
Phylogenetic Reconciliation with Transfers

Han Lai

hanlai@andrew.cmu.edu

August 4, 2017

Department of Biological Sciences

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Dannie Durand, Chair

Luisa Hiller

Russell Schwartz

Lars Arvestad (University of Stockholm)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright c© 2017 Han Lai

Keywords: phylogenetics, reconciliation, heterogeneity

ii

iii

Abstract

Correctly inferring the events in the history of a gene family is crucial to relating gene evo-
lution to ecological adaptation, understanding the evolution of gene function, and inferring
homology relationships. Information about the evolution of a gene family can be obtained
from the incongruence between a gene tree and the associated species tree. Phylogenetic
reconciliation algorithms infer gene events through a formal comparison of the gene and
species trees.

In this thesis, I expand the reconciliation framework to capture more complex evolutionary
scenarios. Current reconciliation algorithms are capable of inferring duplication, transfer,
and loss events when both the gene tree and the species tree are well resolved. They are
not, however, well equipped to infer events with non-binary trees. A non-binary species
tree indicates that evolutionary forces are also in play on the population level. A non-
binary gene tree reflects uncertainty in the gene tree branching order, due to insufficient
information from the sequence data. Reconciliation algorithms that do not account for
these processes can result in incorrect inference of events. To address these problems, I
first introduce an algorithm that reconciles a binary gene tree with a non-binary species
tree while accounting for gene tree incongruence that could result from population processes
rather than gene events. Second, I present an exact algorithm and several fast heuristics
that use reconciliation to resolve uncertainty in a non-binary gene tree.

In a parsimony optimization framework, reconciliation seeks the solution that minimizes
the weighted sum of the inferred events. One major challenge of this approach is how to
select event weights that will infer the correct event history. First, I tackle this challenge
from a probabilistic perspective by considering how the underlying gene event rates influence
the best choice of event weights. Second, I use a topological approach to identify common
tradeoffs between histories with transfers and histories with duplications and losses. By
making these tradeoffs explicit, my approach provides a framework for applying biological
intuition to the problem of weight selection. This significantly improves the researcher’s
understanding of how different weights will affect the reconciliation result, leading to better
estimation of gene events.

I have implemented the algorithms described above in Notung, a publically available and
widely used reconciliation software package. Using this software, I demonstrate the applica-
bility of my theoretical work to concrete biological problems via a phylogenomic analysis in
Cyanobacteria. The results reveal a link between gain and loss of photosynthesis genes and
niche adaptation.

v

Acknowledgments

I would first like to thank my advisor, Dannie Durand, for her support and encouragement.

Dannie is not only a great research mentor who teaches me critical thinking and the phi-

losophy of academic research, but also a friendly boss who keeps the lab atmosphere alive

and interesting. In my years at Carnegie Mellon University, Dannies has taunt me not only

the techniques of doing research, but also the ways of approaching problems. As an inter-

national student, writing was one of my weakness and Dannie has helped me with countless

papers, presentations, posters, and thesis. Her mentor style is also greatness suitable for me

as she fully supported me pursuing a project even though it was not quite related to my

main project. In addition to the research skills, she greatly helped me achieve high level of

problem solving, critical thinking, open-mindness, and communication skills.

I would also like to thank all my committee members, Luisa Hiller, Russell Schwartz, and Lars

Arvestad. Their support and feedback on my yearly committee meeting kept me on track

and is greatly helpful for me to overcome several of my greatest obstacles in my research.

Without their comments and continuous support, this thesis would not have matured as

nicely.

This work was also greatly benefited from so many help people. I would like to thank all the

members of the Durand Lab: Maureen Stolzer, Philip Davison, Annette McLeod, Minli Xu,

Jacob Joseph, Rosie Alderson, for creating a enjoyable and encouraging lab environment. I

would also like to thank my friends who made my years in Pittsburgh a unique and happy

experience, and Danyang for helping me with the thesis defence presentation and provided

valuable feedback as an fresh eye. Last but not least, I would like to thank my parents,

Rong Huang and Xuebo Lai. Without the education and support they provided, and the

my personality that they helped constructed, I would not be able to achieve this degree in

Carnegie Mellon University.

vii

Contents

1 Introduction 1
1.1 Source of Gene Tree Incongruence . 2

1.1.1 Gene Events: Duplication, Transfer, and Loss 3
1.1.2 Population Processes . 4
1.1.3 Phylogenetic Error . 5

1.2 Thesis Outline . 7
1.3 Notations . 7

2 Background 11
2.1 Reconciliation: Problem Statement . 11

2.1.1 Data Types . 12
2.1.2 Optimization Criteria . 13
2.1.3 Event Models . 14

2.2 Event Inference in Other Applications . 20
2.2.1 Species Tree inference . 20
2.2.2 Rooting and Resolving a Gene Tree 20

2.3 General Algorithm for Reconciliation . 21
2.3.1 DL Model . 23
2.3.2 DTL Model . 24

3 Extending DTL Reconciliation 35
3.1 DTL with incomplete lineage sorting . 35

3.1.1 Model to handle ILS and Multiple Solutions 36
3.1.2 Traceback . 40
3.1.3 Checking for Temporal Consistency 40

3.2 Speeding Up Cycle Checking . 43
3.2.1 Constructing Timing Graph: Saving Species Tree 43
3.2.2 Cycle Checking: Stop Before Checking the Entire Timing Graph . . . 44

3.3 Domain Tree Level Reconciliation . 44
3.3.1 Model . 46
3.3.2 Algorithm . 47

4 Rearrangement Algorithm to Fix Weakly Supported Branches 53
4.1 Representing Uncertainty in Gene Trees . 54

ix

CONTENTS

4.2 Background on Resolving Uncertainty . 55

4.3 An Exact Algorithm to Solve Resolve-DTL 59

4.3.1 Heuristics for Resolve-DTL . 62

4.4 Performance analysis . 65

4.4.1 Accuracy . 66

4.4.2 Runtime . 75

4.5 Discussion . 76

5 Selecting Cost Using Maximum Likelihood 81

5.1 Formulation of Maximum Likelihood . 82

5.1.1 Constant Event Process . 84

5.1.2 Birth-Death Event Process . 84

5.2 Forest Representation of L . 86

5.2.1 Calculating LG(γ, s) . 88

5.3 Event Number Representation of γ . 91

5.3.1 Constant Event Process . 92

5.3.2 Birth-Death Process . 93

5.4 Likelihood and Parsimony . 100

5.5 Conclusion . 112

6 Selecting Cost Using Cost Space Partition 115

6.1 Trade-offs of different scenarios . 120

6.1.1 Duplication versus Transfer . 121

6.1.2 Transfer versus Duplications and Losses 124

6.1.3 Transfer versus Loss . 126

6.1.4 Generic Cost Space partitions by Species Tree 127

6.2 Simulation analysis of costs from five partitions 128

6.2.1 Experimental Setup . 129

6.2.2 Result . 131

7 Phylogenomic Reconciliation Using Notung 139

7.1 Notung Phylogenomics: Reconciliation of Genomic Data 141

7.1.1 Output of Phylogenomic Reconciliation 142

7.2 Case study: analysis ancestral gene content in Cyanothece 143

7.2.1 Pre-Processing: Distributed Gene Families and Core Gene Families . 144

8 Discussion 147

8.1 DTL Reconciliation of Binary Gene Tree and Binary Species Tree 148

8.2 DTL reconciliation of A Binary Gene Tree and A Non-binary Species Tree . 149

8.3 DTL Reconciliation of a Non-binary gene tree and a Binary Species Tree . . 150

8.4 Event Cost Selection . 151

x

CONTENTS

Appendix 153

Bibliography A5

xi

List of Figures

1.1 Example of population processes that result in gene tree to represent the

history of the individuals that may or may not be the same as the history

of species. The dots in each species tree branch represent individuals of the

population. The pink lines indicate the lineages of the gene family. 6

2.1 Multiple solutions can explain the same incongruence. Left reconciliation is the

result of a transfer event, right reconciliation is the result of a duplication and two

losses. Depending on CT , CD, CL, different reconciliation is preferred. 16

2.2 A reconciliation solution involving two transfers. The species tree demonstrates

two transfers that are conflict with each other. It is impossible to find timestamps

for species node β and γ that satisfies the timing constraints from the transfers,

leading to an invalid solution . 18

2.3 Reconciliation of a gene tree with a species tree. The solution is represented as M
for every gene node. 22

2.4 Cost table for w calculated from iterating all possible labels for u, labels for v and

labels for w. For example, ifM[u] = A,M[v] = A, then the cost forM[w] = A is 2

because these three labels indicate a duplication event has occurred. The total cost

to map w in A in this situation is x1 + y1 + 2. Among all rows, for each label for w,

only the situation that costs the minimum is necessary to be saved. Assuming the

entry with a red circle has the minimum cost. The Cost Table for w is constructed

by only saving the minimum cost rows and converting to a tuple that saves the

event, total cost, and left, right label. 25

2.5 Dynamic programming to calculate cost table for a binary gene node x. For a

binary node, the procedure tries all possible ways to map the children gene node

with different species nodes and determine the cost of map x to different species

nodes. The merge process throws out scenarios that generate non-optimal costs

and generate a tuple table, in which, each cell stores the event, total cost, left child

label, and right child label. 28

xiii

LIST OF FIGURES

3.1 (a-c) Temporally infeasible transfer pairs. Here, dashed arrows indicate inferred

transfers. (d) Timing graph for the reconciliation in (b). Here, open circles are

members of VT , solid arrows are members of AT , and dashed edges are members of

ET . 41

3.2 An example of domain insertion. (a) Species tree with embedded gene and domain

trees showing the co-evolution of domains, genes, and species in a hypothetical

family. Present day genes in the family, including their domain content, are shown

on the leaves of the species tree. (b) The modified gene tree T ∗G. The pseudonodes

are φR and φE; the two pseudoleaves are λB and λC . They represent the location

of the missing taxa in the gene tree. Gene duplication occurred on g E and is

represented as a black square; filled circles represent co-speciation between gene

and species. (c) A reconciled domain tree, showing a domain insertion on edge

< u, v > and three domain losses (λB, λC , and d2 g2 B). The λB and λC are

domains that are missing due to gene loss in (b), therefore, they are not counted

when calculating the reconciliation cost. Co-divergence due to gene duplication is

represented by an open square. 49

4.1 A binary gene tree with branches with two low support (dashed lines) can be col-

lapsed and result in a non-binary gene tree with a polytomy of size 4. 54

4.2 Dynamic programming to calculate cost table for a non-binary gene node x.

This process tries different binary resolutions for node x; for each tree, it uses

the same dynamic programming to generate cost table for x. Then all cost

tables for all binary resolutions are merged, and the entry in tuple table is

added an extra term to store which tree was used. 61

4.3 Error of the DTL reconciliation score obtained with various heuristics on the

simulated data set. Error was calculated as a function of the weighted sum

of the ALE events. (a) Error for gene trees with polytomy of size 7. (b)

Absolute value of the error for gene trees with polytomy of size 7. (c) Error

and (d) absolute value of the error for gene trees with at least one polytomy

of size greater than 7. The threshold to collapse weak branches is 70%, and

the number of NNI samples used was 1000. 68

xiv

LIST OF FIGURES

4.4 Comparison of heuristic strategies with the Exact method for ALE and Barker

trees, with a branch support threshold of 70%. The NNI and Hybrid strategies

were executed with M = 1000 samples. Red points indicate the mean. (a)

Top: log ∆(κ̂H , κ
∗
E). Zero values are represented as 0.01 times the minimum

non-zero error. Bottom: the proportion of trees where ∆(κ̂H , κ
∗
E) = 0. (b)

Top: Log normalized RF distance (log ∆RF). Bottom: the proportion of trees

where ∆RF = 0. 69

4.5 Comparison of heuristic strategies with the Exact method for the Barker trees

only. Red points indicate the mean. (a) Performance with branch support

thresholds of 70%, 80%, and 90%. The NNI and Hybrid strategies were ex-

ecuted with M = 1000 samples. Top: log ∆(κ̂H , κ
∗
E). Zero values are repre-

sented as 0.01 times the minimum non-zero error. Bottom: the proportion of

trees where ∆(κ̂H , κ
∗
E) = 0. (b) Performance of the NNI and Hybrid strate-

gies with sample sizes from M = 125 to M = 4000; branch support threshold

of 70%. Top: log ∆(κ̂H , κ
∗
E). Zero values are represented as 0.01 times the

minimum non-zero error. Bottom: the proportion of trees where ∆(κ̂H , κ
∗
E) = 0. 70

4.6 ∆(κ̂H , κ
∗
E) for multiple runs of the iteration-based methods, (a) Hybrid and

(b) NNI, using Barker data set. Each method was run multiple times, with a

total of 1000 iterations. 72

4.7 Runtime, per polytomy of the Exact, Local DL, NNI, and Hybrid strategies.

NNI and Hybrid with M = 1000 samples. The x-axis indicates the polytomy

of different sizes, and the y-axis represents the log of runtime in seconds. . . 75

4.8 Runtime of hybrid strategy with different iteration numbers for three different

thresholds. 77

4.9 Runtime of NNI strategy with different iteration numbers for three different

thresholds. 78

5.1 Gene tree embedded in species tree. The forests in four species tree branches are

shown at right. For each embedded gene tree, the root is a gene that was present at

the parent species node. Note that the gene transfer from g2 to g6 in the embedded

gene tree in F (γ, F) creates a new gene in a distant species tree branch. This new

gene is still considered to be a node in the embedded gene tree associated with

branch < R,F >. 87

5.2 Two isomorphic embedded gene trees in the species tree branch (α, β) are equivalent

and represent the same reconciliation solution. 88

xv

LIST OF FIGURES

5.3 All possible rooted trees with four leaves that arose through three gain events.

There is only one possible position for the first gain event to occur. Two branches

are possible sites for the second gain event to occur, and three for the third gain.

In general, the total possible number of unlabeled trees with k leaves produced by

(k − 1) gain events is (k − 1)! . 90

5.4 Comparison of simulated and estimated number of birth events for all 16 event rate

combinations. The simulated number of events are shown in histogram and the line

represent the estimated number using standard geometric distribution. 97

5.5 Comparison of simulated and estimated number of death events for all 16 event rate

combinations. The simulated number of events are shown in histogram and the line

represent the estimated number using standard geometric distribution. 98

5.6 The four cases based on the assumption that the embedded gene subtrees have at

most 3 leaves. 101

5.7 The gene tree, reconciliation γ, and the gene tree embedded in the species tree. The

total number of nodes in the reconciliation γ is no longer |VG|, which is the number

of nodes of the gene tree. The total number of gene nodes in a reconciliation is:

|VG|+ 2NL. In this reconciliation, the “speciation nodes” are: g1, gl, and g3, which

are roots of two embedded gene trees. g2, g4 arose through gene duplication event,

and g5 has a transfer event. The total size of the reconciliation is 13, which is

calculated from |VG| + 2NL. The number of forests in the embedded species tree

is 6. This is consistent with the conclusion that the number of forests is twice the

number of “speciation nodes”. 103

5.8 (a) The log(x!) function. (b) The likelihood value as a function of gain event.

Blue represents the condition where each branch may have 0 or 1 gain event; red

represents the condition where each branch may have 0 or 2 gain events; black

represents the condition where all gain occur in one species tree branch. 108

6.1 Multiple solutions in the Maximum Parsimony framework. (a) Two reconciliation

solutions that infers different number of events for the same gene tree. The left

solution requires one transfer; the right solution requires one duplication and two

losses. (b) Two reconciliation solutions that both require two transfer events, but

the transfer events are different. 116

xvi

LIST OF FIGURES

6.2 (a) The partition of cost space corresponding to Figure 6.1a. Each point in the space

represents a cost vector. The space is separated by a linear function CT = CD+2CL

with CD is set to 1. Above this line, the solution with one duplication and two losses

is favored; below the line, the solution with one transfer is favored.(b) Example of

the output of Xscape(Libeskind-Hadas et al., 2014) for an example gene tree and

species tree. Every cost vector in the same partition generates the same solution

set. < NS , ND, NT , NL > are the number of speciation, duplication, transfer, and

loss events, respectively. Count is the number of optimal solutions obtained for any

cost vector in the region. 119

6.3 One duplication versus two transfers: when 2CT < CD, any non-leaf duplication

(c) can be traded for two transfers (d). For these costs, the reconciliation will not

find any duplications on internal gene nodes 121

6.4 One transfer versus two duplications and five losses: When hd = 2 and hr = 2, a

transfer is preferred if CT < 2CD+5CL. Two duplication and five losses is preferred

if CT > 2CD + 5CL. 122

6.5 One transfer versus two duplications and five losses: When hd = 2 and hr = 2, a

transfer is preferred if CT < 2CD+5CL. Two duplication and five losses is preferred

if CT > 2CD + 5CL. 123

6.6 One transfer versus hd duplications and several losses. Given a transfer between sd

and sr with depth hd and hr. The transfer event can be replaced by combination

of hd duplications and many losses. The yellow arrow represent a gene transfer, the

red squares represent gene duplications. 125

6.7 Three examples of a trade-off between transfer and loss events only. In each exam-

ple, the purple embedded gene tree represent the reconciliation with loss events only,

and the blue embedded gene tree represent the reconciliation with transfer events

only. The m and n value of these three examples are :m = 2, n = 1, m = 1, n = 1,

m = 1, n = 2. 127

6.8 Partition of a 2D cost plane for a small species tree of height 6. The CT , CL ranges

are set to [0, 6]. 127

6.9 (a) Species tree used for simulation Each branch is normalized to 10 time units. (b)

Five cost vectors (red dots) selected to represent different regions in the cost space

partition. These cost vectors are listed in Table 6.3 in descending order. 129

6.10 Inferred duplications versus true duplications for each cost vector. 131

6.11 Inferred transfers versus true transfers for each cost vector. 133

xvii

LIST OF FIGURES

6.12 Reconciled losses versus true Losses number for each cost vector, and for all 96, 000

reconciliation results. Box-whisker plot for each True Loss number. 134

6.13 From four duplication rates, four transfer rates, six loss rates, five cost sets, 480

groups of reconciliation results were obtained. The histogram shows the T,D,L error

rate for each group. 136

7.1 Ancestral genome content inferred using Notung 2.8, with Wagner parsimony for

comparison. The number of inferred ancestral families shown on nodes. The num-

ber of inferred gains and losses indicated by +/- on branches. Species abbreviations:

cwa: Crocosphaera watsonii WH 8501; cya: Cyanothece sp. PCC 7424; cyb: Cyan-

othece sp. ATCC 51142; cyc: Cyanothece sp. CCY 0110; cyd : Cyanothece sp. PCC

7425; cye: Cyanothece sp. PCC 7822; cyf : Cyanothece sp. PCC 8801; cyg : Cyan-

othece sp. PCC 8802; mae: Microcystis aeruginosa NIES843; syp: Synechocystis

sp. PCC6803. 145

7.2 Heatmap showing the number of genes horizontally transferred between all pairs

of species in our data set. Barplots on top and right shows the number of genes

transferred from/received by each species. Calculated in R from tables output by

Notung 2.9. 146

xviii

List of Tables

1.1 Notation . 9

1.2 Reconciliation Notation . 10

4.1 The number of unresolved gene trees as a function of branch support threshold

and maximum polytomy size (km). F indicates the number of trees remaining,

after trees that lacked a temporally feasible solution for one or more methods

were removed from consideration. NP : number of polytomies of any size in

all trees, combined. 66

4.2 Experiments with various number of iterations for NNI and Hybrid. The

second column indicates the percentage of total resolutions of a polytomy of

size 7 that is covered by the number of iterations. 71

4.3 Number of starts for each experiment. The total number of iterations is set

to 1000. The first experiment starts NNI once for 1000 iterations, the second

experiment start NNI twice, each for 500 iterations, etc. 71

4.4 Correlation between RF and Error for ALE and Barker data compare to Exact

Tree . 74

6.1 Six scenarios of event trade-offs. The first three scenarios involve trading one

event type for one other event type. The last three correspond to scenarios

where one event type is replaced with some combinations of the two other

event types. This study included three scenario as indicated. The remaining

three scenarios are either impossible, or involve complex scenarios that may

not arise frequently. 120

6.2 The four duplication rates, four transfer rates, and six loss rates used in the

simulation. In total, there are 4× 4× 6 = 96 combinations of event rates. For

each combination, 200 gene trees were generated. 130

6.3 Table of five cost vectors covering five different regions in the cost space and

the mean event error associated with each cost vector. 131

xix

LIST OF TABLES

6.4 ANOVA: factors that influences transfer error. 135

6.5 ANOVA: factors that influences loss error. 136

8.1 The algorithms that exist for the input gene tree and species tree under dif-

ferent event models. Red models indicates my contribution. 148

xx

Chapter 1

Introduction

Fast, cheap sequencing has made it possible to study large collections of gene trees sampled

from the same species. The interplay of species and gene evolution creates complex phenom-

ena. The evolution of a group of species can be represented as a species tree, but the trees

for each gene family in these genomes may not be the same as the species tree, and may

not be the same as each other (Goodman et al., 1979; Maddison, 1997). The phylogenetic

data sets from the sample genes and species reveals gene tree heterogeneity. Many forces can

contribute to gene tree incongruence and more than one may be acting on any particular

data set. There are three main sources of gene tree incongruence: Gene events (duplication,

transfer, and loss); population processes (migration, hybridization, introgression, incomplete

lineage sorting); and phylogenetic error (incorrect data or insufficient data).

Understanding these incongruences is crucial for reconstructing the history of species and

genes within them. My thesis focuses on the problem of resolving the difference between

gene tree and species tree topologies to extract evolutionary information. In this chapter,

I briefly describe 1) the causes of incongruence between gene trees and species trees: gene

events, population processes, and phylogenetic error and 2) the road map of my thesis that

describes reconstructing gene history, the open questions and my contributions.

1

CHAPTER 1. INTRODUCTION

1.1. Source of Gene Tree Incongruence

When a group of organisms become isolated, either geographically or genetically, it follows

that the genes within those organisms will begin to evolve independently. The process of

speciation occurs as these isolated subgroups of the original group then form new species that

are different from each other. There are several models of speciation. In the most commonly

accepted model for multicellular organisms, speciation occurs when the new species is isolated

and changes independently, long enough that they lost the ability to breed with the original

species. However, how prokaryotic speciation occurs has been actively discussed and remains

an open question (Konstantinidis et al., 2006). If new species evolve independently from

each other, it follows that after speciation, the relationship of genes in these new species

should also reflect the relationship of the species. The relationships between species that

are evolving by vertical descent can be represented using trees. Because speciation events

create new species, which abstractly diverge from the lineage of the original species, this

phenomenon is consistent with the structure of a tree, in which every node gives rise to two

nodes. However, in some cases, even after speciation events, the two new species can still

produce new species through hybridization or migration. In this case, a species network is

more suitable to represent the relationships (Huson and Scornavacca, 2011).

A gene residing in a genome of a species evolves with the species and experiences the evolu-

tionary steps that the species experiences. That is, if a speciation event occurred to create

two new species, the genes in the genome also experience this speciation and evolve indepen-

dently in the descendants. In addition to speciation, many other processes can act on genes

and “create” new genes, including gene duplication and horizontal gene transfer (Goodman

et al., 1979; Maddison, 1997). Then from these present species, a set of several similar genes,

formed by speciation, duplication, and transfer, can be found as a gene family. Similar to

a species tree, the relationships between genes in a gene family can also be represented as

trees, in which each split represents divergence of genes that may be caused by co-speciation

with species tree, gene duplication, or horizontal gene transfer. This causes the gene tree to

disagree with the species tree. Other sources of gene tree incongruence includes population

processes and phylogenetic error.

2

1.1. SOURCE OF GENE TREE INCONGRUENCE

1.1.1. Gene Events: Duplication, Transfer, and Loss

Gene duplication has been one of the major forces that drives the evolution of new genes and

new functionality in organisms (Magadum et al., 2013; Mendivil Ramos and Ferrier, 2012;

Ohno, 1970).

Gene duplication can occur through several molecular processes:

• Retrotransposition is the processes of an mRNA fragment being reverse transcribed

into DNA and inserted back into the genome. This process creates a new copy of

the original DNA, usually without introns, because intron splicing may have occurred

before the retrotransposition.

• Unequal crossing-over occurs when two chromosomes are not lined up correctly during

recombination. This will result in a chromosome that contains more genetic material

than the original chromosome. The extra material may contain a fragment, a piece of

a gene, or one or more whole genes. Thus, one or more duplicated genes in the same

chromosomal region are observed.

• Whole genome duplication can occur during cell division, resulting in an organism that

contains two copies of its genome from the parent. After the whole genome duplication,

the organism’s genome is twice the genome size, and it will mostly likely go through a

massive gene loss (Inoue et al., 2015; Zheng et al., 2008).

These mechanisms, although all considered as gene duplication, may leave evidence in

genome patterns. Retrotransposition produces gene copies without introns in the genome

that can be identified by alignment. Unequal crossing over usually leaves the extra gene

copy near the original gene, resulting in tandem repeats (Durand and Hoberman, 2006).

Horizontal gene transfer (HGT) is another force that leads to the acquisition of novel genetic

material. Gene transfer occurs between different species and strains in the same species.

HGT is commonly found in prokaryotes, in which HGT provides a way of introducing and

deleting DNA material from the chromosome, effectively changing the ecological and patho-

logical features of the bacteria (Andam and Gogarten, 2011; Lawrence, 1999; Ochman et al.,

2000). Recently, accumulating evidence suggests that gene transfer can also occur in fungi

(Fitzpatrick, 2012), between bacteria and animals (Dunning Hotopp, 2011) and also in eu-

karyotes (Andersson, 2009; Gao et al., 2014; Jain et al., 1999; Richardson and Palmer, 2007).

3

CHAPTER 1. INTRODUCTION

Like gene duplication, HGT in prokaryotes also appears as a result of several underlying

molecular mechanisms.

• Transformation is the ability of some bacteria to take a DNA fragment from the envi-

ronment and incorporate it into their own genome.

• Transduction is a molecular process in a cell, in which foreign DNA material is intro-

duced and inserted into the genome by a virus or transposon.

• Conjugation occurs when a bacterial cell is in direct contact with another bacterial

cell. In this case, the genetic material is directly transferred though the cell wall.

Gene duplication and gene transfer are both forces that increase the gene family size, whereas

gene loss reduces the gene family size. Gene duplication, transfer, and loss events occurring in

bacteria lineages are consistent with the observation that bacterial genomes are in continuous

flux(Koskiniemi et al., 2012). Earlier beliefs suggest that the evolution is mostly driven by

gene duplication, gene transfer and some other population processes. Recent studies have

revealed that gene loss is also acting as a source of genetic variation and causes species

diversity (Albalat and Cañestro, 2016).

1.1.2. Population Processes

A gene tree, in the absence of gene events, is the history of a locus of individuals as it is

passed from parent to child. This history is not guaranteed to be the same as the population

history. The history of a locus within a population can be modeled by coalescent theory,

which is used to predict the probbability that gene tree disagrees with the species tree under

various assumptions. The probability that the branching pattern of a gene and species will

agree depends on properties such as population size, selection force, linkage disequilibrium,

population structure, and the time between divergences. For example, assuming constant

effective population size, no selection, and random mating, the probability that the gene

branching pattern disagrees with the species branching pattern depends on the time be-

tween divergence. If the time between divergences is long enough, genetic variation present

in the population at one divergence will not persist through subsequent divergences. In this

case, the gene branching pattern represents the history of the population (Figure 1.1a). In

contrast, incomplete lineage sorting (ILS) represents the scenario where the time between

speciation events is short, such that the polymorphism may persist through the next specia-

4

1.1. SOURCE OF GENE TREE INCONGRUENCE

tion event (Figure 1.1b, 1.1c). One of the several models for ILS is proposed by Pamilo and

Nei (1988). In a species tree with three leaves, under the assumption of constant effective

population size, neutral evolution, no population structure, and random joining of lineages

working backward in time, the probability of observing a gene tree that agrees with the

species tree is

fC = 1− 2e−T

3
. (1.1)

Here T = ∆t/Ne is the branch length in coalescent units, defined as the number of genera-

tions between speciation events (∆t) normalized by the effective population size (Ne). The

probability of observing either one of the incongruent topologies is

fI =
e−T

3
. (1.2)

When the species tree is a polytomy (T = 0), all three topologies are equally probable.

When T > 0, gene trees with the true topology will occur with the highest frequency and

the remaining two topologies will occur with equal frequency (Pamilo and Nei, 1988).

Horizontal population processes, such as migration and hybridization, can also result in loci

that have a history different from the population history. They describe the mixture of

genetic material between two distinct groups of populations, which introduces alleles with a

history that does not reflect the history of the population (Figure 1.1d). The scenario that

the genetic variation of previous speciation still exists when the next speciation occurs leads

to the situation that the sampled genes from present day populations represent allelic rela-

tionships, instead of reflecting the species relationships (Avise et al., 1983, 1984; Maddison,

1997; Nei, 1987; Tajima, 1983; Takahata and Nei, 1985), resulting in incongruence from the

species tree (Figure 1.1c, 1.1d). These scenarios, unlike gene duplication, transfer, and loss,

are not molecular mechanisms that changes the locus of a gene, but population phenomena

that causes gene tree incongruence. If this source of incongruence is not considered, incorrect

inferences may occur.

1.1.3. Phylogenetic Error

The history of the gene family may be the same as the history of the species, but the gene tree

may still disagree with the species tree due to phylogenetic error. In this case, the gene tree

5

CHAPTER 1. INTRODUCTION

CBA D

T2

E

E

CBA D E
(a) Complete lineage sorting

CBA D

T2

E

E

CBA D E
(b) ILS with congruent gene tree

Probability of a congruent gene tree

Probability of each incongruent gene
tree

T
1

T
2

CBA D E

R

(c) ILS with incongruent gene tree

CBA D E
(d) Horizontal gene flow between species

Figure 1.1: Example of population processes that result in gene tree to represent the history
of the individuals that may or may not be the same as the history of species. The dots in
each species tree branch represent individuals of the population. The pink lines indicate the
lineages of the gene family.

built from phylogenetic software does not reflect the true history of the gene family. Several

common errors that cause the reconstructed gene tree to disagree with the species tree

are: sparse taxon sampling, long branch attraction, saturated sites, variation in substitution

rates between lineages or over time, and sequence composition bias. In phylogenetic analysis,

phylogenetic error should be distinguished from gene events because the incongruence caused

by error may lead to incorrect results.

6

1.2. THESIS OUTLINE

1.2. Thesis Outline

Reconciliation is the process of comparing a species tree and a gene tree to infer the events

that explain the incongruence. To infer duplication (D), transfer (T), and loss (L) events,

reconciliation can be applied to gene tree and species tree under various event models (DL,

DTL, TL, etc), and various optimization criteria (maximum likelihood and maximum parsi-

mony). A detail background is provided in Chapter 2. Several of the innovative algorithms

that I developed to extend the reconciliation framework to solve more complex problems are

included in Chapter 3. These algorithms include DTL reconciliation that incorporates ILS,

faster algorithms to validate DTL solutions, and domain tree level reconciliation. Chapter 4

describes a species-tree aware method to fix unresolved gene trees based on the DTL event

model.

The reconciliation algorithms under the DTL event model require a set of costs for each gene

event. These event costs, provided by the user, are usually hard to choose and crucial to

correct inference of the event history. In Chapter 5 and Chapter 6, I approached the problem

of selecting cost from two perspectives. I first compared maximum parsimony and maximum

likelihood reconciliation and concluded that under several restricted assumptions, the cost

can be directly calculated from event rates and the result of MP reconciliation is equivalent

to ML reconciliation. I then approach this problem from the perspective of different gene

tree topology scenarios that suggest trade-offs between different gene events. This approach

allows researchers to apply biological insights to the process of cost selection.

Chapter 7 describes the work I have done in a reconciliation software hosted by the Durand

Lab since 2000. I implemented all the algorithms discussed in Chapters 3 and 4. In this

chapter, I discuss new functionality tat I added to the software to facilitate phylogenomic

reconciliation where many gene trees are reconciled simultaneously. I applied Notung to

several data sets and discussed the observations from these results. Lastly, in Chapter 8, I

provide an overview of the entire thesis.

1.3. Notations

Given a tree, Ti = (Vi, Ei), where i ∈ {G,S} represents a gene tree or species tree, ρ(Ti)

denotes the root of Ti, and g ∈ VG, s ∈ VS represent individual gene/species nodes. I use

7

CHAPTER 1. INTRODUCTION

L(Ti) to denote the leaf node set of Ti. The size of the leaf set is denoted LN(Ti) instead of

|L(Ti)| because the vertical bar can be ambiguous when this value is used in a conditional

probability. Ti(v) is the subtree of Ti rooted at v ∈ Vi. l(v), r(v), p(v) and C(v) denotes the

left child, the right child, the parent, and the set of all children of node v. Ei represents all

edges in a tree and each edge is denoted (u, v) where u is the parent. For any node u, the

branch length of (p(u), u) is denoted t(u) instead of |u|, again, to avoid the ambiguity with

a conditional probability. Given two nodes u, v ∈ Vi, if u is on the path from v to root of Ti,

then u is an ancestor of v, designated u ≥i v, and v is a descendant of u, designated v ≤i u.

If v 6≥i u and u 6≥i v, u and v are incomparable, designated u 6≶i v. We use LCA(u, v) to

represent the least common ancestor node of u and v.

Reconciling a gene tree TG and a species tree TS results in a set of reconciliation solutions

γ, in which, each solution γ describes a mapping M : g → s, g ∈ VG, s ∈ VS. This mapping

is a many-to-one mapping between gene nodes and species nodes. The reverse mapping is

denoted M−1 : s→ G,G ⊂ VG, s ∈ VS.

8

1.3. NOTATIONS

Table 1.1: Notation

Symbol Definition

TG = (VG, EG) Gene tree with nodes VG and edges EG

TS = (VS, ES) Species tree with nodes VS and edges ES

|Vi| Size of tree Ti

LN(Ti) the number of leaves in tree Ti

tv the length in time units of the tree branch (p(v), v).

L(Ti) Set of leaf nodes of tree Ti

ρ(Ti) Root of tree Ti

Ti(v)
Subtree of tree Ti rooted at vTG(g)

TS(s)

g ∈ VG Node in the gene tree

s ∈ VS Node in the species tree

p(v) The parent of node v

C(v) The set of children nodes of node v

|C(v)| The size (number of children) of node v

{l(v), r(v)} = C(v) Left and right children of binary node v

< u, v >∈ Ei Edge < u, v >, where u is the parent of v

u ≥i v Node u (v) is an ancestor (descendant) of node v (u) in tree Ti

u 6≶i v
Nodes u and v in tree Ti are incomparable

u is neither an ancestor or descendant v

T(TG) All binary resolutions of the gene tree TG
T bG ∈ T(TG) A given binary resolution of gene tree TG
T ∗G ∈ T(TG) The best binary resolution of gene tree TG

k(g) Outdegree of node g.

km Maximal outdegree in the tree.

T(g) All binary resolutions of subtree rooted at g

T bg ∈ T(g) A given binary resolution of node k
T ∗g ∈ T(g) The best binary resolution of node k

9

CHAPTER 1. INTRODUCTION

Table 1.2: Reconciliation Notation

Symbol Definition

w = LCA(u, v) Node w is the common ancestor of nodes u and v

γ = (TG;M; E ; Λ) Reconciliation of TG

E : VG \ L(TG)→ {S,D, T} Function indicating event at VG
ε = E [g] The divergence at gene g is result of event ε

M : VG → VS Mapping function of VG to VS

s =M[g] Gene g is mapped to (i.e., occurred in) species s

ML : L(TG)→ L(TS) Mapping function at leaves

Λ ⊂ EG The set of transfer edges

ε ∈ {S,D, T , L} event type

S, D, T, L speciation, duplication, transfer, and loss event

Cε cost of event type ε (CD, CT , or CL)

Nε number of event type ε (ND, NT , or NL)

κ(γ) cost of reconciling gene tree TG with species tree TS

R(TG, TS) All possible reconciliations

γ∗ A given reconciliation with minimal cost

R∗(TG, TS) All reconciliations with minimal cost

K, H cost table and bookkeeping table

Kg cost array for node g

Kg[s] cost table entry for node g mapped to node s

κE The reconciliation cost obtained with the exact method.

∆ The error, i.e., the normalized difference between
the costs obtained with a heuristic and the exact method.

10

Chapter 2

Background

The ability to accurately infer gene events and population processes can grant new insights

into understanding how gene family expansion and gene function evolution are correlated

with species evolution, development of metabolic processes, and the ecological relationship

betweens species. One common approach to discover the evolutionary processes in a gene

family takes advantage of the incongruence between a gene tree and species tree. This ap-

proach to reconstruct gene events and/or population processes is called reconciliation. In

this chapter, I discuss the history of inferring gene events using the reconciliation approach,

including the general problem statement, challenges, and basic algorithm developed by previ-

ous work. This provide background of the field for the following chapters, in which I describe

how my work fits into the field as a forward step for the open problems.

2.1. Reconciliation: Problem Statement

Given a rooted gene tree, a rooted species tree, an event model, and a table indicating the

species where each leaf in the gene tree is sampled from, the goal of reconciliation is to find

the event history that best explains the topological difference between the gene tree and the

species tree, based on a specified optimization criterion (Doyon and Chauve, 2011; Nakhleh,

2010, 2013; Nakhleh and Ruths, 2009).

This general problem statement represents a family of problems that differ in the types of

11

CHAPTER 2. BACKGROUND

data, event model, and optimization criteria. For example, the input data, including the

gene tree and the species tree, can be in different formats: input trees could be binary or

non-binary, and species tree could be undated or dated with relative speciation times. The

event model could encompass any combination of duplication (D), transfer (T), and loss (L)

events. The optimization criterion may also be either maximum likelihood or maximum par-

simony. Each of these pieces are interchangeable and provide applications to many potential

questions. Here, I review details of the different options that are covered in my thesis. For

brevity, other possible options are not covered; see Doyon and Chauve (2011) for a review.

2.1.1. Data Types

2.1.1.1. Binary and Non-binary Trees

The simplest form of the input gene tree (species tree) is a binary tree, where each node is

a parent of two children nodes and each node represents a gene (species). Non-binary nodes

(also called polytomies) in the tree are used to present different information in gene tree and

species tree. Two types of polytomies exist. A soft polytomy is the result of insufficient evi-

dence for the branching order. Alternatively, if the true history is a simultaneous separation

of three or more children, this results in a hard polytomy.

If a branch in a tree is not well supported by the data, this branch can be collapsed to form

a soft polytomy in the tree. In this case, the polytomy represents a set of uncertain binary

resolutions, and it is usually required to “fix” the polytomy and find a binary resolution to

replace this polytomy before the reconciliation analysis.

In the species trees, hard polytomies may occur due to simultaneous speciation of multiple

species. In this case, the hard polytomy is not a representation of unsupported branches but

the actual history of the species. These polytomies, in an abstract way, are equivalent to

immediate consecutive speciations that result in species branches with 0 length. Incomplete

lineage sorting, as described in Chapter 1 may also occur in these species trees.

12

2.1. RECONCILIATION: PROBLEM STATEMENT

2.1.1.2. Parasite Tree and Host Tree

The general form of the gene tree-species tree reconciliation problem is very similar to the

host-parasite reconciliation problem, and the algorithms developed for reconciliation are also

applicable in the host-parasite situation. The phylogeny constructed from parasite species

and the phylogeny constructed from host species can be cast to a gene tree and species

tree as the input for the regular reconciliation problems, and the result of reconciliation

software can be converted to host-parasite events accordingly. In this context, a parasite

tree (analogous to a gene tree) is reconciled with a host tree (analogous to a species tree).

The reconciliation aims to find host-switching events (analogous to gene transfers), parasite

speciation events independent from the host (analogous to gene duplication), and parasite

extinction events (analogous to gene loss). Because these two problems are so similar to each

other, the algorithms and theoretical results for one problem can be also applied to the other

problem. Different event models regarding the host-parasite problem are also described later

in Section 2.1.3.5

2.1.2. Optimization Criteria

There are two widely used optimization criteria: maximum likelihood (ML) and maximum

parsimony (MP). In my thesis, I focus on solving several challenges involving MP optimiza-

tion criteria in reconciliation. The optimization criterion in each chapter can always be

assumed to be MP unless otherwise stated. Under MP optimization, the event history that

requires the fewest events to explain the incongruence is the best solution. As this puts the

same weight on each event type, a more popular and general MP criterion is to find the

solution that minimizes the weighted sum of events:

C(ND,NT ,NL) = NDCD +NTCT +NLCL, (2.1)

where Cε represents the weight for event type ε, and Nε represents the number of events ε

in a solution.

MP and ML reconciliation are based on very different principles and each has its advantages.

ML approaches have associated probability support for the reconciliation result, but they

generally require more information, such as accurate estimation of branch length as units of

time, and a realistic model to estimate the probability of gene subtrees. If the event rate

13

CHAPTER 2. BACKGROUND

is unknown, an extra step to use machine learning to estimate event rate is required. This

step would require a large number of gene trees to obtain correct estimation of the rate of

each type of event. Currently, there is no closed form solution for ML optimization criteria.

A general heuristic to find a reconciliation under ML optimization criterion is based on an

iterative approach, wherein each iteration, a new reconciliation solution is generated and

stored if the likelihood is determined to be greater. The MP model, compared to ML, does

not require a probability model for gene subtrees or the rate of events. However, it does

require a user-specified cost vector. It also does not require species tree to be dated. However,

MP reconciliation can still benefit from speciation times for checking if a solution is infeasible.

MP reconciliation also has much better runtime performance than ML algorithms and may

still provide accurate results if the MP assumptions hold. A reconciliation with lowest cost

can be obtained using a dynamic programming framework, in which every gene node is

visited once. Under a different event model, the problem may have different complexity, or

even be NP-hard.

2.1.3. Event Models

The event model determines how incongruence can be interpreted. The three main types of

events in a reconciliation are: duplications (D), transfers (T), and losses (L). Any combina-

tion of these three events can be included in the event model. Common event models are the

DTL, DT, DL, and TL models. Different models are applicable to different data depending

on how genes are evolving. The most appropriate event model depends on the biological

context.

2.1.3.1. DL Model

The simplest event model considers duplications and losses (DL). This problem was the

first recognized event model for reconciliation and was formalized by Page (1994), in which

a mapping technique was proposed. The DL reconciliation problem has been approached

from several optimization aspects: minimizing the number of events (Durand et al., 2006b;

Goodman et al., 1979; Page, 1994), minimizing the size of the reconciled tree (Bonizzoni et al.,

2005), and minimizing duplication then loss (Chauve et al., 2008). These measurements of

the DL reconciliation infer the same number of duplications but differs in how they define

the measurements for unobserved genes (losses). It was later shown that these measures are

14

2.1. RECONCILIATION: PROBLEM STATEMENT

actually equivalent (Eulenstein and Vingron, 1998). The optimal reconciliation result can

be calculated in linear time (Chauve et al., 2008), and for a given pair of gene and species

trees, there is only one optimal solution (Bonizzoni et al., 2005).

2.1.3.2. Inferring Transfer Introduces Two Challenges

Event models considering transfer significantly increase the complexity of reconciliation as

two challenges are introduced: multiple optimal solutions and temporal feasibility.

2.1.3.2.1. Multiple Optimal Solutions As transfers reduce the restrictions for assigning

species labels on each gene node, the gene tree is no longer confined to the structure of

the species tree. Gene tree nodes that are closely related may be labeled with species that

are distantly related. Further, since both gene duplication and gene transfer increase the

number of gene copies, gene copy difference may be explained by multiple combinations of

events. This suggests that, from a species tree perspective, if a single species node is the

label on multiple gene nodes, the extra copies of the gene may come from duplications in

the ancestor, or transfers in from different lineages. Thus, the reconciliation may result in

multiple mapping M tables and among them, the lowest score for mapping the ρ(TG) to

a species node is the same (Figure 2.1). In another word, the minimum cost solution may

arrive through different series of events. In fact, the theoretical number of solutions of a

gene tree is only loosely bounded under |VS||VG|. Because every gene node can have |VS|
number of species labels, and if the cost for these labels are the same, there are |VS| number

of solutions for the gene node. Therefore, the total number of minimum cost solutions is

only bound under |VS||VG|.

This problem extends to trees generated from real sequence data sets. Typically gene trees

are not likely to have exponentially high numbers of solutions; however it is not impossible for

large gene trees (with at least 20 leaves) to have over 1 million optimal solutions. Some gene

trees have so many solutions that even counting the total number of solutions is expensive in

practice. On one hand, as there is no evidence to suggest some solutions are more preferred

than others, all the solutions may be equally important and should be considered. On the

other hand, when a gene tree has too many solutions, it may be impossible to consider all

and the solutions may conflict, leaving little information to consider.

15

CHAPTER 2. BACKGROUND

Alternate strategies to cope with the multiple solutions problem exist, and many software

packages use different strategies. Xscape counts the number of solutions for different com-

binations of event numbers and displays them in a picture (Libeskind-Hadas et al., 2014);

Eucalypt efficiently enumerates all possible solutions and outputs a subset based on user in-

put (Donati et al., 2015b); Notung collects all solutions and can output all reconciled trees or

only a subset of them based on user input; Notung also implicitly enumerates all solutions to

calculate summary information on each gene tree reconciliation, such as the average number

of transfers, duplications, and losses (Stolzer et al., 2012b). In order to capture the infor-

mation from multiple solutions and while also not get stuck with gene trees with millions of

solutions, Bansal et al. (2013) proposed an approach to randomly sample solutions from all

optimal solutions and use the samples as a representation of all solutions. The complexity

of random sampling a solution is O(|VG||VS|2), which is greater than regular enumeration

implemented in Eucalypt and Notung (O(|VG|), but the sample of solutions was shown to

capture the “signature” of the population of all solutions. However, this described approach

was only proposed and tested as a theoretical algorithm, and not implemented in a mature

software package available to the public. In general, to record all optimal solutions, the

software must perform additional book-keeping and is often slower than software that only

generates one solution. For example, the complexity for a DTL algorithm that generates

only one solution is O(|VS||VG|) (Bansal et al. (2012)). To generate multiple solutions, for

each gene node, O(|VG|2) is needed to complete a full cost table; therefore, the complexity

of an algorithm that can generates all solutions O(|VS||VG|2) (Stolzer et al. (2012b)).

Figure 2.1: Multiple solutions can explain the same incongruence. Left reconciliation is the result
of a transfer event, right reconciliation is the result of a duplication and two losses. Depending on
CT , CD, CL, different reconciliation is preferred.

16

2.1. RECONCILIATION: PROBLEM STATEMENT

2.1.3.2.2. Temporal Consistency The species tree has implicit temporal constraints on

all the species: ancestral species nodes must pre-date their descendants. Similarly, the gene

tree implies that species associated with a gene cannot have been younger than the species

associated with the gene’s descendants. Transfer events introduce extra temporal constraints,

because a transfer suggests that the donor species and recipient species must have co-existed

at some time point. This temporal constraint between species created by transfer events

may conflict with constraints from the species tree, gene tree, and/or from other transfers.

A reconciliation solution is valid only if there exists an ordering of species that satisfies all

temporal constraints from the gene tree, species tree, and the inferred transfers. However, if

an ordering does not exist, the temporal constraints conflict, and we call the solution “tem-

porally infeasible” (Figure 2.2). These reconciliations must be excluded from the reported

solutions, since they cannot represent the actual evolutionary history of a gene family.

For a dated species tree, the transfers inferred always satisfy the temporal constraints, be-

cause species that co-exist can be determined from the species tree. This guarantees that

every solution generated is temporally feasible. However, for an undated species tree, there

are no user supplied constraints to prevent the generation of temporally infeasible solutions

during the reconciliation, aside from prohibiting transfers from an ancestor to a descendant.

Finding a reconciliation solution that is both valid and at lowest cost for any gene tree and

undated species tree is proven to be NP-complete under the TL model (Hill et al., 2010)

and DTL model (Hallett et al., 2004; Ovadia et al., 2011; Tofigh et al., 2011). The only

guaranteed way to find a solution is through exhaustive search. However, finding a lowest

cost solution, disregarding its temporal validity, only takes polynomial time. Therefore, a

reasonable heuristic for this problem is to generate candidate solutions, then check for tem-

poral consistency. If a valid solution is among these candidate solutions, then it is also an

optimal solution. However, if no valid solutions were found in these candidate solutions,

then the only option to find an optimal solution is by exhaustive search with exponential

complexity.

2.1.3.3. TL Model

Under the TL event model, a transfer can be represented by a Subtree Prune and Regraft

(SPR) operation acted on a species tree. The problem of finding the minimum number of SPR

operations is NP-hard but can be reduced to fixed parameter tractable when parameterized

17

CHAPTER 2. BACKGROUND

Figure 2.2: A reconciliation solution involving two transfers. The species tree demonstrates two
transfers that are conflict with each other. It is impossible to find timestamps for species node β
and γ that satisfies the timing constraints from the transfers, leading to an invalid solution

by the distance between the gene tree and species tree (Hill et al., 2010). Several approaches

were developed based on this definition, including a heuristic polynomial-time approach

based on bipartition dissimilarity that is best fit for small number of transfers (Boc et al.,

2010), a generic heuristic polynomial-time algorithm that handles HGT without restrictions

(Nakhleh et al., 2005) and an exact algorithm when tree distance is parameterized (Hill

et al., 2010).

2.1.3.4. DTL Model

The DTL event model is the full event model that involves inferring all three common

gene events. In the context of gene tree and species tree reconciliation, algorithms have

been developed to find DTL reconciliation solutions with a dated binary (Doyon et al.,

2010), undated binary (Bansal et al., 2012; Tofigh et al., 2011), or undated non-binary

(Stolzer et al., 2012b) species tree using a polynomial time algorithm. When timing is

assigned to every node of the species tree, contemporaneous branches are known explicitly.

In this scenario, DTL reconciliation can be solved in polynomial time (reviewed by Doyon

et al. (2011); Huson and Scornavacca (2011)). However, this more restricted model requires

estimation of speciation times, which may not be available. An exact algorithm for DT

reconciliation has been presented by Tofigh et al. (2011). It is mainly conceptual and may

18

2.1. RECONCILIATION: PROBLEM STATEMENT

not be practical due to its exponential complexity. Tofigh et al. (2011) also provided a

heuristic algorithm to find the minimum cost reconciliation solution for the DT event model,

and suggested using the number of losses as a secondary criteria to select from the multiple

candidate solutions. Bansal et al. (2012) were able to further reduce the complexity for the

DTL heuristic algorithm to linear time, however it only generates one event history, making

it more suitable for other applications that only require knowing the minimal cost (Section

2.2). To test for temporal inconsistency, Tofigh et al. (2011) proposed a validation procedure

based on topological sorting for the DT event model and Stolzer et al. (2012b) showed that

including loss events requires additional constraints on the DT validation procedure and

introduced the validation procedure for the DTL event model.

2.1.3.5. Host-Parasite: Species Event Model

The event models involving transfer are also closely associated with a different problem

that considers a group of parasites and a group of hosts (Charleston, 1998), in which, a

“gene transfer” is analogous to a host-parasite switching event; a gene divergence due to

speciation is analogous to “co-speciation” between parasite and host. This similar problem

aims to reconcile a “parasite tree” with its “host tree” and infer host-parasite switching, co-

evolution, and duplication event and was also proved to be NP-complete (Libeskind-Hadas

and Charleston, 2009; Ovadia et al., 2011). Conceptually, all event models are applicable

to the host-parasite input data. However, several approaches specific to host-parasite have

been developed. One major difference between the host-parasite problem and the gene-

species reconciliation problem is that co-speciation (analogous to speciation in a gene tree)

may also be assigned a weight in host-parasite reconciliation. In gene-species reconciliation,

a speciation event usually has zero cost. Under the host-parasite paradigm, some problems

consider only host-parasite switching events and parasite extinction events, (analogous to the

TL event model). This problem was tackled by Ronquist (1995), who developed a general

parsimony approach that minimizes the total weighted sum of events. A Bayesian approach

was also developed for the “host-parasite” switching event under a probabilistic framework

and is claimed to be more robust against phylogenetic error (Huelsenbeck et al., 2000). Other

models considers host-parasite switching, co-evolution, and duplication. Several algorithms

were also developed to solve this problem using a DTL reconciliation algorithm with slight

modification. The Jane (Conow et al., 2010) software tool combines dynamic programming

and a genetic algorithm as a heuristic to find a reconciliation solution while allowing the

19

CHAPTER 2. BACKGROUND

user to limit host-switch (analogous to transfer) distance and to assign different costs in

different regions of the tree. The CoRe-PA (Merkle and Middendorf, 2005) software tool

utilizes a parameter-adaptive approach in the dynamic programming framework so that it

is not required for the user to assign a specific cost for each event.

2.2. Event Inference in Other Applications

The reconciliation problem under a specified optimization criteria is also a way to measure

the gene tree. The parsimony score provides a means of scoring a gene tree based on its

incongruence with the species tree. This scoring mechanism is therefore also useful as an

intermediate step in solving several other problems, such as inferring a species tree from a

set of gene trees, resolving non-binary gene trees, and rooting an unrooted gene tree.

2.2.1. Species Tree inference

Problem Statement Given k rooted gene trees, and the species from which the genes are

sampled, find a species tree TS topology such that the sum of scores for reconciling each gene

tree with the species tree is minimal.

Note that as the goal of this problem is to find a species tree topology, it is not required to

find the full event history for each gene tree and a reconciliation score is sufficient. Under

DL the event model, this species tree inference problem is NP-hard (Bonizzoni et al., 2005),

and a graphic formulation was proposed by Mirkin et al. (1995); Wehe et al. (2008).

2.2.2. Rooting and Resolving a Gene Tree

Problem Statement: Rooting

Given an unrooted gene tree and a rooted species tree, find the optimal root of the gene tree

that results in the minimum cost in the reconciliation with the species tree under a specified

event model.

An unrooted gene tree with k leaves has k branches. In the rooting problem, every branch in

the gene tree is an appropriate candidate root. Then, finding the best root of the gene tree

20

2.3. GENERAL ALGORITHM FOR RECONCILIATION

can be achieved by iterating over every branch as the new root, and comparing the result of

the reconciliation of the rooted gene tree with the species tree.

Resolving: Problem Statement

Given a rooted gene tree with non-binary gene nodes and a rooted species tree, find the best

binary resolution(s) for each non-binary gene node and reconstruct a new gene tree, such

that the cost of reconciliation is minimized under a specified event model.

For a non-binary gene node of size k, the number of binary resolutions is the double factorial

(2k − 3)!!. This number increases exponentially as the size of the non-binary gene node

increases. Thus, simply enumerating all possible binary resolutions is not practical. Under

the DL event model, the optimal binary resolution can be solved in linear time (Lafond

et al., 2016; M. et al., 2012). However, under the DTL event model, there does not exist any

fast algorithm to guarantee an optimal binary resolution in polynomial time. Instead, many

heuristic algorithms have been developed to sample the solution space with modified tree

modification techniques (NNI, SPR) (Bansal et al., 2015; Nguyen et al., 2013). In Chapter

4, I describe the DTL resolve problem in detail and developed a heuristic algorithm that

shows promising results.

2.3. General Algorithm for Reconciliation

Many algorithms have been developed for the purpose of solving the reconciliation problem.

Each one follows a similar dynamic programming framework and infers the gene events using

a very similar mapping technique. The general algorithm for inferring gene events is to find

a mapping function (M : g ∈ VG → s ∈ VS) that maps every node in the gene tree onto a

node in the species tree. Biologically, assigning a species node label to a gene node indicates

that the species genome contains this gene. For the purpose of this description, I define the

gene tree as TG = (VG, EG) and the species tree as TS = (VS, ES), where Vi represents the

set of tree vertices and Ei represents the edges in tree Ti, i ∈ {G,S}. Given two nodes u, v

from the same tree Ti, if u is on the path from v to the root of Ti, then u is an ancestor of

v, designated u ≥i v, and v is a descendant of u, designated v ≤i u. If v 6≥i u and u 6≥i v,

u and v are incomparable, designated u 6≶i v. Given a gene node g ∈ VG mapped to species

node s ∈ VS, s is called the label of g. This information can be stored in a mapping tableM
of size |VG|, where M[g] = s (Figure 2.3). Note that the internal nodes in species trees and

21

CHAPTER 2. BACKGROUND

gene trees represent ancestral species and ancestral genes; they are also considered in the

mapping tableM. AfterM[g] is defined for every g ∈ VG, the gene events can be inferred by

analysing the species labels on g and its children for every ancestral gene node. For example,

given a gene node g, if the species labels of the children,M[l(g)] andM[r(g)], are the same

as the species label of g, the gene, in speciesM[g], was duplicated, resulting in two copies of

the gene in the same species; a duplication event is assigned to have occurred at g. The loss

event(s) that occurred along a gene branch are inferred by comparing the species labels of

p(g) and g. The number of losses is easily calculated as the difference in heights between the

two species labels: M[p(g)] andM[g] in TS. Intuitively, the species in which losses occurred

are inferred based on the species that are missing between the two species nodes in TS.

Figure 2.3: Reconciliation of a gene tree with a species tree. The solution is represented asM for
every gene node.

In this section, I will first describe the algorithm for the DL event model. Then I will discuss

the algorithm for the DTL event model and how the two challenges with transfer events are

approached in the algorithm. The general algorithms described here are demonstrations to

show the general framework of the problem. Many of the studies described in Section 2.1.3

use the same framework, but differ by the definition of gene events and the rules of how

events occur.

22

2.3. GENERAL ALGORITHM FOR RECONCILIATION

2.3.1. DL Model

The reconciliation problem under the DL event model is formally defined:

Input: TG, TS, DL event model, and M[g]∀g ∈ L(TG)

Output: M[g]∀g ∈ VG.

Recall that for the parsimony criterion, M is inferred by minimizing the number of dupli-

cations and losses. Optionally, an event table E [g]∀g ∈ VG where E [g] ∈ {D,S} may also be

included.

In the input, the leaves of the gene are assigned the species node that represents the species

from which these genes are sampled. The algorithm to assign the species labels for ancestral

gene nodes is fairly straightforward. The best mapping for a gene node is the least common

ancestor (LCA) of the two species labels of its children, where the LCA of two nodes is the

lowest node (i.e., furthest from the root) in the tree that is the ancestor of both nodes. A

post-order traversal of the gene tree can visit every gene node once and assign the best species

node label for that gene node (Algorithm 2). A pre-processing step simplifies this procedure

by calculating the LCA for every pair of species (see Algorithm 1) and storing them in a

matrix of size |VS| × |VS|. The LCA table is populated recursively, without repetition. This

process can be completed in polynomial time with the size of species node set (O(|VS|2)).

Then, determining the LCA at a gene node requires only to look up the value in this table

corresponding to the species labels of the gene nodes’ children. Given the LCA table, this

process can be completed in polynomial time (O(|VG|)) with size of TG (Algorithm 2).

Algorithm 1 Precompute LCA table

1 lcatable={}
2 decendants={} # imporper decendants, include self

3 BuildLCATable(TS) {
4 for each s ∈ VS \ L(TS) post order{
5 for each s1, s2 ∈ decendants[l(s)], decendants[r(s)]{
6 lcatable[s1][s2]=s
7 }
8 decendants[s].extend(decendants[l(s)],decendants[r(s)],s)
9 }
10 }

23

CHAPTER 2. BACKGROUND

Algorithm 2 DL Reconciliation

1 # M contains mapping for all L(TG)
2 DLreconciliation(TG) {
3 for each g ∈ VG \ L(TG) {
4 M[g] = LCA(M[l(g)],M[r(g)])
5 }
6 }

2.3.2. DTL Model

Here I provide a general strategy for DTL reconciliation, developed for a binary gene tree

and a binary species tree under the parsimony criterion.

Input:TG, TS, DTL event model, and M[g]∀g ∈ L(TG)

Output:M[g]∀g ∈ VG.

Recall that for the parsimony criterion, M is inferred by minimizing the number of dupli-

cations, transfer and losses. Optionally, an event table E [g]∀g ∈ VG where E [g] ∈ {D,T, S}
may also be included.

Because of the two major challenges involved in this event model (multiple optimal solution

and temporal feasibility discussed in Section 2.1.3.2), the general reconciliation under the

DTL event model usually consists of two steps: 1) generating reconciliations with minimum

cost, and 2) filtering out the reconciliations that are temporally infeasible. Here I clarify

some terms that I use regarding temporal feasibility and the results of steps 1 and 2. A

candidate solution is a solution that has minimal cost, a valid solution is a solution that is

temporally feasible, and an optimal solution is a solution that both has minimal cost and is

temporally feasible (i.e. is a candidate solution and also a valid solution). Step 1 generates

candidate solutions. Step 2 tests these candidate solutions and reports any optimal solutions.

In addition to the two challenges, the reconciliation problem with the DTL event model is

much more complicated than with the DL event model. Because of transfers, the species

label of a parent gene may no longer be an ancestor of the species label of the gene. The

mapping of the parent can be (almost) any species node in the species tree. This makes the

LCA mapping strategy used in DL obsolete. Instead, all possible species mappings must be

considered. In addition, the best M[g] for a subtree of the gene tree is not necessarily the

best M[g] for the entire gene tree. Therefore, it is impossible to decide the best M[g] for a

gene node until all gene nodes above and below g are visited.

24

2.3. GENERAL ALGORITHM FOR RECONCILIATION

Therefore, DTL reconciliation proceeds using a dynamic programming approach. Given gene

tree TG and a species tree TS, we define two cost tables: K saves the cost of mapping every

gene node to every species node, and H stores the necessary bookkeeping information that

resulted in the corresponding cost. The entry for mapping gene node g to species node s is

denoted Kg[s]. Note that K is a two-dimensional table, and Kg is a one-dimension array. The

cost table entries for a gene node only depend on the cost arrays of the two children nodes of

g (Figure 2.4). Calculating entries in K and H and generating a candidate solution require

a two step dynamic programming procedure. The first step is to calculate, in post-order, all

“potential” best mappings for every gene node and store the cost in K and the corresponding

information in H. The second step is to traceback through the cost tables from the root

of gene tree to generate the best mappings for the entire gene tree. Here I provide a basic

algorithm for reconciliation under the DTL model that calculates the minimum cost. Then I

will also show how this basic algorithm can be sped up by neglecting combinations of species

nodes that are known to never be parsimonious and how it can be modified to generate all

candidate solutions.

Figure 2.4: Cost table for w calculated from iterating all possible labels for u, labels for v and
labels for w. For example, if M[u] = A,M[v] = A, then the cost for M[w] = A is 2 because
these three labels indicate a duplication event has occurred. The total cost to map w in A in this
situation is x1 + y1 + 2. Among all rows, for each label for w, only the situation that costs the
minimum is necessary to be saved. Assuming the entry with a red circle has the minimum cost.
The Cost Table for w is constructed by only saving the minimum cost rows and converting to a
tuple that saves the event, total cost, and left, right label.

25

CHAPTER 2. BACKGROUND

2.3.2.1. Step 1: Calculating Cost Table

Generating cost tables for every gene node follows a dynamic programming framework, where

each gene node g is visited post-order, and Kg,Hg are calculated during each visit. Given a

gene node g, and its children l(g), r(g), the events and cost at g are computed based on the

combination of species assigned to its children. Therefore, an intuitive approach to calculate

K[g] is to exhaustively try all combinations of species labels for gene node g, its left child

(l(g)) and right child (r(g)). The total number of such possible combinations for any gene

node is |VS|×|VS|×|VS|. Thus, this algorithm has complexity of O(|VG||VS|3) (see Algorithm

3). Given a combination of three species nodes s, s1, s2, which are assigned as species labels

for g, l(g), r(g), the rule for calculating the cost works as follows (also see Algorithm 4):

• If s is not an ancestor of either s1 or s2, then two transfers must have occurred, one

from s to s1, and one from s to s2.

• If s1 6≶S s2, then either a transfer or speciation event must have occurred. If s is a

common ancestor of both s1 and s2, then a speciation occurred at g, and losses are

inferred between (1) s and LCA(s1, s2), (2) LCA(s1, s2) and s1, and (3) LCA(s1, s2)

and s2. If s is not a common ancestor of s1 and s2, then a transfer occurred. If s is an

ancestor of s1, then a transfer occurred from s to s2 and losses are inferred between s

and s1. The inverse is true for the case where s is ancestor for s2.

• If s1 is comparable to s2, then s1 is an (improper) ancestor of s2 or s2 is an (improper)

ancestor of s1 and s can only be the ancestor of both s1 and s2. A duplication must

have occurred. If s1 is an (improper) ancestor of s2, the duplication is occurred in s1

and losses are inferred between s and s1 and between s1 and s2. The inverse is true

for the case where s2 is an (improper) ancestor of s1.

Typically case 1 is not considered to be parsimonious, thus for a given gene node g, and the

species labels on left and right children s1 =M[l(g)], s2 =M[r(g)], the species that are in-

comparable to both s1, s2 are not necessary to be considered when calculating K for g. This

potentially reduces the number of species label combinations and speeds up the algorithm.

In addition, if g can be mapped to a species node that is common ancestor of s1 and s2, with

some cost, then mapping g to ancestors of s only increases the number of losses accordingly.

These ancestors of s are not necessary to be considered in the Kg, because they will be con-

sidered when the cost table for p(g) is computed. In fact, to generate K for a gene node g,

26

2.3. GENERAL ALGORITHM FOR RECONCILIATION

Algorithm 3 DTL reconciliation that iterate all possible labels.

1 DTLreconcile(VG, VS) {
2 for each g ∈ VG post order{
3 for each s1 ∈ VS {
4 for each s2 ∈ VS {
5 for each s3 ∈ VS {
6 cost=calculateCost(g, s1, s2, s3)
7 Kg[s3] = cost if cost is less than Kg[s3])
8 }
9 }
10 }
11 }
12 }

Algorithm 4 Calculating Cost for One g ∈ VG
1 calculateCost(g, s1, s2, s3) {
2 # Invalid

3 if s1 >S s or s2 >S s: return ∞
4 lca=LCA(s1, s2)
5 leftCost=K[l(g)][s1], rightCost=K[r(g)][s2]
6 if s 6≶S s1 and s 6≶S s2: return 2cτ+leftCost+rightCost;
7 if s1 6≶S s2 {
8 # speciation

9 if s ≥S lca {
10 NL = h(s)− h(lca)− 1 + h(lca)− h(s1)− 1 + h(lca)− h(s2)− 1
11 return CλNL+leftCost+rightCost
12 }
13 # Transfer

14 if s ≥S s1 { # Transfer

15 NL = h(s)− h(s1)− 1
16 return Cτ + CλNL+leftCost+rightCost
17 }else{
18 NL = h(s)− h(s2)− 1
19 return Cτ + CλNL+leftCost+rightCost
20 }
21 }
22 # Duplication

23 if s1 > s2 {
24 NL = h(s1)− h(s2) + h(s)− h(s1)− 1
25 return Cδ + CλNL+leftCost+rightCost
26 }
27 NL = h(s2)− h(s1) + h(s)− h(s2)− 1
28 return Cδ + CλNL+leftCost+rightCost
29 }

27

CHAPTER 2. BACKGROUND

only the species labels on l(g) and r(g) need to be enumerated (Stolzer et al., 2012b; Tofigh,

2009)(see Algorithm 5). For each pair of species labels (s1, s2) on l(g) and r(g), the species

labels that need to be considered to map to g in Kg[s] are {s1, s2, LCA(s1, s2)} for generating

one solution only, and {s|(s >S s1 or s >S s2) & s ≤S LCA(s1, s2)} for generating all can-

didate solutions. This effectively reduces the complexity to O(|VG||VS|2), or (O(|VG||VS|2h)

for all reconciliations) and still manages to generate lowest cost solution(s). The complexity

can be further reduced to O(|VG||VS|) if only one solution is required regardless of temporal

feasibility (Bansal et al., 2012).

Figure 2.5: Dynamic programming to calculate cost table for a binary gene node x. For a binary
node, the procedure tries all possible ways to map the children gene node with different species
nodes and determine the cost of map x to different species nodes. The merge process throws out
scenarios that generate non-optimal costs and generate a tuple table, in which, each cell stores the
event, total cost, left child label, and right child label.

Saving just the minimum cost for mapping a gene node to a species node in K is useful when

the algorithm is used to score gene trees in species tree inference or a rooting algorithm.

However, for more comprehensive results, such as generating the full event history, the

mapping table M for every gene node is required. To generate the complete mapping of

every gene node, some extra information is required to be stored when calculating entries in

K. This information is stored in the corresponding table H:

• For a gene node g, and any species node s, the minimum cost is stored in Kg[s]. This

minimum cost is calculated for one of the many combinations of species labels (s1, s2)

28

2.3. GENERAL ALGORITHM FOR RECONCILIATION

on l(g) and r(g). However, to correctly track the mapping of g and its children, the

species labels on the children of g, s1 & s2, that resulted in this cost are also required

to be stored. For this purpose, one could construct a table with the same dimension

as K to store s1 and s2 (i.e. the event table in Figure 2.5). This table is denoted H.

Therefore, Hg[s] should be at least a tuple containing the label of l(g) and the label of

r(g) (Eq. 2.2). More information could be saved in the entry to avoid redetermining the

events, such as the event that occurred at the gene node and any event that occurred

on the branches < g, l(g) > and < g, r(g) >. This information could save a lot of

runtime in the later traceback process (Secion 3.1.2).

Kg[s] = cost (2.2)

Hg[s] = (M(l(g)),M(r(g))) (2.3)

• To generate multiple candidate solutions, the situation where cost is the same as ex-

isting value in K should also be saved. Therefore, we further expand the Hg[s] for any

g ∈ VG, s ∈ VS to store a list of tuples instead of single tuple as described previously

(see Algorithm 6).

• A traceback algorithm to traverse the gene tree pre-order and assign M(g) based on

the cost table of the parent Kp(g), except for ρ, where M(ρ) is the entry where Kρ[s]
has the minimum costs. During this process, as the M is calculated, the E table can

also be calculated for every gene node. Unlike speciation and duplication, where gene

events occur on one gene node, a transfer event occurs on a gene branch. A transfer on

branch < p(g), g > is associated with two gene nodes: the donor p(g) and the recipient

g. As a gene node has two children and only one parent, assigning “T” to E [p(g)] is

ambiguous because the recipient could be either of the children. Therefore, E [g] = “T”

if g is a recipient of a transfer event.

Once every node in the gene tree has been visited and K and H have been generated, the

lowest cost solution can be found as the mapping that results in lowest cost at the root

ρ(TG):

mincost = min(KρG) (2.4)

In Section 3.1, I describe the algorithm (and provide pseudocode) that we developed to

enumerate multiple candidate solutions using a modified backtracking algorithm.

29

CHAPTER 2. BACKGROUND

Algorithm 5 DTL algorithm only Iterate Labels on C(g)

1 DTLReconcile(VG, VS) {
2 for each g ∈ VG post order{
3 for each s1 ∈ VS {
4 for each s2 ∈ VS {
5 generateCostTable(g, s1, s2)
6 }
7 }
8 }
9 }
10

11 generateCostTable(g, s1, s2) {
12 leftCost = K[l(g)][s1], rightCost = K[r(g)][s2]
13 # Duplication or speciation

14 lca = LCA(s1, s2)
15 if s1 6≶S s2 {
16 # Speciation

17 NL = h(lca)− h(s1)− 1 + h(lca)− h(s2)− 1
18 cost = CλNL + leftCost+ rightCost
19 K[g][lca] = cost if cost is less than K[g][lca]
20 # Transfer

21 cost = Cτ
22 K[g][s1] = cost if cost is less than K[g][s1]
23 K[g][s2] = cost if cost is less than K[g][s2]
24 }else{
25 # Duplication

26 NL = |h(s2)− h(s1)|
27 cost = Cδ + CλNL + leftCost+ rightCost
28 K[g][lca] = cost if cost is less than K[g][lca]
29 }
30 }

30

2.3. GENERAL ALGORITHM FOR RECONCILIATION

Algorithm 6 Calculating Cost for g ∈ VG and update K
1 generateCostTable(g, s1, s2) {
2 leftCost = Kl(g)[s1], rightCost = Kr(g)[s2]
3 # Duplication or speciation

4 lca = LCA(s1, s2)
5 if s1 6≶S s2 {
6 # Speciation

7 NL = h(lca)− h(s1)− 1 + h(lca)− h(s2)− 1
8 cost = CλNL + leftCost+ rightCost
9 update(g, lca, s1, s2, cost,"S")
10 # Transfer

11 cost = Cτ
12 update(g, s1, s1, s2, cost,"T")
13 update(g, s2, s1, s2, cost,"T")
14 }else{
15 # Duplication

16 NL = |h(s2)− h(s1)|
17 cost = Cδ + CλNL + leftCost+ rightCost
18 update(g, lca, s1, s2, cost,"D")
19 }
20 }
21

22 update(g, s, s1, s2, cost, ε){# ε represent the event

23 if cost < Kg[s] or Kg[s] is empty: Hg[s] = [(s1, s2, ε)]
24 if cost = Kg[s]: Hg[s].append((s1, s2, ε))
25 }

31

CHAPTER 2. BACKGROUND

2.3.2.2. Step 2: Traceback to Generate Solution

After the two cost tables are generated, the next step is to generate the appropriate M for

all gene nodes while also collecting gene events and total cost. For any gene node g, and

possible label s, the entry in Kg[s] represents the lowest cost to map g to s. This is equivalent

to reconciling the subtree TG(g) with TS and M[g] = s. Therefore, the lowest cost solution

(a candidate solution), can be obtained by mapping ρG to any species node that yields lowest

cost in Kg.

The detailed algorithm works as follows: First, M(ρG) is set to s∗, such that:

s∗ = argmin
s∈VS

{KρG [s]}. (2.5)

Identifying this label at ρG initiates the traceback procedure. A tuple of information, in-

cluding left best label (s1) and right best label (s2), is saved in the entry HρG [s]. Recall

that a given entry in HρG [s] specifies theM[l(ρG)] andM[r(ρG)] that resulted in an optimal

reconciliation of TG(ρG) with TS when M[ρG] = s. Therefore, given an entry for gene node

g, we can determine the M for the left and right children. The left best label and right

best label (s1, s2) are assigned to theM[l(ρG)], andM[r(ρG)]. Then we use the information

in Hl(ρG)[M[l(ρG)]] to assign the species node mapping to the next two children. By recur-

sively repeating this procedure, the full mapping table (M) for every gene node is produced.

Then the corresponding gene events can be calculated, and the original gene tree TG can be

converted to a reconciled gene tree (T ∗G) (Algorithm 7). Once the gene tree is augmented

with M for every gene node, the location of gene duplication, transfer, and losses can also

be determined in the gene tree. If the H collects all entries that yield the same cost, then

all candidate solutions can be generated with a backtracking algorithm. The algorithm to

generate all solutions are described in Chapter 3.

2.3.2.3. Checking for Temporal Consistency

The candidate solution generated by the two step algorithm is not optimal until its temporal

feasibility is validated. To determine if a solution is valid, a timing graph GT = (VT , ET) is

constructed (discussed in (Stolzer et al., 2012b; Tofigh, 2009)), where each node represents

a node in the species tree, and each edge < u, v > is directional and represents a timing

constraint where u should pre-date v.

32

2.3. GENERAL ALGORITHM FOR RECONCILIATION

Algorithm 7 DTL Traceback

1 for each (s) ∈ arg mins∗∈VS
{KρG [s∗]} {

2 enqueue (ρG, s) to solutionQueue

3 }
4 while solutionQueue is not empty {
5 dequeue (g, s) from solutionQueue

6 traceback(g, s, TG)
7 Save M as a candidate solution

8 }

traceback(g, s, TG) {
9 M(g) = s;
10 dequeue {sl, sr, ε} from Hg[s]
11 E(g) = ε
12 if g /∈ L(TG) {
13 traceback(l(g), sl, TG); traceback(r(g), sr, TG)
14 while Hg[s] is not empty {
15 dequeue {ε, s1, s2} from Hg[s]
16 enqueue (l(g), s1) to solutionQueue

17 enqueue (r(g), s2) to solutionQueue

18 }
19 }
20 }

The temporal feasibility problem can be reduced to the graphical problem called topological

sorting, solvable in O(|VG|+ e), where e represents the number of edges in the timing graph.

The edges are added as timing constraints carried by species tree and the inferred transfers.

Note that under different models, and different assumptions, the temporal constraints carried

by transfers may be different. A timing graph is valid if no cycles are detected; therefore

this step is also called cycle checking. After the timing graph is constructed, a topological

sorting algorithm is applied to it to validate the temporal feasibility. This step is described

in detail in Section 3.2, where I propose two useful techniques to speed up the process. Note

that depending on the source of the gene tree, this cycle checking step may not be necessary.

For example, Hallett et al. (2004) reported that under the DT event model, no gene tree

solutions were found temporally infeasible when they applied the reconciliation algorithm to

a simulated dataset. However, as a general approach, where the data is not specified, the

validation step should always be in action, at least in our opinion.

33

Chapter 3

Extending DTL Reconciliation

In this chapter, I discuss my contributions in the field of DTL reconciliation. First, I will

describe my extension of the DTL reconciliation algorithm that incorporates incongruence

caused by ILS. I present the first reconciliation algorithm under a DTL event model while

excluding ILS. I also propose a modification to the algorithm as a solution for one of the

two major challenges of DTL reconciliation: multiple optimal solution. Next, I highlight

two techniques that significantly speed up the runtime for validation of DTL and DTLI

reconciliation. Finally, I modify the DTL reconciliation model to infer domain-level events

by reconciling a domain and a gene tree along with a species tree. This extension solves

reconciliation on three layers, vastly complicating the solution space. I additionally created

a heuristic which made solving this problem tractable. My results on the DTLI reconcilia-

tion algorithm (Section 3.1) and on domain-gene tree reconciliation (Section 3.3) have been

published in two articles (Stolzer et al., 2012b, 2015), which were written with collaborators

in the laboratory. In this chapter, I focus on my contribution to those papers, which are the

theoretical work on the algorithms.

3.1. DTL with incomplete lineage sorting

In general, the input of DTL reconciliation is a binary gene tree and binary species tree.

The binary species tree requirement suggests an implicit assumption that the inter-speciation

times are long enough for allelic variation to fix so that incomplete lineage sorting (ILS) does

35

CHAPTER 3. EXTENDING DTL RECONCILIATION

not occur. However, this assumption may not be valid if the species tree branches represent

short time spans (i.e. short branches). As the resolution of sequenced species increases, inter-

speciation time decreases, and species trees that contain such short branches will become

more common. In these short branches, allelic variations can survive through multiple species

divergences, resulting in ILS, which in turn may cause the gene tree topology to differ from

the species tree. Therefore, regular DTL reconciliation algorithms that do not consider ILS

may incorrectly misinterpret the signal of ILS as gene events (i.e. duplication or transfer).

Here, I present the first reconciliation algorithm that infers duplication, transfer, and loss

events while also excluding incongruence due to ILS. I refer to this as DTLI reconciliation.

In particular, this reconciliation distinguishes between incongruence that could only arise

through gene events and incongruence that could be explained by ILS. This algorithm is also

the first DTL algorithm that is capable of reconciling a binary gene tree with a non-binary

species tree.

Recall that DTL reconciliation proceeds in three steps: generating a cost table, tracing back

through the tables to generate solutions, and checking solutions for temporal feasibility.

Here, I discuss these steps for DTLI reconciliation in the following sections:

1. Section 3.1.1: applying a model that handles ILS to the dynamic programming frame-

work and generating two cost tables K and H for every pair of genes, g ∈ VG, and

species, s ∈ VS.

2. Section 3.1.2: generating all candidate solutions by traceback through the cost tables

and calculating all mappings M for every g ∈ VG.

3. Section 3.1.3: checking temporal consistency for each generated solution M.

3.1.1. Model to handle ILS and Multiple Solutions

My two major innovations for DTLI reconciliation are:

1. Representing branches in a species tree where with ILS may have occurred.

2. Distinguishing incongruence due to ILS from incongruence caused by gene events.

Here I review these challenges.

36

3.1. DTL WITH INCOMPLETE LINEAGE SORTING

3.1.1.1. Representation of ILS as Non-binary Species Tree Node

Under the DTLI model, I reconcile a binary gene tree with a non-binary species tree. A

species tree branch represents the inter-speciation times between a species s and its parent

p(s). If the time between s and p(s) is long enough that I assume ILS can be eliminated, then

I include the branch to indicate that it is not necessary to consider ILS at p(s). However,

if the time is too short, such that the speciation events at p(s) and s occurred in rapid

succession, it suggests that ILS cannot be ignored. In this case, the branch is collapsed into

0 length. This effectively removes s from the tree and forms a polytomy at node p(s) with

three children: the sister taxa of s, the left child of s, and the right child of s.

3.1.1.2. Distinguishing ILS from Gene Events

I represent the species nodes in which ILS could occur with non-binary species nodes. For

gene nodes mapped to these species nodes, duplication, transfer and loss are only inferred if

the topological disagreement between genes and species cannot be explained completely by

ILS.

Conceptually, to distinguish between ILS and other events, I apply a general rule: Given a

gene node g and mapped to polytomy species nodeM[g], if there exists a binary branching

pattern, or resolution, for M[g] that agrees with the branching pattern of g, then ILS is

possible and no gene event is inferred.

In practice, generating and testing all binary resolutions of a polytomy would be unwieldy

because the number of possible resolutions increases exponentially with the size of the poly-

tomy. Instead, I invoke a test based on the set of descendants of s = M[g] that have

vertically inherited g (Vernot et al., 2008). I call this set N̂ . Intuitively, given a gene node

g and its two children l(g) and r(g), if a speciation event occurred in M[g], then each child

of M[g] can only inherit this gene as either l(g) or r(g). If s = M[g] is a polytomy of size

k, then each child of g can be retained in a subset of the children of s, ranging from size

1 to k − 1. These subsets of children species of s that inherit l(g) and r(g) are N̂(l(g), s)

and N̂(r(g), s), respectively. N̂(l(g), s) and N̂(r(g), s) should not overlap if only ILS or

speciation has occurred. An overlap between these two sets suggests that the overlapped

species inherited both genes l(g) and r(g); therefore, a duplication or transfer event must

have occurred. If only duplications, ILS, and speciation were occuring, from the sets of the

37

CHAPTER 3. EXTENDING DTL RECONCILIATION

two children gene nodes, N̂(g, s) can be any set that is in the superset of the union of both

N̂(l(g), s), N̂(r(g), s) and that is also a subset of C(s). Formally, let C(s)+ be all improper

subsets of C(s), then all possible values of N̂(g, s), denoted as N (g, s), are:

N (g, s) = {x ⊆ C(s)+|x ⊇ N̂(l(g), s) ∪ N̂(r(g), s)}. (3.1)

This step to determine N̂(g, s) requires that all g, l(g), and r(g) are mapped to the polytomy

species node s. If l(g) is not mapped to s, a climb step is applied to calculate N̂(l(g), s)

from N̂(l(g),M[l(g)]). Formally, given a gene node g mapped to species node m = M[g],

such that s is an ancestor of m, N̂(g, s) is defined as :

N̂(g, s) = {x ∈ C(s)|x >S m}. (3.2)

Conveniently, this climb process can also infer the number of losses NL associated with s

and N̂(g, s). If m is a binary species node, then NL = h(s) − h(m) − 1. However, if m is

a polytomy, and N̂(g,m) is not C(m), the full set of all children of m, then an extra loss

occurred in m that is lost in species C(m) \ N̂(g,m). Therefore the NL is incremented by 1

to compensate for this difference (see Algorithm 8).

As a new set of rules are introduced in the decision making for gene events, the generate-

CostTable function (see Algorithm 9) needs to be modified for these changes.

• Given a gene g, its children l(g) and r(g), and the mappings M[l(g)] and M[r(g)],

if M[l(g)] and M[r(g)] are comparable, it is no longer true that a duplication event

must have occurred. An extra check for overlap between N̂(l(g), s) and N̂(r(g), s) is

necessary to distinguish ILS and duplication (line 17).

• Transfer events need to consider N̂ of the donor and recipient. Given a gene g, and

its mapping s, instead of inferring a transfer from one species to another, the N̂(g, s),

N̂(l(g), s) and N̂(r(g), s) are also important to be considered (line 12-15).

These new rules requires that K and H are not two-dimensional for each pair of gene node

and species node. Instead, for each pair of g and s, a third dimension indexed by the value of

N̂(g, s) is also needed (see Algorithm 9 line 30-33) In addition, when calculating the tables K,

H for a gene node g, besides the regular information in Hg[s] used in DTL reconciliation, the

N̂(r(g), s) and N̂(l(g), s) are also necessary. The tuple that is stored in H is also expanded

to store the N̂ for left and right children gene node.

38

3.1. DTL WITH INCOMPLETE LINEAGE SORTING

Algorithm 8 Climb

1 climb(N̂,start,s) {
2 if start = s return N̂
3 NL = h(s)− h(start)-1

4 if start is non-binary and C(start) 6= N̂: NL + +
5 for each c ∈ C(s) {
6 if start ≤S c: return ({c}, NL)
7 }
8 }

Algorithm 9 DTLI algorithm

1 generateCostTable(g, s1, s2, Nsetl, Nsetr) {
2 leftCost = K(l(g), s1), rightCost = K(r(g), s2)
3 lca = LCA(s1, s2)
4 (left, NL1)=climb(Nsetl, s1, lca)
5 (right, NL2)=climb(Nsetr, s2, lca)
6 Nset=left∪ right

7 NL = NL1 +NL2
8 if s1 6≶S s2 {
9 # Speciation

10 cost= CλNL+leftCost+rightCost
11 update(g, lca, Nset, s1, s2,left,right,cost,"S")
12 # Transfer

13 cost= Cτ
14 update(g, s1, s1, s2, N̂(l(g), s1),cost,"T")

15 update(g, s2, s1, s2, N̂(r(g), s2),cost,"T")
16 }else{
17 if left ∩ right 6= ∅{
18 # Duplication

19 if Nset\right 6= ∅: NL + +
20 if Nset\left6= ∅: NL + +
21 cost= Cδ + CλNL+leftCost+rightCost

22 update(g,lca, Nset, s1, s2,left,right,cost,"D")
23 }else{
24 cost= CλNL+leftCost+rightCost

25 update(g,lca, Nset, s1, s2,left,right,cost,"S")
26 }
27 }
28 }
29

30 update(g, s,parentSet, s1, s2,leftSet,rightSet,cost,ε){
31 if cost < Kg[s][parentSet]: Hg[s][parentSet] = [(s1,leftSet, s2,rightSet, ε)]
32 if cost = Kg[s][parentSet]: Hg[s][parentSet].append((s1,leftSet, s2,rightSet, ε))
33 }

39

CHAPTER 3. EXTENDING DTL RECONCILIATION

3.1.2. Traceback

After K and H is generated for every gene node, the next step is to generate appropriateM
and N̂ for all gene nodes, while also collecting gene events and total cost. For any gene node

g, a possible label s and a possible N̂ , nset, the entry in Kg[s][nset] represents the lowest

cost to map g to s with nset. This is equivalent of reconciling a subtree TG(g) with TS and

M[g] = s. Therefore, the lowest cost solution, (a candidate solution) can be obtained by

mapping ρG to any species node that yields the lowest cost in Hg.

The detailed algorithm works as follows: First, M(ρG) is set to s∗, such that:

s∗ = argmin
s∈VS ,nset∈C(s)+

{KρG [s][nset]}. (3.3)

Identifying this label and N̂ at ρG initiates the traceback procedure, and information is

extracted from the entry HρG [s][nset]], and assigned to the M[l(ρG)], and M[r(ρG)]. Re-

call that a given entry in HρG [s][nset]] specifies the M[l(ρG)],N̂(l(ρG), s) , M[ρG], and

N̂(r(ρG), s) that resulted in an optimal reconciliation of TG with TS when M[ρG] = s.

Therefore, given an entry for gene node g, I can determine the M and N̂ for the left and

right children. By recursively repeating this procedure, a reconciled tree TR, augmented

with events and mappings to TS, is produced. Once the gene tree is augmented with M
and N̂ for every gene node, the location of gene duplication, transfer, and losses can also

be determined in the gene tree. Our algorithm uses the heuristic approach to infer losses,

as discussed in Vernot et al. (2008). This heuristic is exact for M[g] with less than four

children; when M[g] has 4 or more children, it infers the optimal set of losses most of the

time.

3.1.3. Checking for Temporal Consistency

The validation procedure also consists of two steps: constructing the timing graph and

topological sorting. The timing graph GT = (VT , ET) encodes all species nodes in VS and all

temporal relationships between species that are represented by transfers and the species tree.

Both constructing and topological sorting have complexity of O(|VG| + |VS|). In the worst

case, finding one solution that is temporal feasible for a DTL reconciliation problem takes

O(N(|VG| + |VS|)) time, where N represents the total number of candidate solutions. The

40

3.1. DTL WITH INCOMPLETE LINEAGE SORTING

validation step under the DTLI model is the same as the validation under the DTL model,

as the temporal constraints brought by inferred transfers are not affected by ILS. Here I

describe an algorithm for the validation step that I implemented in Stolzer (2011) and also

provide pseudocode. This approach is based on a cycle checking scheme proposed by Tofigh

(2009) for a less restrictive DT event model. Our approach for DTL reconciliation poses

additional constraints because loss events also affect the position of a transfer event. For

example, all three scenarios in Figure 3.1 are temporally infeasible under our cycle checking

approach, but only (b) violates the constraints described in Tofigh (2009). For example, in

Figure 3.1(a), lifting the transfer recipient on edge (β,C) so that it enters the edge (δ,β),

above the other transfer, would resolve the temporal infeasibility but incur a loss in species

D. Under DT event model, this would still be optimal and feasible, but it is not in DTL

event model. To generate the timing graph GT = (VT , ET), I first add all species nodes into

A C D

βα

δ

B A C D

βα

δ

B

A C D

βα

δ

B A

C

D

βα

δ

B

(a)

(d)(c)

(b)

Figure 3.1: (a-c) Temporally infeasible transfer pairs. Here, dashed arrows indicate inferred trans-
fers. (d) Timing graph for the reconciliation in (b). Here, open circles are members of VT , solid
arrows are members of AT , and dashed edges are members of ET .

the graph so that VT = VS. Then I add the timing constraints from the species tree and

transfers according to three rules:

1. Timing constraints from the species tree:

A species node should always pre-date its children. Therefore, for each branch <

si, sj >∈ ES in the species tree, add edge < si, sj > to the timing graph ET .

41

CHAPTER 3. EXTENDING DTL RECONCILIATION

2. Timing constraints from transfers:

Given a gene tree branch < p(g), g >, if M[p(g)] and M[g] are incomparable, then it

must mean a transfer is inferred from p(g) to g. The donor species (d =M[p(g)]) and

the recipient species (r = M[g]) must have co-existed. Therefore, any species node

that pre-dates d, should also pre-date r. Two constraints are added: < p(r), d > and

< p(d), r >.

3. Timing constraints from gene tree:

Given two transfers on two gene branches < u, v > and < u′, v′ >, if u is an ancestor

of u′ (formally u >G u
′), then d =M[u] and r =M[v] must pre-date both d′ =M[u′]

and r′ = M[v′]. Four constraints are added: < p(d), d′ >,< p(d), r′ >,< p(r), d′ >,

and < p(r), r′ >.

Specifically (Algorithm 10), for every s ∈ VS \ L(VS), < s, l(s) > and < s, r(s) > are added

to ET as directed edge. Then all transfer recipient genes are collected by enumerating the

event E table. For transfer recipient gene g and its donor p(g), the mappings are M[g] and

M[p(g)]. The algorithm then adds edges according to rule 2 (line 7). For every pair of

transfers, timing constraints are added to ET according to rule 3 (line 12).

Algorithm 10 Cycle Checking

1 cycleCheck(TS , TG):
2 GT = (VS , ES)
3 for each g ∈ VG \ L(TG):
4 if E [g] = T:
5 if M[l(g)] 6≶GM[g]: r =M[l(g)] else: r =M[r(g)]
6 d =M[g]
7 add edge < p(r), d > and < p(d), r > to ET
8 for each g′ ∈ VG \ L(TG) s.t. g ≥G g′:
9 if E [g′] = T:
10 if M[l(g′)] 6≶GM[g′]: r′ =M[l(g′)] else: r′ =M[r(g′)]
11 d′ =M[g′]
12 add edge < p(d), d′ >,< p(d), r′ >,< p(r), d′ >,< p(r), r′ > to ET
13 order=topologicalSort(GT)
14 if order exist: return true; else: return false;

42

3.2. SPEEDING UP CYCLE CHECKING

3.2. Speeding Up Cycle Checking

While good accuracy and complexity are the two major factors to consider when developing

an algorithm, the implementation of cycle checking functionality in software requires more

considerations, such as language, memory limitations, user interface, and software design.

Here I describe two techniques that did not change the complexity of the algorithm, but

significantly reduced runtime in the cycle checking process.

3.2.1. Constructing Timing Graph: Saving Species Tree

In the process of building the timing graph for one solution, a total of |ES|+ 2NT + 4NT
2

timing constraints are added. Considering multiple candidate solutions, especially a batch of

reconciliations where many gene trees are reconciled with the same species tree, this process

is repetitive and time consuming. The |ES| edges are always added for each cycle checking

process. Therefore, instead of creating a new timing graph for each cycle checking process,

reusing the |ES| branches in the same timing graph could be a practical way to save the

calculation overhead. However, reusing these branches would require a clean up step after

each cycle checking, where the previous transfer timing constraints are removed. This creates

a dilemma of two options:

• Option 1: Memoize timing constraints from the species tree in ET , then add timing

constraints introduced by transfers for cycle checking. At the end of the process,

remove transfer timing constraints involved in this solution from ET .

• Option 2: Do not memoize timing constraints. For every cycle checking process, ini-

tialize a new timing graph and add timing constraints from the three rules.

In the case where NT is greater than |VS|, option 1 would take more time to finish because

of the extra steps of removing transfer timing constraints; but in the case where NT is much

smaller than |VS|, option 1, memoizing species tree branches, would save time in practice.

According to a timing analysis using 4000 cyanobacterial gene trees and the same species

tree with 64 species, in practice, memoizing the timing constraints from the species tree is a

good option to speed up cycle checking in large scale reconciliation.

43

CHAPTER 3. EXTENDING DTL RECONCILIATION

3.2.2. Cycle Checking: Stop Before Checking the Entire Timing Graph

The goal of this process is only to verify whether the timing graph is acyclic. Because a single

temporal conflict invalidates the solution, the process can exit as soon as one conflict is found.

The complexity of the existing topological sorting algorithm is linear with the number of

arcs in the timing graph, in O(|VT |+ |ET |) (Cormen et al., 1990). That algorithm generates

an ordered list of all species nodes that satisfy all temporal constraints. However, small

cycles, such as temporal conflicts between two transfers, can be easily detected during the

construction of the timing graph. When adding the third constraint, if any pair of transfers

exhibit a small cycle, (for example, if the child of an transfer is the ancestor of the other

and vice versa), then the cycle checking is immediately terminated. In a batch reconciliation

of 4000 gene trees, applying these two modifications of cycle checking significantly improves

the speed of the validation step, reducing the run-time by almost 5 fold.

3.3. Domain Tree Level Reconciliation

In addition to genes and species, a third level of evolution exists in genomes: domain evo-

lution. A domain is a segment of sequence that acts as a modular unit in a gene, folding

independently and performing a specific function. A single gene may have one or more do-

mains; in the latter case, the gene is then referred to as a multi-domain gene. The content

of domains in a multi-domain gene is referred to as its domain architecture. At the domain

level, evolution occurs via domain shuffling events: domain insertion, transfer, duplication,

and deletion, as well as gene fusion and fission (Gilbert, 1978, 1987; Kaessmann et al., 2002;

Long et al., 2003; Patthy, 2003; Stolzer et al., 2015; Thornton and DeSalle, 2000; Tordai

et al., 2005; van Rijk and Bloemendal, 2003). Molecular processes underlying these abstract

events include non-allelic homologous recombination, retro-transposition, read-through er-

rors, and unequal crossing-over. Understanding how domain architectures in multi-domain

gene families evolve via domain shuffling, in addition to events on the gene and species levels,

is crucial to understanding the evolution of multi-domain family proteins.

For understanding domain shuffling events, I define a general problem: Given rooted domain,

gene, and species trees, an event model, and tables that indicate the presence and location of

domains in genes and the presence of genes in species, the goal is to find the event histories

of both the domain and gene families that best explain the topological difference between

44

3.3. DOMAIN TREE LEVEL RECONCILIATION

the domain tree, gene tree, and species tree.

In a phylogenetic context, domain shuffling events appear very similar to the gene events that

occurred in species discussed in Chapter 2. For example, the domain insertion represents

a domain from one gene being copied and inserted to a different gene, which is analogous

to a gene transfer from one species to a different species. These similarities suggests a

phylogenetic reconciliation algorithm can be applied to the domain context and infer domain

shuffling events. However, this level of evolution is different from gene tree reconciliation

in several aspects. First, some domain events, such as horizontal acquisition of a domain,

may not only occur between genes, but between species, as well. This increases the hardness

of the problem, as the reconciliation between the domain tree and the gene tree will also

require species tree information to distinguish these events. Second, a given domain family

may occur in only one gene family, or it may occur in multiple different gene families. If

a domain exists in only one gene family, this problem can be treated similarly to gene tree

reconciliation with species tree. However, if a domain family exists in multiple gene families,

the underlying evolutionary relationship between these gene families is hard to estimate. The

relationship of genes in the same gene family can be constructed by tree building methods

from sequence alignment information, whereas the relationship of genes in different gene

families has more obstacles, such as different function, different sequence composition, and

different sequence length. This complicates the problem of inferring domain shuffling events

as it is unclear how to define a reference tree. Here, I focus on a more specific problem that is

restricted to domain families that occur in single gene families, or domain families that occur

across multiple gene families, but the copies in each gene family form a clade in the domain

tree, minimizing the interaction of domain shuffling events across different gene families. I

also assumes that 1) domain shuffling occurs within existing genes and 2) the gene tree and

species tree are correctly estimated. This defines a reconciliation problem on three levels of

evolutionary phylogeny.

This general problem of inferring domain shuffling events across domain tree, gene tree, and

species tree is hard. More specifically, the optimal gene tree-species tree reconciliation may

not result in an optimal domain event history. This suggests a global optimization of both

a reconciled gene tree and a reconciled domain tree, which is much harder than standard

reconciliation. I provide a step toward solving this general problem, by solving a simpler

problem, assuming that the gene tree is correctly reconciled: Given a rooted, binary species

tree, TS, a rooted, binary gene tree T ∗G that has been reconciled with TS, a rooted domain

45

CHAPTER 3. EXTENDING DTL RECONCILIATION

tree, TD, and a mappingML : L(TD)→ L(TG), from the leaves of domain tree to the leaves

of the gene tree, find the set of domain shuffling events that best explain the difference

between TD and T ∗G.

Here, I describe how the standard DTL TG-TS reconciliation algorithm can be modified and

applied to TD-TG reconciliation.

3.3.1. Model

I first define a model of events underlying the domain tree reconciliation problem:

• Co-divergence (∆): A bifurcation in the domain tree that arose through a bifurcation in

the gene tree, analogous to speciation in TG-TS reconciliation. The gene tree bifurcation

may have arisen via speciation (∆S) in the species tree, gene duplication (∆D), or gene

transfer (∆T).

• Duplication (D): A single domain is copied inside a gene resulting in two separate

copies of the domain within the same gene, analogous to gene duplication in gene tree

reconciliation.

• Deletion (L): A domain is deleted from the gene (and genome), analogous to gene loss

in gene tree reconciliation. Note that this event should not be invoked if the loss is

due to a gene loss.

• Domain insertion (I): A new copy of the domain is inserted into a different gene within

the same genome, analogous to gene transfer.

• Horizontal domain transfer (T): A new copy of a domain is inserted into a gene in a

different genome, analogous to gene transfer.

I leave the modeling of gene fusion and fission to future work as they involve a model

where one entity has two different parents, and may require additional information, such

as genome context. Our model follows the dynamic programming strategy used in other

DTL reconciliation problems with modified rules for calculating the cost tables K and H.

In this section, the previously defined K, H, M, and E tables (Section 2.3.2) that indicate

the relationship between genes and species are also extended to indicate the relationship

between domains and genes. I use subscript D and G to represent tables associated with

46

3.3. DOMAIN TREE LEVEL RECONCILIATION

the domain tree and gene tree, respectively. For example, HD[d] is a table associated with

node d ∈ VD, and stores the information of mapping gene nodes onto this domain node, d.

Domain Event Inference with Transfers (DE-DTL)

Input:A rooted, binary domain tree, TD = (VD, ED); a rooted, binary, DTL-reconciled gene

tree, T ∗G ; and a leaf mapping, M:L(TD)→ L(T ∗G).

Output:The set of all temporally feasible, domain shuffling histories in TD that minimize

C(ND, NT , NL, N∆) = NDCD +NTCT +NLCL +N∆C∆,

where Nε and Cε represent the number and cost of event type ε. To solve this problem, four

major challenges must be considered. First, a co-divergence event can be subcategorized

as ∆S,∆D or ∆T . This requires additional information about the gene tree bifurcation.

Second, domain insertions and domain transfers both occur between two gene nodes that

are incomparable to each other; however, a domain insertion occurs between genes in the

same genome, whereas a domain transfer occurs between two genes that are in different

species. To make this distinction, additional tests based on information from the reconciled

gene tree are required to infer the correct events. Third, a missing taxon in the domain

tree may be caused by a domain deletion event or the loss of the gene. If the gene is

already lost, the domain deletion event should not contribute to the event cost equation

for the domain-gene tree reconciliation. Finally, when testing for temporal feasibility, both

species tree temporal constraints and gene tree temporal constraints must be considered.

For species constraints, in addition to gene transfers and species tree temporal constraints,

extra constraints introduced by domain transfers must be considered. For gene tree temporal

constraints, the temporal constraints from domain insertion and domain transfers must be

considered. Therefore, for a domain level reconciliation, two timing graphs are tested.

3.3.2. Algorithm

Here, I introduce an algorithm for the domain event inference problem that also solves the

four challenges discussed above in a four step algorithm (Algorithm 11). Note the γi in

this context represents the reconciliation solution of domain-gene tree reconciliation, instead

47

CHAPTER 3. EXTENDING DTL RECONCILIATION

of previously defined result of gene-species tree reconciliation. I now describe each step in

detail.

3.3.2.1. Construct Modified Gene Tree: T ∗G

After the gene tree has been reconciled, the EG and MG tables effectively allow the domain

tree reconciliation to distinguish between the different types of co-divergence events. The

species where each gene resides and the events that occurred on each gene node can be found

by a simple look up in those two tables. These two tables can also be used to determine

whether or not the donor gene and recipient gene of a horizontal domain event are in the same

genome. This is accomplished by looking up the species label on the donor and recipient

gene.

The function addLoss(line 1) modifies the reconciled gene tree TG and adds extra gene leaves

and internal gene nodes to the gene tree to represent the taxa that are missing due to gene

losses. New leaves, referred to as pseudoleaves, represent the lost gene(s), while new internal

nodes, referred to as pseudonodes, represent ancestral genes that are “missing” due to gene

loss. The result of the modification generates is a modified gene tree, denoted T ∗G. These

added gene losses are used to distinguish between domain loss and gene loss. If a domain

that is lost is mapped to a pseudoleaf, then this domain is lost due to gene loss and therefore

not counted in domain loss.

Algorithm 11 Domain Tree Reconciliation

DE-DTL(TD, TG, TS) {
1 T ∗G=addLoss(TG, TS)
2 generateCostTable(TD, T

∗
G)

3 {γ1, γ2...γm} = traceback(K, TD, TG)
4 {γ1, γ2...γn} = checkFeasibility({γ1, γ2...γm})
5 }

The addition of pseudonodes also allows for precise estimation of the association between a

gene node and domain node. For example, consider the species tree, modified gene tree, and

domain tree shown in Figure 3.2. I can infer that the gene node associated with node u in

TD was on the gene lineage between g1 E and φR. This gene branch is in the species lineage

between Eudicots and Rosids. In this inference, I can estimate the time that the domain

insertion occurred on u to be between Eudicots and Rosids in species tree. Without the

48

3.3. DOMAIN TREE LEVEL RECONCILIATION

Figure 3.2: An example of domain insertion. (a) Species tree with embedded gene and domain
trees showing the co-evolution of domains, genes, and species in a hypothetical family. Present day
genes in the family, including their domain content, are shown on the leaves of the species tree. (b)
The modified gene tree T ∗G. The pseudonodes are φR and φE; the two pseudoleaves are λB and
λC . They represent the location of the missing taxa in the gene tree. Gene duplication occurred
on g E and is represented as a black square; filled circles represent co-speciation between gene and
species. (c) A reconciled domain tree, showing a domain insertion on edge < u, v > and three
domain losses (λB, λC , and d2 g2 B). The λB and λC are domains that are missing due to gene
loss in (b), therefore, they are not counted when calculating the reconciliation cost. Co-divergence
due to gene duplication is represented by an open square.

pseudonode φR, the domain node u would be on the gene lineage between g1 E and g1 A,

which is on the species lineage between Eudicots and Apple. Then it would not be possible

to determine whether or not u predates Rosids, the divergence between Apple and Berry. I

now describe the addLoss function in detail.

AddLoss: The T ∗G is constructed by traversing the gene tree TG and visiting every gene

node. For every gene node g and its parent p(g) that are not related through a horizontal

gene transfer event, I can calculate the loss nodes by analysing the species mapping on g

and p(g). If speciation occurred on p(g), then M[p(g)] should be the parent of M[g] if no

loss occurred. Otherwise, the extra height difference is caused by loss of genes. For each loss

node, I add an ancestral gene φ in the branch that represents the gene that was present in

the species lineage fromM[p(g)] andM[g], but is not observable due to gene loss. For each

pseudo ancestral gene that is mapped to a species node s ∈ VS, I also add a pseudoleaf gene

λŝ, where ŝ is the left child of s, ifM[g] 6≶ l(s), otherwise ŝ is the right child of s. Note that

this pseudoleaf that is mapped to ŝ may correspond to an internal node on TS to represent

a loss of entire clade of species.

49

CHAPTER 3. EXTENDING DTL RECONCILIATION

3.3.2.2. Generating the Cost Tables KD and HD

The function generateCostTable (line 2) generates the cost tables KD and HD for the

domain tree. This process also follows the dynamic programming framework and traverses

the domain tree in post-order, just like regular DTL reconciliation for a gene tree. However,

the rules for domain shuffling events are slightly different from the rules for gene events,

discussed in Section 2.3.2.1. Given a domain d and its two children d1 and d2, and their gene

nodes g, g1 and g2, which are mapped to s = MG[g], s1 = MG[g1], and s2 = MG[g2], the

possible events on d are defined as follows:

• If g1 6≶G g2 and LCA(g1, g2) >G g, then either a domain transfer or domain insertion

has occurred on d. If g ≥G g2, then the domain insertion (or transfer) is inferred

between d and d1, and domain losses (if any) are inferred between d and d2. If MG[g]

and MG[g1] are the same species, then a domain insertion is inferred on d, otherwise

a domain transfer is inferred. The inverse is true for the case where g ≥G g1.

• If g1 6≶G g2 and g ≥G LCA(g1, g2), then a co-speciation has occurred on d. The further

sub-category of co-speciation (∆S,∆D,∆T) can be assigned by a simple lookup in E [g].

Domain losses (if any) are inferred between g and LCA(g1, g2).

• If g1 ≥G g2 or g2 ≥G g1, then a domain duplication is inferred and g must be the

ancestor of both g1 and g2 (g ≥G LCA(g1, g2)). Domain losses (if any) are inferred in

three branches, between g and LCA(g1, g2), between g and g1, and between g and g2.

Note that when domain losses are inferred on a domain branch < p(d), d >, it is equivalent

to inferring domain losses between two gene nodes MD[p(d)] and MD[d]. The number

of domain losses inferred between these two gene nodes is the number of non-pseudonode

between them.

3.3.2.3. Traceback to Infer Domain Events

The traceback algorithm in line 3 follows the same backtracking framework that DTL-

reconciliation uses and that is discussed in Section 3.1.2. The domain tree TD is traversed

top to bottom, and a candidate reconciliation is generated from HD, populating entries in

MD and ED. The slight modification is the extra events that are assigned to the event table

for each domain node. To infer the domain losses on a domain branch < p(d), d > for each

50

3.3. DOMAIN TREE LEVEL RECONCILIATION

ancestral node g that is missing between MD[d] and MD[p(d)], a domain loss is inferred

in g′, the child of g that is incomparable to MD[d]. If g is a pseudonode in T ∗G or g′ is a

pseudoleaf in T ∗G, then g′ is a gene loss. Otherwise, a domain loss in g′ is inferred.

3.3.2.4. Checking Temporal Feasibility

The three-level reconciliation algorithm introduces extra temporal constraints for domains,

genes, and species. For a reconciliation of the domain tree to be valid, it must satisfy two

criteria. First, it must be possible to order the species nodes on a time line such that the

temporal constraints imposed by gene transfers and domain transfers are consistent with the

time line. Second, it must be possible to order the gene nodes in a time line, such that the

temporal constraints imposed by domain transfers and domain insertions are consistent with

the time line.

For species temporal consistency, the species timing graph (Section 2.3.2.3) is modified by

adding extra constraints that are introduced by domain transfer events in addition to those

imposed by the gene tree reconciliation. Then the topological sorting algorithm described

in Section 2.3.2.3 can be applied to the timing graph and checked for temporal feasibility.

For gene temporal consistency, I introduce a gene timing graph GG
T = (V G

T , E
G
T) that is

constructed from the timing constraints implied by the gene tree, the domain insertion

events, and the domain transfer events. The timing graph edges are added to represent the

following three temporal constraints:

• For every gene node g in the modified gene tree T ∗G (which includes pseudonodes) the

parent, p(g), must predate g. Therefore I add < g, p(g) > to EG
T ∀g ∈ VG \ {ρ}.

• If a domain was transferred or inserted from gene gi to gj, then gi and gj must have

co-existed. This condition is satisfied, if the parent of gi pre-dates gj, and parent of

gj pre-dates gi. Therefore, for each < gi, gj > that is an inferred domain transfer or

insertion event, I add < p(gi), gj > and < p(gj), gi > to EG
T .

• Let < d1, d2 > and < d̂1, d̂2 > be two horizontal domain events (i.e., insertions or

transfers) in the domain tree such that d2 ≥D d̂1. Then, the two genes involved in the

first domain event < d1, d2 >, should pre-date the two genes involved in the second

domain event < d̂1, d̂2 >. Therefore, I add < p(g1), ĝ1 >,< p(g1), ĝ2 >,< p(g2), ĝ1 >

,< p(g2), ĝ2 > to EG
T .

51

CHAPTER 3. EXTENDING DTL RECONCILIATION

Once GG
T is constructed, the temporal feasibility checking (discussed in Section 3.1.3) is used

to check for cycles in the gene timing graph. If any cycles exist in either the species or the

gene timing graph, the candidate history is temporally infeasible and not reported.

52

Chapter 4

Rearrangement Algorithm to Fix Weakly

Supported Branches

When both the gene tree and species tree are correct, incongruence reflects the difference

between the histories of the genes and species. However, incongruence can also arise through

phylogenetic error in the gene tree due to insufficient or incorrect data or systematic bias.

In this case, a gene tree branch may disagree with the species tree. When using such a tree

for reconciliation, gene events may be incorrectly inferred.

In this chapter, I present my novel work of correcting the incongruence in gene trees that

may be caused by uncertainty. These results has been accepted for publication (Lai et al.,

2017). To place this work in context, I first review ways to assess uncertainty in gene trees

and briefly discuss prior methods that consider uncertainty in gene trees when performing

reconciliation under the DL and DTL event models. Then, I describe an exact algorithm

and heuristic methods that I developed for resolving uncertainty in gene trees under DTL

event model. I also analysed the performance of heuristic strategies compared to the optimal,

exhaustive strategy. The performance and runtime of these methods are compared using two

data sets: a phylogenomic cyanobacteria data set (Latysheva et al., 2012) and the simulated

data set used in Szöllõsi et al. (2013a).

53

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

4.1. Representing Uncertainty in Gene Trees

There are many ways to represent uncertainty in a gene tree, which generally fall into two

categories: non-binary nodes and low measures of branch support. In the former case, a non-

binary node is a soft polytomy and is the result of insufficient evidence for the branching

order. For an in-depth discussion on soft versus hard polytomies, refer to Section 2.1.1.1.

Since a non-binary node does not indicate which lineage diverged first, all binary resolutions

of the same size may be appropriate. A gene tree with soft polytomies is also called an

unresolved gene tree.

Another way to represent uncertainty in a gene tree is with branch support. Weak branch

support suggests that the sequence data does not contain a strong enough signal to determine

the branching order (Anisimova et al., 2011). Common methods to assess branch support

include the bootstrap and likelihood scores. See Anisimova et al. (2011) for a review. This

representation of uncertainty also suggests that many possible branching orders may be

appropriate alternative hypothesis for uncertain branch(es). This representation can be

easily converted to a non-binary tree by collapsing the weakly supported branches (i.e.,

branches with support below a pre-specified threshold) (Figure 4.1).

Figure 4.1: A binary gene tree with branches with two low support (dashed lines) can be collapsed
and result in a non-binary gene tree with a polytomy of size 4.

54

4.2. BACKGROUND ON RESOLVING UNCERTAINTY

4.2. Background on Resolving Uncertainty

If the molecular data does not contain enough information to resolve the branching order,

perhaps other information can be used to generate a hypothesis for the true branching order.

Given a non-binary gene tree, what is the best binary resolution of the tree?

Different binary resolutions from a non-binary gene node may result in different conclusions

when used in other downstream evolutionary analyses. Therefore, it is important to generate

the binary resolution that makes the most sense.

For example, when reconciling the gene tree with the species tree, different resolutions will

result in different inferred event histories, and some may be more parsimonious than others.

Thus, reconciliation provides one principled framework for choosing a binary resolution of

a non-binary gene tree or gene tree with weakly supported branches: under a parsimony

criterion, the resolved binary gene tree with the binary resolution that minimizes the cost of

event inference is the best gene tree (Chen et al., 2000).

This conservative approach effectively avoids the scenario that a binary resolution may dis-

agree with the species tree, leading to inferred gene events, when the incongruence could be

due to insufficient data.

Species-tree aware methods seek to improve the accuracy of gene tree inference by exploiting

species tree information, without erasing evidence of the biological processes that contributed

to incongruence. This approach is based on the assumption that in the absence of strong

evidence that supports an alternative branching order, I expect the gene tree should match

the species tree. Species-tree aware methods embody different trade-offs between speed

and accuracy, ranging from detailed probabilistic models (Boussau et al., 2013; Gorecki and

Eulenstein, 2012; Rasmussen and Kellis, 2011; Sjöstrand et al., 2012; Sjőstrand et al., 2014;

Szöllõsi et al., 2013a) to fast approaches based on parsimony or other criteria (Chaudhary

et al., 2012; Jacox et al., 2017; Kordi and Bansal, 2016; Lafond et al., 2016; M. et al., 2012;

Noutahi et al., 2016; Scornavacca et al., 2015; Swenson et al., 2012; Thomas, 2010; Vilella

et al., 2009; Wapinski et al., 2007; Zheng and Zhang, 2014a).

Here I focus on parsimony approaches designed to correct an unresolved gene tree. Corrective

strategies are applied in two steps: First, a gene tree is constructed from sequence alignments

using molecular phylogenetic methods. In a second, corrective step, species tree information

55

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

is used to improve the quality of the gene tree. By separating consideration of sequence

evolution and gene events, and focusing only on those areas where the sequence data cannot

resolve the topology, the search space is substantially reduced. Formally, the cost of a

reconciliation between a gene tree and species tree is defined to be:

κ = CD ·ND + CT ·NT + CL ·NL, (4.1)

where Nε and Cε are the number and cost of event type ε. Under the DL event model, the

CT ·NT term is ignored because transfer is not considered.

Let TG = (VG, EG) be a non-binary, rooted gene tree. A binary, rooted gene tree, T bG =

(V b
G, E

b
G), is a binary resolution of TG, if for every binary node g ∈ VG, there exists a node

g′ ∈ V b
G, such that L(T bG(l(g′))) = L(TG(l(g))) and L(T bG(r(g′))) = L(TG(r(g))). The set of

all possible binary resolutions is denoted T(TG). For a polytomy, g, T(g) denotes the set of

all binary trees with k(g) leaves, and the leaf set is connected to C(g), the children set of

g. The problem of finding the resolution of a gene tree with the lowest cost reconciliation

under the DL and DTL event models are, respectively, as follows:

Problem statement: Resolve-DL

Input: An unresolved gene tree TG = (VG, EG), a binary species tree TS, a mapping

ML : L(TG)→ L(TS); and event costs Cε for each event ε ∈ {D,L}.
Output: T∗(TG)={T ∗G}, the set of all binary resolutions of TG, such that T ∗G ∈ T(TG),

T ∗G = argminb κ(T bG, TS),

under DL event model.

Problem statement: Resolve-DTL

Input: An unresolved gene tree TG = (VG, EG), a binary species tree TS, a mapping

ML : L(TG)→ L(TS); and event costs Cε for each event ε ∈ {D,T , L}.
Output: T∗(TG)={T ∗G}, the set of all binary resolutions of TG, such that T ∗G ∈ T(TG),

T ∗G = argminb κ(T bG, TS),

and the inferred events are temporally feasible.

For both problems, the aims are to resolve the polytomies by replacing them with binary

56

4.2. BACKGROUND ON RESOLVING UNCERTAINTY

resolutions to minimize the reconciliation cost. The number of possible binary resolutions for

a polytomy increases exponentially with the size of the polytomy. The resolve-DL problem

was first proposed by Chen et al. (2000). The first exact algorithm were developed by Durand

et al. (2005) and showed that the resolve-DL problem can be solved in polynomial time

(Durand et al., 2006a). Several algorithmic advances followed for this problem (Chaudhary

et al., 2012; Lafond et al., 2016; M. et al., 2012; Noutahi et al., 2016; Swenson et al., 2012;

Zheng and Zhang, 2014a).

However, the Resolve-DTL problem is much more complicated. Under the DL event model,

the ancestor of a gene must reside in an ancestor of the species in which the gene resides.

Given a gene node g, if M[g] = s, then the parent of g, (p(g)), must be mapped to species

s or to an ancestor of s. If a transfer event occured in the gene family, this assumption

is no longer true. Given a gene node g, the parent p(g) may reside in species that is not

the ancestor of the species where g resides. This special feature of transfers significantly

complicates the search for the best binary resolution. In fact, this problem has been shown

to be NP-hard (Kordi and Bansal, 2017). This suggests that to obtain the optimal resolved

gene tree, enumerating an exponential number of resolutions is required. Exhaustive search

algorithms that are fixed-parameter tractable were introduced for both dated and undated

species trees (Jacox et al., 2017; Kordi and Bansal, 2016; Scornavacca et al., 2015). Kordi

and Bansal (2016) introduced an exact algorithm that enumerates all binary resolutions of an

unresolved gene tree and generates one resolved gene tree that yields the minimum cost. The

algorithm guarantees optimal binary gene tree with exponential complexity with polytomy

size (O(2k(log22k)l|VS|)), where k and l represent the size of the largest polytomy and number

of polytomies, respectively. Jacox et al. (2016) later developed a faster exact algorithm

for the Resolve-DTL problem and implemented the algorithm in ecceTERA. Although still

exponential, the algorithm significantly reduced the complexity compared to the previous

algorithm from Kordi and Bansal (2016) by enumerating a set of tripartitions for unresolved

polytomy. This potentially reduces the number of resolutions that are must be enumerated.

The complexity of the algorithm is O(|VG||VS|2(3k − 2k+1) and the algorithm is reported to

be reasonably fast at resolving gene trees with polytomies of size 12 or less. The focus of

the algorithm was mainly for dated species tree, and can be modified to apply to undated

species tree.

Several heuristic approaches have also been developed because the exhaustive search gets

increasingly expensive as the size of the polytomy increases (Bansal et al., 2015; David and

57

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

Alm, 2011; Nguyen et al., 2013). These heuristics can potentially be useful for gene trees

with larger polytomies in real data sets.

In TreeFix-DTL, Bansal et al. (2015) implemented a Nearest Neighbour Interchange (NNI)

heuristic to search for the best resolution for a polytomy. The algorithm generates candidate

topologies; a candidate is accepted if it has a lower reconciliation cost and is statistically

equivalent to the most likely tree, based on the sequence data. However, the Resolve-

DTL heuristic in TreeFix-DTL is embedded in the framework of gene tree reconstruction

as it requires the sequences and the ML gene tree to decide whether the new topology is

accepted. Because of this embedding, this method may not be suitable for solving Resolve-

DTL problem on gene trees reconstructed using other methods.

Mowgli-NNI resolves each polytomy in the gene tree using a modified NNI method to sample

a subset of binary resolutions (Nguyen et al., 2013). The heuristic algorithm uses a hill-

climbing-like approach to search for a resolved gene tree and iterates all weak edges in an

unresolved gene tree. Each candidate resolution is tested for the best parsimony score.

However, Mowgli-NNI requires the species tree to be dated, and correct speciation times are

frequently unknown.

In the set of resolutions, there may be multiple binary resolutions that result in the low-

est reconciliation cost. Moreover, for each binary resolution, there may be multiple event

histories that minimize the reconciliation cost. The problem of degeneracy has been ap-

proached from various perspectives. The above algorithms adapted the simplest approach,

which is to output a single resolution, selected arbitrarily. However, generating all solu-

tions enables the user to choose the best resolution based on problem-specific criteria. For

example, the Notung GUI provides a point-and-click interface that allows the users to

investigate alternate resolutions interactively (http://www.cs.cmu.edu/ durand/Notung/).

This is a satisfying solution for exploratory analysis of a few families, but unmanageable for

large phylogenomic analyses. A third approach is to triage alternate binary resolutions by

incorporating additional information, such as phylogenetic likelihood (Bansal et al., 2015),

conditional clade probabilities (Jacox et al., 2017), bootstrap replicates (David and Alm,

2011) or genome neighbourhoods (Chauve et al., 2013; Lafond et al., 2013).

Here, I focus on the problem of resolving a non-binary tree by minimizing inferred events in

the DTL event model. Many existing rearrangement algorithms for the DTL event model

either require a dated species tree, or given an undated species tree, fail to check for tem-

58

4.3. AN EXACT ALGORITHM TO SOLVE RESOLVE-DTL

poral consistency. If a binary resolution with minimum reconciliation cost is not temporally

feasible, then it should not be considered a valid solution. The methods presented and

implemented here use undated species trees and ensure that the generated solutions to be

temporally feasible.

I present new heuristics to correct incongruence in gene trees that may be caused by un-

certainty. These novel heuristics, as well as the exact algorithm, have been implemented

in Notung. Our exact algorithm generates all temporally feasible, binary resolutions and

event histories.

4.3. An Exact Algorithm to Solve Resolve-DTL

The algorithm to solve Resolve-DTL (Algorithm 12) consists of the same three steps as the

DTL-Reconcile algorithm (described in detail in Stolzer et al. (2012a)). The key modifi-

cation for Resolve-DTL is a procedure to calculate the cost tables when g is a polytomy.

In the first step, all nodes in TG are visited in post-order, and at each node g, all possible

assignments of M[g] and E [g] are enumerated. The associated information is stored in two

tables: Kg, which stores the best cost for mapping g to each s ∈ TS, and Hg, which stores

the corresponding book-keeping information necessary for calculating an event history in

step two. If g is a binary gene node, the core subroutine that generates Kg and Hg is a

function costCalc(g, sl, sr) (line 9 in Algorithm 12, see also Stolzer et al. (2012a)). The cost

of mapping gene node g to species node s only depends on the event at g (i.e. ε = E [g]),

the mapping on children of g (i.e. sr =M[l(g)] and sl =M[r(g)]), and the cost associated

with these mappings (Kl(g)[sl],Kr(g)[sr]). This information is stored in Hg[s] in the form of

a tuple: (ε, sr, sl).

If g is a polytomy, all possible binary resolutions in T(g) are exhaustively enumerated,

and Kg and Hg are calculated for each T bg ∈ T(g). In each binary resolution, g and its

children are replaced with a binary embedded subtree with kg leaves, inserting k(g)−1 binary

internal nodes (including the root that replaces g). Cost tables for these internal nodes are

constructed, bottom up, from the cost tables at the leaves of the embedded subtree, which

have already been constructed during the post-order traversal, prior to reaching g.

When this procedure completes, the root of each T bg ∈ T(g), will be annotated with tables Kbg
and Hb

g. These tables are then combined (line 13 in Algorithm 12) to generate two integrated

59

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

cost tables, Kg and Hg, for polytomy node g, as illustrated in Fig. 5.1. For each value of

s, Kg[s] = minbKbg[s]. For those binary resolutions that minimize Kbg[s], the information in

Hb
g[s] is added to the combined table Hg[s]. In contrast to binary nodes, for polytomies,

the tuples stored in Hg[s] include the binary resolution(s) associated with the optimal event

cost: (ε, sl, sr, T
b
G). This extra information is used in the pre-order traversal in the second

pass to reconstruct the optimal binary resolution of the gene tree as a whole. When there

are multiple entries that result in the same cost for a pair of g and s in Kg[s], these tuples

are all stored in Hg[s] as a list (for both binary nodes and polytomies). This procedure

potentially generates a large number of optimal binary resolutions. Moreover, there may be

multiple minimum cost event histories for each binary resolution. The lists saved in H allow

the algorithm to generate all optimal binary resolutions and every event history associated

with the binary resolutions. Generating all solutions enables the user to choose the best

resolution based on problem-specific criteria.

Algorithm 12 Resolve-DTL algorithm

1 DTLResolve(VG, VS):
2 for each g ∈ VG post order:

3 if g is binary:

4 for each s1, s2 ∈ VS × VS: generateCostTable(g, s1, s2)
5 else:

6 for each T bg = (V bg , E
b
g) ∈ T(g):

7 DTLResolve(V bg , VS)
8 Merge(Hbg,Hg,Kbg,Kg, T bg)
9 Merge(Hbg,Hg,Kbg,Kg, T bg):
10 for each s ∈ VS :

11 if Kbg[s] < Kg[s] :

12 clear Hg[s]
13 for each (ε, sl, sr) in Hbg[s]:enqueue (ε, sl, sr, T

b
g) in Hg[s]

14 Kg[s] = Kbg[s]
15 else if Kbg[s] == Kg[s]:
16 for each (ε, sl, sr) in Hbg[s]:enqueue (ε, sl, sr, T

b
g) in Hg[s]

The worst case complexity for calculating the cost table for a single binary resolution of a

polytomy g is O(|VS|2k(g)). The algorithm to calculate the cost tables for all binary resolu-

tions of this polytomy has worst case complexity of O(|VS|2k(g)Ng) where Ng = (2k(g)−3)!!

is the total number of possible binary trees with k(g) leaves. The cost tables at any node,

whether binary or polytomy, depend only on the cost tables at the node’s children. The post-

order traversal ensures that tables are calculated before they are used. Thus, calculating cost

tables for a given polytomy and its binary resolutions is independent from other polytomies

in the gene tree. As a result, for a tree with multiple polytomies, the total number of possible

60

4.3. AN EXACT ALGORITHM TO SOLVE RESOLVE-DTL

Figure 4.2: Dynamic programming to calculate cost table for a non-binary gene node x. This
process tries different binary resolutions for node x; for each tree, it uses the same dynamic
programming to generate cost table for x. Then all cost tables for all binary resolutions are
merged, and the entry in tuple table is added an extra term to store which tree was used.

61

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

binary resolutions for the gene tree is
∑

g∈VG3kg>2Ng. Because the number of possible bi-

nary resolutions increases super-exponentially with the size of the polytomy, this summation

is dominated by the largest polytomy in the unresolved gene tree, and the complexity of

the exact algorithm is O(|VS|2kmNm), where Nm is the number of binary topologies of size

km = maxg kg.

4.3.1. Heuristics for Resolve-DTL

Given an unresolved gene tree, the Resolve-DTL algorithm described in the previous section

finds all most parsimonious binary resolutions with respect to a given set of event costs.

However, finding the optimal solution requires enumeration of all possible binary resolutions

of each polytomy in TG, which is intractable for larger polytomies. For example, evaluating

the 10,395 possible binary topologies for a polytomy with 7 leaves requires ∼ 20 seconds on a

2.4 GHz processor. For a polytomy of size 8, there are over 135k possible resolutions and the

running time on the same machine is approximately 5 min. For phylogenomic analyses with

thousands of gene trees, where many gene trees may contain large polytomies, heuristics

become essential.

Instead of enumerating all binary resolutions, as we do in the exact algorithm, we replace

T(g) in line 11 of Algorithm 12 with T̂(g), a subset of all possible binary resolutions. We

propose several fast heuristics based on different strategies for defining this subset:

4.3.1.0.1. NNI A direct alternative to enumerating all binary resolutions of a polytomy is

to use tree modification techniques, such as Nearest Neighbor Interchange (NNI), to sample

M binary resolutions from the entire search space, where the sample size M is selected by

the user. Given an unresolved tree wherein the polytomies are the result of collapsing weak

edges in the input tree, the search starts from the original binary topology. If the input tree

itself was non-binary, then a starting topology is selected arbitrarily. At each iteration, NNI

is applied to a randomly selected internal branch in the current tree. If the reconciliation

cost of the resulting tree is equal to the best cost seen so far, the tree is added to the list of

candidate resolutions. If it is lower, the current tree replaces the list of candidate resolutions.

The worst case complexity of this method is O(|VS|2k(g)M), for a single polytomy g.

62

4.3. AN EXACT ALGORITHM TO SOLVE RESOLVE-DTL

4.3.1.0.2. Local DL In this heuristic, we resolve each polytomy by replacing it with a

single binary resolution that minimizes the DL cost, rather than the DTL cost. The quality

of this heuristic will depend on how well the binary resolution that minimizes the DL cost

approximates the binary resolution that minimizes the DTL cost.

Implementing the DL-resolution algorithm (Durand et al., 2006b) in this context requires

some modification. Recall that with DL-reconciliation, M[g] is calculated directly from

M[gi]∀gi ∈ C(g), the mappings at the children. However, under the DTL-event model,

the mappings at the children of g are not finalized until pass two; instead, each child is

associated with tables for possible species assignments. Rather than attempt all combinations

of mappings at the children, we assign M[gi] = argminsKgi [s], the species that minimizes

the cost at gi. The DL-resolution algorithm is then applied to find a binary resolution,

TDLg of g. If there is more than one minimum cost resolution, a single resolution is selected

arbitrarily.

The polytomy at g is then replaced with TDLg , a binary resolution that minimizes the DL

score with these labels, resulting in 2k(g)−1 new binary nodes. The post-order traversal then

continues up the tree, calculating the entries in tables K and H at the internal nodes in TDLg

using the DTL-event model. Note that since this approach yields a single binary resolution,

calculating Hg does not require the call to the Merge function (line 13 in Algorithm 12).

Each entry in Hg is associated with that single binary resolution, although there may still be

degeneracy if the binary resolution has more than one minimum cost event history. Under

the DL-event model, the time required to find an optimal resolution of a polytomy g is

O(|VS|+ k(g)) (Lafond et al., 2014). The calculation of the cost tables for the nodes in the

new binary resolution has complexity O(|VS|2k(g)). Since this step is more computationally

demanding then obtaining the DL-resolution, the worst case complexity for a single polytomy

is O(|VS|2k(g)).

4.3.1.0.3. Hybrid DL-NNI The quality of the results of the NNI strategy, described

above, are likely sensitive to the tree chosen to start the sampling process. Instead of starting

with the original binary branching order, or an arbitrarily chosen one, we posited that a tree

that minimizes the DL-cost might be closer, in tree space, to the optimal DTL-resolution.

In the Hybrid heuristic, we apply the Local DL heuristic to generate a candidate starting

tree and then sample candidate resolutions in tree space by applying NNI for M iterations.

Since the complexity of Local DL is low compared to DTL-reconciliation, adding this extra

63

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

step does not have an adverse effect on the running time. The worst case complexity is

O(|VS|2k(g)M) for a single polytomy.

4.3.1.0.4. Global DL As a comparison to the Resolve-DTL heuristics, we also calculated

the optimal DL-resolution (Durand et al., 2006b; M. et al., 2012) of the entire input gene tree.

Once DL-resolution is complete, the DTL-reconciliation cost of the resulting binary tree is

calculated by reconciling it with the DTL-event model. This is in contrast to the Local DL

strategy, described above, which uses the DL model to generate a binary resolution of each

polytomy independently, but uses cost tables, obtained with the DTL model, as input on the

children of each polytomy and constructs cost tables on each node of the binary resolution

based on the DTL model.

We implemented Resolve-DTL (the Exact method, Algorithm 12) and the heuristic strategies

described above in the Notung reconciliation software package. For the Exact method,

Notung finds all optimal DTL-resolutions and calculates all DTL-reconciliations for each

one. All temporally feasible solutions are included in the output, up to a user-specified limit.

Temporally infeasible reconciliations are discarded. No binary resolutions are generated if

all solutions are temporally infeasible.

For all heuristics (except Global DL), for polytomies of size k ≤ 6, which have at most 945

binary resolutions, the Exact method was applied and all binary resolutions of the polytomy

are enumerated. The chosen heuristic method is applied for polytomies of size k ≥ 7.

To speed up the running time in practice, several memoization techniques are implemented.

When enumerating all possible binary resolutions for a polytomy, the order of the topologies

is sorted such that the left subtree is kept stable if there are more topologies to check in the

right subtree. This effectively maximizes memoization because we can reuse the left cost

tables when searching right topologies. Although this does not improve the complexity, this

significantly reduces runtime. In addition, because each NNI operation inserts a single new

branch in TG, it is therefore sufficient to recalculate only the cost tables, K and H, associated

with nodes on that branch and its ancestors, instead of recalculating tables for the entire

binary resolution.

64

4.4. PERFORMANCE ANALYSIS

4.4. Performance analysis

To investigate the behavior of these methods, these strategies were evaluated empirically on

two previously published data sets:

ALE trees: In order to obtain a benchmark for which events are known, we used a data

set (Szöllõsi et al., 2013a,b), wherein a high confidence set of events were inferred from

multiple alignments of simulated sequences using a probabilistic model that integrates

sequence evolution and gene events. This dataset is based on 1099 HOGENOM gene

families (Penel et al., 2009) sampled from 36 cyanobacterial genomes (Szöllosi et al.,

2012). For each gene family, we obtained the gene events and the multiple alignments

(MSAs) of amino acid sequences from which they were inferred (Szöllõsi et al., 2013b).

We constructed “species tree blind” gene trees from these MSAs using PhyML (Guin-

don et al., 2010) with the LG+G+I model with four Γ-distributed rate categories.

Branch support scores were obtained by bootstrapping with 100 replicates.

Barker trees: Gene trees for 13, 854 OrthoMCL families, sampled from 49 cyanobacteria

and 16 proteobacteria, were downloaded from (Barker, 2013). The gene trees, and the

associated species tree, were constructed as described in (Darby et al., 2017; Laty-

sheva et al., 2012). Briefly, maximum likelihood trees were constructed from amino

acid sequence alignments using PhyML, following model selection with ModelGenera-

tor (Keane et al., 2006). Branch support was assessed using 200 bootstrap replicates.

Trees were processed using Notung. All Notung analyses were carried out with default

event costs (CT = 3, CD = 1.5, CL = 1). These transfer and loss costs are identical to

those used with the same data sets in previous studies (Darby et al., 2017; David and Alm,

2011; Jacox et al., 2017). We chose a slightly lower duplication cost to reduce the number of

degenerate solutions. These costs are also consistent with costs used in recent phylogenomic

analyses (e.g., (David and Alm, 2011; Stolzer et al., 2012a)), which were selected to minimize

the total change in genome size, averaged over the species tree (David and Alm, 2011).

Trees from both datasets were rooted using DTL-event parsimony with Notung. Unresolved

trees were then created by collapsing branches with bootstrap values below 70%. To assess

the impact of threshold choice, the Barker dataset analyses were repeated with thresholds

of 80% and 90% (Table 4.1). Gene trees lacking weak edges for a given threshold were

eliminated from the analysis at that threshold.

65

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

Threshold km > 2 2 < km < 7 km = 7 km > 7 NP

Barker trees
70% 3672 2678 288 706 7370
70% F 3604 2650 281 673 –
80% 4280 2983 337 960 9196
80% F 4204 2955 329 920 –
90% 4882 3272 406 1204 10307
90% F 4770 3241 394 1135 –

ALE trees
70% 1080 383 116 581 5210
70% F 813 346 90 444 –

Table 4.1: The number of unresolved gene trees as a function of branch support threshold
and maximum polytomy size (km). F indicates the number of trees remaining, after trees
that lacked a temporally feasible solution for one or more methods were removed from
consideration. NP : number of polytomies of any size in all trees, combined.

The resulting rooted, non-binary trees were resolved using the Exact, NNI, Local DL, and

Hybrid strategies. The trees were also resolved with the Global DL model for comparison.

This process resulted in six trees for each gene family: five rearranged trees and the original

tree (i.e., the rooted binary tree prior to collapsing weak bootstrap values). All six trees

were reconciled using the DTL model in Notung to obtain DTL event costs (Eqn. 2.1),

which were used to assess the performance of the different binary resolution strategies. In-

ferred event histories were tested for temporal feasibility; only gene families for which all six

trees had at least one temporally feasible reconciliation were retained for further analysis

(Table 4.1).

4.4.1. Accuracy

The accuracy of the Resolve-DTL heuristics was evaluated using three different measures.

First, for each gene family in the ALE, the event costs obtained with all methods were

compared with the weighted sum of the high-confidence events associated with that family,

calculated using Eqn. 4.1. Second, for families in both datasets, the event costs of binary

resolutions obtained with each heuristic were evaluated relative to the event costs obtained

with the Exact method. Third, the binary tree obtained with each heuristic was compared

with the binary tree obtained with the Exact method, using the normalized Robinson-Foulds

(RF) distance, a tree comparison method that is frequently used to assess tree accuracy. To

66

4.4. PERFORMANCE ANALYSIS

determine how well the heuristic strategies approximate the exact approach, we focused on

gene trees with maximum polytomy size of km = 7. The space of trees with seven leaves is

small enough to admit exhaustive search, so that the reduction in event cost obtained with

the various heuristics can be compared with the optimal improvement in cost obtained with

the Exact method.

For the cost-based comparisons, the per-family accuracy was quantified using the error,

∆(κ̂H , κ
∗) =

κ̂H − κ∗

κ∗
, (4.2)

where κ̂H represents the lowest DTL-reconciliation cost obtained with heuristic H and κ∗

is the overall best score for the family. For the ALE trees, the best score is defined to

be κ∗A, the weighted sum (Eqn. 2.1) of the high-confidence events inferred for that family.

For comparison with the Exact method, for both sets of trees, the best score is κ∗E, the

optimal DTL-cost. Because Exact is guaranteed to find the minimum cost resolution under

the Maximum Parsimony criterion, ∆(κ̂H , κ
∗
E) is always positive.

4.4.1.1. Comparison to High-Confidence Events Using ALE Data

First, to set these methods in context, we evaluated both the exact and the heuristic methods

relative to the high-confidence inferred events for each ALE family (Fig. 4.3). All strategies

reduced the magnitude of the error by a factor of two, on average, relative to the uncor-

rected tree (Fig. 4.3b). While a small number of trees had very large errors, for most trees

|∆(κ̂H , κ
∗
A)| < 1.0. The greatest reductions in error were obtained with the Exact, Hybrid,

and Local DL strategies. All strategies underestimate the number of events in some cases

(Fig. 4.3a). The strategies for which the magnitude of the error is lowest, Exact, Hybrid, and

Local DL, underestimate the number of events roughly half the time. Global DL and NNI

have a greater tendency to overestimate than to underestimate the events.

4.4.1.2. Comparison of heuristic methods with the Exact method:

Next, we assessed how well various heuristics approximate the Exact algorithm for both the

ALE trees and the Barker trees. Both datasets display similar trends (Fig. 4.4a), and similar

behavior was observed with thresholds of 80% and 90% (Fig. 4.5a).

67

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

(a) ∆(κ̂H , κ
∗
A) (b) |∆(κ̂H , κ

∗
A)|

(c) ∆(κ̂H , κ
∗
A) with larger polytomies (d) |∆(κ̂H , κ

∗
A)| with larger polytomies

Figure 4.3: Error of the DTL reconciliation score obtained with various heuristics on the
simulated data set. Error was calculated as a function of the weighted sum of the ALE
events. (a) Error for gene trees with polytomy of size 7. (b) Absolute value of the error for
gene trees with polytomy of size 7. (c) Error and (d) absolute value of the error for gene trees
with at least one polytomy of size greater than 7. The threshold to collapse weak branches
is 70%, and the number of NNI samples used was 1000.

68

4.4. PERFORMANCE ANALYSIS

10-3

10-2

10-1

100

101

GDL Hybrid LDL NNI PhyML

lo
g

 Δ

Data Set ALE Barker

0.0

0.5

1.0

(a) log ∆(κ̂H , κ
∗
E)

10-2.5

10-2

10-1.5

10-1

10-0.5

100

R
F

 D
is

ta
n

c
e

Data Set ALE Barker

GDL Hybrid LDL NNI PhyML

0.0

0.5

1.0

(b) log ∆RF

Figure 4.4: Comparison of heuristic strategies with the Exact method for ALE and Barker
trees, with a branch support threshold of 70%. The NNI and Hybrid strategies were executed
with M = 1000 samples. Red points indicate the mean. (a) Top: log ∆(κ̂H , κ

∗
E). Zero values

are represented as 0.01 times the minimum non-zero error. Bottom: the proportion of trees
where ∆(κ̂H , κ

∗
E) = 0. (b) Top: Log normalized RF distance (log ∆RF). Bottom: the

proportion of trees where ∆RF = 0.

The mean, median and maximum costs obtained with all Resolve-DTL strategies are markedly

lower than the corresponding costs obtained with the uncorrected PhyML trees. When no

correction is applied, ∆(κ̂H , κ
∗
E) = 0 for only 7% of Barker trees and 2% of ALE trees. Thus,

in almost all cases, when the branch support was less than 70%, it was possible to find an

alternate binary topology that agrees with all strongly supported branches and reduces the

number of gene events required to explain the data.

Substantially better results are obtained with Local DL and Hybrid than with the other

heuristic strategies. In fact, the Hybrid strategy performed as well as the Exact method

for 84% of ALE trees and 74% of Barker trees. Heuristics based on the DL-event model

performed surprisingly well, given that transfers are likely common in bacterial gene family

evolution. For almost half of ALE trees, the Global DL strategy found a binary resolution

with a DTL-reconciliation cost as low as the optimal, Exact cost. The Local DL heuristic

69

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

performed well for both data sets; 75% of ALE trees and 58% of Barker trees obtained

optimal DTL-reconciliation costs.

4.4.1.3. Impact of Different Numbers of Iterations

GDL Hybrid LDL NNI PhyML

Threshold 70 80 90

lo
g

 Δ

10-3

10-2

10-1

100

101

Method

0.0

0.5

1.0

(a) log ∆(κ̂H , κ
∗
E)

125 250 500 1000 2000 4000

Iterations

Method Hybrid NNI

10-3

10-2

10-1

100

101

lo
g

 Δ

0.0

0.5

1.0

(b) log ∆(κ̂H , κ
∗
E)

Figure 4.5: Comparison of heuristic strategies with the Exact method for the Barker trees
only. Red points indicate the mean. (a) Performance with branch support thresholds of
70%, 80%, and 90%. The NNI and Hybrid strategies were executed with M = 1000 samples.
Top: log ∆(κ̂H , κ

∗
E). Zero values are represented as 0.01 times the minimum non-zero error.

Bottom: the proportion of trees where ∆(κ̂H , κ
∗
E) = 0. (b) Performance of the NNI and

Hybrid strategies with sample sizes from M = 125 to M = 4000; branch support threshold
of 70%. Top: log ∆(κ̂H , κ

∗
E). Zero values are represented as 0.01 times the minimum non-zero

error. Bottom: the proportion of trees where ∆(κ̂H , κ
∗
E) = 0.

The NNI and Hybrid strategies use tree modification techniques to search for a low cost

resolution. Two factors that may influence the effectiveness of this strategy are the tree used

as the starting point in the search and the number candidate trees that are sampled. The

Hybrid strategy substantially outperforms NNI with M = 1000 samples (Figs. 4.3 and 4.4a),

demonstrating that the starting state is, indeed, an important factor in the quality of the

outcome.

70

4.4. PERFORMANCE ANALYSIS

Iterations % of Trees (km = 7)
125 1.2
250 2.4
500 4.8
1000 9.6
2000 19.2
4000 38.4

Table 4.2: Experiments with various number of iterations for NNI and Hybrid. The second
column indicates the percentage of total resolutions of a polytomy of size 7 that is covered
by the number of iterations.

Number Starts Iterations per Start
1 1000
2 500
3 333
4 250
5 200

Table 4.3: Number of starts for each experiment. The total number of iterations is set to
1000. The first experiment starts NNI once for 1000 iterations, the second experiment start
NNI twice, each for 500 iterations, etc.

To assess how the accuracy depends on the number of topologies sampled, we repeated the

analysis of the Barker trees with the NNI and Hybrid strategies with sample sizes ranging

from M = 125 to M = 4, 000. Predictably, the error decreases as the number of samples

increases for both strategies (Fig. 4.5b). The Hybrid strategy performs as well as the Exact

strategy for three out of four trees, when M = 1000. The marginal gain in accuracy obtained

with sample sizes greater than 1000 is limited. In contrast, for NNI, the mean and median

error continue to improve over the entire range. Moreover, even when M = 4000, more than

37% of trees still have non-zero error. A sample size of 4000 corresponds to almost 40%

of binary topologies with k = 7 leaves. With this sample size, NNI does not represent a

dramatic reduction in computational load relative to exhaustive search, yet almost half the

trees could be further improved. With larger polytomy sizes, the fraction of tree space that

can be sampled in a realistic time frame will dwindle. For example, for a polytomy of size

eight, 4000 NNI modifications will sample less than 3% of possible topologies.

71

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

4.4.1.4. Multiple Runs of NNI and Hybrid

(a) ∆(κ̂H , κ
∗
E), Multiple starts, Hybrid (b) ∆(κ̂H , κ

∗
E), Multiple starts, NNI

Figure 4.6: ∆(κ̂H , κ
∗
E) for multiple runs of the iteration-based methods, (a) Hybrid and (b)

NNI, using Barker data set. Each method was run multiple times, with a total of 1000
iterations.

The hybrid and NNI methods randomly search tree space to find the best binary resolution.

At each step, an NNI tree is chosen at random, Thus, the random walk may be unpredictable.

Poor moves at the beginning of the search may lead to searching in a region of tree space that

does not have lowest cost. To better understand the implications of random moves on finding

the lowest-cost rearrangement, I also set up an experiment to understand how multiple

starting directions would change the result of the heuristics. Specifically, I considered how

error changes when performing the NNI or hybrid method with 1,000 iterations total, but

restarting the search a variable number of times (Table 4.3). The results are shown in

Figure 4.6. For the Hybrid strategy at 1000 iterations, the error was already lower compared

to other heuristics. With multiple runs of fewer iterations, the mean error can be further

reduced. This suggests that, for this data set, searching around the resolution found by

Local DL is a better strategy than randomly walking a longer distance.

In contrast, for NNI, multiple starts did not seem to have any effect on the error. It is

important to note that by restarting with the resolution first proposed, this approach will

72

4.4. PERFORMANCE ANALYSIS

cover more of the tree space surrounding the first resolution, and less of the space distant

from that resolution. For NNI, the first resolution is the original binary branching pattern,

which may not be close to the best resolution. Multiple starts from the same topology may

not result in a lower-cost binary resolution (Figure 4.6b). For the hybrid approach, the

first resolution is the one determined by Local DL; the assumption is that the best binary

resolution is close to the binary resolution generated by the DL strategy. Therefore, multiple

starts may search a “good” area more thoroughly than a single run with many iterations

(Figure 4.6a).

As the NNI approach starts from the original binary resolution, the best resolution may

be too far from the original resolution. Therefore, the NNI method is likely to find better

resolution by walking a longer distance.

4.4.1.5. Robinson-Foulds Distance versus Cost Error

We also compared the resolved binary trees obtained with the various strategies using nor-

malized RF distance (∆RF), a measure of the difference in the topologies of two binary trees

with the same leaf labels. ∆RF is the number of bi-partitions that are present in one tree,

but not the other, normalized by the total number of bi-partitions. For each family in each

data set, we calculated ∆RF(T bH , T
b
E), the normalized RF distance between the binary reso-

lution obtained with heuristic H and the binary resolution obtained with the Exact method

(Fig. 4.4b).

The overall trends observed with ∆RF are similar to those observed with ∆(κ̂H , κ
∗
E). Most

uncorrected PhyML trees display some dissimilarity with the Exact binary resolution. For

corrected trees, the binary resolutions obtained with the Local DL and Hybrid strategies are

most similar to the Exact binary resolution.

However, the shapes of the ∆RF(T bH , T
b
E) and ∆(κ̂H , κ

∗
E) distributions are dissimilar (Fig. 4.4),

suggesting that for individual gene families, the two measures do not reflect the same infor-

mation. This is further supported by the Pearson correlation coefficients of ∆RF(T bH , T
b
E)

and ∆(κ̂H , κ
∗
E) for the various strategies (Table 4.4). The strongest correlation observed for

any method in either dataset is 0.32. The other correlations are even weaker and only half

are significant at the 0.005 level.

Several factors may be contributing to the lack of correlation between ∆(κ̂H , κ
∗
E) and ∆RF.

73

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

First, degeneracy may inflate the reported RF distance. If there are multiple optimal binary

resolutions, but only one, chosen arbitrarily, is reported by each method, then a non-zero

RF distance can result, even if both methods find the same set of binary resolutions. Recon-

ciliation cost is not sensitive to degeneracy in this way. If a heuristic method finds at least

one optimal resolution, then ∆(κ̂H , κ
∗
E) will be zero, since it depends on the event cost, not

the tree topology.

Recall that the heuristic strategies are not guaranteed to return all optimal binary resolu-

tions. The Global DL and Local DL strategies will find one binary resolution, which may,

or may not, be optimal. The number of optimal binary resolutions found by the NNI and

Hybrid strategies will depend on the sampling process. In fact, Table 1 shows that for roughly

20% to 40% of trees, ∆(κ̂H , κ
∗
E) = 0, but ∆RF(T bH , T

b
E) 6= 0. This suggests that the fact that

the heuristics only find a subset of the binary resolutions is contributing to the difference

between error and RF distance.

Even when all resolutions found by the heuristics are compared against all optimal resolu-

tions found by the Exact method, event-cost error and RF distance may be poorly corre-

lated because they capture different information. A pair of topologies with similar event

histories may have few bi-partitions in common and vice versa. For example, the trees

(A, (B, (C, (D,E)))) and (B, (C, (D, (A,E)))) differ by a single transfer, but have no bi-

paritions in common. Zheng and Zhang (2014b) recently showed that RF distance is not

equivalent to event-based distances in a DL model. This is likely also true for event distances

based on transfers.

Method Barker ALE Barker, ∆ = 0 ALE, ∆ = 0
r P-value r P-value All ∆RF 6= 0 All ∆RF 6= 0

LDL 0.13 0.214 0.18 0.001 0.58 0.24 0.75 0.20
GDL 0.17 0.091 0.21 0.000 0.35 0.20 0.48 0.20
NNI 0.23 0.022 0.08 0.145 0.32 0.25 0.23 0.16
Hybrid 0.14 0.159 -0.01 0.906 0.74 0.42 0.84 0.35
PhyML 0.32 0.001 0.19 0.001 0.07 0.06 0.03 0.02

Table 4.4: Correlation between RF and Error for ALE and Barker data compare to Exact
Tree

74

4.4. PERFORMANCE ANALYSIS

4.4.2. Runtime

I recorded time to find a binary resolution for each polytomy of size k < 8 for the Exact

method, and k > 6 for the heuristics (Figure 4.7). The runtime for the exact method indeed

increases dramatically with the polytomy size. The NNI and Hybrid method show very

similar trends to each other, and, as expected, their runtime is 1000 times greater than

that of Local DL. For k = 6, the Exact method considers 945 binary resolutions, which is

comparable to the 1000 iterations used in NNI and Hybrid. This is reflected in the similar

runtimes for the three methods, suggesting that all three methods take the same amount

of time to recalculate the cost tables for each binary resolution. Thus, the major factor for

runtime is the number of binary resolutions sampled. Recall that the worst case complexity

Figure 4.7: Runtime, per polytomy of the Exact, Local DL, NNI, and Hybrid strategies. NNI
and Hybrid with M = 1000 samples. The x-axis indicates the polytomy of different sizes,
and the y-axis represents the log of runtime in seconds.

for resolving a polytomy of size k with Hybrid and NNI is O(|VS|2kM). Since M remains

constant, I might expect runtime to vary with polytomy size k. However, in Figure 4.7, the

runtime of Hybrid and NNI are almost flat as polytomy size increases. This could be caused

by memoization that significantly reduced the number of new nodes for which cost tables

must be recalculated, or that the runtime for these experiments are not in the asymptotic

regime of the big-O complexity.

I also observe large variance on the runtime for the same polytomy size for each method.

75

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

This is because calculating the cost table for a gene node may not always be the worst case

complexity (O(|VS|2)). Recall in DTL reconciliation, entries in H and K are calculated by

considering all possible combinations for the mappings at l(g) and r(g). The runtime of this

calculation could vary drastically based on the number of possible labels on the left and right

children. For example, if l(g) and r(g) are leaf gene nodes, which can only be mapped to

the one species node—the species where this gene was sampled—then calculating the cost

table for g would take minimal time. In that case, the number of possible species labels for

g is slightly more than the number for its children. This suggests a general trend that the

number of possible species labels for a gene node increases as the gene node is further from

leaf.

Because complexity for some heuristics depends on the number of samples, I also recorded the

time for each polytomy when running Hybrid and NNI with different numbers of iterations

(Figure 4.8 and 4.9). I observe that the average runtime for both Hybrid and NNI are

linearly dependent on the number of iterations. The large variance of a method using the

same number of iterations and for polytomies of the same size are also observed. Again this

reflects the fact that calculating the cost tables for a gene node depends on the size of the

cost tables on the two child nodes. Even with polytomies of the same size and sampling

the same number, the same algorithm may still take various time to complete depending

on the size of the cost tables on the children of the polytomy. All the algorithms that

were described above were implemented in Notung. The GUI is also extended to handle

aspects specific to these reconciliation models. I focus on the two step corrective approach to

resolve the gene tree with pre-built gene trees with uncertain branches, instead of embedding

the algorithm in gene tree building software. This strategy is preferred because it can be

applied to gene trees that were previously constructed for other purposes. It also provides

intermediate results allowing human intervention and exploratory analyses. This approach

not only generates a resolved binary gene tree topology, but also outputs the inferred events

by finding the “best” binary resolution of polytomies.

4.5. Discussion

Resolving non-binary gene trees with a binary species tree under the DTL model requires

an enumeration of all binary resolutions of each polytomy, resulting in a super-exponentially

increasing search space. Here, we presented an exact algorithm and several promising heuris-

76

4.5. DISCUSSION

(a) 70% threshold

(b) 80% threshold

(c) 90% threshold

Figure 4.8: Runtime of hybrid strategy with different iteration numbers for three different
thresholds.

77

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

(a) 70% threshold

(b) 80% threshold

(c) 90% threshold

Figure 4.9: Runtime of NNI strategy with different iteration numbers for three different
thresholds.

78

4.5. DISCUSSION

tics for resolving large polytomies, which can be used as stand-alone tree correction methods

or as subroutines in species tree-aware gene tree construction techniques. The algorithms

are all implemented in a publicly available, Java-based software package, Notung, that

generates all most parsimonious resolved gene trees that are temporally feasible.

Our experimental analysis of these methods gives insights into the structure of the Resolve-

DTL problem. Some heuristics are based on searching the tree space using NNI. The im-

provement in accuracy that can be obtained by increasing the sample size of NNI is limited.

However, a well picked starting topology, combined with a modest number of iterations

proved to be a good compromise in this context. Two strategies based on a DL-event model

performed better than expected when applied to bacteria data sets, which likely contain

horizontal transfer events, suggesting that even in the presence of transfers, the DL-model

has some utility as a heuristic.

These preliminary results introduce interesting questions that could be investigated further,

such as a better way to sample the search space. Using NNI, the newly proposed gene

tree is nearly identical to the previous tree. As a result, NNI may be too fine grained when

searching for resolutions where horizontal gene transfer can introduce more dramatic changes

to the topology. Subtree Prune and Regrafting (SPR) moves propose larger jumps between

topologies in tree space, which may mimic transfer moves more realistically (Hill et al., 2010).

Thus, heuristics based on SPR, and possibly other tree modification procedures, are good

directions for future research. Also, instead of randomly sampling the tree space, a hill-

climbing approach guided by a figure-of-merit could be employed when considering proposed

topology modifications.

We assessed the performance by comparing DTL-event costs obtained using each heuristic

with the minimum DTL-event cost obtained using the exact method. We also calculated the

Robinson-Foulds (RF) distance between the resolved trees obtained with the heuristic and

exact methods and observed poor correlation between the two measures. Prior studies have

shown that several metrics based on the DL model are not equivalent to RF distance (Zheng

and Zhang, 2014b). Our empirical observations suggest that a theoretical comparison of

measures based on DTL-events and RF distances may be a similarly fruitful direction.

Finally, this class of “species-tree” aware gene tree correction methods assumes that in-

congruence is due to either uncertainty or gene events. Yet other processes, such as gene

conversion, incomplete lineage sorting, migration, hybridization, and introgression, can also

79

CHAPTER 4. REARRANGEMENT ALGORITHM TO FIX WEAKLY SUPPORTED BRANCHES

result in gene tree incongruence. Thus, if branches in the gene tree are weak, but reflect

the true evolutionary history, tree correction methods could introduce error, rather than

decrease it. Methods that account for these processes are an important direction for future

work.

80

Chapter 5

Selecting Cost Using Maximum Likelihood

DTL reconciliation under maximum parsimony (MP) optimization requires a cost vector to

infer gene events. The reconciliation algorithm selects the solution(s) that minimize(s) the

sum of the number of occurrences of each event, weighted by its corresponding cost:

C(ND, NT , NL) = ND · CD +NT · CT +NL · CL, (5.1)

where Cε represents the weight for event type ε, and Nε is the number of events of type ε.

The costs for duplication, transfer, and loss events are important parameters that must be set

for MP reconciliation. Different costs may significantly impact the final, most parsimonious

solution. Therefore, correctly selecting the cost vector (~C=< CT , CD, CL >) is an important

problem. In this chapter, I try to answer the question of how to select Cε to obtain accurate

reconciliations. I compare Maximum Likelihood (ML) reconciliation with Maximum parsi-

mony, and discuss the possibility of selecting a cost vector based on event rates such that

the most parsimonious reconciliation is equivalent to the most likely reconciliation.

Comparing ML and MP has long been studied for a related problem: evolutionary tree

reconstruction. In the context of tree reconstruction, several studies have tried to answer

the question: Is there a condition under which ML and MP are equivalent for building a

tree from character data? Farris (1973) showed that under some reasonable assumptions,

the reconstructed trees under ML and MP are equivalent. However, Felsenstein (1973)

later presented a counter-example and argued that the methods in use at that time for tree

81

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

building do not satisfy the assumptions made by Farris. Nevertheless, the comparison of ML

and MP in tree reconstruction still can provide valuable information of the structure of the

problem.

5.1. Formulation of Maximum Likelihood

The gene tree reconciliation problem under a probabilistic framework has been considered in

several studies. Arvestad et al. (2003) formulated the problem of probabilistic reconciliation

with duplication and loss events. Later, Sjőstrand et al. (2014) introduced a DLTRS (Dupli-

cation, Loss, Transfer, Rate, and Sequence evolution) probabilistic model that incorporates

gene events and sequence evolution in a single comprehensive model that infers the gene tree

and the reconciliation. This method uses a modified Birth-Death event process to calculate

the likelihood of observing a particular gene tree in the species tree in a model that allows

genes to jump between species branches (allows transfers), while also considering sequence

evolution. The formulation of likelihood in DLTRS is based on the work of Akerborg et al.

(2009), Arvestad et al. (2003) and Arvestad et al. (2009), who formulated the likelihood

of tree reconciliation with duplication and loss events using a Birth-Death model. These

studies were focused more on tree reconstruction using a sequence evolution model, while

also considering gene tree reconciliation. Khan et al. (2016) later adapted this framework

to develop a model that infers gene events given a gene tree and a species tree as input.

Another study formulated the probability of reconciliation with duplication and loss events

under a constant event rate model instead of a Birth-Death model (Górecki and Eulenstein,

2014). Motivated by these studies, I also formulate several likelihood functions using strate-

gies similar to Arvestad et al. (2009) under several different assumptions. In each case, I

derive an estimate of the likelihood and compare the likelihood function to the cost function

used in MP reconciliation.

The general ML principle is to find a parameter that maximizes the likelihood:

L = P (X|θ), (5.2)

which is the probability of the observed data, X, given a parameter set θ. The likelihood

of reconciliation is slightly different. It introduces a latent variable, γ, as a reconciliation

solution. Given a gene tree TG = (VG, EG), a species tree TS = (VS, ES), and a mapping

82

5.1. FORMULATION OF MAXIMUM LIKELIHOOD

from the leaves of TG to the leaves of TS, a solution can be represented as a mapping

M : g → s,∀g ∈ VG, s ∈ VS. From this mapping of gene nodes to species nodes, the gene

event history can be reconstructed, as described in Chapter 2.

ML reconciliation seeks the reconciliation γ that maximizes the probability of the observed

data (i.e. the gene tree TG) and the hidden latent variable, γ. In order to estimate the

likelihood of a gene tree in a reconciliation framework, we require the length of each species

tree branch, in units of time, and the rates of the gene events in the event model. In contrast,

for MP reconciliation, events are inferred from topological differences between the gene and

species tree; the branch lengths of the species tree are not required. In this chapter, we

consider species trees with the branch lengths in units of time. The length of a branch

(p(s), s) is denoted ts. The event rate vector, ~r, contains the transfer rate (rT), duplication

rate (rD), and loss rate (rL). Given the event rates and the species tree (TS) with branch

lengths, the likelihood function is:

L = P (TG, γ|~r, TS), (5.3)

where TS is treated as a fixed parameter (Akerborg et al., 2009). In other words, Eq. 5.3

calculates the probability of a gene starting from the root of the species tree, followed by the

series of gene events implied by the reconciliation solution, γ, resulting in the gene tree TG.

Since gene tree TG is completely specified by species tree TS and the event history implied

by γ, Equation 5.3 can be restated in a simpler form:

L = P (γ|~r, TS). (5.4)

The most likely reconciliation is then:

γ∗ = argmaxγP (γ|~r, TS), (5.5)

where γ∗ is the optimal reconciliation.

To estimate the probability of a reconciliation γ, we need to capture the behavior of gene

events in a probabilistic framework. Specifically, we require an event process that models

the probability of a gene event occurring in elapsed time t. In this chapter, we consider

two models of the event processes through which events occur: a Constant model (C) and

a Birth-Death (BD) model. As gene duplication and transfer events are both events that

83

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

can increase the gene copy number by 1. In both models, a gene duplication and a gene

transfer both are considered to be a birth event, which is also a called gain event. One can

calculate the probability of observing ND duplications and NT transfers by calculating the

probability of NB birth events first, and then adjusting for the probability that ND of those

events are duplications and the rest are transfers. This adjustment is discussed in detail in

later sections.

The gene event number and gene copy number are often estimated in the probabilistic

framework in later sections. One straightforward relationship between them, which is used

frequently, expresses the number of gene copies after time t, n(t), as a linear function:

n(t) = NB(t)−NL(t) + n(0), (5.6)

where NB(t) and NL(t) denote the number of births, and losses.

5.1.1. Constant Event Process

The constant rate model assumes that gene event rates are independent of the number of gene

copies; thus, each event rate is kept constant throughout the species tree. This assumption

is appropriate in gene families where there is selection against multiple copies of the same

gene. In this context, the number of events in a time interval can be modelled by a Poisson

distribution and the time intervals between events are exponentially distributed.

5.1.2. Birth-Death Event Process

Another commonly used model for gene events is the Birth-Death (BD) process, which was

originally used to model the behavior of a population (Kendall, 1949). At any time, two

events may occur: A birth event increases the population size by one and a death event

decreases the population size by one. The time interval before the next event occurs is

sampled from an exponential distribution, given the event rate. This model can also be

applied to gene event evolution, where a birth event represents a duplication or transfer that

increases the gene number by one, and a death event represents a gene loss that decreases

the gene number by one. One important property of the BD model is that the rate of gene

events per gene is kept constant. As a result, the overall birth and death rates increase as

84

5.1. FORMULATION OF MAXIMUM LIKELIHOOD

the number of gene copies increases. For example, suppose a gene family starts with one

copy. After a birth event occurs, the gene copy number is increased to two and the rate

of a gene event is also doubled. This is realistic in the sense that more copies of the gene

should increase the chance of an event occurring on these genes. However, if the birth rate

is greater than the death rate, the expected number of gene copies grows exponentially. If

the birth rate is less than the death rate, the number of gene copies will drop to zero and

the family will be extinguished. It is usually assumed that the death rate is not greater

than birth rate. This suggests that when using this model, we implicitly assume that the

growth of gene family has not reached the point where there is selection against increasing

gene family size.

There are two mathematical approaches to modeling the BD process: 1) a deterministic BD

process, where the population size after a time step is completely determined by the current

state, and 2) a stochastic BD process, where the state of the next time step depends on the

current state and events that are randomly generated based on event rates.

The time-dependent behavior of the population size in a Birth-Death model is well known

(Kendall, 1949). Let rB and rL be the rate of birth and death per gene copy. In the

deterministic Birth-Death model, n(t), the population size after elapsed time t, can be

directly calculated. Assuming the initial population size, n(0), is 1, the population size at

time t satisfies the differential equation

dn

dt
= (rB − rL)n(t). (5.7)

Solving this differential equation yields

n(t) = e(rB−rL)t (5.8)

In the stochastic BD model, the population size after time t follows a modified geometric

distribution (Kendall, 1949). With an initial population size n(0) = 1, the probability that

the population is extinct after time t is

P (n(t) = 0|t) =


rBe

(rB−rL)t − rB
rBe(rB−rL)t − rL

, if rB 6= rL

rBt

1 + rBt
. if rB = rL

(5.9)

The probability that the population is of size x > 0 is the standard geometric (Kendall,

85

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

1949):

P (n(t) = x|t) = (1− ηt)ηx−1
t , (5.10)

where

ηt =


rLe

(rB−rL)t − rL
rBe(rB−rL)t − rL

, if rB 6= rL

rBt

1 + rBt
. if rB = rL

(5.11)

Combining Eq. 5.9 and 5.10, we obtain

P (n(t) = x|t) = [1− P (n(t) = 0|t)](1− ηt)ηx−1
t , (5.12)

for x ≥ 0.

5.2. Forest Representation of L

Instead of representing the reconciliation γ as a mapping table from each gene node to

a species node, an equivalent, inverse representation of the reconciliation can be formed

from the point of view of the species. This representation makes calculating probabilities of

reconciliation easier. In this case, we need to know which gene nodes are associated with

each branch of the species tree. Given a reconciliation γ, a species tree branch (p(s), s) ∈ ES
induces a forest F (γ, s). Each tree in the forest represents an embedded subtree of the gene

tree that, when mapped to the species tree, resides in branch (p(s), s). In other words,

F (γ, s) represents the reconciliation restricted to (p(s), s). For each f ∈ F (γ, s), the element

γf is an event-labeled gene subtree with topology Tf = (Vf , Ef) and root ρf mapped to p(s).

Internal nodes of γf arose through a gain events; Every internal node is labeled with the

event that caused the bifurcation, (i.e. duplication or transfer). The size of F (γ, s) is the

number of genes that are present in p(s). Each of these genes is the root of a tree in F (γ, s).

These roots may be inherited by vertical descent from the parent of p(s) or be descendants of

a transfer into the species tree branch (p(p(s)), p(s)). All leaves of γf are mapped to species

s, except for descendants of a transfer event from (p(s), s) to a distant branch. A transfer

event will result in a new gene in a species tree branch that is incomparable to the donor

species. Transfer edges (and their descendants) are considered part of the embedded gene

tree associated with the donor gene until the next speciation. The descendants of a transfer

edge that are leaves of γf will form the roots of trees in the forest of the recipient species.

86

5.2. FOREST REPRESENTATION OF L

For example, in Figure 5.1, node g6 is the child of a transfer from < R,F > to < R,E >.

The gene tree branch < g2, g6 > is part of the forest associated with F . In addition, g6 is the

root of the tree in the forests associated with C and D. After a gene transfer, the time for

the gene to evolve until the next speciation event may be different from the original species

tree branch.

Figure 5.1: Gene tree embedded in species tree. The forests in four species tree branches are shown
at right. For each embedded gene tree, the root is a gene that was present at the parent species
node. Note that the gene transfer from g2 to g6 in the embedded gene tree in F (γ, F) creates a
new gene in a distant species tree branch. This new gene is still considered to be a node in the
embedded gene tree associated with branch < R,F >.

Using the forest representation, the likelihood of the reconciliation can be decomposed into

the product of probabilities for all the embedded subtrees, multiplied by a coefficient, W (γ),

describing number of ways to connect these embedded subtrees:

LL(γ) = W (γ)
∏

s∈VS\ρ

∏
f∈F (γ,s)

LG(γf , s). (5.13)

LG(γf , s) is the probability that a gene copy from p(s) results in the embedded gene tree

γf when the timeline reaches s. W (γ) represents the number of ways to obtain the same

reconciliation γ when connecting the leaves of all gene subtrees embedded in species tree

branches, except leaf species, to the roots of gene subtrees embedded in other species tree

branches.

Given an embedded gene subtree, there may be several ways to connect it to gene subtrees

87

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

in descendant forests in the same reconciliation. (Note that because of transfers, descendant

forests may not be in descendant species.) For example, the gene subtree embedded in

species tree branch (α, β) of Fig 5.2(a) results in the same reconciliation solution as the

gene subtree embedded in species tree branch (α, β) of Fig 5.2(b). The number of ways to

connect topology Tf to subtrees rooted at its leaves is equivalent to the number of ways of

reordering the leaves of Tf such that the new tree T ′f represents the same reconciliation as

f . No known closed-form formula exists to calculate W (γ). Instead, this value is calculated

using a recursive approach (Arvestad et al., 2009).

Figure 5.2: Two isomorphic embedded gene trees in the species tree branch (α, β) are equivalent
and represent the same reconciliation solution.

5.2.1. Calculating LG(γ, s)

LG(γf , s) can be calculated by further decomposition:

LG(γf , s) = P (γf |Tf , ~r)P (Tf |kf)P (kf |~r, ts). (5.14)

From right to left, P (kf |~r, ts) is the probability of observing a gene tree with kf genes,

independent of the topology of the tree; P (Tf |kf) is the probability of observing topology

Tf , among all possible topologies with kf leaves; and P (γf |Tf , ~r) is the probability of the

given kf leaves corresponds to a specific series of duplication and transfers.

88

5.2. FOREST REPRESENTATION OF L

I explain each term, in detail, in the following three paragraphs. Under different assumptions,

different event models may be applied to calculate the third term in the equation, but the

first two terms are the same for different scenarios.

1. Estimating P (γf |Tf , ~r): In this case, we need to consider the probability of a particular

series of duplications and transfers associated with this reconciliation γf . The probability

that a node is gained by duplication is rD/(rD + rT), similarly, the probability that a gain

event is a transfer is rT/(rD + rT). Therefore, the probability of a particular series of ND

duplications and NT transfers is:

P (γf |Tf , ~r) =
rNDD rNTT

(rD + rT)ND+NT
, (5.15)

where Nε represent the number of events of type ε in this embedded gene tree.

2. Estimating P (Tf |kf): The value of P (Tf |kf) must account for the fact that the given

kf−1 gain events may occur in different gene copies resulting in different gene tree topologies.

For example, three gain events can result in 6 unlabeled topologies with 4 leaves (Figure 5.3).

All of these topologies are equally probable. In addition, given a specific embedded gene

tree topology Tf , among all the topologies of equal size, some will have the same shape

as Tf , but with different leaf ordering. These topologies should also be included in the

probability. For example, among rooted trees with 4 leaves, 4 topologies have the same

shape, and 2 topologies have a different shape (Figure 5.3). The probability of producing a

given unlabeled tree topology, P (Tf |k), can not be represented with a closed-form formula.

This value can be calculated by an iterative procedure, described by Harding (1971) and

reproduced here. To simplify the equation, let h(Tf) represent the probability P (Tf |kf). Let

Tv be a subtree rooted at v and let δ(g1, g2) represent an indicator function such that

δ(g1, g2) =

{
1, ifTg1 and Tg2are isomorphic,

0. otherwise
(5.16)

Then h(T) can be calculated using a recursive function:

h(Tg) =
2δ(l(g),r(g))

|L(Tg)|
h(Tl(g))h(Tr(g)). (5.17)

89

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

Figure 5.3: All possible rooted trees with four leaves that arose through three gain events. There
is only one possible position for the first gain event to occur. Two branches are possible sites for
the second gain event to occur, and three for the third gain. In general, the total possible number
of unlabeled trees with k leaves produced by (k − 1) gain events is (k − 1)!

3. Estimating P (kf |ts, ~r): The term P (k|ts, ~r) is the probability of observing k gene copies

after a time interval, ts. One thing to note is that an embedded gene tree with kf leaves

does not necessarily mean exactly kf − 1 gain events occurred; there can be many scenarios

that lead to kf copies. P (kf |ts, ~r) must account for all combinations of NB gains and NL

losses such that 1 + NB − NL = kf . The value of this probability can be estimated for the

Constant event rate process and for the Birth-Death event process.

First, we discuss how this is estimated for Constant event process. Assuming the event rate

is constant throughout the species tree, ND, NT , and NL all follow a Poisson distribution.

Further, as the sum of two Poisson distributed random variables also follows a Poisson

distribution, ND +NT can also be modelled by a Poisson distribution with mean (rD +rT)ts.

The distribution of kf − 1 = ND + NT − NL is the distribution of the difference between

two Poisson distributions. An expression for this distribution, denoted S(X|λ, µ), where X

is a random variable with a probability distribution that is equal to the difference between

two Poisson distributions, Poi(λ) and Poi(µ). This distribution has been derived by Skellam

(1946). Thus, the term P (kf |ts, ~r) for the constant rate process is:

P (kf |ts, ~r) = S(kf − 1|(rT + rD)ts, rLts). (5.18)

Under the Birth-Death process, the term P (kf |ts, ~r) can be estimated using Eq. 5.12, the

modified geometric distribution derived by Kendall (1949):

P (kf |ts, ~r) = [1− P (0|ts)](1− ηt)ηk−1
t , (5.19)

90

5.3. EVENT NUMBER REPRESENTATION OF γ

where ηt =
rLe

(rB−rL)t − rL
rBe(rB−rL)t − rL

when rB 6= rL.

Combining all three terms, we obtain for the Constant model:

LCLG (γf , s) =
rNDD rNTT

(rD + rT)ND+NT
P (Tf |k)S(k − 1|(rT + rD)ts, rLts). (5.20)

For the Birth-Death model, the likelihood is:

LBDLG (γf , s) =
rNDD rNTT

(rD + rT)ND+NT
P (Tf |k)[1− P (0|t)](1− ηt)η

kf−1
t . (5.21)

5.3. Event Number Representation of γ

Sometimes calculating the likelihood of the exact subtree annotated with events is too com-

plicated. An alternative strategy is to use the likelihood of the number of events that occurred

in a species branch. The event number approach simply estimates the probability that Nε

events of type ε occurred in a species tree branch,

Under this likelihood representation, the probability of the reconciliation (Eq. 5.4) can be

decomposed into the product of the likelihood of the events on each species tree branch:

LN(γ) =
∏

s∈VS\ρ

LS(γ, s), (5.22)

where LS(γ, s) describes the probability of the corresponding gene events in the species tree

branch (p(s), s).

This expression is simpler, compared to the likelihood of observing the forest (Eq.5.13),

for two reasons. First, this expression of likelihood can be derived directly from the event

process, instead of taking the product required in the derivation of LG. Second, as only the

number of events are considered in this likelihood expression, the embedded subtree topology

is not considered.

This approach is used in the DrML software package (Górecki and Eulenstein, 2014) for

91

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

reconciliation with duplication events only, which seeks a reconciliation that maximizes:∏
s∈VS\ρ

LNS (γ, s), (5.23)

where

LNS (γ, s) = P (ND|rD, ts), (5.24)

the probability that ND duplications occurred in a species tree branch, given the branch

length, ts, and duplication event rate rD. This model does not capture the probability of a

specific embedded gene tree, but rather captures the probability that ND gene duplications

occurred between two speciations. Only duplications are considered in this likelihood in

DrML.

Here, I derive estimates of the likelihood for the DTL event model by calculating the prob-

ability that ND duplications, NT transfers, and NL losses occurred on a species tree branch

of length ts, given event rates ~r:

LNS (γ, s) = P (ND, NT , NL|~r, ts). (5.25)

I derive two different estimates: one for the probability under the Constant Event model,

LCNS , and the other under the Birth-Death process, LBDNS .

5.3.1. Constant Event Process

In the three event model, since all three gene event rates are independent throughout the

species tree, the likelihood can be expressed as a product:

P (ND, NT , NL|~r, ts) =
∏
ε

P (Nε|rε, ts). (5.26)

Under the assumption that the presence of more gene copies in a genome does not increase

the probability of the next gene event, the probability that Nε events occur, can be modeled

by a Poisson distribution:

P (Nε|rε, ts) =
e−rεts(rεts)

Nε

Nε!
. (5.27)

92

5.3. EVENT NUMBER REPRESENTATION OF γ

Substituting Eq.5.27 into Eq. 5.26, we obtain

LCNS (s) =
e−rDts(rDts)

ND

ND!

e−rT ts(rT ts)
NT

NT !

e−rLts(rLts)
NL

NL!
. (5.28)

5.3.2. Birth-Death Process

Under the Birth-Death process, as transfers and duplications are both processes that increase

the copy number, we consider them both to be birth events. Therefore, the estimation of the

probability P (ND, NT , NL|~r, ts) can be done in two steps. First, we calculate the probability

of P (NB, NL|~r, ts), where NB is the sum of NT and ND. Next, we adjust the probability for

different combinations of NT and ND.

First, I derive the expected number of birth and death events over a time interval, t, which

provides a result that we use later in this section. As the event rate depends on the cur-

rent gene family size, the expected number of birth NB(t) and death NL(t) events can be

estimated using a pair of differential equations:

dNB

dt
= rB(1 +NB −NL) (5.29)

dNL

dt
= rL(1 +NB −NL). (5.30)

Solving this coupled differential equation and plugging in the initial conditions (NB(0) =

0, NL(0) = 0), we obtain expressions for the expected number of birth and death events at

time t:

NB(t) =
rb

rB − rL
(exp [(rB − rL)t]− 1), (5.31)

NL(t) =
1

rB − rL
(exp [(rB − rL)t]− 1). (5.32)

Estimating the probability that exactly NB births and NL deaths occurred is much more

complicated, as I explain here. Let PNB ,NL(t) denote the probability that NB birth events

and NL death events occurred during a time interval t. Suppose NB births and NL deaths

occur prior to time t + ∆t, where ∆t denote a small increment of time. This can occur in

three ways:

1. NB−1 births and NL deaths occur prior to t and one more birth occurs between t and

93

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

t+ ∆t;

2. NB births and NL − 1 deaths occur prior to t and one more death occurs between t

and t+ ∆t;

3. NB births and NL deaths occur prior to t and no events occur between t and t+ ∆t.

PNB ,NL(t) can then be decomposed into a sum of the probabilities of these three scenarios.

In each case, the probability of the scenario is the product of the probability that a certain

number of events occurred prior to time t and the probability of the event (if any) that

occurred between t and t + ∆t. We assume that the probability of more than one event

occuring in a small time interval ∆t is vanishingly small. Note that the probability of an

event occurring between t and t+ ∆t depends on n(t), the number of gene copies at time t,

since each copy can experience an event. Thus, the probability of an event of type ε between

t and t + ∆t is rε∆t. Recall, from Eq. 5.6, n(t) = NB(t) − NL(t) + 1, assuming there was

one gene copy at time t = 0.

The probabilities for the three scenarios are:

1. NB−1 copies were gained and NL copies were lost prior to time t. Thus, the population

size at time t is NB −NL. One gain occurs during ∆t, so the probability is:

PNB ,NL(t+ ∆t) = PNB−1,NL(t)(NB −NL)rB∆t. (5.33)

2. NB copies were gained and NL−1 copies were lost prior to time t. Thus, the population

size at time t is NB −NL + 2. A loss occurs during ∆t, and the probability is:

PNB ,NL(t+ ∆t) = PNB ,NL−1(t)(NB −NL + 2)rL∆t. (5.34)

3. NB copies were gained and NL copies were lost prior to time t. Thus, the population

size at time t is NB−NL+1. No event occurs during ∆t. The probability of any event

occurring between t and t + ∆t is (NB − NL + 1)(rB + rL)∆t; the probability of no

event is thus 1 minus this value. Therefore, the probability is:

PNB ,NL(t+ ∆t) = PNB ,NL(t)[1− (NB −NL + 1)(rB + rL)∆t]. (5.35)

94

5.3. EVENT NUMBER REPRESENTATION OF γ

Combining the probabilities of all three scenarios, we obtain:

PNB ,NL(t+ ∆t) =PNB−1,NL(t)(NB −NL)rB∆t

+ PNB ,NL−1(t)(NB −NL + 2)rL∆t

+ PNB ,NL(t)[1− (1 +NB −NL)(rB + rL)∆].

(5.36)

The above equation becomes a differential equation when ∆t→ 0, yielding:

dPNB ,NL(t)

dt
=PNB−1,NL(t)(NB −NL)rB

+ PNB ,NL−1(t)(NB −NL + 2)rL

− PNB ,NL(t)(1 +NB −NL)(rB + rL)

(5.37)

One approach to solving this equation is to use Komogorov’s Equation to derive the PNB ,NL(t)

theoretically. However, as the number of events, NB and NL, and the time t, are not bounded

in this equation, deriving a closed form formula for infinite number of states is intractable.

Instead, we introduce φ(NB, NL, t), a probability generating function (PGF) with two vari-

ables for the probability PNB ,NL(t):

φ(NB, NL, t) =
∞∑
i=0

∞∑
j=0

N i
BN

j
LPi,j(t). (5.38)

Attempting to obtain a closed-form expression for the function φ, a series of algebraic ma-

nipulations (see Appendix 8.4) shows that solving the PGF is equivalent to solving a set of

ordinary differential equations (ODE):

dt

1
=

dNB

−NBβ
=

dNL

−NLβ
=
dφ

φβ
, (5.39)

where β = rB(NB − 1) − rL(NL − 1). These equations can be reordered and simplified to

obtain a second order ODE to solve for NB (see Appendix 8.4):

d2NB

dt2
+ (2λNB + µ− λ)

dNB

dt
= 0. (5.40)

Lacking more restrictions on the problem, a tractable solution of the PGF is hard to find.

Using a third approach, I investigated the possibility that PNB ,NL(t) could be approximated

95

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

using a parametric distribution. As the gene number after time t follows a modified geometric

distribution (Eq. 5.12) (Kendall, 1949), the difference between the number of birth events

and the number of death events should follow a modified geometric distribution. The waiting

times of birth and death events are sampled from the same exponential distribution, and

birth and death events occur with the probabilities that are proportional to the ratio between

rB and rL. Therefore, I hypothesize that the distribution that describes NB and NL are two

similar distributions, and that the difference between those two random variables could be

approximated by a geometric distribution. It is important to note that the difference between

two geometric distribution does not follow a geometric distribution. This suggests that the

number of birth events and the number of death events do not follow geometric distributions.

However, as the simulation analysis below shows, the number of births and deaths are often

independent and may be approximated by two geometric distributions.

To investigate this approximation, I simulated a Birth-Death process where events occur at

a rate r = rB + rL over a time interval, t. The initial population size is n(0) = 1. At each

iteration, a waiting time, tw, is sampled from an exponential distribution, Exp(rn(t)) and the

elapsed time is incremented by tw. If the elapsed time exceeds a termination threshold, the

simulation terminates. Otherwise, a birth (respectively, death) event occurs with probability

rB/(rB + rL) (respectively, rL/(rB + rL)) and the number of gene copies is incremented

(respectively, decremented). The event and the current elapsed time are recorded.

This process was repeated for 100 trials, for various values of rB and rL (both from 0.005

to 0.02, incremented by 0.005), with termination time t was set to 100. For each event

rate combination, the number of birth and death in 100 gene families was collected and

displayed as histogram (red histogram in Figure 5.4, 5.5). The distribution was compared

with an estimated distribution, which is drawn as geometric distribution calculated from

pB, pD using Equations 5.47 and 5.48 (green histogram in Figure 5.4, 5.5). The comparison

shows that under the assumptions that the event rates are rare, and if the number of events

is a small number on a single species tree branch, the value of PB,D(t) can be approximated

by two independent geometric distribution. Here the most number of events for a single

species tree branch is 15, which is over the assumption of events are rare for a single species

tree branch.

In order to assess how well a geometric distribution approximates PNB ,NL(t), I compared the

birth number and death number from the simulation with the the two geometric distributions

with parameters pB and pL. These parameters were estimated from the expected number of

96

5.3. EVENT NUMBER REPRESENTATION OF γ

Figure 5.4: Comparison of simulated and estimated number of birth events for all 16 event rate
combinations. The simulated number of events are shown in histogram and the line represent the
estimated number using standard geometric distribution.

97

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

Figure 5.5: Comparison of simulated and estimated number of death events for all 16 event rate
combinations. The simulated number of events are shown in histogram and the line represent the
estimated number using standard geometric distribution.

98

5.4. LIKELIHOOD AND PARSIMONY

birth and death events given in Eq.5.31 and Eq.5.32:

pB =
1

NB(t) + 1
(5.41)

pL =
1

NL(t) + 1
. (5.42)

The comparison of the theoretical geometric distribution and the histogram of the number of

simulated events shows that the distributions have similar shapes. These simulations always

exhibit shapes similar to geometric distributions.

The above equations leads to an approximation of PNB ,NL(t), if we make the further assump-

tion that NB and NL are independent:

PNB ,NL(t) ≈ PNB(t)PNL(t) (5.43)

≈ (1− pB)NB(1− pL)NL . (5.44)

This probability must be modified to accommodate the specific set of duplications and trans-

fers implied by the reconciliation. (In the event number model, we consider a set, rather than

a sequence of duplication and transfer events.) In the case where NB birth events occurred,

the probability that ND of them are duplications and NT = NB −ND of them are transfers

is: (
NB

ND

)
rNDD rNTT

(rD + rT)NB
(5.45)

Therefore, the likelihood function can be approximated with:

LBDNS (s) = (1− pB)ND+NT pB(1− pL)NLpL

(
ND +NT

NT

)
rNTT rNDD

(rT + rD)NT+ND
, (5.46)

where pB and pL are calculated by plugging Eq. 5.31 and Eq. 5.32 into Eq. 5.41 and Eq. 5.42,

yielding

pB =
rB − rL

rBe(rB−rL)ts − rL
(5.47)

pL =
rB − rL

rBe(rB−rL)ts − 1 + rB − rL
. (5.48)

99

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

5.4. Likelihood and Parsimony

Recall that our goal is to consider whether there are conditions under which the most likely

reconciliation is also the most parsimonious reconciliation.

In the previous section, I derived expressions for the likelihood of a lineage-induced recon-

ciliation (γs or γf) under four scenarios (LBDLG ,LBDNS ,LCLG ,LCNS). Here, for each scenario,

• I first derive an expression for the likelihood for the entire reconciliation, L(γ).

• Next, I obtain a simpler estimate for the log likelihood of L(γ), based on various

simplifying assumptions.

• Finally, I compare the log likelihood with the maximum parsimony cost function and

ask under what conditions the two could be equivalent.

For all four scenarios, I assume that all species tree branch lengths are of the same, constant

length, t̂. Additional, scenario-specific assumptions are introduced in the following sections.

Our goal is to determine whether it is possible to select costs such that the most parsimonious

solution is also the most likely solution. Thus, we seek the costs such that:

argminγ∈ΓC(ND, NT , NL) = argmaxγ∈ΓL(γ) (5.49)

where

C(ND, NT , NL) = ND(γ) · CD +NT (γ) · CT +NL(γ) · CL (5.50)

In the following sections, I will show that the log likelihood function of the four scenarios

are all of a generic form:

L =

 ∑
ε∈{T,D,L}

Nε · fε(~r, t̂)

+ g(ND, NT , NL) +K, (5.51)

where K is a constant that only depends on ~r and t̂, but not on the reconciliation γ. This

constant can be neglected in the optimization criteria as it is the same for all solutions.

Further if Cε = −fε(~r, t̂), and g(ND, NT , NL) can be ignored, then the two optimization

criteria are equivalent. We then consider the conditions under which g can be ignored for

the four scenarios.

100

5.4. LIKELIHOOD AND PARSIMONY

Calculating Lineage Log Likelihood (LL)

Recall that in the lineage model, the likelihood of reconciliation γ is:

LL(γ) = W (γ)
∏

s∈VS\ρ

∏
f∈F (γ,s)

LG(γf , s). (5.52)

Substituting the expression for LG(γf , s) given in Eqn. 5.14 yields:

LL(γ) = W (γ)
∏
s

∏
f∈F (γ,s)

P (Tf |k)P (k|~r, ts)P (γf |Tf) (5.53)

Figure 5.6: The four cases based on the assumption that the embedded gene subtrees have at most
3 leaves.

Under the assumption that the event rates are low, we further assume that only the embedded

gene subtrees with at most 3 leaves have a likelihood that is substantially greater than zero.

This suggests that there are four possible family sizes (kf ∈ {0, 1, 2, 3}) for any embedded

gene subtree in a forest. In Figure 5.6, these correspond to (case 1) a gene tree with a

single branch ending at the speciation; (case 2) a gene tree with a single gain, resulting in

two leaves; (case 3) a gene tree with two gains, resulting in three leaves; and (case 4) a

single branch ending in a loss. For each of these, there is only one tree shape. Therefore,

P (Tf |kf) = 1. Assuming the value of W (γ) is kept constant among different solutions, and

therefore may be negligible, the likelihood function is simplified to the following form:

LL(γ) =
∏
s

∏
f∈F (γ,s)

P (k|~r, ts)P (γf |Tf) (5.54)

101

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

Birth-Death Model :

Combining Eq. 5.54 with the approximation for the Birth-Death Model given in Eq. 5.21,

we obtain:

LBDL(γ) =
∏
s

∏
f∈F (γ,s)

[1− P (0|~r, ts)](1− ηt)η
kf−1
t

r
ND(f)
D r

NT (f)
T

(rD + rT)ND(f)+NT (f)
, (5.55)

where Nε(f) is the number of events of type ε in the embedded subtree, γf . P (0|~r, ts) and

ηt are defined in Eq. 5.9 and Eq. 5.11; both quantities depend only on ~r and ts. Given that

P (0|~r, ts) and ηt are independent of f and s, under the assumption that ts = t̂, the first

term, ∏
s

∏
f∈F (γ,s)

[1− P (0|~r, ts)](1− ηt)η
kf−1
t , (5.56)

can be simplified and the product can be expressed as an exponent:

[1− P (0|~r, t̂)]
∑
s |F (γ,s)|(1− ηt)

∑
s |F (γ,s)|η

∑
s

∑
f (kf−1)

t . (5.57)

The exponents in this term,
∑

s |F (γ, s)| and
∑

s

∑
f (kf − 1), represent the total number of

birth events and the total number of gene subtrees in all species branches, respectfully. The

total number of birth events is easy to calculate:∑
s

∑
l

(kf − 1) = ND(γ) +NT (γ). (5.58)

The induced forests for a given reconciliation consist of embedded trees wherein the roots

are bifurcations resulting from speciation events (i.e., “speciation nodes”) and internal nodes

arose via duplications or transfers. Every speciation node is the root of two embedded gene

trees, one in each of forest associated with the two branches descending from that species.

Therefore, the number of embedded trees is twice the number of speciation nodes in the

reconciled gene tree (e.g. Figure 5.7). Since every gene loss adds an internal node in the

reconciled tree, the total number of internal nodes in γ is (|VG| − 1)/2 +NL(γ). Since every

internal node in TG arose via speciation, duplication or transfer, the number of speciation

nodes is equal to the number of internal nodes in the reconciled gene tree less the number of

duplication and transfer events associated with γ. The total number of internal gene nodes

is calculated as:

Ninternal =
|VG| − 1 + 2NL

2
(5.59)

102

5.4. LIKELIHOOD AND PARSIMONY

Figure 5.7: The gene tree, reconciliation γ, and the gene tree embedded in the species tree. The
total number of nodes in the reconciliation γ is no longer |VG|, which is the number of nodes of the
gene tree. The total number of gene nodes in a reconciliation is: |VG|+ 2NL. In this reconciliation,
the “speciation nodes” are: g1, gl, and g3, which are roots of two embedded gene trees. g2, g4 arose
through gene duplication event, and g5 has a transfer event. The total size of the reconciliation is
13, which is calculated from |VG|+ 2NL. The number of forests in the embedded species tree is 6.
This is consistent with the conclusion that the number of forests is twice the number of “speciation
nodes”.

and as the internal nodes either encountered a gain event or a speciation event. The number

of “normal” internal nodes is:

Nnormal = Ninternal −ND −NT (5.60)

=
|VG| − 1 + 2NL

2
−ND −NT (5.61)

Because every “normal” gene node creates towo embedded subtree via speciation event, the

total number of gene subtrees is:∑
s

|F (γ, s)| = |VG|+ 2NL(γ)− 2ND(γ)− 2NT (γ)− 1. (5.62)

Plugging Eq. 5.58 and Eq. 5.62 into Eq. 5.57, the entire first term of Eq. 5.55 becomes:

[
[1− P (0|~r, t̂)](1− ηt)

]|VG|+2NL(γ)−2ND(γ)−2NT (γ)−1
η
ND(γ)+NT (γ)
t (5.63)

103

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

The second term in Eq.5.55,

∏
s

∏
f∈F (γ,s)

r
ND(f)
D r

NT (f)
T

(rD + rT)ND(f)+NT (f)
(5.64)

can be simplified by replacing a product with a sum in the exponent, yielding

r
∑
s

∑
f ND(f)

D r
∑
s

∑
f NT (f)

T

(rD + rT)
∑
s

∑
f (ND(f)+NT (f))

. (5.65)

We further simplify by observing that

Nε(γ) =
∑
s∈VS

Nε(s) =
∑
s∈VS

∑
f∈F (γ,s)

Nε(f). (5.66)

Substitution the left hand side for the sums in Eq.5.65, we obtain

r
ND(γ)
D r

NT (γ)
T

(rD + rT)ND(γ)+NT (γ)
. (5.67)

Putting Eq.5.63 and Eq.5.67 together, we obtain:

LBDL =
[
[1− P (0|~r, t̂)](1− ηt)

]|VG|+2NL(γ)−2ND(γ)−2NT (γ)
η
ND(γ)+NT (γ)
t

r
ND(γ)
D r

NT (γ)
T

(rD + rT)ND(γ)+NT (γ)
.

(5.68)

Taking a log on both side yields the log likelihood:

log(LBDL) = (|VG|+ 2NL(γ)− 2ND(γ)− 2NT (γ)) log([1− P (0|~r, t̂)](1− ηt))

+ (ND(γ) +NT (γ)) log(ηt) +ND(γ)× (log(rD)− log(rD + rT))

+NT (γ)× (log(rT)− log(rD + rT)).

(5.69)

Assembling terms associated with each event type, we obtain

log(LBDL) = ND(γ)× (log(ηt) + log(rD)− log(rD + rT)− 2 log([1− P (0|~r, t̂)](1− ηt)))

+NT (γ)× (log(ηt) + log(rT)− log(rD + rT)− 2 log([1− P (0|~r, ts)](1− ηt))

+NL(γ)× (2 log([1− P (0|~r, ts)](1− ηt))) +K,

(5.70)

where K is a constant term that does not depend on Nε.

104

5.4. LIKELIHOOD AND PARSIMONY

Conveniently, this likelihood function does not contain an interaction term that depends on

multiple event types. In fact, the weight for each event is very straightforward to calculate:

CD = −(log(ηt) + log(rD)− log(rD + rT)− 2 log([1− p0(t̂)](1− ηt))) (5.71)

CT = −(log(ηt) + log(rT)− log(rD + rT)− 2 log([1− p0(t̂)](1− ηt))) (5.72)

CL = −(2 log([1− p0(t̂)](1− ηt))) (5.73)

When Cε are set according to the event rates, and the assumption that events are rare

implies that no embedded subtree has more than 3 leaves, then the solution that maximum

likelihood also has the minimal cost.

Constant Event Model :

The probability of observing kf gene copies is equivalent to the probability of observing a

combination of gains and losses, such that NB − NL = kf − 1. Here we assume that event

rates are sufficiently low that no embedded gene tree in F (γ, s) contains both gain and loss

events. Each forest F (γ, s) can be partitioned into two types: F (γ, s)+ for cases 1, 2, 3 and

F (γ, s)− for case 4.

The inner product in Equation 5.54 can be split into two products:

LCL(γ) =

 ∏
s∈VS\ρ

∏
f∈F (γ,s)+

P (k|~r, t̂)P (γf |Tf)

 ∏
s∈VS\ρ

∏
f∈F (γ,s)−

P (k|~r, t̂)P (γf |Tf)

 , (5.74)

allowing us to use separate expressions for the probability of the case where NL = 0 and

NB ≥ 0 and the case where NB = 0 and NL > 0.

In Equation 5.20, we obtained an expression for P (k|~r, t̂) using the Skellum distribution,

which is the probability distribution of the net number of gains and losses modeled as the

difference between two Poisson distributions. This expression accounts for all possible com-

binations of births and deaths, including event histories that are not parsimonious. Under

the restricted assumption that gain and loss events do not occur together in an embedded

subtree, a Skellum distribution is not required. Therefore, this probability can be estimated

by Poisson distribution.

In the first term, the probability P (kf |~r, t̂) represents the probability of observing ND +NT

105

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

gain events, which can be modeled by a Poisson distribution with rate (rD + rT)t̂.

P (k|~r, t̂) =
e−(rD+rT)t̂((rD + rT)t̂)(ND(f)+NT (f))

(ND(f) +NT (f))!
. (5.75)

Applying this approximation to the first term in Equation 5.74 and plugging in Equation

5.15 results in the first term:

∏
s∈VS\ρ

∏
f∈F (γ,s)+

e−(rD+rT)t̂((rD + rT)t̂)(ND(f)+NT (f))

(ND(f) +NT (f))!

r
ND(f)
d r

NT (f)
T

(rd + rT)ND(f)+NT (f)
. (5.76)

This term can be merged by canceling out the term (rd + rT)ND(f)+NT (f), yielding:

∏
s

∏
f∈F (γ,s)+

e−(rD+rT)t̂(rDts)
ND(f)(rT t̂)

NT (f)

(ND(f) +NT (f))!
. (5.77)

Plugging in Equation 5.66, the entire first term becomes:

e−(rD+rT)t̂(rD t̂)
ND(γ)(rT t̂)

NT (γ)∏
s

∏
f∈F (γ,s)(ND(f) +NT (f))!

. (5.78)

When γf ∈ F (γ, s)−, P (kf |~r, t̂) is the probability that NL(f) ≥ 1 or 1− e−rL t̂. And because

there is no gain events in these lineages, the value of P (γf |Tf) is always 1.

Therefore, the second term of Equation 5.74,∏
f∈F (γ,s)−

P (k|~r, t̂)P (γf |Tf), (5.79)

can be simplified to

(1− e−rL t̂)NL(γ). (5.80)

Combining the first and second term, the lineage likelihood function for the reconciliation

under Constant Event Model is:

LCL = (1− e−rL t̂)NL(γ) e
−(rD+rT)t̂(rD t̂)

ND(γ)(rT t̂)
NT (γ)∏

s

∏
f∈F (γ,s)(ND(f) +NT (f))!

. (5.81)

106

5.4. LIKELIHOOD AND PARSIMONY

The log likelihood is easily calculated:

log(LCL) = ND(γ)× log(rD t̂)

+NT (γ)× log(rT t̂)

+NL(γ)× log(1− e−rL t̂)

−
∑
s

∑
f∈F (γ,s)

log((ND(f) +NT (f))!) +K

(5.82)

The term log((ND(f) + NT (f))!) is an increasing function with positive acceleration as

ND(f) +NT (f) increases (Fig 5.8a).

This suggests that for a fixed number of gains (NB = ND +NT), the value of∑
s

∑
f∈F (γ,s)

log((NB(f)!)

is minimized when the variance of all gain events is minimized. In other words, if the NB

gain events are evenly distributed among all species tree branches, then this value would

be substantially smaller. For example, given a species tree with 10 branches, if there is

one duplication per branch, the value would be 10 ∗ log(1) = 0, compare to 10 duplications

on one branch: log(10!) = 15. Therefore, given a species tree with k branches, and mean

number of events per branch rB t̂ is small, if we assume the event rate is small enough that

the probability to have many event occurring in one branch is sufficiently small, then the

term
∑

s

∑
f ∈ F (γ, s) log(NB(f)!) can be neglected.

When deriving an expression for LCL in the beginning of this section, we introduced the

simplifying assumption that the embedded gene subtrees are only size 3 or less, then the

number of duplications and transfers, combined, cannot exceed 2. This leads to this term to

be small and may also be neglected. If we further assume that the rB is low enough so that

the probability of more than one gain event per embedded gene tree is negligible, the term

log(NB!) = log(0!) = log(1!) = 0. Then the entire term can be ignored in the final likelihood

function.

Under this assumption, the cost of event type ε can be set to −log(rεt̂) so that the solution

107

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

that maximizes the likelihood also minimizes the cost.

CD = log(rD t̂) (5.83)

CT = log(rT t̂) (5.84)

CL = log(1− e−rL t̂) (5.85)

● ●

●

●

●

●

●

●

●

●

2 4 6 8 10

0
2

4
6

8
10

12

X

Lo
g(

X
!)

(a) log(x!)

5 10 15 20

−
80

−
60

−
40

−
20

0

Total Duplication Number

Li
ke

lih
oo

d
of

 D
up

lic
at

io
n

−
−
−

1 D per branch
2 D per branch
All on one branch

(b) ND log(rD)−
∑
s log(x!)

Figure 5.8: (a) The log(x!) function. (b) The likelihood value as a function of gain event. Blue
represents the condition where each branch may have 0 or 1 gain event; red represents the condition
where each branch may have 0 or 2 gain events; black represents the condition where all gain occur
in one species tree branch.

108

5.4. LIKELIHOOD AND PARSIMONY

Calculating Log Likelihood for Event Number Representation(LN)

The likelihood function for event numbers simply estimate the probability of NT transfers,

ND duplications, and NL losses associated with reconciliation γ.

Birth-Death Model :

Substituting the expression for LBDNS in Eqn. 5.22 with Eqn. 5.46 result in:

LBDN =
∏
s

(1− pB)ND(s)+NT (s)pB(1− pL)NL(s)pL

(
ND(s) +NT (s)

NT (s)

)
r
NT (s)
T r

ND(s)
d

(rT + rD)NT (s)+ND(s)
,

(5.86)

where

pB =

(
rb

rB − rL
(exp [(rB − rL)t]− 1) + 1

)−1

(5.87)

pL =

(
1

rB − rL
(exp [(rB − rL)t]− 1) + 1

)−1

. (5.88)

When ts = t̂, pL and pB are independent of s. Therefore, this equation simplifies to: LBDN =

(1− pB)ND(γ)+NT (γ)pB(1− pL)NL(γ)pL
r
NT (γ)
T r

ND(γ)
d

(rT + rd)NT (γ)+ND(γ)

∏
s

(
ND(s) +NT (s)

NT (s)

)
, (5.89)

The log likelihood is:

log(LBDN) = ND(γ)× (log(
rD

rT + rD
) + log(1− pB))

+NT (γ)× (log(1− pB) + log(
rT

rT + rD
))

+NL(γ)× log(1− pL)

+
∑
s

log

(
ND(s) +NT (s)

NT (s)

)
+K,

(5.90)

The term

g(ND, NT , NL) =
∑
s

log

(
ND(s) +NT (s)

NT (s)

)
(5.91)

may be ignored when the binomial coefficient is equal to a constant on all species tree

109

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

branches. This will occur whenever ND(s) = 0 or NT (s) = 0. This assumption is a reasonable

assumption as lateral gene transfer rate in prokayotes is estimated to be a major force of

genetic variation (Treangen and Rocha, 2011) and gene duplication may occur more often in

eukaryotes, suggesting that in different sections of the species tree, the species tree branches

may be dominated by either transfers or duplications, but not both. In this case, when

CD = − log(
rD

rT + rD
)− log(1− pB) (5.92)

CT = − log(1− pB)− log(
rT

rT + rD
) (5.93)

CL = − log(1− pL), (5.94)

the solution that maximizes the likelihood also minimizes the cost.

Constant Event Model :

Substituting LCNS in Eqn. 5.22 with Eqn. 5.28 results in:

LCN =
∏
s

e−rD t̂(rD t̂)
ND(s)

ND(s)!

e−rT t̂(rT t̂)
NT (s)

NT (s)!

e−rL t̂(rLt̂)
NL(s)

NL(s)!
(5.95)

=
e−rD t̂(rD t̂)

ND(γ)e−rT t̂(rT t̂)
NT (γ)e−rL t̂(rLt̂)

NL(γ)∏
sND(s)!NT (s)!NL(s)!

(5.96)

Calculating the log likelihood yields:

log(LCN) = ND(γ)× log(rD t̂)

+NT (γ)× log(rT t̂)

+NL(γ)× log(rLt̂)

−
∑
s

log(ND(s)!)−
∑
s

log(NT (s)!)−
∑
s

log(NL(s)!) +K,

(5.97)

Since we assume that all events are independent and behave in the same way, it is sufficient

to analyze one event type. Here I use duplication as an example. The associated likelihood

of duplication is ND log(rD t̂) −
∑

s log(ND(s)!), where rD t̂ represent the mean number of

duplication in a single species tree branch, ND represents the total number of duplications

and ND(s) represents the number of duplications that occurred in species tree branch s.

This term also contains a log(x!) term, which was already discussed in constant model for

110

5.4. LIKELIHOOD AND PARSIMONY

the forest representation. Similarly, if the duplication events distributed in the species tree

branch evenly, the value of
∑

s log(ND(s)!) would be quite small.

As an example, we consider a species tree with 100 branches where rB t̂ = 0.1 and the

number of gains range from 1 to 20. We can calculate the value of the likelihood of gain for

the following three cases and display the result in Figure 5.8b: 1) each branch may have 0

or 1 gain event (blue line), 2) each species tree branch may have either 0 or 2 gain events

(red line), 3) all gain events occur in a single species tree branch (black line). This suggests

that with low average number of events per branch, and evenly distributed duplication event

in the species tree, the value of ND log(rD t̂) −
∑

s log(ND(s)!) can be linearly dependent

on the number of duplication events. The coefficient of the linear function can be directly

calculated: log(rD t̂).

Under these assumptions, the maximum likelihood and maximum parsimony optimization

criteria are equivalent when

CD = − log(rD t̂) (5.98)

CT = − log(rT t̂) (5.99)

CL = − log(rLt̂). (5.100)

As the MP optimization criteria assumes that the least cost to explain events is the best

solution. It was a popular belief that the this optimization criteria is appropriate for situa-

tions where event rates are low. This study, I derived likelihood functions for reconciliation

solutions under different assumptions of how events occurs and suggested the conditions in

which these likelihood are appropriate. The comparisons of these likelihood functions and

the MP criteria, provide more concrete evidence on the range of event rates that are consid-

ered ”low”. This would facilitate the users when they apply reconciliation software in real

data sets and assess if the results are trustworthy.

However, in many cases, these assumptions may not be appropriate. For example, the species

tree branches may not be the same length; the gene tree may be much larger than species

tree, indicating rapid expansion on some branches, which suggests that some embedded

subtree may have more than 4 leaves; or it is hard to estimate the event rates from limited

data set. In these cases, the entire reconciliation result obtained by MP model may not have

strong statistical support, but may still contain valuable information on some part of the

gene tree based on user’s intuition. The next section describes a guideline for choosing cost

111

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

for reconciliation based on user intuition and species tree.

5.5. Conclusion

In this chapter, I started out with the overarching question: Under what conditions are the

same results obtained with a parsimony model and a likelihood model? This question arose

early in the history of molecular phylogenetics when Farris (1973) showed that under some

reasonable assumptions, the reconstructed gene trees under ML and MP are equivalent.

However, Felsenstein (1973) later presented counter examples and suggested that Farris’

assumptions are “not so reasonable”.

Here I compared maximum parsimony and maximum likelihood models in the context of

phylogenetic reconciliation, focusing on the problem of how to choose the best set of event

costs. Specifically, if the event rates are known, can suitable costs be estimated from the

rates? Since the maximum parsimony optimization criterion is a linear function of the

number of inferred events, I ask a simpler question: Can the log likelihood be represented

as a linear function of the number of events of each type? In this chapter, I considered

two likelihood functions: the probability of observing a given number of gene copies in each

species tree node, denoted LN , and the probability of observing a particular reconciliation

of the gene tree in the species tree, denoted LL. For each of these, the probability was

calculated using two event models: (1) a birth-death model, in which the probability of an

event depends on gene family size, and (2) a constant event model, in which the probability

of an event is constant, independent of the number of gene copies.

I first derive general expressions for the likelihoods under these four models under some

simplifying assumptions. These general expressions could also be used for other applications,

such as software implementations to calculate likelihood of reconciliations. I then derived

simple expressions for the log likelihoods of the four models, making further simplifying

assumptions as needed, and compared the resulting expressions with the linear cost function

under the MP model.

Two assumptions were applied to all four models:

1. The branch length is the same for all branches in the species tree. For all four models,

the overall likelihood is a product of the likelihoods associated with each branch in

112

5.5. CONCLUSION

the species tree. This assumption allows this product to be reduced to a closed form

expression.

2. The so-called “ghost” gain events, described in Arvestad et al. (2009), do not occur.

The models I use account for gain events on the same species branch that cannot be

observed (i.e., gain followed by immediate loss). However, they do not account for

gains that are inherited by descendant species and subsequently deleted by parallel

losses in all of those descendants.

Several additional assumptions were made specifically for specific models. For the lineage

likelihood models, two quantities cannot be obtained as a close form solution:

1. The probability of observing a given reconciliation, P (T |kf), must account for the

number of isomorphic topologies with kf leaves. To avoid calculating this quantity, I

make the additional assumption that the number of leaves in any embedded subtree

on a single species tree branch is less than four. For any rooted tree with at most three

leaves, there is only one topology, making it possible to ignore this term. Note that a

recursive function for calculating this value, derived by Harding (1971), can be used in

contexts where a closed form is not needed.

2. It is also necessary to account for the number of ways the leaves of the embedded gene

subtrees in one species tree branch can be connected to the roots of embedded gene

subtrees in the species branches that descend from it. I make the further simplifying

assumption that this quantity, denoted W (γ), is a constant for all reconciliations of a

given gene tree and a species tree. Since we are interested in the reconciliation that

maximizes the likelihood, rather than actual value of the likelihood, a constant term

can be ignored.

The error associated with this assumption will depend on how much W (γ) varies over

those reconciliations that have non-negligible probabilities. Every reconciliation must

entail a set of gain and loss events that results in LN(TG) leaves. This constrains how

much W (γ) can vary. The variance in W (γ) over the set of possible reconciliations will

depend on the distribution of these events over the species tree branches. Intuitively,

W (γ) will tend to be greater when all gains occur on one species tree branch and

smaller when they are evenly distributed. Exploring how much W (γ) varies in practice

is an interesting direction for future work, as is deriving bounds on the variation of

W().

113

CHAPTER 5. SELECTING COST USING MAXIMUM LIKELIHOOD

For the lineage likelihood with constant event rate (LCL), calculating the likelihood involves

a Skellum distribution, which is not closed form. Therefore, I also assume that the scenario

where a gain event occurred and immediately lost does not occur in gene tree lineages. This

allows the Skellum distribution to be replaced with a Poisson distribution (Eqn. 5.75).

For the event number likelihood functions with the birth-death event model, I further assume

that the probability of the number of events can be estimated with a geometric distribution

(Eqn. 5.75). Note that most of these assumptions are most likely to be justified when the

event rates are small, which is appropriate for a maximum parsimony model. When the

event rates are not small,a maximum parsimony model may not be suitable any more.

With these assumptions, maximizing the four log likelihood functions can be related to

the maximum parsimony optimization criterion. Of these four functions, one function can

be represented as a lineage combination of event numbers and a function of corresponding

event rates, which is the lineage likelihood model with birth-death event. The log likelihood

function in the form of

L = NDf1(rD) +NTf2(rT) +NLf3(rL) + Constant term. (5.101)

For event number likelihood with constant event rate, the log likelihood (Eqn. 5.97) can be

separated into independent functions of ND, NT , and NL, however, these are of the form:

L = f ′1(rD, ND) + f ′2(rT , NT) + f ′3(rL, NL).

For the other two models (Eqn. 5.82, 5.90), the functions also contain the three linear terms

as Eqn. 5.101, but also an extra g() term that indicates interaction between gene events. The

linear equation in the lineage likelihood model with birth-death event can be easily compared

with MP optimization. If the cost vector ~C is selected as < −f1(rD),−f2(rT),−f3(rL) >,

then maximizing the likelihood is the same as minimizing the cost function (Equation. 5.1).

The extra g() “interaction” term in event number likelihood with birth-death event and the

lineage likelihood with constant event is an interesting area for future study to understand

the amount of interaction and whether these likelihood functions can be also compared with

the MP model. For the event number likelihood with constant event rate (Eqn. 5.97), if the

term
∑

s log(Nε(s)!) is neglibible, then the cost can be set to − log(rε) and the MP and ML

are equivalent. This is consistent with a proposal made by Felsenstein (2003)(page 99) for

molecular phylogenetics.

114

Chapter 6

Selecting Cost Using Cost Space Partition

Selecting event costs is a key aspect of carrying out an analysis using parsimony-based recon-

ciliation. Recall that different cost vectors may have significant impact on the reconciliation

solution. When analysing a single gene tree, the user can inspect the result and use biological

intuition to assess whether the result is appropriate. However, for phylogenomic reconcili-

ation, where thousands of gene trees are reconciled in an automated fashion, choosing the

appropriate costs is essential for the final inference of gene events of all gene families.

As we saw in Chapter 2, transfers increase the number of ways that the gene tree can be fit

to the species tree. As a result, many different event histories can explain the same gene-

species tree discordance. Reconciliation using different cost vectors may result in different

most parsimonious solution. For example, the incongruence in Figure 6.1a can be explained

by one transfer or by one duplication and two losses. If (CT , CD, CL) = (3, 1.5, 1.0), then

one transfer is preferred. If (CT , CD, CL) = (4, 1.5, 1.0), then one duplication and two losses

are preferred. Some histories may be more biologically realistic than others and the goal is

to select a cost vector that gives a biologically meaningful solution.

The key challenge for users is selecting the cost vector that produces the best reconciliation.

The user may have a qualitative sense of what types of event histories are plausible, but

not be able to translate that intuition into specific numeric costs. Alternatively, the user

may wish to compare event histories obtained with a representative set of cost vectors. This

requires a set of cost vectors that broadly probes the space of parameters. The user could

then select the results that seem most plausible, based on specialized knowledge, or combine

115

CHAPTER 6. SELECTING COST USING COST SPACE PARTITION

the results from several cost vectors in some way. For this approach to be efficient, the user

requires that each cost vector used gives different results. For example, in Figure 6.1a the

cost vectors (3.0, 1.5, 1.0), (3.0, 2.5, 1.0), and (6.0, 3.0, 2.0) will all prefer the reconciliation

with one transfer. Therefore, using all three cost vectors would be a waste of time.

(a)

(b)

Figure 6.1: Multiple solutions in the Maximum Parsimony framework. (a) Two reconciliation
solutions that infers different number of events for the same gene tree. The left solution requires
one transfer; the right solution requires one duplication and two losses. (b) Two reconciliation
solutions that both require two transfer events, but the transfer events are different.

Another consideration is degeneracy. Some cost vectors will result in more optimal solutions

than others. For example, with the cost vector (CT , CD, CL) = (3.5, 1.5, 1.0), both event

histories in Figure 6.1a will be optimal. The cost vector can be chosen to reduce degeneracy.

This observation suggests that the space of all cost vectors may be partitioned by some

116

function, so that all cost vectors in one region prefer one history and all cost vectors in

another region prefer another history. For the example in Figure 6.1a, the cost space can

be partitioned with a linear function (Figure 6.2a). However, it may not be possible to find

a cost vector that corresponds to exactly one optimal solution. For example, Figure 6.1b

shows two optimal solutions; both require exactly the same number of transfers. These two

solutions are not distinguishable by selecting a specific cost vector. Therefore, choosing a

good cost vector is crucial in multiple aspects: 1) A good cost vector infers biologically

realistic results. 2) A good cost vector reduces the number of optimal solutions that must

be inspected. 3) For phylogenomic analysis, by reducing the number of multiple optimal

solutions, a good cost vector significantly speeds up the procedure for checking temporal

consistency.

Here, I present a framework for selecting a set of cost vectors that depends on trade-offs

between events of different types. Further, I present vignettes that illustrate specific scenarios

that trigger such event tradeoffs. These vignettes represent basic elements that often arise in

DTL-reconciliation with real trees. They also provide intuition about whether a given cost

vector will result in a plausible explanation. I illustrate the impact of cost vector choice on

accuracy, using reconciliation of simulated gene trees.

I first describe the idea of displaying the space of all cost vectors in a 2-dimensional plane.

The plane can be partitioned into many regions, such that the cost vectors in each region

gives the same result (Stolzer, 2012).

The goal of MP reconciliation is to find reconciliation solutions that have the lowest cost

compared to other solutions. This suggests that the cost of one solution relative to another is

more important than the actual value of the cost. For example, cost vectors < CT , CD, CL >

and < CT/CD, 1, CL/CD > will generate the exact same solutions. As long as the ratio stays

the same, the values of each cost can be quite arbitrary. Without loss of generality, we will

assume CD = 1 for the rest of this chapter. Therefore, the space of all cost vectors can be

represented as a two-dimensional space, where the values of CL and CT are represented on

the horizontal and vertical axes, respectively. Every possible cost vector can be represented

by a point in this 2D space.

Given a gene tree, TG, and a species tree, TS, let
−→
C1 =< C1

T , C
1
L > and

−→
C2 =< C2

T , C
2
L > be

two different cost vector and let Γ1 and Γ2 be the sets of optimal solutions for cost vectors
−→
C1 and

−→
C2, respectively. Then

−→
C1 and

−→
C2 are in the same partition if and only if for each

117

CHAPTER 6. SELECTING COST USING COST SPACE PARTITION

reconciliation γ1 ∈ Γ1, there exists a reconciliation γ2 ∈ Γ2, such that the number of events

of each type is the same in both (i.e., N1
D = N2

D, N
1
T = N2

T , N
1
L = N2

L) and vice versa.

This statement of partition defines the problem of finding the cost space partitions for a

given gene tree and species tree (Stolzer, 2012). For an analysis with several cost vectors,

each cost vector should be associated with a different region in the partition. Cost vectors

in one partition prefer one set of events and cost vectors in another partition will infer a

different set of events. The line between two adjacent partitions indicates scenarios where

both partitions overlap. Note this also indicates that cost vectors on the line will generate

the union of the solutions from the adjacent partitions. It is even possible to observe several

partitions converge at a point in the cost space. The cost vector corresponding to this point

would result in the union of solutions from multiple partitions. By picking the cost inside

a partition (instead of on a line or point), the number of generated optimal solutions is

reduced and may provide a manageable set of solutions to be inspected. On the other hand,

if the goal is to inspect as many solutions as possible, we could pick cost vectors on the line

between partitions which will result in more optimal solutions

This problem has been tackled by Libeskind-Hadas et al. (2014), who developed an algorithm

to reconcile the gene tree with species tree and split the cost space into several partitions.

All cost vectors in the same partition give the same set of optimal solutions for a given gene

tree and species tree (Libeskind-Hadas et al., 2014). The algorithm adapted the dynamic

programming framework of regular DTL reconciliation. At each gene node, instead of calcu-

lating a cost table, this algorithm calculates an augmented cost table that stores the costs of

combinations of events that have the potential to be part of the most parsimonious solution.

This algorithm requires O(|VG|5|VS| log(|VG|)) complexity to calculate a cost space partition

for any gene tree and species tree. The output results in a figure similar to Figure 6.2b.

This algorithm is a step toward selecting cost vectors that reduce the degeneracy and is

helpful for the exploratory analysis to inspect all solutions of a single gene tree. For phy-

logenomic reconciliation with one species tree and many gene trees, one approach would be

to calculate the cost space partition for each gene tree and overlap these partitions. This

would result in a combined partition of the cost space, representing the entire set of gene

trees, which could result in a very large number of different regions. Because it is too com-

putationally expensive to calculate the partition for every gene tree, instead, here, I propose

a heuristic to summarize a cost space partition that works well for many trees, based on the

species tree topology alone.

118

6.1. TRADE-OFFS OF DIFFERENT SCENARIOS

0 1 2 3 4 5

0
1

2
3

4
5

Cost space for Figure 6.1a

Loss Cost

Tr
an

sf
er

 C
os

t

C T
=1

+2
C L

(a) Partition corresponding to Figure 6.1a (b) Example output of Xscape

Figure 6.2: (a) The partition of cost space corresponding to Figure 6.1a. Each point in the space
represents a cost vector. The space is separated by a linear function CT = CD+2CL with CD is set
to 1. Above this line, the solution with one duplication and two losses is favored; below the line, the
solution with one transfer is favored.(b) Example of the output of Xscape(Libeskind-Hadas et al.,
2014) for an example gene tree and species tree. Every cost vector in the same partition generates
the same solution set. < NS , ND, NT , NL > are the number of speciation, duplication, transfer,
and loss events, respectively. Count is the number of optimal solutions obtained for any cost vector
in the region.

By examining the 2D plane and gene tree topological structure, we discovered that many

lines that split the 2D plane correspond to some specific, yet common, patterns of gene tree

incongruence that are likely to occur in many gene trees, suggesting that some regions of

the cost space may be suitable for most gene trees. Therefore, instead of generating the cost

partition for each gene tree and combining them, our goal is to find a “plausible”, common

partition of the cost space before reconciliation that provides reasonable candidate regions

to select multiple cost vectors.

Here, we categorize the common trade-offs between two event histories and present vignettes

that illustrate specific scenarios that trigger such event tradeoffs. These vignettes represent

basic elements that often arise in DTL-reconciliation with real trees. They also provide

intuition about whether a given cost vector will result in a plausible explanation

119

CHAPTER 6. SELECTING COST USING COST SPACE PARTITION

Scenario This study
D versus T here
D versus L impossible
T versus L here
D versus T & L here
T versus D & L complex
L versus T & D complex

Table 6.1: Six scenarios of event trade-offs. The first three scenarios involve trading one
event type for one other event type. The last three correspond to scenarios where one event
type is replaced with some combinations of the two other event types. This study included
three scenario as indicated. The remaining three scenarios are either impossible, or involve
complex scenarios that may not arise frequently.

6.1. Trade-offs of different scenarios

Let < ND, NT , NL > be an event vector representing the number of duplications, transfers,

and losses for one solution. The boundary between regions in the cost space represents

a trade-off between two event vectors < N1
D, N

1
T , N

1
L > and < N2

D, N
2
T , N

2
L >. From the

perspective of a user, this can translate into a question of biological intuition, e.g. “Given

my knowledge of these species, is a horizontal gene transfer more or less plausible than many

losses?”.

There are three possible cases where one event type can be traded for another and three

cases where one event type can be traded for some combination of the other two event types

(Table 6.1). Of these six scenarios, I focus on the three that are most plausible (Transfer

versus Duplication, Transfer versus Loss, and Transfer versus Duplication and Loss). A

scenario in which duplications can be exchanged for only losses cannot arise. Of the three

cases involving exchanges of one event type for the other two event types, only one is likely

to arise frequently (Transfer versus Duplication and Loss). The other two cases, if they arise

at all, would require very skewed cost vectors in which the cost of one event was much larger

than the costs of the two other events.

120

6.1. TRADE-OFFS OF DIFFERENT SCENARIOS

6.1.1. Duplication versus Transfer

(a) Gene tree (b) Species tree

(c) Solution with one duplication (d) Solution with wwo transfers

Figure 6.3: One duplication versus two transfers: when 2CT < CD, any non-leaf duplication (c)
can be traded for two transfers (d). For these costs, the reconciliation will not find any duplications
on internal gene nodes

Gene tree incongruence that can be explained by a duplication event can always also be

explained by two transfer events, as shoing in Figure 6.3. Therefore, when 2CT < CD, any

solution that requires k duplications is not as parsimonious as a solution that requires 2k

transfer events. The line CT = 0.5 separates cost vectors that prefer 2k transfers from those

that prefer k duplications (recall CD = 1). In some prokaryotes, cost vectors below this line

may be a good choice of cost vector; otherwise, this cost space region may be unrealistic.

121

CHAPTER 6. SELECTING COST USING COST SPACE PARTITION

(a) Gene tree (b) Solution with duplication and loss

(c) Embedded solution with one transfer (d) Embedded solution with two duplications and
five losses

Figure 6.4: One transfer versus two duplications and five losses: When hd = 2 and hr = 2, a
transfer is preferred if CT < 2CD + 5CL. Two duplication and five losses is preferred if CT >
2CD + 5CL.

122

6.1. TRADE-OFFS OF DIFFERENT SCENARIOS

(a) Gene tree (b) Solution with duplication and loss

(c) Embedded solution with one transfer (d) Embedded solution with two duplications and
five losses

Figure 6.5: One transfer versus two duplications and five losses: When hd = 2 and hr = 2, a
transfer is preferred if CT < 2CD + 5CL. Two duplication and five losses is preferred if CT >
2CD + 5CL.

123

CHAPTER 6. SELECTING COST USING COST SPACE PARTITION

6.1.2. Transfer versus Duplications and Losses

A transfer from species sd to sr, and from gene gd to gr, introduces a new copy of the gene into

species sr. If this copy is then inherited by the descendants of sr without further events, the

transfer effectively introduces a copy of the subtree rooted at sr into the gene tree. The same

topology could also occur if one or more duplications occurred in s = LCA(sd, sr) followed

by subsequent losses in these gene subtrees resulted in gene subtrees that are embedded in

Ts, the species subtree rooted at s. In this scenario, the transfer can be traded for some

number of duplications and losses as illustrated in Figure 6.5. The number of duplications

and losses depends on the depth of sd and sr relative to s, denoted hd and hr, respectively.

In order to replace a gene transfer with duplication and losses, all the gene nodes that are

ancestors of gd and descendants of g = LCA(gd, gr) must reside in s, requiring that one or

multiple duplications occurred in s. For example, in Figure 6.5, the donor gene is gD, and the

recipient gene is gC . There are three gene nodes that must reside in s: gd, g, and one node

between g and gd. Therefore, two duplications occurred in s to create three total lineages.

The first lineage sustained 1 loss of the donor side and is retained only on the recipient side.

The second lineage sustained 2 losses and is retained on the donor side. The third lineage

that contains both gd and gr exists on both sides and sustained 2 losses, one on each side of

s.

In Figure 6.6, the general rules are shown. The number of gene nodes inclusive of and

between gd and g is always hd + 1, requiring that hd duplications created hd + 1 lineages

(showing in boxes with dashed lines) in species s. Of the hd + 1 lineages, one lineage is

retained only in species on the recipient side, hd − 1 lineages are only retained in species on

the donor side and one lineage is retained in some species on both sides, namely, sr and sd

and their descendants. Specifically, the first lineage always sustains 1 loss and is retained

only on the recipient side. For example, in Figure 6.6, the first lineage only exists in Tα2 ,

therefore it sustained one loss at the root of the donor subtree. Each of the next hd − 1

lineages is retained in a different subtree and only in that subtree on the donor side of the

species tree. The second lineage only exists in TB2 , and sustained 2 losses at the roots of

subtree Tα2 and Tβ3 . The third lineage only exists in TB3 ; 3 losses occurred in Tα2 , TB2 , and

Tβ4 . In general, the number of losses in these hd lineages increases by 1 for each additional

duplication, forming an arithmetic sequence (1, 2, 3, 4, ...hd). The sum of those losses reduces

to
h2
d + hd

2
. (6.1)

124

6.1. TRADE-OFFS OF DIFFERENT SCENARIOS

β

Ahr Bhd

Ahr '

A3

A2 B2

B3

Bhd '

α

hr

h r -
 1

hr α

3α

2α

hd
hd

3

2

β

β

h
d - 1

(a) Species tree

Ahr

gAhr '

gA3

gA2 gB2

gB3

gBhd '

gBhd
 Ahrg

g 2

g

(b) Solution with a transfer

A hr

gA hr'

gA3

gA2 gB2

gB3

gBhd'

gBhdg

h
d duplications

 Ahrg2

g

(c) Solution with duplications and losses

Figure 6.6: One transfer versus hd duplications and several losses. Given a transfer between sd
and sr with depth hd and hr. The transfer event can be replaced by combination of hd duplications
and many losses. The yellow arrow represent a gene transfer, the red squares represent gene
duplications.

The last lineage, which is present in descendants of both the donor and the recipient species

implying hd− 1 losses on donor side of the species tree (B2, B3...Bhd−1) and hr − 1 losses on

recipient side of the species tree (A2, A3...Ahr−1). Combining the losses that occurred in the

first hd lineage (Eq. 6.1) and the losses in the last lineage, a total of

NL =
h2
d + 3hd

2
− 2 + hr

losses will be required.

125

CHAPTER 6. SELECTING COST USING COST SPACE PARTITION

Therefore, for a transfer in a species tree with depths hd and hr, the line

CT =

(
hr +

h2
d + 3hd

2
− 2

)
· CL + hd · CD, (6.2)

separates cost vectors that prefer a transfer and cost vectors that prefer a combination of

duplications and losses.

6.1.3. Transfer versus Loss

One approach to inferring horizontal gene transfer is via inspection of the phylogenetic

distribution of the gene family in a group of species (Azad and Lawrence, 2012, reviewed in).

If the species that possess copies of the gene family are sufficiently distantly related, then

horizontal transfer is invoked as a more plausible explanation than massive loss. Consider

a gene family which has family members in some, but not all, of the species represented in

the species tree. This scenario could arise if the gene family were present in the common

ancestor of those species and subsequently lost in some species lineages. Another possibility

is that the gene family was first acquired in a more recent ancestral species (presumably by

a transfer from a species distantly related to the species represented in the species tree) and

subsequently transferred to an incomparable clade within the species tree.

This scenario introduces another trade-off (Fig 6.7). In general, the tradeoff between transfers

and losses is defined by nCT versus mCL, where n is the depth of the first consecutive loss

and m is the total number of consecutive missing species. The line

nCT = mCL, (6.3)

separates cost vectors that prefer n transfers from cost vectors that prefer m losses. The

value of m and n are bounded by the height of the species tree.

126

6.1. TRADE-OFFS OF DIFFERENT SCENARIOS

Figure 6.7: Three examples of a trade-off between transfer and loss events only. In each example,
the purple embedded gene tree represent the reconciliation with loss events only, and the blue
embedded gene tree represent the reconciliation with transfer events only. The m and n value of
these three examples are :m = 2, n = 1, m = 1, n = 1, m = 1, n = 2.

6.1.4. Generic Cost Space partitions by Species Tree

The three trade-offs presented here describe several gene tree scenarios that are likely to

arise in phylogenetic reconciliation. The gene trees in a phylogenomic analysis may very

well contain many of these scenarios. A cost space partition based on these scenarios can be

obtained from the species tree alone.

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Cost Space Partition

CL

C
T

Figure 6.8: Partition of a 2D cost plane for a small species tree of height 6. The CT , CL ranges
are set to [0, 6].

127

CHAPTER 6. SELECTING COST USING COST SPACE PARTITION

For each pair of hd and hr in the species tree, the “Transfer versus Duplication and Loss”

trade off can be represented as a line, for which the cost vectors above the line prefer

duplication and loss and the cost vectors below the line prefer transfer events. For a given

species tree, let {(sid, sir)} be the set of incomparable species pairs (i.e., the set of species

pairs that could participate in a horizontal transfer) and let hid and hir be the depths of sid
and sir relative to LCA(sid, s

i
r). Then each pair of hid and hir represents a trade-off (Eqn. 6.2).

Note that many pairs of donor and recipient species may correspond to the same values of

hr and hd. In fact, if a pair of (hr, hd) exist, and hr > 1, hd > 1, then two similar pairs,

(hr − 1, hd) and (hr, hd − 1) also exist. This suggests that given the species tree height h,

there exists h×h pairs that can be enumerated, each corresponding to a trade-off. Similarly,

for each possible value of pair of n and m in the species tree, the “Transfer versus Loss”

trade off can be represented as a line in the cost space graph. The cost vectors above the

line nCT = mCL, represent the trade-off between loss events and transfer events only. The

values of m and n are bounded by the height of the gene tree, which suggests there are also

O(h2) pairs of m,n values to be enumerated. Finally, a single line (CT = 0.5) is added for

the “Transfer versus Duplication” trade-off, which is independent from the height of species

tree. Taken together, these three scenarios introduce many lines into the cost space and

generally partition the cost space (Figure 6.8).

The major advantage of this approach is that the basic partition can be generated before

the actual reconciliation of gene trees. These basic partitions are extremely convenient for

phylogenomic analysis where many gene trees are reconciled with one species tree and can

be used to select a set of different cost vectors for a phylogenomic analysis. Cost vectors

in different partitions are likely to result in different reconciliations for many gene trees

in the data set, although this is not guaranteed for a partition based on the species tree

alone. Analysing these results will give insights to which events are robust and persist across

different cost vectors, providing a more plausible interpretation than using a single cost

vector. Further, these vignettes provide a visual representation of the meaning of different

cost vectors, allowing users to pick costs that correspond to their biological intuition.

6.2. Simulation analysis of costs from five partitions

The species tree partition described in the previous section provides a guide for selecting cost

vectors for DTL reconciliation, especially for phylogenomic analysis, where thousands of gene

128

6.2. SIMULATION ANALYSIS OF COSTS FROM FIVE PARTITIONS

trees are reconciled simultaneously. The basic partitions constructed for a species tree may

provide good candidate cost vectors to be used in phylogenomic reconciliation. First, based

on biological intuition, some of the candidate cost vectors may be more appropriate for a

given set of gene tree and species tree. Second, analysis based on multiple cost vectors, each

from a distinct partition, would reveal how parameter choice influences inference and makes

it possible to identify trends that are robust. The analysis of the sub-optimal, or even “bad”

cost vectors could lead us to understand the effectiveness of good versus bad cost vectors.

To better understand these features of the cost space partition, I conducted a simulation

study.

6.2.1. Experimental Setup

5.0

SE008

SE015

SE001

SE009

SE006

SE010

SE013

SE014

SE003

SE016

SE012

SE005

SE002

SE007

SE004

SE011

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

(a) Species tree used for simulation (b) Five cost vectors

Figure 6.9: (a) Species tree used for simulation Each branch is normalized to 10 time units. (b)
Five cost vectors (red dots) selected to represent different regions in the cost space partition. These
cost vectors are listed in Table 6.3 in descending order.

The ALF simulation framework (Dalquen et al., 2011) was used to generate gene trees with

various event rates on a balanced species tree with 16 leaves and uniform branch length

(Figure 6.9). For every gene, the simulation starts at the root of species tree. This is a

requirement of the software. Transfer, duplication, and loss events are generated based on

129

CHAPTER 6. SELECTING COST USING COST SPACE PARTITION

rD rT rL
0.0025 0.0025 0.001
0.0050 0.0050 0.002
0.0075 0.0075 0.003
0.0100 0.0100 0.004

0.005
0.006

Table 6.2: The four duplication rates, four transfer rates, and six loss rates used in the
simulation. In total, there are 4 × 4 × 6 = 96 combinations of event rates. For each
combination, 200 gene trees were generated.

a birth-death model with multiple combinations of event rates ~r =< rT , rD, rL >. Four

duplication rates, four transfer rates, and six loss rates where used (Table 6.2). The time

between the root and leaf nodes in the species tree is 100 time units. Assuming there are no

more than 2 birth events per species tree branch, we select the rate of duplication and transfer

events from 0.0025 to 0.01 so that the average number birth events for a gene family does not

exceed 100, except for a few gene families. The loss event rates are selected to range from

0.001 to 0.006. The range of loss rate is less than the range of birth rate because a high loss

rate would result in a large subset of simulated gene families that go extinct before reaching

the end of the species tree. For each of the 96 combination of rates, 200 gene trees were

generated, resulting in a total of 19200 gene trees. In the cost space, each line bipartitions

the space based on the trade-off equation. This suggest that the reconciliation results of two

different cost vectors (
−→
C =< CT , CD, CL >) from two partitions that are separated by a line

should reflect this trade-off. The 19, 200 simulated gene trees were reconciled under DTL

event model with five sets of costs (Table 6.3) selected from the cost partitions in Figure 6.9b,

resulting in 96, 000 reconciliations. These costs were selected in different partitions and each

exhibits a preference of a trade-off. For example, the cost vector < 2.45, 1, 2.1 > is in the

region bounded above by CT = CD + CL, and bounded below by CT = CL, corresponding

to the tradeoffs in Figure 6.4 and Figure 6.7(middle), respectively. With this cost vector, a

transfer would be preferred to a duplication and a loss, but would not replace a loss alone.

As the trade-offs that are involved in fewer events are simpler and more common to observe

than large trade-offs with multiple events, we focus on the cost vectors in these partitions

that involved fewer events.

130

6.2. SIMULATION ANALYSIS OF COSTS FROM FIVE PARTITIONS

CT CD CL ∆
−→
C (T) ∆

−→
C (D) ∆

−→
C (L)

3.54 1 1.1 0.30 0.23 1.24
2.9 1 1.1 0.18 0.13 0.60
2.79 1 1.5 0.15 0.11 0.49
2.45 1 2.1 0.09 0.07 0.47
2.15 1 2.3 0.12 0.07 0.62

0.22 0.1 0.68

Table 6.3: Table of five cost vectors covering five different regions in the cost space and the
mean event error associated with each cost vector.

6.2.2. Result

Figure 6.10: Inferred duplications versus true duplications for each cost vector.

131

CHAPTER 6. SELECTING COST USING COST SPACE PARTITION

The 19, 200 gene trees represent a mixture of different event rates, which is what would be

expected from a collection of gene families sampled from the same species. Therefore, under-

standing how well each cost vector performs for gene families with gene families with mixed

event rates is crucial for phylogenomic reconciliation analysis. We consider the accuracy of

event inference in the entire data set of 19, 200 trees, combined, for each of the five cost

vectors. For each of the three event types, I compared the number of inferred events and the

number of true (i.e., simulated) events in each reconciled tree.

To have a quantitative assessment, the performance of each cost vector was evaluated using

a series of error equations. Given a gene tree TG, I define the error of event type ε for a gene

family g to be:

∆g(ε) =
|N̂ε −Nε|

Nε

, (6.4)

where N̂ε and Nε are the inferred and true numbers of event of type ε respectively. I further

define the mean error over 200 gene trees for a given combination of rates (~r =< rT , rD, rL >)

and a cost vector (
−→
C =< CT , CD, CL >) to be:

∆
−→
C
~r (ε) =

∑200
i=1 ∆gi(ε)

200
.

Similarly, a global error that describes the performance of the cost vector for all gene trees,

over all rates, is calculated as:

∆
−→
C (ε) =

∑
rT

∑
rD

∑
rL

∆
−→
C
~r (ε)

96
.

6.2.2.1. Inferred events Compared to True events

Figures 6.10, 6.11, and 6.12 show the number of inferred versus true (i.e. simulated) duplica-

tions, transfers and losses respectively, for each of the five cost vectors (19200 reconciliations

each) and for overall cost vectors (total 96000 reconciliations). Each box and whisker plot

represents the distribution of inferred event counts (Nε), for a fixed true event count.

Of the three event types, the inference of duplications is most accurate. Transfer inference

is also relatively robust. Except for the highest event cost (CT = 3.54), the box and whisker

plots are, for the most part, centered on a diagonal line with a slope of 1, which represents

the situation where the number of inferred duplications is equal to the number of true

132

6.2. SIMULATION ANALYSIS OF COSTS FROM FIVE PARTITIONS

duplications (Figure 6.10). With very high transfer costs, the number of duplications tends

to be overestimated, especially in trees in which a large number of duplications occurred.

For any given cost vector, the number of inferred duplications is least accurate when the true

duplication number is greater than 40. For a species tree with 16 leaves, ND > 40 indicates

that on average, 1.3 duplications occurred on every species branch, which is not very likely

in real gene trees.

Figure 6.11: Inferred transfers versus true transfers for each cost vector.

This observation is consistent with the property of gene duplication. If no subsequent events

133

CHAPTER 6. SELECTING COST USING COST SPACE PARTITION

occur, a duplication on an internal node, g, will create two identical copies of the species

tree subtree rooted atM[g]. It is hard to imagine a combination of transfer and loss events

could generate two such identical subtrees. This very specific pattern is unlikely to lead to

an incorrect inference involving transfers and losses, instead of a duplication.

Figure 6.12: Reconciled losses versus true Losses number for each cost vector, and for all 96, 000
reconciliation results. Box-whisker plot for each True Loss number.

Consistent with this, of the three event types, the global error associated with duplications

is lowest. Figure 6.11 shows that the number of transfers is frequently underestimated and

this effect is strongest with high transfer costs. This is consistent with the fact that, as we

move from higher to lower partitions, the tradeoffs increasingly favour transfers over other

events.

Losses are also underestimated, but the trend is in the opposite direction. Losses are least

134

6.2. SIMULATION ANALYSIS OF COSTS FROM FIVE PARTITIONS

Factor Sum Sq p-value
rT 0.007 1.87e-01
rD 0.168 8.02e-10
rL 0.614 2.00e-16
cT 5.025 2.00e-16
cL 0.194 4.32e-11

Table 6.4: ANOVA: factors that influences transfer error.

underestimated, on average, with the cost vector located in the highest region of the partition

(Figure 6.12). In this partition, three losses or one duplication and two losses are preferred

to one transfer. However, the error is highest with this cost vector, indicating a high variance

in the number of losses inferred.

6.2.2.2. Error Analysis

For each of the 96 combinations of rD, rT , rL, 200 simulated gene trees were reconciled with

5 different cost vectors, resulting in 480 (96 rate vectors × 5 cost vectors) sets of reconciled

trees, each with 200 gene trees. For each set, we calculated a error for three event types

and generated histograms of all 480 errors. Figure 6.13 shows the error for each event

type over all cost vectors and all rate combinations. When comparing the extremes of the

three distributions, the losses have the highest errors, suggesting that losses are hardest to

infer correctly. For a generally good reconciliation, one goal may be to find a cost set that

minimizes loss error as the first priority.

To analyse what is the main contributor to the error rate of each event type, I carried

out a five-way ANOVA analysis in which the event rates and costs of transfer and loss are

the independent variables and error rates are the dependent variables (Table 6.4 and 6.5).

Surprisingly, transfer error is not affected by transfer rate (p − value = 0.187), but is very

significantly affected by the rate of duplication and loss and the cost of transfer. Loss error

is not significantly affected by duplication rate (p− value = 0.232), but is very significantly

affected by rT, rL, transfer cost and loss cost. We observe a negative correlation between

CT and loss error, but a positive correlation between CT and transfer error. This indicates

that it is hard to find a cost set that minimizes both loss error and transfer error; therefore,

the best compromise between the errors needs to be considered for any particular analysis.

135

CHAPTER 6. SELECTING COST USING COST SPACE PARTITION

Factor Sum Sq p-value
rT 3.34 1.28e-08
rD 0.14 2.32e-01
rL 5.08 3.65e-12
cT 33.40 2.00e-16
cL 9.69 2.00e-16

Table 6.5: ANOVA: factors that influences loss error.

Figure 6.13: From four duplication rates, four transfer rates, six loss rates, five cost sets, 480
groups of reconciliation results were obtained. The histogram shows the T,D,L error rate for each
group.

6.2.2.3. Discussion

The error from loss events is the major contributor to the total reconciliation error. This

suggests that the inference of loss events requires further investigation. While the other two

event types are more accurately inferred, generally underestimating the number of loss event

(Figure 6.12) suggests that the event rates used in the simulation may be not suitable for

the MP framework. Because the MP cost is almost always less than the true cost calculated

from the event history, the difference between these two costs is mostly the difference of loss

events. This suggests the inferred duplication and transfer events may be lower (closer to a

leaf than the root) than the true position and fewer loss events are inferred.

The analysis in this chapter is based on three simple scenarios that invoke a tradeoff between

one or two event types. How often are more complicated scenarios at play? For any two

136

6.2. SIMULATION ANALYSIS OF COSTS FROM FIVE PARTITIONS

adjacent regions that are separated by a trade-off scenario in the cost space partition, the

reconciliation result should reflect the simple trade-off scenario. For example, for the trade-

off equation CT = CL, the total number of transfers and losses inferred for both cost vectors

should be a constant, because the number of scenarios in the set of gene trees is fixed.

Therefore, if the reconciliation using a cost vector above the trade-off equation results in x

transfers and y losses, and using a cost vector below the trade-off equation results in x− k
transfers, then it must also infer y+ k losses. This would indicate that k occurrences of this

trade-off scenario exist in the group of gene trees. However, more complex scenarios in the

gene trees may exist and therefore render the sum to be different. Therefore, comparing the

reconciliation results of cost vectors from different partitions provides insights for how many

of these complex scenarios exist in the set of gene trees such that the basic partitions are

not enough to categorize all the trade-offs. A comparison of the results from different cost

vectors that are only separated by one trade-off scenario would reveal the common trade-

off scenarios between adjacent regions. The comparison of inferred gene events is a direct

indicator of how many of the scenarios exist in the batch of gene trees, and may also indicate

how many “complex” scenarios are not considered. This gave us insights to the advantage

and compromise of selecting cost vectors from the basic partitions.

137

Chapter 7

Phylogenomic Reconciliation Using Notung

The algorithms that I have described in previous chapters (Chapter 3, 4) have been imple-

mented in Notung. Notung is a Java based reconciliation software, that has been main-

tained and distributed by the Durand Lab (http://www.cs.cmu.edu/ durand/Notung/). The

first prototype was developed in 2000 (Chen et al., 2000), and it has been made publicly

available since 2005 (Durand et al., 2005). Notung contains a GUI mode, in which researchers

can reconcile a single gene tree and observe reconciliation results and explore different cost

sets and solutions. It also contains a command line mode, in which large number of gene

trees can be processed efficiently.

My contribution to the Notung software package includes: a) algorithmic advances de-

scribed in Section 3.1, Section 3.2 and Chapter 4 in Notung 2.9, b) implementation of

algorithm described in Section 3.3 in Notung-DM, c) more efficient diagnostic and mem-

oization that speed up the runtime of software, d) on going participation in the software

maintenance and responding to user inqueries and bug reports, e) functionalities that fa-

cilitate non technical Notung users for phylogenetic analysis, such as GUI modification

to iterate multiple optimal solutions, f) adding a phylogenomic mode for Notung that is

crucial for batch model phylogenomic reconciliation.

The Notung software package was used in numerous phylogenomic analyses. The studies

that were involved in application of Notung software in 2016 include:

• Correlating enzyme evolution with geological events to date the emergence of the first

139

CHAPTER 7. PHYLOGENOMIC RECONCILIATION USING NOTUNG

multicellular organisms (Gold et al., 2016).

• The evolution of the chemosensory repertoire: chemical communication in clonal raider

ants (McKenzie et al., 2016), nocturnal vision in mammals (Kim et al., 2016a); opsins in

the Bilaterian ancestor (Ramirez et al., 2016); and courtship pheromones in amphibians

(Van Bocxlaer et al., 2016).

• Co-evolution of decay enzymes and saprophytic lifestyles in fungi (Druzhinina et al.,

2016; Nagy et al., 2017; Varshney et al., 2016; Wisecaver et al., 2016).

• The emergence of parasitism: Adoption of an invasive lifestyle in D. suzukii (Hickner

et al., 2016); expansion of digestive enzymes enabling predatory efficiency in spiders

(Fuzita et al., 2016); host associations mediated by small secreted proteins in fungi

(Kim et al., 2016b); and endoparasitism in nematode-trapping fungi (Zhang et al.,

2016).

• Evolution of developmental programs in plants: evolution of leaves (Vasco et al., 2016);

regulation of flowering (Zheng et al., J. Systematics Evol.); photoperiod sensitivity in

maize (Li et al., Genomics); evolution of a plant defense system (Cao et al., Plant

Growth Regulation); and expansion of loci encoding long intergenic noncoding RNAs

(Nelson et al., G3).

Notung is also being used in bioinformatics resources developed by other teams, including

a database to support comparative genomic analysis in Nicotiana attenuata (Brockmöller

et al., 2017) and GENVO (http://genvo.azurewebsites.net), a 3D visualization system for

phylogenetic trees (Leandersson, Master’s thesis, Stockholm U).

Within my own department of Biological Sciences at Carnegie Mellon University, I collab-

orated with Professor Luisa Hiller on a project to discover conjunctivitis virulence factors

in Streptococcus pneumoniae. Using comparative genomics, Dr. Hiller and members of her

laboratory identified genes that encode candidate virulence factors for colonization of the

human eye by S. pneumoniae, including a predicted surface exposed agglutinin receptor pro-

tein (AR1). A deletion mutant of AR1 displayed reduced adherence to epithelial cells. I

used Notung to investigate the evolutionary origins of this virulence factor. The evidence

from my reconciliation analysis supports the hypothesis that AR1 was acquired by lateral

gene transfer from the pig pathogen, Streptococcus suis. This is an example of a medical

application of phylogenetic reconciliation. A manuscript describing this work, submitted to

140

7.1. NOTUNG PHYLOGENOMICS: RECONCILIATION OF GENOMIC DATA

mSphere, is currently under revision in response to initial reviews.

In this chapter, I describe the phylogenomic mode reconciliation that I implemented in

the Notung software package. This mode enables reconciliation with phylogenomic data

and produces summary files of the reconciliation. Then I apply this model to a set of

cyanobacteria gene family trees and demonstrate that reconciliation analysis in this model

is straightforward and easily parsable to discover interesting biological insights.

7.1. Notung Phylogenomics: Reconciliation of Genomic

Data

The advancement of sequencing technology has provided whole genome sequence data for a

rapidly increasing number of species during the past decade. As a result, large collections

of gene trees can be constructed for reconciliation analysis. Reconciliation of a single gene

family tree provides a detailed history of a particular family. Modern genomic analyses

often call for reconciliation of many gene families to understand other phenomena such as

whole genome duplication, gene family co-evolution, genome streamlining, and patterns of

horizontal gene transfers.

In phylogenomic reconciliation studies, the focus is on aggregating information associated

with species nodes and branches, such as number and size of gene families associated with an

ancestral species, and gene family expansion or contraction along each species tree branch.

This information can be collected effectively as a table, in which rows represent each gene

family and columns represent each species node or branch. The current approach for this

type of analysis is to reconcile each gene tree individually and then parse the result of each

reconciliation to generate the above tables. This requires a significant amount of computa-

tional expertise on the part of the user to convert the results into a form that can be analysed

in different statistical software.

For this purpose, I developed a phylogenomics mode in Notung. In this mode, Notung can

reconcile thousands of gene trees and generate summary files of reconciliation statistics. For

each gene family tree, Notung collects the number of duplications, losses, transfers received,

transfers donated, gene family members gains and losses for each species node/branch.

The tables generated from the software can be output in formats easily read by analysis

141

CHAPTER 7. PHYLOGENOMIC RECONCILIATION USING NOTUNG

software such as Excel, R etc. This implementation should significantly facilitate genomic

level analysis and encourages non-technical users and users from differing fields, to easily

analyse batch of trees with a single command.

7.1.1. Output of Phylogenomic Reconciliation

Notung’s phylogenomc reconciliation mode, activated by –phylogenomic flag in command-

line, not only generate all reconciled gene trees, but also summarize the event information in

eight tables. In these tables, each row represents a gene family and each column represents

a species node (leaf and internal). These tables are summarized below:

1. Gene family origins:

A file ending with .origin.txt contains the information of the origin of each gene

family. The origin is defined as the species node where the gene family first appeared.

In technical terms, the origin of a gene tree is the species node in which the gene tree

root resides.

2. Ancestral gene content:

A file ending with .geneCount.txt contains the number of gene copies of each gene

family in each species node. A cell i, j in the table represents the number of copies of

gene family i in species node j.

3. Gain and loss of gene families:

A file ending with .famGainLoss.txt contains the changes of gene family in each

species node. This file aims to find the families that went extinct or originated in a

given species branch. Given a cell i, j in this table, the number is 1 if the family

originated in species j, 0 if the family exists in both species j and its parent p(j), or

−1 if the family went extinct right before species j.

4. Net change in gene family size:

A file ending with .geneGainLoss.txt reports the net change of gene copy of each

gene family and for each species node.

5. Duplications:

A file ending with .duplication.txt reports the number of duplications of each gene

family in each species node.

142

7.2. CASE STUDY: ANALYSIS ANCESTRAL GENE CONTENT IN CYANOTHECE

6. Losses:

A file ending with .loss.txt reports the number of losses of each gene family in each

species node.

7. Transfers:

A transfer event occurs between two species. Therefore we use two files: *.transferFrom.txt

and *.transferTo.txt to summarize both outgoing and incoming transfers of each

gene family and species node. A cell i, j in table *.transferFrom.txt represents the

number of outgoing transfers occurred in gene family i from species node j. Similarly, a

cell i, j in table *.transferTo.txt represent, in gene family i, the number of incoming

transfers, whose recipient is species node j.

8. Transfer highways:

The file *.highway.txt does not follow the same format as the previous files, instead,

for species tree with n total species nodes, this file is a (n+1)×(n+1) matrix in comma

separated format. This highway file contains a header row, and a side column denoting

each species and each cell is the total number of transfers over all gene families, between

pairs of species.

Ancestral species information can be calculated directly from these files. For example,

the ancestral gene number can be calculated by simply summing over all rows in the

*.geneCount.txt file. The net change of gene copy and gene families can be calculated

similarly. The total number of gain of gene copies in a species node is the sum of duplica-

tion, incoming transfer, and origin that occurred in a species node, and the number of loss

is simply the sum of loss event inferred in a species node. From *.famGainLoss.txt the

researcher can easily find out the families that appeared or went extinct in a species branch.

This would help them focus on a set of genes to understand how a group of species gained

or lost abilities.

7.2. Case study: analysis ancestral gene content in Cyan-

othece

Here, I exemplify the power of the phylogenomics option in Notung in an analysis of gene

families in the distributed genome of nine Cyanothece species (Phylum Cyanobacteria). The

143

CHAPTER 7. PHYLOGENOMIC RECONCILIATION USING NOTUNG

distributed genomes are defined as the collection of gene families, that exists in at least

one of the nine Cyanothece species but not all of the Cyanothece species. Cyanothece are

important model organisms with relevance to toxicology and the biofuel industry. We used

the phylogenomics output from Notung to analyze the patterns of lateral transfers, and

to quantify gains and losses. Then we identified specific losses from species mae using

enrichment analysis. Our analysis shows how Notung can be used to identify and explore

the trends in evolution and how they are related to ecology.

7.2.1. Pre-Processing: Distributed Gene Families and Core Gene Fam-

ilies

For this analysis, I used the Barker data set described in Section 4.4. The data set contains

13,854 gene trees that can be downloaded from http://dx.doi.org/10.7488/ds/1485. This

set of gene trees is broad and might be erroneous because some of these clusters are small

clusters with only one or two members among the Cyanotheces. We excluded the gene trees

with only 3 leaves or fewer and kept the gene families that exist in one of the 9 cyanotheces

but not all cyanotheces. This results in 5404 gene families as the distributed genome. Using

Notung 2.9, the 5404 full gene trees were rooted under DTL event parsimony and rearranged

with DL event parsimony. I reconciled the resolved and rooted gene trees with phylogenomic

mode and used the output to infer the ancestral gene family content, as well as the number of

families gained and lost on each branch. For comparison, we inferred the same quantities with

Wagner Parsimony using Count (Csurös, 2010). The ancestral family counts inferred using

Notung 2.9 and Wagner parsimony are very different (Figure 7.1). The Wagner parsimony

only considers the number of gene copies in the leaves of the species tree, which suggests that

the algorithm prefers to infer gene families to exist closer to the leaves. It results in a much

smaller number of gene family exists at the root of the cyanothece species compare to the

phylogenomic reconciliation result. Because the gene families are inferred to have originated

more recently in the species tree, the Wagner parsimony also underestimates the degree of

gene family gain and loss and suggests a history of gradual genome expansion. By taking

advantage of phylogenetic information, Notung 2.9 can infer more nuanced evolutionary

histories: Notung 2.9 infers an ancestral expansion of 2500 families, followed by genome

reduction in cwa and mae. Family gains and losses inferred by Notung 2.9 suggest ongoing

gene family turn-over, consistent with high genome plasticity.

144

7.2. CASE STUDY: ANALYSIS ANCESTRAL GENE CONTENT IN CYANOTHECE

Figure 7.1: Ancestral genome content inferred using Notung 2.8, with Wagner parsimony for
comparison. The number of inferred ancestral families shown on nodes. The number of inferred
gains and losses indicated by +/- on branches. Species abbreviations: cwa: Crocosphaera watsonii
WH 8501; cya: Cyanothece sp. PCC 7424; cyb: Cyanothece sp. ATCC 51142; cyc: Cyanothece
sp. CCY 0110; cyd : Cyanothece sp. PCC 7425; cye: Cyanothece sp. PCC 7822; cyf : Cyanothece
sp. PCC 8801; cyg : Cyanothece sp. PCC 8802; mae: Microcystis aeruginosa NIES843; syp:
Synechocystis sp. PCC6803.

The heatmap in Figure 7.2 summarizes inferred horizontal gene transfers in the Cyanoth-

ece distributed genome. These results show that HGT activity varies substantially across

strains. For example, cya is both a donor and a recipient of genetic material, while mae is

a preferential donor of HGT.

The ancestral gene content shown in Figure 7.1 can be used to identify interesting gene

family gain and loss between specific divergence of species and connect the gene events with

the ecological changes. For example, The Microcystis aeruginosa NIES 843 (mae) causes

toxic blooms in freshwater habitats. Notung 2.9 inferred 1000 gene family losses in the

lineage leading to mae. We explored the ecological implications of this genome reduction

using the enrichKegg function in the Bioconductor clusterProfiler package (Yu et al., 2012).

Interestingly, significant losses in mae include genes encoding the phycoerythrin proteins

found in phycobilisomes, which harvest light for photosynthesis. Phycoerythrins harvest

145

CHAPTER 7. PHYLOGENOMIC RECONCILIATION USING NOTUNG

green light, found at lower levels in the water column. However, mae has gas filled vesicles

that allow it to live at the surface of the water column, where wavelengths at the red end

of the spectrum are more prevalent. This is consistent with the hypothesis that mae lost its

phycoerythrin genes in the adaptation to its water-surface niche.

Figure 7.2: Heatmap showing the number of genes horizontally transferred between all pairs
of species in our data set. Barplots on top and right shows the number of genes transferred
from/received by each species. Calculated in R from tables output by Notung 2.9.

146

Chapter 8

Discussion

Reconciliation between gene tree and species tree has been one of the major ways to un-

derstand history of gene families among species. Inferring gene events allows researchers to

study various biological questions, such as the correlation between gene family expansion

and species evolution and gene function evolution with development of metabolic processes,

and the co-evolution between gene family and the ecological niche. With the advancement of

sequencing technology, genome scale phylogenetic data sets of gene trees can be constructed

and reconciliation can be applied to thousands of gene trees in an automated fashion. Earlier

models for reconciliation aimed to explain the gene tree incongruence with duplication and

loss event only. Increasing evidence that horizontal gene transfer (HGT), duplication, and

loss all play a role in gene family evolution suggests that a reconciliation model that infers

all three gene events together is urgently needed.

However, incorporating transfer events in the reconciliation model introduces several chal-

lenges:

1. HGT can occur between any two species that are not related by vertical descent. This

allows the genes to jump in many places in the species tree. This species feature of

HGT allows a given instance of gene tree incongruence to be explained by multiple

event histories. Generating all event histories for exploratory analysis for a gene tree is

algorithmically more complex than generating a single optimal history. . To separate

these solutions, a cost vector < CT , CD, CL > is needed to prefer some event histories

from others. For each event history, the cost is calculated as the weighted sum of

147

CHAPTER 8. DISCUSSION

Gene Tree vs Species Tree Binary TS Non-binary TS
Binary TG DTL DTL(Ch.3)
Non-binary TG DTL(Ch.4) NA

Table 8.1: The algorithms that exist for the input gene tree and species tree under different
event models. Red models indicates my contribution.

the event numbers and the event costs. Under maximum parsimony framework, the

solution with the lowest cost is considered the best solution.

2. HGT also introduces temporal constraints. The donor species and recipient species

must exist at the same time for HGT to occur. Therefore, the event history must

be temporally feasible to be a valid solution. The problem of finding the lowest cost

solution that is temporally feasible is NP-complete (Hallett et al., 2004).

My thesis focusses on several of the challenges with the DTL event model. As Table 8.1

shows, under DTL model, the input gene tree and species tree can be either binary or non-

binary. Many algorithmic studies have been done on DTL reconciliation of a binary gene

tree with a binary species tree. Less work has been completed on the DTL-reconciliation of

a binary gene tree with a non-binary species tree, or a non-binary gene tree with a binary

species tree. In my thesis, I have described several of my contributions in all three problems.

8.1. DTL Reconciliation of Binary Gene Tree and Binary

Species Tree

Although many studies have been done on parsimony based reconciliation of binary gene tree

with an undated binary species tree, our algorithm and implementation of the algorithm

was the first one to report all optimal solutions (Stolzer et al., 2012b) and is still one of

the only two algorithms that does this (Donati et al., 2015a). This allows an exploratory

analysis for user to investigate each solutions manually for a gene tree. However, some gene

trees may result in too many optimal solutions, making manual inspection obsolete. A way

of summarizing all optimal solutions for each gene tree reconciliation automatically would

provide a faster understanding of the evolution of the gene family for the user.

148

8.2. DTL RECONCILIATION OF A BINARY GENE TREE AND A NON-BINARY SPECIES TREE

The current approach to DTL reconciliation is to find all candidate solutions with the mini-

mum cost using dynamic programming. If a candidate solution is temporally feasible, then it

is also an optimal solution. However, if all solutions with the minimum cost are temporally

infeasible, the only known approach is to through exhaustive search with super exponential

complexity. This leaves a exciting challenge for the future study. Between the dynamic pro-

gramming (Section 2.3.2) and the exponential complexity search, there may exist a middle

ground for finding pseudo optimal solutions when all minimum cost candidate solutions are

temporally infeasible.

I also discussed a model for reconciling binary tree on three levels of biological organization.

The model describes a single domain evolving through domain shuffling events in gene fami-

lies and the gene tree evolving through gene events in species tree (Section 3.3). I define the

domain shuffling events to the domain transfer, domain duplication, domain insertion, and

domain loss. Under this model, the domain family’s history can be represented by a domain

tree; and the genes, where these domains are sampled from, can be represented by a gene

tree if they are from the same gene family. The co-evolution between the domain family and

gene family can be studied by inferring the domain shuffling events by comparing the two

trees. In the context of tree reconciliation, I extended the DTL reconciliation algorithm for

gene tree to infer domain duplication, transfer, insertion, and loss event for domain families.

8.2. DTL reconciliation of A Binary Gene Tree and A Non-

binary Species Tree

In chapter 3, I discussed an approach to represent short species tree branch, where incomplete

lineage sorting (ILS) is likely to occur. To avoid the incorrect inference of gene events,

short species tree branches can be collapsed, resulting in a non-binary species tree. I also

described a reconciliation algorithm with a heuristic approach for distinguishing gene tree

incongruence caused by gene events from incongruent branching patterns that are consistent

with ILS. Under the DTL event model, this algorithm takes an input of a binary gene tree,

and a non-binary species tree, and infers gene duplication, transfer, and loss events (Table

8.1). Incongruent gene tree nodes that may reflect incongruent co-divergence with speciation

are also inferred.

149

CHAPTER 8. DISCUSSION

Our model for non-binary species tree reconciliation, is a compromise between the existing

DTL reconciliation model, and the coalescent model, which estimates the probability of

gene tree incongruence due to incomplete lineage sorting, as a function of population size

and the time between speciations. These population parameters are usually unknown. Our

parsimony model, on the other hand, does not take branch lengths into account. Instead,

the model collapses the short branches into a polytomy and does not infer gene events when

the incongruence that can be explained by ILS. This potentially introduces type II error,

where the gene events are underestimated. This conservative approach aims to reduce the

type I error. In future work, simulation studies could be used to characterize the accuracy

of this approach and measure the over-estimation if using binary species tree and the under-

estimation if using non-binary species tree.

8.3. DTL Reconciliation of a Non-binary gene tree and a

Binary Species Tree

In Chapter 4, I discussed the scenario where the gene tree contains uncertain branches, which

the sequence information lacked enough signal to infer a strongly supported branching order.

This uncertainty can result in a non-binary gene tree. The exact algorithm for reconciliation

of a non-binary gene trees with a binary species tree under the DTL model has exponential

complexity. As a result, the exact algorithm becomes intractable with increasing polytomy

size. I have proposed heuristics, which can be used as stand-alone tree correction methods

or as subroutines in species tree-aware gene tree construction techniques.

I demonstrated the effectiveness of these heuristics experimentally by comparing the event

costs obtained with each heuristic, with the minimum event cost obtained with the exact

method. I analyzed the effect of different number of iterations when applying Hybrid and

NNI heuristic. The result suggests that Local DL provides a good starting resolution, greatly

improving the accuracy of the Hybrid approach.

A hill climbing NNI algorithm, developed by Nguyen et al. (2013) was originally applied

to Resolve-DTL problem specifically for dated species tree. However, the algorithm can

be applied to undated species tree with slight modifications. The comparison between the

heuristics in this study and the hill climbing NNI would be an interesting topic for future

studies.

150

8.4. EVENT COST SELECTION

The NNI approach focuses on switching the neighbours that are adjacent to each other in

the tree. NNI may be to fine grained when searching for resolutions with horizontal gene

transfers which can introduce big changes in the topology. A different technique, Subtree

Prune and Regrafting (SPR) is another strategy to search the tree space. SPR, which makes

larger jumps in the tree space, would also be a good future direction.

I also calculated the Robinson-Foulds (RF) distance between the rearranged trees obtained

with the heuristic and exact methods. The RF distance is frequently used to compare

trees obtained with different methods for the same input data. Zheng and Zhang (2014b)

have compared event-based distances with RF distances and have shown that several metrics

based on the DL model are not equivalent to RF distance. Further, they observed that event-

based costs are “more sensitive to topology” than RF distances. Our empirical observations

suggest that a measure based on DTL-events is similarly more sensitive to topology. The

relationship between DTL- event metrics and RF distance may be a fruitful direction for

future theoretical studies. In the context of gene tree-species tree reconciliation, trees that

minimize the RF distance may not give a satisfying low event cost (Zheng and Zhang, 2014b)

This class of algorithms for the Resolve-D(T)L problem focused on the resolving the gene

tree uncertainty has an important limitation that should be given greater attention. Such

methods typically assume that all incongruence is due to either gene events or phylogenetic

error. However, population process (such as ILS, migration, hybridization, and introgression)

introduce uncertainty that may propagate to the gene tree. The resulting incongruence may

be the key signature for inferring the population processes, which could be removed when an

uncertain branch is resolved by a species-tree-aware method. Thus, if the uncertanty of the

gene tree is due to population processes, the reconciliation-based, species tree aware method

could introduce error, rather than decreasing it.

8.4. Event Cost Selection

One of the major challenges of using the DTL reconciliation algorithms with a parsimony

criterion is that the algorithm requires a pre-set event cost vector, which is used to calculate

the cost of reconciliation result. Which cost to select in order to obtain the most accurate

result has always been an important question. In chapter 5 and 6, I approached cost selection

from two directions. In chapter 5, under different assumptions concerning the event rates

151

CHAPTER 8. DISCUSSION

and the structure of the gene tree, I try to identify a range of event rates where a selected cost

vector can be chosen such taht the maximum parsimony reconciliations may be equivalent

to the most likely reconciliation.

In chapter 5, I constructed four log likelihood functions under four different scenarios and

compared the maximum likelihood with the maximum parsimony optimization criteria. In

birth-death lineage model, the log likelihood function in a linear function of ND, NT , NL

which fits very well to maximum parsimony. For constant lineage and birth-death number

models, there is an additional term that indicates some level of interaction between gene

event rates. For constant number model, the log likelihood can be separated into independent

functions of ND, NT , and NL, however, these are not linear. For these three models, it is

not clear whether there exists a cost vector, such that MP and ML are equivalent. Further

analysis on the interaction between the three event types to categorize their independence

and find the conditions for which the three events can be treated as three independent

functions would allow more understanding to the equivalence between maximum likelihood

and maximum parsimony reconciliation models.

The theoretical work in the chapter left several exciting challenges to be solved, including the

use of a probability generating function to solve a partial differential equation. The solution

obtained so far is an arbitrary function that needs to be narrowed down by additional con-

straints. Further investigation on such constraints and derivation of probability distribution

of the number of birth and death events would significantly advance the comparison between

maximum likelihood and maximum parsimony.

The factor that describes the number of duplicate topologies when the probability of a

reconciliation is calculated as a product of probability of every gene subtree embedded in

species tree branch. This term is another challenge that is not well understood in terms of

its variance and other properties. If this term could be neglected in the maximum likelihood

optimization criteria under some condition, it would also advance the comparison of the

maximum likelihood and maximum parsimony optimization criteria.

Because of the fundamental difference between MP and ML optimization criterion of recon-

ciliation, I also approach the problem of cost selection from another perspective. Given a

gene tree and a species tree, the space of all cost vectors can be partitioned into regions, in

which all cost vectors in the same region will give the same result for a given pair of gene and

species trees. In phylogenomic analysis with thousands of gene trees, generating such a par-

152

8.4. EVENT COST SELECTION

tition for each gene tree is not feasible. Further analysing the cost space indicates that some

partitions may commonly exist in many gene trees. This suggests that a partition of the

cost space that captures these common partitions will greatly facilitate the cost selection,

because the cost vectors from different common partitions are likely to generate different

reconciliation results. Analysing and comparing these different results can provide more

insights into the structure of all the gene trees. I described several common trade-offs and

demonstrated the gene tree scenarios that these common trade-offs represent. This provides

a basis for users to combine their biological intuition with the selection of cost vectors.

153

Appendix

Derivation of PB,D(t)

The equation to estimate the probability distribution of the number of birth and death event

after time t in Chapter 5 (Eq. 5.36) is derived here.

dPNB ,NL(t)

dt
=PNB−1,NL(t)(NB −NL)rB

+ PNB ,NL−1(t)(NB −NL + 2)rL

− PNB ,NL(t)(1 +NB −NL)(rB + rL)

(A1)

In order to solve this differential equation, we introduce φ(NB, NL, t), a probability generating

function (PGF) with two variables for the probability PNB ,NL(t):

φ(NB, NL, t) =
∞∑
i=0

∞∑
j=0

N i
BN

j
LPi,j(t). (A2)

For simplicity, I use x and y to represent the NB and NL in the above differential equation.

φ(x, y, t) =
∑
i,j

xiyjPi,j(t). (A3)

A1

CHAPTER 8. DISCUSSION

Taking the derivative with respect to t on both side gives:

∂φ

∂t
=
∑
i,j

xiyj
(

(i−j)λdPi−1,j(t)

dt
−(1+i−j)(λ+µ)

dPi,j(t)

dt
+(i−j+2)µ

dPi,j−1(t)

dt

)
(A4)

= [λ(x− 1)− µ(y − 1)](
∑
i,j

(i− j + 1)xiyjPi,j(t)) (A5)

= [λ(x− 1)− µ(y − 1)](x
∂φ

∂x
− y∂φ

∂y
+ φ) (A6)

Let β = [λ(x − 1) − µ(y − 1)], φt =
dφ

dt
, xt‘

dx

dt
, yt‘

dy

dt
. Then, the auxiliary equation of the

PDE is:
dt

1
=

dx

−xβ
=
dy

yβ
=
dφ

βφ
, (A7)

which gives a series of ordinary differential equations:

dx

dt
= −xβ, (A8)

dy

dt
= yβ, (A9)

dy

dx
= −y

x
, (A10)

dφ

dx
= −φ

x
. (A11)

Reordering Equations A8- A11 and taking the derivative with respect to t results in:

y =

[
1

x

dx

dt
+ λ(x− 1)

]
1

µ
+ 1, (A12)

dy

dt
=

1

µ

[
− 1

x2

(
dx

dt

)2

+
1

x

d2x

dt2
+ λ

dx

dt

]
. (A13)

Substituting Eqn. A12 and A13 in Eqn. A9, we obtain

1

µ

[
− 1

x2

(
dx

dt

)2

+
1

x

d2x

dt2
+ λ

dx

dt

]
=

[[
1

x

dx

dt
+ λ(x− 1)

]
1

µ
+ 1

](
1

−x
dx

dt

)
(A14)

The above equation can be simplified to a second order ODE:

d2x

dt2
+ (2λx+ µ− λ)

dx

dt
= 0. (A15)

A2

8.4. EVENT COST SELECTION

Let v =
dx

dt
, then

d2x

dt2
=
dv

dt
=
dx

dt

dv

dx
= v

dv

dx
. Therefore,

v
dv

dx
+ (2λx+ µ− λ)v = 0. (A16)

Integrating
dv

dx
, we get

v = λx2 + (µ− λ)x+ C =
dx

dt
. (A17)

For simplicity here, we assume C = 0 in Eq. A17. Integrating
dx

dt
yields,

xe(λ−µ)t

λx+ u− λ
= C1. (A18)

Solving Eq. A10 and Eq. A11, we obtain

xy = C2 (A19)

xφ = C3 (A20)

(A21)

Let C3 = Φ(C1, C2), where Φ is an arbitrary function, the general solution is :

φ(x, y, t) =
1

x
Φ(xy,

xe(λ−µ)t

λx+ µ− λ
) (A22)

To narrow down the solution space for this differential equation, more restrictions are re-

quired. Lacking these restrictions, solving this set of ODEs is intractable.

A3

Bibliography

Orjan Akerborg, Bengt Sennblad, Lars Arvestad, and Jens Lagergren. Simultaneous Bayesian

gene tree reconstruction and reconciliation analysis. PNAS, 106:5714–5719, Apr 2009.

Ricard Albalat and Cristian Cañestro. Evolution by gene loss. Nat Rev Genet, 17:379–391,

Jul 2016.

Cheryl P. Andam and J. Peter Gogarten. Biased gene transfer in microbial evolution. Nat

Rev Microbiol, 9:543–555, Jul 2011.

Jan O. Andersson. Horizontal gene transfer between microbial eukaryotes. Methods Mol

Biol, 532:473–487, 2009.

Maria Anisimova, Manuel Gil, Jean-François Dufayard, Christophe Dessimoz, and Olivier

Gascuel. Survey of branch support methods demonstrates accuracy, power, and robustness

of fast likelihood-based approximation schemes. Syst Biol, 60(5):685–699, Oct 2011.

Lars Arvestad, Ann-Charlotte Berglund, Jens Lagergren, and Bengt Sennblad. Bayesian

gene/species tree reconciliation and orthology analysis using MCMC. Bioinformatics, 19

Suppl 1:i7–15, 2003.

Lars Arvestad, Jens Lagergren, and Bengt Sennblad. The gene evolution model and com-

puting its associated probabilities. J. ACM, 56(2):1–44, 2009.

J. C. Avise, J. F. Shapira, S. W. Daniel, C. F. Aquadro, and R. A. Lansman. Mitochondrial

DNA differentiation during the speciation process in Peromyscus. Mol Biol Evol, 1(1):

38–56, Dec 1983.

J. C. Avise, J. E. Neigel, and J. Arnold. Demographic influences on mitochondrial dna

lineage survivorship in animal populations. J Mol Evol, 20(2):99–105, 1984.

A5

BIBLIOGRAPHY

Rajeev K. Azad and Jeffrey G. Lawrence. Detecting laterally transferred genes. Methods

Mol Biol, 855:281–308, 2012.

Mukul S. Bansal, Eric J. Alm, and Manolis Kellis. Efficient algorithms for the reconciliation

problem with gene duplication, horizontal transfer and loss. Bioinformatics, 28:i283–i291,

Jun 2012.

Mukul S. Bansal, Eric J. Alm, and Manolis Kellis. Reconciliation revisited: Handling mul-

tiple optima when reconciling with duplication, transfer, and loss. J Comput Biol, Sep

2013.

Mukul S. Bansal, Yi-Chieh Wu, Eric J. Alm, and Manolis Kellis. Improved gene tree error

correction in the presence of horizontal gene transfer. Bioinformatics, 31:1211–1218, Apr

2015.

Daniel Barker. Gene trees for orthologous groups from: The evolution of nitrogen fixation

in cyanobacteria, 2013. Edinburgh DataShare. http://dx.doi.org/10.5061/dryad.pv6df.

Alix Boc, Hervé Philippe, and Vladimir Makarenkov. Inferring and validating horizontal

gene transfer events using bipartition dissimilarity. Syst Biol, 59:195–211, Mar 2010.

Paola Bonizzoni, Gianluca Della Vedova, and Riccardo Dondi. Reconciling a gene tree to a

species tree under the duplication cost model. Theor. Comput. Sci., pages 36–53, 2005.

Bastien Boussau, Gergely J. Szöllosi, Laurent Duret, Manolo Gouy, Eric Tannier, and Vin-

cent Daubin. Genome-scale coestimation of species and gene trees. Genome Res, 23:

323–330, Feb 2013.

Thomas Brockmöller, Zhihao Ling, Dapeng Li, Emmanuel Gaquerel, Ian T. Baldwin, and

Shuqing Xu. Nicotiana attenuata Data Hub (NaDH): an integrative platform for exploring

genomic, transcriptomic and metabolomic data in wild tobacco. BMC Genomics, 18:79,

Jan 2017.

M. A. Charleston. Jungles: a new solution to the host/parasite phylogeny reconciliation

problem. Math Biosci, 149:191–223, May 1998.

Ruchi Chaudhary, J. Gordon Burleigh, and Oliver Eulenstein. Efficient error correction

algorithms for gene tree reconciliation based on duplication, duplication and loss, and

deep coalescence. BMC Bioinformatics, 13 Suppl 10:S11, Jun 2012.

A6

BIBLIOGRAPHY

Cedric Chauve, Jean-Philippe Doyon, and Nadia El-Mabrouk. Gene family evolution by

duplication, speciation, and loss. J Comput Biol, 15:1043–1062, Oct 2008.

Cedric Chauve, Nadia El-Mabrouk, Laurent Guéguen, Magali Semeria, and Eric Tannier.

Duplication, rearrangement and reconciliation: A follow-up 13 years later. volume 19 of

Computational Biology, pages 47–62. Springer London, 2013.

Kevin Chen, Dannie Durand, and Martin Farach-Colton. Notung: Dating gene duplications

using gene family trees. In RECOMB 2000: Proceedings of the Fourth International

Conference on Research in Computational Biology, ACM Press, pages 96–106, New York,

NY, USA, 2000. ACM Press.

Chris Conow, Daniel Fielder, Yaniv Ovadia, and Ran Libeskind-Hadas. Jane: a new tool

for the cophylogeny reconstruction problem. Algorithms Mol Biol, 5:16, Feb 2010.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press/McGraw-Hill, 1990.

Miklós Csurös. Count: evolutionary analysis of phylogenetic profiles with parsimony and

likelihood. Bioinformatics, 26:1910–1912, Aug 2010.

Daniel A. Dalquen, Maria Anisimova, Gaston H. Gonnet, and Christophe Dessimoz. Alf-

simulation framework for genome evolution. Molecular Biology and Evolution, 29(4):1115,

2011.

Charlotte A. Darby, Maureen Stolzer, Patrick J. Ropp, Daniel Barker, and Dannie Durand.

Xenolog classification. Bioinformatics, 33(5):640–649, Mar 2017.

Lawrence A. David and Eric J. Alm. Rapid evolutionary innovation during an Archaean

genetic expansion. Nature, 469:93–96, Jan 2011.

B. Donati, C. Baudet, B. Sinaimeri, P. Crescenzi, and M. F. Sagot. EUCALYPT: efficient

tree reconciliation enumerator. Algorithms Mol Biol, 10(1):3, 2015a.

Beatrice Donati, Christian Baudet, Blerina Sinaimeri, Pierluigi Crescenzi, and Marie-France

Sagot. Eucalypt: efficient tree reconciliation enumerator. Algorithms Mol Biol, 10:3, Jan

2015b.

J. Doyon and C. Chauve. Branch-and-bound approach for parsimonious inference of a species

tree from a set of gene family trees. Adv Exp Med Biol, 696:287–295, 2011.

A7

BIBLIOGRAPHY

J. Doyon, C. Scornavacca, K. Gorbunov, G. Szollosi, V. Ranwez, and V. Berry. An efficient

algorithm for gene/species trees parsimonious reconciliation with losses, duplications and

transfers. In Eric Tannier, editor, RECOMB-CG 2010: Proceedings of the International

Workshop on Comparative Genomics, volume 6398 of LNBI, pages 93–108. Springer, 2010.

Jean-Philippe Doyon, Vincent Ranwez, Vincent Daubin, and Vincent Berry. Models, al-

gorithms and programs for phylogeny reconciliation. Brief Bioinform, 12:392–400, Sep

2011.

Irina S. Druzhinina, Eva M. Kubicek, and Christian P. Kubicek. Several steps of lateral gene

transfer followed by events of ‘birth-and-death’ evolution shaped a fungal sorbicillinoid

biosynthetic gene cluster. BMC Evolutionary Biology, 16(1):269, Dec 2016.

Julie C. Dunning Hotopp. Horizontal gene transfer between bacteria and animals. Trends

Genet, 27(4):157–163, Apr 2011.

D. Durand and R. A. Hoberman. Diagnosing duplications: can it be done? Trends Genet,

22(3):156–64, Mar 2006.

D. Durand, B. V. Halldorsson, and B. Vernot. A hybrid micro-macroevolutionary approach

to gene tree reconstruction. In Proceedings of the Ninth Annual International Conference

on Computational Molecular Biology (RECOMB), 2005.

D. Durand, B. Halldorsson, and B. Vernot. A hybrid micro-macroevolutionary approach

to gene tree reconstruction. Journal of Computational Biology, 13(2):320–335, 2006a. A

preliminary version appeared in Recomb 2005, LNBI 3500, Springer Verlag, 250-264.

D. Durand, B. Halldorsson, and B. Vernot. A hybrid micro-macroevolutionary approach to

gene tree reconstruction. J Comput Biol, 13(2):320–335, 2006b. A preliminary version

appeared in RECOMB 2005, LNBI 3500, Springer Verlag, 250–264.

O. Eulenstein and M. Vingron. On the equivalence of two tree mapping measures. Discrete

Applied Mathematics, 88(13):103 – 128, 1998. Computational Molecular Biology {DAM}
- {CMB} Series.

James S. Farris. A probability model for inferring evolutionary trees. Systematic Zoology,

22(3):250–256, 1973.

Joseph Felsenstein. Maximum likelihood and minimum-steps methods for estimating evolu-

tionary trees from data on discrete characters. Systematic Biology, 22(3):240, 1973.

A8

BIBLIOGRAPHY

Joseph Felsenstein. Inferring Phylogenies. Sinauer, 2003.

David A. Fitzpatrick. Horizontal gene transfer in fungi. FEMS Microbiol Lett, 329:1–8, Apr

2012.

Felipe J. Fuzita, Martijn W. H. Pinkse, José S. L. Patane, Peter D. E. M. Verhaert, and

Adriana R. Lopes. High throughput techniques to reveal the molecular physiology and

evolution of digestion in spiders. BMC Genomics, 17:716, Sep 2016.

Caihua Gao, Xiaodong Ren, Annaliese S. Mason, Honglei Liu, Meili Xiao, Jiana Li, and

Donghui Fu. Horizontal gene transfer in plants. Funct Integr Genomics, 14(1):23–29, Mar

2014.

W. Gilbert. Why genes in pieces? Nature, 271(5645):501, Feb 1978.

W. Gilbert. The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol., 52:901–905,

1987.

David A. Gold, Jonathan Grabenstatter, Alex de Mendoza, Ana Riesgo, Iñaki Ruiz-Trillo,

and Roger E. Summons. Sterol and genomic analyses validate the sponge biomarker

hypothesis. Proceedings of the National Academy of Sciences, 113(10):2684–2689, 2016.

M. Goodman, J. Czelusniak, G. W. Moore, A. E. Romero-Herrera, and G. Matsuda. Fitting

the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms

constructed from globin sequences. Syst Zool, 28:132–163, 1979.

Pawel Gorecki and Oliver Eulenstein. Algorithms: simultaneous error-correction and rooting

for gene tree reconciliation and the gene duplication problem. BMC Bioinformatics, 13

Suppl 10:S14, Jun 2012.

Pawel Górecki and Oliver Eulenstein. DrML: probabilistic modeling of gene duplications. J

Comput Biol, 21:89–98, Jan 2014.

Stéphane Guindon, Jean-François Dufayard, Vincent Lefort, Maria Anisimova, Wim Hordijk,

and Olivier Gascuel. New algorithms and methods to estimate maximum-likelihood phy-

logenies: assessing the performance of PhyML 3.0. Syst Biol, 59:307–321, May 2010.

Mike Hallett, Jens Lagergren, and Ali Tofigh. Simultaneous identification of duplications and

lateral transfers. In RECOMB 2004: Proceedings of the Eigth International Conference

A9

BIBLIOGRAPHY

on Research in Computational Biology, ACM Press, pages 347–356, New York, NY, USA,

2004.

E. F. Harding. The probabilities of rooted tree-shapes generated by random bifurcation.

Advances in Applied Probability, 3(1):44–77, 1971.

Paul V. Hickner, Chissa L. Rivaldi, Cole M. Johnson, Madhura Siddappaji, Gregory J.

Raster, and Zainulabeuddin Syed. The making of a pest: Insights from the evolution of

chemosensory receptor families in a pestiferous and invasive fly, Drosophila suzukii. BMC

Genomics, 17:648, Aug 2016.

Tobias Hill, Karl J. V. Nordström, Mikael Thollesson, Tommy M. Säfström, Andreas K. E.

Vernersson, Robert Fredriksson, and Helgi B. Schiöth. Sprit: Identifying horizontal gene

transfer in rooted phylogenetic trees. BMC Evol Biol, 10:42, Feb 2010.

J. P. Huelsenbeck, B. Rannala, and B. Larget. A Bayesian framework for the analysis of

cospeciation. Evolution, 54:352–364, Apr 2000.

Daniel H. Huson and Celine Scornavacca. A survey of combinatorial methods for phylogenetic

networks. Genome Biol Evol, 3:23–35, Nov 2011.

Jun Inoue, Yukuto Sato, Robert Sinclair, Katsumi Tsukamoto, and Mutsumi Nishida. Rapid

genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish

suggested by mathematical modeling. Proceedings of the National Academy of Sciences,

112(48):14918–14923, 2015.

Edwin Jacox, Cedric Chauve, Gergely J. Szöll?si, Yann Ponty, and Celine Scornavacca.

ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony. Bioin-

formatics, 32:2056–2058, Jul 2016.

Edwin Jacox, Mathias Weller, Eric Tannier, and Celine Scornavacca. Resolution and recon-

ciliation of non-binary gene trees with transfers, duplications and losses. Bioinformatics,

33:980–987, Apr 2017.

R. Jain, M. C. Rivera, and J. A. Lake. Horizontal gene transfer among genomes: the

complexity hypothesis. Proc Natl Acad Sci U S A, 96(7):3801–3806, Mar 1999.

Henrik Kaessmann, Sebastian Zollner, Anton Nekrutenko, and Wen-Hsiung Li. Signatures

of domain shuffling in the human genome. Genome Res, 12(11):1642–1650, Nov 2002.

A10

BIBLIOGRAPHY

Thomas M. Keane, Christopher J. Creevey, Melissa M. Pentony, Thomas J. Naughton, and

James O. Mclnerney. Assessment of methods for amino acid matrix selection and their

use on empirical data shows that ad hoc assumptions for choice of matrix are not justified.

BMC Evol Biol, 6:29, Mar 2006.

David G. Kendall. Stochastic processes and population growth. J. of the Royal Statistial

Society Series B, 11(2):230–282, 1949.

Mehmood Alam Khan, Owais Mahmudi, Ikram Ullah, Lars Arvestad, and Jens Lagergren.

Probabilistic inference of lateral gene transfer events. BMC Bioinformatics, 17(14):431,

2016.

Jung-Woong Kim, Hyun-Jin Yang, Adam Phillip Oel, Matthew John Brooks, Li Jia,

David Charles Plachetzki, Wei Li, William Ted Allison, and Anand Swaroop. Recruit-

ment of rod photoreceptors from short-wavelength-sensitive cones during the evolution of

nocturnal vision in mammals. Dev Cell, 37:520–532, Jun 2016a.

Ki-Tae Kim, Jongbum Jeon, Jaeyoung Choi, Kyeongchae Cheong, Hyeunjeong Song, Gob-

ong Choi, Seogchan Kang, and Yong-Hwan Lee. Kingdom-wide analysis of fungal small

secreted proteins (ssps) reveals their potential role in host association. Front Plant Sci, 7:

186, Feb 2016b.

Konstantinos T. Konstantinidis, Alban Ramette, and James M. Tiedje. The bacterial species

definition in the genomic era. Proceedings of the Royal Society B: Biological Sciences, 361

(1475):1929–1940, 11 2006.

M Kordi and S Bansal. On the complexity of duplication-transfer-loss reconciliation

with non-binary gene trees. IEEE/ACM Trans Comput Biol Bioinform, 14(3):587–599,

May/Jun 2017.

Misagh Kordi and Mukul S. Bansal. Exact algorithms for duplication-transfer-loss reconcil-

iation with non-binary gene trees. In ACM International Conference on Bioinformatics,

Computational Biology, and Health Informatics, pages 297–306, 2016.

Sanna Koskiniemi, Song Sun, Otto G. Berg, and Dan I. Andersson. Selection-driven gene

loss in bacteria. PLOS Genetics, 8(6):1–7, 06 2012.

Manuel Lafond, Magali Semeria, Krister M. Swenson, Eric Tannier, and Nadia El-Mabrouk.

Gene tree correction guided by orthology. BMC Bioinformatics, 14 Suppl 15:S5, Oct 2013.

A11

BIBLIOGRAPHY

Manuel Lafond, Cedric Chauve, Riccardo Dondi, and Nadia El-Mabrouk. Polytomy refine-

ment for the correction of dubious duplications in gene trees. Bioinformatics, 30:i519–i526,

Sep 2014.

Manuel Lafond, Riccardo Dondi, and Nadia El-Mabrouk. The link between orthology rela-

tions and gene trees: a correction perspective. Algorithms Mol Biol, 11:4, Apr 2016.

H. Lai, M. Stolzer, and D. Durand. Fast heuristics for resolving weakly supported branches

using duplication, transfers, and losses. In J. Meidanis and L. Nakhleh, editors, 15th RE-

COMB Satellite Conference on Comparative Genomics, Lecture Notes in Bioinformatics.

Springer Verlag, 2017. in press.

N. Latysheva, V. L. Junker, W. J. Palmer, G. A. Codd, and D. Barker. The evolution of

nitrogen fixation in cyanobacteria. Bioinformatics, 28(5):603–6, 2012.

J. G. Lawrence. Gene transfer, speciation, and the evolution of bacterial genomes. Curr

Opin Microbiol, 2:519–523, Oct 1999.

Ran Libeskind-Hadas and Michael A. Charleston. On the computational complexity of the

reticulate cophylogeny reconstruction problem. J Comput Biol, 16:105–117, Jan 2009.

Ran Libeskind-Hadas, Yi-Chieh Wu, Mukul S. Bansal, and Manolis Kellis. Pareto-optimal

phylogenetic tree reconciliation. Bioinformatics, 30:i87–i95, Jun 2014.

M. Long, E. Betran, K. Thornton, and W. Wang. The origin of new genes: glimpses from

the young and old. Nat Rev Genet, 4(11):865–75, Nov 2003.

Lafond M., Swenson K.M., and El-Mabrouk N. An optimal reconciliation algorithm for gene

trees with polytomies. In Raphael B. and Tang J., editors, Algorithms in Bioinformatics,

volume 7534 of LNCS, pages 106–122. Springer, 2012.

W. P. Maddison. Gene trees in species trees. Syst. Biol., 46(3):523–536, 1997.

Santoshkumar Magadum, Urbi Banerjee, Priyadharshini Murugan, Doddabhimappa Ganga-

pur, and Rajasekar Ravikesavan. Gene duplication as a major force in evolution. J Genet,

92:155–161, Apr 2013.

Sean K. McKenzie, Ingrid Fetter-Pruneda, Vanessa Ruta, and Daniel J. C. Kronauer. Tran-

scriptomics and neuroanatomy of the clonal raider ant implicate an expanded clade of

A12

BIBLIOGRAPHY

odorant receptors in chemical communication. Proc Natl Acad Sci U S A, 113:14091–

14096, Dec 2016.

Olivia Mendivil Ramos and David E. K. Ferrier. Mechanisms of gene duplication and translo-

cation and progress towards understanding their relative contributions to animal genome

evolution. Int J Evol Biol, 2012:846421, Aug 2012.

Daniel Merkle and Martin Middendorf. Reconstruction of the cophylogenetic history of

related phylogenetic trees with divergence timing information. Theory Biosci, 123:277–

299, Apr 2005.

B. Mirkin, I. Muchnik, and T.F. Smith. A biologically consistent model for comparing

molecular phylogenies. J Comput Biol, 2:493–507, 1995.

László G. Nagy, Robert Riley, Philip J. Bergmann, Krisztina Krizsán, Francis M. Martin,

Igor V. Grigoriev, Dan Cullen, and David S. Hibbett. Genetic bases of fungal white rot

wood decay predicted by phylogenomic analysis of correlated gene-phenotype evolution.

Mol Biol Evol, 34:35–44, Jan 2017.

L. Nakhleh. Evolutionary phylogenetic networks: models and issues. In L. Heath and

N. Ramakrishnan, editors, The Problem Solving Handbook for Computational, pages 125–

158. Springer, 2010.

Luay Nakhleh. Computational approaches to species phylogeny inference and gene tree

reconciliation. Trends Ecol Evol, 28:719–728, Dec 2013.

Luay Nakhleh and Derek Ruths. Gene trees, species trees, and species networks. In R. Guerra

and D. Goldstein, editors, Meta-analysis and Combining Information in Genetics and Ge-

nomics, pages 275–293. Chapman & Hall/CRC Mathematical and Computational Biology,

Boca Raton, FL, USA, 2009.

Luay Nakhleh, Derek Ruths, and Wang Li-San. RIATA-HGT: A fast and accurate heuris-

tic for reconstructing horizontal gene transfer. In Proc. 11th International Computing

and Combinatorics Conference (COCOON), Springer, LNCS 3595, pages 84–93, Berlin

Heidelberg, 2005.

Masatoshi Nei. Molecular Evolutionary Genetics. Columbia University Press, 1987.

A13

BIBLIOGRAPHY

Thi Hau Nguyen, Vincent Ranwez, Stéphanie Pointet, Anne-Muriel Arigon Chifolleau, Jean-

Philippe Doyon, and Vincent Berry. Reconciliation and local gene tree rearrangement can

be of mutual profit. Algorithms for Molecular Biology, 8(1):12, 2013.

Emmanuel Noutahi, Magali Semeria, Manuel Lafond, Jonathan Seguin, Bastien Boussau,

Laurent Guéguen, Nadia El-Mabrouk, and Eric Tannier. Efficient gene tree correction

guided by genome evolution. PLoS One, 11:e0159559, Aug 2016.

H. Ochman, J. G. Lawrence, and E. A. Groisman. Lateral gene transfer and the nature of

bacterial innovation. Nature, 405(6784):299–304, May 2000.

S. Ohno. Evolution by genome duplication. Berlin: Springer Verlag, 1970.

Y. Ovadia, D. Fielder, C. Conow, and R. Libeskind-Hadas. The cophylogeny reconstruction

problem is NP-complete. J Comput Biol, 18:59–65, Jan 2011.

R.D.M. Page. Maps between trees and cladistic analysis of historical associations among

genes, organisms, and areas. Syst Biol, 43(1):58–77, Mar 1994.

P. Pamilo and M. Nei. Relationships between gene trees and species trees. Mol Biol Evol, 5

(5):568–583, 1988.

L. Patthy. Modular assembly of genes and the evolution of new functions. Genetica, 118

(2-3):217–231, Jul 2003.

Simon Penel, Anne-Muriel Arigon, Jean-François Dufayard, Anne-Sophie Sertier, Vincent

Daubin, Laurent Duret, Manolo Gouy, and Guy Perrière. Databases of homologous gene

families for comparative genomics. BMC Bioinformatics, 10 Suppl 6:S3, Jun 2009.

M. Desmond Ramirez, Autum N. Pairett, M. Sabrina Pankey, Jeanne M. Serb, Daniel I.

Speiser, Andrew J. Swafford, and Todd H. Oakley. The last common ancestor of most

bilaterian animals possessed at least nine opsins. Genome Biol Evol, 8:3640–3652, Dec

2016.

Matthew D. Rasmussen and Manolis Kellis. A Bayesian approach for fast and accurate gene

tree reconstruction. Mol Biol Evol, 28:273–290, Jan 2011.

Aaron O. Richardson and Jeffrey D. Palmer. Horizontal gene transfer in plants. J Exp Bot,

58:1–9, Oct 2007.

A14

BIBLIOGRAPHY

F. Ronquist. Reconstructing the history of host parasite associations using generalised par-

simony. Cladistics, 11(1):73–89, 1995.

Celine Scornavacca, Edwin Jacox, and Gergely J. Szöllõsi. Joint amalgamation of most

parsimonious reconciled gene trees. Bioinformatics, 31:841–848, Mar 2015.

Joel Sjöstrand, Bengt Sennblad, Lars Arvestad, and Jens Lagergren. DLRS: gene tree evo-

lution in light of a species tree. Bioinformatics, 28:2994–2995, Nov 2012.

Joel Sjőstrand, Ali Tofigh, Vincent Daubin, Lars Arvestad, Bengt Sennblad, and Jens Lager-

gren. A Bayesian method for analyzing lateral gene transfer. Systematic Biology, 63(3):

409, 2014.

J. G. Skellam. The frequency distribution of the difference between two Poisson variates

belonging to different populations. J R Stat Soc Ser A, 109:296, 1946.

M Stolzer, H Lai, M Xu, D Sathaye, Vernot B, and D Durand. Inferring duplications, losses,

transfers, and incomplete lineage sorting with non-binary species trees. Bioinformatics,

28:i409–i415, 2012a.

Maureen Stolzer. Data Analysis Project: Inferring Rates of Domain Shuffling Using a Birth-

Death and Gain Model. PhD thesis, Carnegie Mellon University, Jan 2011.

Maureen Stolzer. Phylogenetic Inference for Multidomain Proteins. PhD thesis, Carnegie

Mellon University, Pittsburgh, PA, Aug 2012.

Maureen Stolzer, Han Lai, Minli Xu, Deepa Sathaye, Benjamin Vernot, and Dannie Durand.

Inferring duplications, losses, transfers, and incomplete lineage sorting with non-binary

species trees. In ECCB, 2012b.

Maureen Stolzer, Katherine Siewert, Han Lai, Minli Xu, and Dannie Durand. Event inference

in multidomain families with phylogenetic reconciliation. BMC Bioinformatics, 16(14):S8,

2015.

Krister M. Swenson, Andrea Doroftei, and Nadia El-Mabrouk. Gene tree correction for

reconciliation and species tree inference. Algorithms Mol Biol, 7:31, Nov 2012.

Gergely J. Szöllosi, Bastien Boussau, Sophie S. Abby, Eric Tannier, and Vincent Daubin.

Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing

of speciations. Proc Natl Acad Sci U S A, 109:17513–17518, Oct 2012.

A15

BIBLIOGRAPHY

Gergely J. Szöllõsi, Wojciech Rosikiewicz, Bastien Boussau, Eric Tannier, and Vincent

Daubin. Efficient exploration of the space of reconciled gene trees. Syst Biol, 62:901–

912, Nov 2013a.

Gergely J. Szöllõsi, Wojciech Rosikiewicz, Bastien Boussau, Eric Tannier, and Vincent

Daubin. Data from: Efficient exploration of the space of reconciled gene trees, 2013b.

Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.pv6df.

F. Tajima. Evolutionary relationship of DNA sequences in finite populations. Genetics, 105

(2):437–460, Oct 1983.

N. Takahata and M. Nei. Gene genealogy and variance of interpopulational nucleotide

differences. Genetics, 110(2):325–344, Jun 1985.

Paul D. Thomas. GIGA: a simple, efficient algorithm for gene tree inference in the genomic

age. BMC Bioinformatics, 11:312, Jun 2010.

J. W. Thornton and R. DeSalle. A new method to localize and test the significance of

incongruence: detecting domain shuffling in the nuclear receptor superfamily. Syst Biol,

49(2):183–201, Jun 2000.

Ali Tofigh. Using Trees to Capture Reticulate Evolution. PhD thesis, Kunliga Tekniska

Hogskolan School of Computer Science and Communication, Stockholm, Sweden, 2009.

Ali Tofigh, Michael Hallett, and Jens Lagergren. Simultaneous identification of duplications

and lateral gene transfers. TCBB, 8:517–535, Mar/Apr 2011.

Hedvig Tordai, Alinda Nagy, Krisztina Farkas, Laszlo Banyai, and Laszlo Patthy. Modules,

multidomain proteins and organismic complexity. FEBS J, 272(19):5064–5078, Oct 2005.

Todd J. Treangen and Eduardo P. C. Rocha. Horizontal transfer, not duplication, drives the

expansion of protein families in prokaryotes. PLoS Genet, 7(1):e1001284, Jan 2011.

Ines Van Bocxlaer, Margo Maex, Dag Treer, Sunita Janssenswillen, Rik Janssens, Wim

Vandebergh, Paul Proost, and Franky Bossuyt. Beyond sodefrin: evidence for a multi-

component pheromone system in the model newt Cynops pyrrhogaster (Salamandridae).

Sci Rep, 6:21880, Mar 2016.

Anke van Rijk and Hans Bloemendal. Molecular mechanisms of exon shuffling: illegitimate

recombination. Genetica, 118:245–249, Jul 2003.

A16

BIBLIOGRAPHY

Deepti Varshney, Akanksha Jaiswar, Alok Adholeya, and Pushplata Prasad. Phylogenetic

analyses reveal molecular signatures associated with functional divergence among subtilisin

like serine proteases are linked to lifestyle transitions in Hypocreales. BMC Evolutionary

Biology, 16(1):220, Oct 2016.

Alejandra Vasco, Tynisha L. Smalls, Sean W. Graham, Endymion D. Cooper, Gane Ka-Shu

Wong, Dennis W. Stevenson, Robbin C. Moran, and Barbara A. Ambrose. Challenging

the paradigms of leaf evolution: Class III HD-Zips in ferns and lycophytes. New Phytol,

212:745–758, Nov 2016.

Benjamin Vernot, Maureen Stolzer, Aiton Goldman, and Dannie Durand. Reconciliation

with non-binary species trees. J Comput Biol, 15:981–1006, Oct 2008.

Albert J. Vilella, Jessica Severin, Abel Ureta-Vidal, Li Heng, Richard Durbin, and Ewan

Birney. EnsemblCmpara GeneTrees: Complete, duplication-aware phylogenetic trees in

vertebrates. Genome Res, 19:327–335, Feb 2009.

Ilan Wapinski, Avi Pfeffer, Nir Friedman, and Aviv Regev. Natural history and evolutionary

principles of gene duplication in fungi. Nature, 449:54–61, Sep 2007.

André Wehe, Mukul S. Bansal, J. Gordon Burleigh, and Oliver Eulenstein. DupTree: a

program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics,

24:1540–1541, Jul 2008.

Jennifer H. Wisecaver, William G. Alexander, Sean B. King, Chris Todd Hittinger, and

Antonis Rokas. Dynamic evolution of nitric oxide detoxifying flavohemoglobins, a family

of single-protein metabolic modules in bacteria and eukaryotes. Molecular Biology and

Evolution, 33(8):1979, 2016.

Guangchuang Yu, Li-Gen Wang, Yanyan Han, and Qing-Yu He. clusterProfiler: an R package

for comparing biological themes among gene clusters. OMICS, 16:284–287, May 2012.

Liwen Zhang, Zhengfu Zhou, Qiannan Guo, Like Fokkens, Márton Miskei, István Pócsi,

Wei Zhang, Ming Chen, Lei Wang, Yamin Sun, Bruno G. G. Donzelli, Donna M. Gibson,

David R. Nelson, Jian-Guang Luo, Martijn Rep, Hang Liu, Shengnan Yang, Jing Wang,

Stuart B. Krasnoff, Yuquan Xu, István Molnár, and Min Lin. Insights into adaptations to

a near-obligate nematode endoparasitic lifestyle from the finished genome of Drechmeria

coniospora. Sci Rep, 6:23122, Mar 2016.

A17

BIBLIOGRAPHY

Chunfang Zheng, P. Kerr Wall, Jim Leebens-Mack, Victor A. Albert, Claude dePamphilis,

and David Sankoff. The effect of massive gene loss following whole genome duplication

on the algorithmic reconstruction of the ancestral populus diploid. Comput Syst Bioinfor-

matics Conf, 7:261–271, 2008.

Yu Zheng and Louxin Zhang. Reconciliation with non-binary gene trees revisited. In Roded

Sharan, editor, Research in Computational Molecular Biolog, volume 8394 of LNCS, pages

418–432. Springer International Publishing, 2014a.

Yu Zheng and Louxin Zhang. Are the duplication cost and Robinson-Foulds distance equiv-

alent? J Comput Biol, 21:578–590, Aug 2014b.

A18

