fold cross-validation (K-CV). For this proce-
dure the data is partitioned into K subsets. Of the K subsets one is retained
as the validation data, and the remaining K − 1 ones are used as training
data. For each Λ ∈ Gn, we estimate a graph on the K − 1 training sets and
evaluate the negative log-likelihood on the retained validation set. The results
are averaged over all K folds to obtain a single CV score. We then choose Λ to
minimize the CV score over he whole grid Gn. In regression, cross-validation
has been shown to overfit [Wasserman and Roeder, 2009]. Our experiments
will confirm this is true for graph estimation as well.

10.3.2 StARS: Stability Approach to Regularization Selection

The StARS approach is to choose Λ based on stability. When Λ is 0, the graph
is empty and two datasets from P would both yield the same graph. As
we increase Λ, the variability of the graph increases and hence the stability
decreases. We increase Λ just until the point where the graph becomes variable
as measured by the stability. StARS leads to a concrete rule for choosing Λ.
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Let b = b(n) be such that 1 < b(n) < n. We draw N random subsamples
S1, . . . , SN from X(1), . . . , X(n), each of size b. There are (n

b) such subsamples.
Theoretically one uses all (n

b) subsamples. However, Politis et al. [1999] show
that it suffices in practice to choose a large number N of subsamples at
random. Note that, unlike bootstrapping [Efron, 1982], each subsample is
drawn without replacement. For each Λ ∈ Gn, we construct a graph using
the glasso for each subsample. This results in N estimated edge matrices
Êb

1(Λ), . . . , Êb
N(Λ). Focus for now on one edge (s, t) and one value of Λ. Let

ψΛ(·) denote the glasso algorithm with the regularization parameter Λ. For
any subsample Sj let ψΛ

st(Sj) = 1 if the algorithm puts an edge and ψΛ
st(Sj) = 0

if the algorithm does not put an edge between (s, t). Define

θb
st(Λ) = P(ψΛ

st(X(1), . . . , X(b)) = 1).

To estimate θb
st(Λ), we use a U-statistic of order b, namely,

θ̂b
st(Λ) =

1
N

N

∑
j=1

ψΛ
st(Sj).

Now define the parameter ξb
st(Λ) = 2θb

st(Λ)(1− θb
st(Λ)) and let ξ̂b

st(Λ) =
2θ̂b

st(Λ)(1− θ̂b
st(Λ)) be its estimate. Then ξb

st(Λ), in addition to being twice
the variance of the Bernoulli indicator of the edge (s, t), has the following nice
interpretation: For each pair of graphs, we can ask how often they disagree
on the presence of the edge: ξb

st(Λ) is the fraction of times they disagree.
For Λ ∈ Gn, we regard ξb

st(Λ) as a measure of instability of the edge across
subsamples, with 0 ≤ ξb

st(Λ) ≤ 1/2.
Define the total instability by averaging over all edges:

D̂b(Λ) = ∑s<t ξ̂b
st(

d
2

) .

Clearly on the boundary D̂b(0) = 0, and D̂b(Λ) generally will increase as
Λ increases. However, when Λ gets very large, all the graphs will become
dense and D̂b(Λ) will begin to decrease. Subsample stability for large Λ is
essentially an artifact. We are interested in stability for sparse graphs not
dense graphs. For this reason we monotonize D̂b(Λ) by defining

Db(Λ) = sup
0≤t≤Λ

D̂b(t).

Finally, our StARS approach chooses Λ by defining

Λ̂s = sup
{

Λ : Db(Λ) ≤ β
}

for a specified cut point value β.



10.4 T H E O R E T I C A L P RO P E RT I E S 251

It may seem that we have merely replaced the problem of choosing Λ with
the problem of choosing β, but β is an interpretable quantity and we always
set a default value β = 0.05. One thing to note is that all quantities Ê, θ̂, ξ̂, D̂
depend on the subsampling block size b. Since StARS is based on subsampling,
the effective sample size for estimating the selected graph is b instead of n.
Compared with methods like BIC and AIC which fully utilize all n data
points. StARS has some efficiency loss in low dimensions. However, in high
dimensional settings, the gain of StARS on better graph selection significantly
dominate this efficiency loss. This fact is confirmed by our experiments.

10.4 theoretical properties

The StARS procedure is quite general and can be applied with any graph
estimation algorithms. Here, we provide its theoretical properties. We start
with a key theorem which establishes the rates of convergence of the estimated
stability quantities to their population means. We then discuss the implication
of this theorem on general gaph regularization selection problems.

Let Λ be an element in the grid Gn = {Λ1, . . . , ΛK} where K is a polynomial
of n. We denote Db(Λ) = E(D̂b(Λ)). The quantity ξ̂b

st(Λ) is an estimate
of ξb

st(Λ) and D̂b(Λ) is an estimate of Db(Λ). Standard U-statistic theory
guarantees that these estimates have good uniform convergence properties to
their population quantities:

Theorem 10.1. (Uniform Concentration) The following statements hold with no as-
sumptions on P. For any δ ∈ (0, 1), with probability at least 1− δ, we have

∀Λ ∈ Gn, max
s<t
|ξ̂b

st(Λ)− ξb
st(Λ)| ≤

√
18b (2 log d + log(2/δ))

n
, (10.4)

max
Λ∈Gn

|D̂b(Λ)− Db(Λ)| ≤
√

18b (log K + 4 log d + log (1/δ))
n

. (10.5)

Proof. Note that θ̂b
st(Λ) is a U-statistic of order b. Hence, by Hoeffding’s inequality

for U-statistics [Serfling, 1980], we have, for any ε > 0,

P(|θ̂b
st(Λ)− θb

st(Λ)| > ε) ≤ 2 exp
(
−2nε2/b

)
. (10.6)

Now ξ̂b
st(Λ) is just a function of the U-statistic θ̂b

st(Λ). Note that

|ξ̂b
st(Λ)− ξb

st(Λ)| (10.7)

= 2|θ̂b
st(Λ)(1− θ̂b

st(Λ))− θb
st(Λ)(1− θb

st(Λ))| (10.8)

= 2|θ̂b
st(Λ)−

(
θ̂b

st(Λ)
)2 − θb

st(Λ) +
(
θb

st(Λ)
)2| (10.9)

≤ 2|θ̂b
st(Λ)− θb

st(Λ)|+ 2|
(
θ̂b

st(Λ)
)2 −

(
θb

st(Λ)
)2| (10.10)

≤ 2|θ̂b
st(Λ)− θb

st(Λ)|+ 2|(θ̂b
st(Λ)− θb

st(Λ))(θ̂b
st(Λ) + θb

st(Λ))| (10.11)

≤ 2|θ̂b
st(Λ)− θb

st(Λ)|+ 4|θ̂b
st(Λ)− θb

st(Λ)| (10.12)

= 6|θ̂b
st(Λ)− θb

st(Λ)|, (10.13)
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we have |ξ̂b
st(Λ)− ξb

st(Λ)| ≤ 6|θ̂b
st(Λ)− θb

st(Λ)|. Using (10.6) and the union bound
over all the edges, we obtain: for each Λ ∈ Gn,

P(max
s<t
|ξ̂b

st(Λ)− ξb
st(Λ)| > 6ε) ≤ 2d2 exp

(
−2nε2/b

)
. (10.14)

Using two union bound arguments over the K values of Λ and all the d(d − 1)/2
edges, we have:

P

(
max
Λ∈Gn

|D̂b(Λ)− Db(Λ)| ≥ ε

)
(10.15)

≤ |Gn| ·
d(d− 1)

2
·P(max

s<t
|ξ̂b

st(Λ)− ξb
st(Λ)| > ε) (10.16)

≤ K · d4 · exp
(
−nε2/(18b)

)
. (10.17)

Equations (10.4) and (10.5) follow directly from (10.14) and the above exponential
probability inequality. �

Theorem 10.1 allows us to explicitly characterize the high-dimensional
scaling of the sample size n, dimensionality d, subsampling block size b, and
the grid size K. More specifically, we get

n
b log

(
nd4K

) → ∞ =⇒ max
Λ∈Gn

|D̂b(Λ)− Db(Λ)| P→ 0 (10.18)

by setting δ = 1/n in Equation (10.5). From (10.18), let c1, c2 be arbitrary
positive constants, if b = c1

√
n, K = nc2 , and d ≤ exp (nγ) for some γ < 1/2,

the estimated total stability D̂b(Λ) still converges to its mean Db(Λ) uniformly
over the whole grid Gn.

We now discuss the implication of Theorem 10.1 to graph regularization
selection problems. Due to the generality of StARS, we provide theoretical
justifications for a whole family of graph estimation procedures satisfying
certain conditions. Let ψ be a graph estimation procedure. We denote Êb(Λ)
as the estimated edge set using the regularization parameter Λ by applying ψ

on a subsampled dataset with block size b. To establish graph selection result,
we start with two technical assumptions:

(A1) ∃Λo ∈ Gn, such that maxΛ≤Λo∧Λ∈Gn Db(Λ) ≤ β/2 for large enough n.

(A2) For any Λ ∈ Gn and Λ ≥ Λo, P
(
E ⊂ Êb(Λ)

)
→ 1 as n→ ∞.

Note that Λo here depends on the sample size n and does not have to be
unique. To understand the above conditions, (A1) assumes that there exists a
threshold Λo ∈ Gn, such that the population quantity Db(Λ) is small for all
Λ ≤ Λo. (A2) requires that all estimated graphs using regularization parame-
ters Λ ≥ Λo contain the true graph with high probability. Both assumptions
are mild and should be satisfied by most graph estimation algorithm with rea-
sonable behaviors. There is a tradeoff on the design of the subsampling block
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size b . To make (A2) hold, we require b to be large. However, to make D̂b(Λ)
concentrate to Db(Λ) fast, we require b to be small. Our suggested value is
b = b10

√
nc, which balances both the theoretical and empirical performance

well. The next theorem provides the graph selection performance of StARS:

Theorem 10.2. (Partial Sparsistency): Let ψ to be a graph estimation algorithm. We
assume (A1) and (A2) hold for ψ using b = b10

√
nc and |Gn| = K = nc1 for some

constant c1 > 0. Let Λ̂s ∈ Gn be the selected regularization parameter using the
StARS procedure with a constant cutting point β. Then, if d ≤ exp (nγ) for some
γ < 1/2, we have

P
(
E ⊂ Êb(Λ̂s)

)
→ 1 as n→ ∞. (10.19)

Proof. We define An to be the event that maxΛ∈Gn |D̂b(Λ)− Db(Λ)| ≤ β/2. The
scaling of n, K, b, p in the theorem satisfies the L.H.S. of (10.18), which implies that
P(An)→ 1 as n→ ∞.

Using (A1), we know that, on An,

max
Λ≤Λo∧Λ∈Gn

D̂b(Λ) ≤ max
Λ∈Gn

|D̂b(Λ)−Db(Λ)|+ max
Λ≤Λo∧Λ∈Gn

Db(Λ) ≤ β. (10.20)

This implies that, on An, Λ̂s ≥ Λo. The result follows by applying (A2) and a union
bound. �

10.5 experimental results

We now provide empirical evidence to illustrate the usefulness of StARS
and compare it with several state-of-the-art competitors, including 10-fold
cross-validation (K-CV), BIC, and AIC. For StARS we always use subsam-
pling block size b(n) = b10 ·

√
n] and set the cut point β = 0.05. We first

quantitatively evaluate these methods on two types of synthetic datasets,
where the true graphs are known. We then illustrate StARS on a microarray
dataset that records the gene expression levels from immortalized B cells of
human subjects. On all high dimensional synthetic datasets, StARS signifi-
cantly outperforms its competitors. On the microarray dataset, StARS obtains
a remarkably simple graph while all competing methods select what appear
to be overly dense graphs.

10.5.1 Synthetic Data

To quantitatively evaluate the graph estimation performance, we adapt the
criteria including precision, recall, and F1-score from the information retrieval
literature. Let G = (V, E) be a d-dimensional graph and let Ĝ = (V, Ê) be an
estimated graph. We define

precision =
|Ê ∩ E|
|Ê|

, recall =
|Ê ∩ E|
|E| , F1-score = 2 · precision · recall

precision + recall
.
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In other words, Precision is the number of correctly estimated edges divided
by the total number of edges in the estimated graph; recall is the number of
correctly estimated edges divided by the total number of edges in the true
graph; the F1-score can be viewed as a weighted average of the precision
and recall, where an F1-score reaches its best value at 1 and worst score at
0. On the synthetic data where we know the true graphs, we also compare
the previous methods with an oracle procedure which selects the optimal
regularization parameter by minimizing the total number of different edges
between the estimated and true graphs along the full regularization path.
Since this oracle procedure requires the knowledge of the truth graph, it
is not a practical method. We only present it here to calibrate the inherent
challenge of each simulated scenario. To make the comparison fair, once the
regularization parameters are selected, we estimate the oracle and StARS
graphs only based on a subsampled dataset with size

b(n) = b10
√

nc.

In contrast, the K-CV, BIC, and AIC graphs are estimated using the full dataset.
More details about this issue were discussed in Section 10.3.

We generate data from sparse Gaussian graphs, neighborhood graphs and
hub graphs, which mimic characteristics of real-wolrd biological networks. The
mean is set to be zero and the covariance matrix Σ = Ω−1. For both graphs,
the diagonal elements of Ω are set to be one. More specifically:

1. Neighborhood graph: We first uniformly sample y1, . . . , yn from a unit
square. We then set Ωij = Ωji = ρ with probability(√

2π
)−1

exp
(
−4‖yi − yj‖2) .

All the rest Ωij are set to be zero. The number of nonzero off-diagonal
elements of each row or column is restricted to be smaller than b1/ρc.
In this paper, ρ is set to be 0.245.

2. Hub graph: The rows/columns are partitioned into J equally-sized dis-
joint groups: V1 ∪ V2 . . . ∪ VJ = {1, . . . , d}, each group is associated
with a “pivotal” row k. Let |V1| = s. We set Ωik = Ωki = ρ for
i ∈ Vk and Ωik = Ωki = 0 otherwise. In our experiment, J = bd/sc,
k = 1, s + 1, 2s + 1, . . ., and we always set ρ = 1/(s + 1) with s = 20.

We generate synthetic datasets in both low-dimensional (n = 800, d = 40) and
high-dimensional (n = 400, d = 100) settings. Table 12 provides comparisons
of all methods, where we repeat the experiments 100 times and report the
averaged precision, recall, F1-score with their standard errors.

For low-dimensional settings where n� d, the BIC criterion is very com-
petitive and performs the best among all the methods. In high dimensional
settings, however, StARS clearly outperforms all the competing methods for
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Table 12.: Quantitative comparison of different methods on the datasets from the neighbor-
hood and hub graphs.

Neighborhood graph: n =800, d=40 Neighborhood graph: n=400, d =100

Methods Precision Recall F1-score Precision Recall F1-score

Oracle 0.9222 (0.05) 0.9070 (0.07) 0.9119 (0.04) 0.7473 (0.09) 0.8001 (0.06) 0.7672 (0.07)

StARS 0.7204 (0.08) 0.9530 (0.05) 0.8171 (0.05) 0.6366 (0.07) 0.8718 (0.06) 0.7352 (0.07)

K-CV 0.1394 (0.02) 1.0000 (0.00) 0.2440 (0.04) 0.1383 (0.01) 1.0000 (0.00) 0.2428 (0.01)

BIC 0.9738 (0.03) 0.9948 (0.02) 0.9839 (0.01) 0.1796 (0.11) 1.0000 (0.00) 0.2933 (0.13)

AIC 0.8696 (0.11) 0.9996 (0.01) 0.9236 (0.07) 0.1279 (0.00) 1.0000 (0.00) 0.2268 (0.01)

Hub graph: n =800, d=40 Hub graph: n=400, d =100

Methods Precision Recall F1-score Precision Recall F1-score

Oracle 0.9793 (0.01) 1.0000 (0.00) 0.9895 (0.01) 0.8976 (0.02) 1.0000 (0.00) 0.9459 (0.01)

StARS 0.4377 (0.02) 1.0000 (0.00) 0.6086 (0.02) 0.4572 (0.01) 1.0000 (0.00) 0.6274 (0.01)

K-CV 0.2383 (0.09) 1.0000 (0.00) 0.3769 (0.01) 0.1574 (0.01) 1.0000 (0.00) 0.2719 (0.00)

BIC 0.4879 (0.05) 1.0000 (0.00) 0.6542 (0.05) 0.2155 (0.00) 1.0000 (0.00) 0.3545 (0.01)

AIC 0.2522 (0.09) 1.0000 (0.00) 0.3951 (0.00) 0.1676 (0.00) 1.0000 (0.00) 0.2871 (0.00)

both neighborhood and hub graphs. This is consistent with our theory. At first
sight, it might be surprising that for data from low-dimensional neighborhood
graphs, BIC and AIC even outperform the oracle procedure! This is due to
the fact that both BIC and AIC graphs are estimated using all the n = 800
data points, while the oracle graph is estimated using only the subsampled
dataset with size b(n) = b10 ·

√
nc = 282. Direct usage of the full sample is

an advantage of model selection methods that take the general form of BIC
and AIC. In high dimensions, however, we see that even with this advantage,
StARS clearly outperforms BIC and AIC. The estimated graphs for different
methods in the setting n = 400, d = 100 are provided in Figures 61 and 62,
from which we see that the StARS graph is almost as good as the oracle, while
the K-CV, BIC, and AIC graphs are overly too dense.

10.5.2 Microarray Data

We apply StARS to a dataset based on Affymetrix GeneChip microarrays for
the gene expression levels from immortalized B cells of human subjects. The
sample size is n = 294. The expression levels for each array are pre-processed
by log-transformation and standardization as in [Nayak et al., 2009]. Using



256 STARS: STABILITY APPROACH FOR REGULARIZATION SELECTION

(a) True graph (b) Oracle graph (c) StARS graph

(d) K-CV graph (e) BIC graph (f) AIC graph

Figure 61.: Comparison of different methods on the data from the neighborhood graphs (n =
400, d = 100).

a previously estimated sub-pathway subset containing 324 genes [Liu et al.,
2010c], we study the estimated graphs obtained from each method under
investigation. The StARS and BIC graphs are provided in Figure 63. We see
that the StARS graph is remarkably simple and informative, exhibiting some
cliques and hub genes. In contrast, the BIC graph is very dense and possible
useful association information is buried in the large number of estimated
edges. The selected graphs using AIC and K-CV are even more dense than the
BIC graph and is omitted here. A full treatment of the biological implication
of these two graphs validated by enrichment analysis will be left as a future
study.

10.6 conclusions

The problem of estimating structure in high dimensions is very challenging.
Casting the problem in the context of a regularized optimization has led to
some success, but the choice of the regularization parameter is critical. We
present a new method, StARS, for choosing this parameter in high dimen-
sional inference for undirected graphs. Like Meinshausen and Bühlmann’s
stability selection approach [Meinshausen and Bühlmann, 2010], our method
makes use of subsampling, but it differs substantially from their approach in
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(a) True graph (b) Oracle graph (c) StARS graph

(d) K-CV graph (e) BIC graph (f) AIC graph

Figure 62.: Comparison of different methods on the data from the hub graphs (n = 400, d =
100).

(a) StARS graph (b) BIC graph

Figure 63.: Microarray data example. The StARS graph is more informative graph than the
BIC graph.

both implementation and goals. For graphical models, we choose the regular-
ization parameter directly based on the edge stability. Under mild conditions,
StARS is partially sparsistent. However, even without these conditions, StARS
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has a simple interpretation: we use the least amount of regularization that
simultaneously makes a graph sparse and replicable under random sampling.

Empirically, we show that StARS works significantly better than existing
techniques on both synthetic and microarray datasets. Although we focus
here on graphical models, our new method is generally applicable to many
problems that involve estimating structure, including regression, classification,
density estimation, clustering, and dimensionality reduction.
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C O N C L U S I O N





11
CONCLUSION AND FUTURE DIRECTIONS

11.1 summary and discussions

In this thesis, we developed principled nonparametric methods to explore
and predict high dimensional complex datasets. The results of this thesis are
applicable in many modern scientific fields, including genomics, proteomics,
cognitive neuroscience, and computational meterology. The data in these
fields are usually very high dimensional and are generated by some unknown
complex processes, which makes nonparametric methods especially suitable
for building accurate predictive models or discovering new scientific facts. In
this chapter, we first summarize several applications of this thesis. We then
conclude this thesis with some future directions.

11.1.1 Building Computational Models to Predict Brain Activities

In Chapter 6, we applied the multi-task sparse additive models to build a
computational model that predicts human brain activities represented by
fMRI images. The basic approach is to predict the neural activies that would
be recorded using fMRI images when a person thinks about an arbitrary
word in English. Creating such a predictive model not only enables us to
explore new analytical tools for the fMRI data, but also helps us to gain a
deeper understanding of how human brains represent knowledge. Existing
solutions to this problem either resort to human experts [Mitchell et al., 2008]
or sparse linear models [Liu et al., 2009b]. Compared to the previous work,
our nonparametric solution achieves a significantly higher prediction accuracy
and good interpretability. This finding is important for building more realistic
models of the fMRI data. In the near future, we will further investigate the
obtained model from a cognitive neuroscience perspective.

11.1.2 Inferring Gene Regulatory Networks

One of the most important and challenging knowledge discovery tasks in
genomics is the reverse engineering of gene regulatory networks from DNA
microarray data. Such networks can be inferred from data by estimating the
undirected graphical models. However, this problem is extremely challenging
since the number of genes being studied is generally much larger than the
number of measurements. To avoid the curse of dimensionality, most existing
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methods assume that the gene expression data are Gaussian distributed and
infer the undirected graphical models by estimating the inverse covariance
matrix. In Chapter 5, we applied the forest density estimator to estimate gene
regulatory graphs for the isoprenoid biosynthetic pathway and humans using
microarry data. Evaluated by the held-out likelihood, our method significantly
outperforms sparse Gaussian models. This is not to say that the estimated
networks from the existing methods are wrong, but it does reveal the fact
that the normality assumption is not appropriate in this dataset. Such a
result is quite interesting since it may lead to dramatically different scientific
conclusions from the previous parametric analysis.

11.1.3 Tumor Classification using Microarray Data

Another successful application of our method is to classify small round blue
cell tumors (SRBCT) using high dimensional microarray data. This dataset
contains 2,308 genes and 4 tumor categories. Compared to previous analyses
on the same data, our sparse multi-category additive logistic regression model
achieves the best predictive accuracy on the test set (100% accuracy) using the
most compact set of predictors (20 genes). The fitted marginal effects of these
selected genes are highly nonlinear, which confirms that high-dimensional
nonparametric inference is quite suitable for this dataset.

11.1.4 Climate Data Analysis

Global warming has become one of the most critical socio-technological issues
we are facing in the 21st century. Among the various ways in which computer
scientists can play a role, we are particularly interested in providing better un-
derstanding and quantifying the causal effects of climate and climate-forcing
factors. In Chapter 9, we applied the Go-CART to estimate the graphical
models in different locations of the United States. Our results by estimating
the conditional independence graphs (conditional on the geographic locations)
are more interpretable than those obtained by estimating an unconditional
universal graph.

11.2 future directions

The results of this thesis lead to many future directions. Here we summarize
some in terms of theory, methods, and applications.
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11.2.1 Theory

Almost all current analyses for high dimensional nonparametric methods
are based on empirical process theory, where success crucially depends on
controlling the complexity of the hypothesis space. However, many widely
used nonparametric methods, such as kernel or local polynomial smoothers,
are left outside of this framework. The main reason is that their hypothesis
spaces are too rich to be easily controlled. In Chapter 6, we proposed the
smooth sparse backfitting framework to address this problem. The key is to
construct an extended product Hilbert space that enables us to formulate a
nonparametric estimator as the solution to an infinite-dimensional convex
optimization problem. Explorations in this realm could significantly push the
frontier of modern statistics and learning theory.

11.2.2 Methods

The field of high dimensional nonparametric inference has mainly focused
on sequential algorithms, which are suitable when there is one powerful
CPU and sufficient memory. However, over the last five years, the computing
paradigms have changed significantly: serial speedups of single processors
are relatively stalled and the new trend is to make processors multicore. Such
an evolution poses both challenges and opportunities for high dimensional
nonparametric learning. On the one hand, most existing sequential algorithms
may no longer be compatible with the new parallel paradigm. On the other
hand, many current computationally intractable methods may become feasible
in the future. We believe it would be fruitful to explore the interaction of
parallel computing with high dimensional nonparametric learning.

11.2.3 Applications

We expect that the results of this thesis could have more applications in
cognitive neuroscience and bioinformatics. One interesting problem is to
develope a unified nonparametric framework that enables transfer learning
from multiple fMRI datasets provided by different labs. Another potential
application problem is peptide identification using data-independent tandem mass
spectrometry. This is a new technique recently invented in proteomics, and
its main goal is to use shotgun methods to simultaneously identify many
peptides in a tissue by searching a large sequence database. To our knowledge,
there are not yet any effective sequencing algorithms. Indeed, this problem
can be formulated into a multi-task regression with joint sparsity constraints
and our MT-SpAM could be appropriate for it.
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A
MORE TECHNICAL DETAILS OF THE COSSO

The COSSO is developed by Lin and Zhang [2006], it can be viewed as a
generalization of the lasso estimator to the nonparametric functional ANOVA
model, which has the form

Y(i) =
n

∑
j=1

mj(X(i)
j ) + ∑

j<k
mjk(X(i)

j , X(i)
k ) + ∑

j<k<`

m(X(i)
j , X(i)

k , X(i)
` ) + · · ·+ ε(i).

COSSO formulates the estimation as an optimization problem:

m̂(x) = arg min
m

{
1
n

n

∑
i=1

(
Yi −m(X(i)

)2
+ λ

d

∑
α=1
‖Pαm‖

}
(A.1)

where Pα is the projection onto the subspace of the α-th component. An
equivalent form of the COSSO estimator is

m̂(x) (A.2)

= arg min
m

{
1
n

n

∑
i=1

(
Y(i) −m(X(i)

)2
+ λ0

d

∑
α=1

θ−1
α ‖Pαm‖2 + λ

d

∑
α=1

θα θα ≥ 0

}
.

It is very similar to the nonnegative garrote estimator. This explains why
COSSO can induce sparsity. For the fixed data dimension d, Lin and Zhang
[2006] proved the nearly optimal rate of convergence for the COSSO estimator
when using additive models.

A recent work of Jeon and Lin [2006] extended the idea of COSSO to
density estimation setting. Let X(1), X(2), ..., X(n) be a d-dimensional sample
from a distribution F with density p(x), assuming ρ be a fixed positive density
function over the support X , they first find a function g(x) = ∑A g(xA), where
A varies over the subspaces corresponding to the all-two-way-interaction
terms, in the reproducing kernel Hilbert space(RKHS) H and satisfies

ĝ = arg min
g

{
1 + log

(
1
n

n

∑
i=1

exp(−g(X(i)))

)
(A.3)

+
∫
X

g(x)ρ(x)dx + λ ∑
A

θ−1
A ‖PAg‖2

}
where PA is the orthogonal projector. Once the optimal estimate ĝ(x) is
obtained, the final estimator for the density is of the form

f̂ (x) = constant · ρ(x) · exp (ĝ(x)) (A.4)
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By taking ρ(x) with a multiplicative form of the marginal baseline densities
ρ(x) = ∏d

j=1 ρ(j)(xj), a Newton-Raphson procedure is developed for model
fitting. Even though no theoretical analysis is provided, the resulting algorithm
can be used to perform density estimation in very high dimensions and the
resulting sparse all-two-way-interaction log-density ANOVA model is natural
to build nonparametric graphical models.
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