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Abstract

This thesis presents a series of planners and algorithms for manipulation in cluttered hu-

man environments. The focus is on using physics-based predictions, particularly for pushing

operations, as an effective way to address the manipulation challenges posed by these envi-

ronments.

We introduce push-grasping, a physics-based action to grasp an object first by pushing

it and then closing the fingers. We analyze the mechanics of push-grasping and demonstrate

its effectiveness under clutter and object pose uncertainty. We integrate a planning system

based on push-grasping to the geometric planners traditionally used in grasping. We then

show that a similar approach can be used to perform manipulation with environmental

contact in cluttered environments. We present a planner where the robot can simultaneously

push multiple obstacles out of the way while grasping an object through clutter.

In the second part of this thesis we focus on planning a sequence of actions to manipulate

clutter. We present a planning framework to rearrange clutter using prehensile and non-

prehensile primitives. We show that our planner succeeds in environments where planners

which only use prehensile primitives fail. We then explore the problem of manipulating

clutter to search for a hidden object. We formulate the problem as minimizing the expected

time to find the target, present two algorithms, and analyze their complexity and optimality.
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Chapter 1

Introduction

There are striking differences between the way humans and current robots manipulate

objects. One difference is in the variety of actions used. The list of actions that we humans

use to throw, pour, blow, cut, bend, push, pull, and play with the objects around us is nearly

endless (Fig. 1.1). Current robots working in human environments, however, manipulate

objects almost exclusively through pick-and-place actions. As a consequence, robots are

also limited in the variety of tasks that they can perform.

Robots are limited to pick-and-place actions because they use motion planners which

are agnostic to physics. Pick-and-place actions do not require physics models to predict

how the manipulated object moves: it is rigidly attached to the hand. However, complex

manipulation skills require complex physics-based models to predict how the world behaves.

For example, to push a heavy piece of furniture out of the way, a robot needs a physics

model that predicts how the furniture will move.

In this thesis we investigate methods to use realistic physics models in manipulation

planning. We develop planners that enable robots to physically interact with the environ-

ment. We focus on manipulation tasks in human environments with clutter and uncertainty.

Some of these tasks are impossible to perform using only pick-and-place actions.

Within this framework we address several key problems in manipulation.

Environmental Contact: Planning for manipulation in clutter requires understand-

ing the consequences of a robot’s interaction with a complex scene. Consider, for example,

the scene in Fig. 1.2-a where the robot needs to grasp the circular object. The object is

surrounded by others and is impossible to grasp directly without environmental contact.

Physics-based predictions enable the robot to reach for and grasp the target while simul-

taneously contacting and moving obstacles, in a controlled manner, in order to clear the

desired path.

Rearrangement: In scenes of high clutter, in order to reach a goal it may be necessary

to plan a sequence of manipulation actions that move multiple objects; i.e. plan a rear-
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Figure 1.1: Humans use a wide variety of actions to manipulate their environment.

rangement of the scene. Cluttered human environments include a wide variety of objects,

and hence different manipulation operations may be required to perform the rearrangement.

Consider the example in Fig. 1.2-b, where some of the objects are too large to be graspable.

Physics-based actions, such as pushing, make the rearrangement possible.

Searching for an Object: Imagine looking for the salt shaker in a kitchen cabinet.

Upon opening the cabinet, you are greeted with a cluttered view of jars, cans, and boxes—

but no salt shaker. It must be hidden near the back of the cabinet, completely obscured by

the clutter. Robots in human environments should be able to manipulate clutter to search

for an object in an efficient way. This requires reasoning about the rearrangement of the

environment, as well as the effects of clutter on perception (Fig. 1.2-c).

Uncertainty: In a grasping task, the robot needs to detect the objects, figure out

where they are, move its arm to reach one of them, and grasp it to move it away. If there

is significant sensor uncertainty, the hand could miss the object, or worse, collide with it

in an uncontrolled way. Pushing actions can be useful in planning manipulator operations

that are robust to such uncertainty (Fig. 1.2-d).

In approaching these problems we use a physics-based analysis to predict how objects

move when they are pushed. We integrate these predictions into a planning algorithms

which produce pushing actions as well as pick-and-place actions.

1.1 Main Themes

Our exploration of physics-based manipulation in human environments leads to a number

of new opportunities and challenges. These constitute the main themes which underlie this

thesis. In this section we present these themes.

1. In human environments, physical predictions are particularly useful in addressing clut-

ter and uncertainty.

Cluttered human environments vary widely in terms of the number of objects in a

given scene and the properties of each object, such as pose, shape, weight, material,

and rigidity. It is impossible to design a one-for-all manipulation primitive. Physical
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assume that there is a predefined set of objects. Second, pre-computation becomes

infeasible as the number of scenes which need to be considered separately increases.

For example, if a primitive’s effects depend on the interaction of objects between

each other, it may not be feasible to precompute these interactions as it would be

impossible to enumerate all contact configurations of a multi-object system.

3. Making physical predictions require knowledge about the physical properties of objects.

It is important to choose the right physics model for a given primitive, extracting the

important object parameters.

The physical properties a physics model needs may include friction coefficients, pres-

sure distributions, inertial parameters, elasticity, etc. It is not always reasonable to

expect a robot to know all these properties for a given object.

For our pushing predictions we use the quasi-static physics model. This means we

assume that frictions are high enough to dissipate energy quickly and the accelerations

can be neglected. This approximation works very well for the tasks that we look at:

pushing objects at lower speeds on surfaces with moderate friction. This simple model

also reduces the number of parameters the robot needs to know about an object.

Another approach we take is to relieve the robot from the burden of predicting the

physical properties exactly. Instead, we model the robot’s uncertainty about the phys-

ical properties of objects. Our planners produce actions which take this uncertainty

into account.

4. Physical predictions can be an extra source of uncertainty. Still, conservative planning

can produce robust actions.

There may be a significant degree of uncertainty associated with a robot’s predictions

about the world state after executing a physics-based action. This may be due to (i)

the initial uncertainty about the poses of objects, (ii) the robot’s lack of knowledge

about the physical properties of the objects, and (iii) the fact that simple physics

models are approximations of the real phenomena.

Plans based on inaccurate predictions run the risk of failure. One solution to this

problem is to plan conservatively, producing actions which guarantee success given

the initial uncertainty of the state and the uncertainty about the physical properties of

the objects. In this thesis, we take this approach and show that it can produce robust

and efficient manipulation actions. There are, however, limitations with this approach

too: First, if the uncertainties are large, the planner can get too constrained, failing to

generate solutions; second, this approach assumes that the underlying physics model

is perfect, i.e. it ignores the third source of uncertainty we mentioned above.
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As a solution to this problem, we also explore the design of closed loop physics-based

actions. This approach places less constraints on the planner, potentially enabling it

to produce plans in more cases. This approach also addresses the concern that the

underlying physics model may not be accurate.

5. Manipulation in clutter requires reasoning about manipulation and perception simul-

taneously.

Clutter makes certain parts of the environment unreachable for the robot manipulator.

Similarly, clutter makes parts of the environment unreachable for the robot’s sensors.

A robot needs to reason about both constraints for efficient manipulation in cluttered

environments.

We explore the problem of searching for an object in such a framework. We model the

scene as a graph where both manipulation and perception constraints are represented

as connections. In human environments, this graph is usually divided into different

connected components, e.g. in the form of objects in separate shelves, or different

clusters of objects on a table. We devise search strategies which takes advantage of

this structure of human environments.

1.2 Contributions

In this section we present a list of our contributions.

• Formulation of the push-grasp primitive which aims to grasp an object by executing a

pushing action and then closing the fingers. This primitive harnesses the mechanics of

pushing to funnel an object into a stable grasp, despite high uncertainty and clutter

(Dogar and Srinivasa, 2010, 2012).

• Formulation of the capture region as a representation of the physical interaction be-

tween the robot hand and an object during a push-grasp. A capture region is the set

of initial object poses such that a push-grasp successfully grasps it. We compute cap-

ture regions for push-grasps using a quasi-static analysis of the mechanics of pushing

(Dogar and Srinivasa, 2010, 2012).

• A push-grasp planner which uses conservative capture regions to generate actions in

a given scene with object pose uncertainty. We show how capture regions can be used

to efficiently and accurately find the minimum pushing distance needed to grasp an

object with pose uncertainty. We then formulate a search over different parametriza-

tions of a push-grasp to find kinematically feasible plans (Dogar and Srinivasa, 2010,

2012).
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• A proof showing that certain strategies of estimating the object physical properties

result in conservative capture regions (Dogar and Srinivasa, 2011).

• An approach to plan grasps through clutter where the fundamental action primitives

enable simultaneous contact with multiple objects. This enables the robot to reach

for and grasp the target while simultaneously contacting and moving obstacles, in a

controlled manner, in order to clear the desired path (Dogar et al., 2012).

• A rearrangement planner which plans sequences of actions to rearrange clutter in

manipulation tasks. The planner is not restricted to pick-and-place operations and

can accommodate other non-prehensile actions and object pose uncertainty (Dogar

and Srinivasa, 2011, 2012).

• A formal description of the object search by manipulation problem by defining the

expected time to find the target as a relevant optimization criterion and the concept

of accessibility and visibility relations (Dogar et al., 2013).

• Proposing two different algorithms for object search. We prove that given an appro-

priate definition of utility, the greedy approach to removing objects is optimal under

a set of conditions, and provide insight into when it is suboptimal. We introduce

an alternative algorithm, called the connected components algorithm, and present a

partial proof that it is optimal under all situations along with empirical data to back

that claim (Dogar et al., 2013).

• A particle filtering formulation for estimating the pose of an object during pushing

actions. This approach uses physics-based predictions as the motion model, and

feedback from contact sensors as the observation model (Koval et al., 2013).

• Implementation of the aforementioned algorithms and planners on real robot plat-

forms such as HERB (Srinivasa et al., 2012) and the PR2 (Dogar et al., 2012).

1.3 Related Work

State-of-the-art robotic systems which address manipulation in human environments (e.g.

Srinivasa et al. (2009), Ciocarlie et al. (2010), Beetz et al. (2011)) take a similar approach to

planning. This approach uses a geometric model of the environment and plans a sequence

of pick-and-place actions to achieve a certain goal. There is a large body of work addressing

the problem of planning to pick up an object using a robot manipulator given a geometric

environment model. The problem is often solved in the configuration space (Lozano-Pérez

and Wesley, 1979, Lozano-Pérez, 1983) by planning a path from the initial configuration
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of the robot arm to a goal configuration. The configuration space is usually very high-

dimensional, leading to the use of probabilistic search algorithms like probabilistic roadmaps

(PRMs) (Kavraki and Latombe, 1994) or rapidly exploring random trees (RRTs) (Lavalle

and Kuffner, 2000). These algorithms can find solutions in high-dimensional spaces in a

fast and probabilistically complete way. This approach deals with clutter through collision

checking to avoid contact with the objects during the execution of a path. The objects

are treated as immovable until the point that a complete grasp is acquired, and contact

with any object is avoided until that point. Using PRMs, Siméon et al. (2004) propose

such a planner which identifies robot motion as either transfer (i.e. motion with an object

rigidly grasped) or transit (i.e. motion where no object is moved), where the two phases

are separated by grasp/ungrasp actions.

In this setting grasping is often modeled as a static pose of the hand relative to the

object. Such hand poses are computed based on where the hand contacts the object when

the fingers close. Grasps are evaluated based on different quality metrics (Suárez et al.,

2006, Miller and Allen, 2004), such as a force-closure of the object (Nguyen, 1989).

Performing actions other than pick-and-place requires reasoning about the non-rigid

interaction between the robot effector and the object. A separate thread of work, rooted

in Coulomb’s formulation of friction, uses mechanics to analyze the consequences of such

manipulation actions.

Probably the most studied method of non-prehensile manipulation is pushing. Mason

(1986) presents an analysis of the mechanics of pushing in the quasi-static case. The voting

theorem is given, which states that the sense of rotation of an object pushed with point

contact can be found by a voting between the edges of the friction cone and the direction of

the motion of the contact point on the pusher. Mason also coins the term push-grasp, where

one finger pushes the object for a time, and then the second finger squeezes the object for

a grasp. This non-prehensile grasping primitive is robust to rotational uncertainty.

Goyal et al. (1991) show that, in the quasi-static case, the motion of a pushed object is

determined by the limit surface. The limit surface is a three-dimensional surface in the force-

torque space. Given a point on the limit surface, the motion of the object can be computed

by taking the normal to that point. However, building the limit surface analytically may

not be possible for general object geometry. Also, it depends on the pressure distribution

supporting the object on the surface, which is usually not known. Howe and Cutkosky

(1996) show that the limit surface can be approximated by a three-dimensional ellipsoid.

The pressure distribution supporting the object is often not known. This requires any

pushing based primitive to be robust to changes in the pressure distribution. Peshkin and

Sanderson (1988) show how to find the locus of centers of rotation of an object for all

possible pressure distributions. Brost (1988) presents an algorithm that generates a series

of parallel-jaw grasping actions to bring a polygonal object to known orientation. The series
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of actions are robust to uncertainties in the object’s initial location.

Lynch and Mason (1996) discuss a variety of issues regarding the mechanics, control, and

planning of pushing. They show that the stable pushing system is subject to nonholonomic

constraints. Then they show the conditions for the system to be controllable and small-

time locally controllable. They show that the system of pushing with a point contact is

controllable and small-time locally controllable (as long as the slider is not a frictionless

disk). Then they show that stable pushing with line contact is controllable for common

cases, and small-time locally controllable for some polygons (Lynch characterizes the classes

of such polygons in Lynch (1999b)). Lastly, they show how to compute center of rotations for

the stable push with line contact, and they present a planner based on Dijkstra’s algorithm.

Other similar pushing planners include Akella and Mason (1998) and Agarwal et al. (1997).

Other non-prehensile operations have been explored as well. Lynch (1999a) analyzes

toppling. Berretty et al. (2001) presents an algorithm to plan a series of pulling actions

to orient polygons. Diankov et al. (2008) use caging to open doors as an alternative to

grasping the handle rigidly. Chang et al. (2010) present a system that plans to rotate an

object on the support surface, before grasping it. This increases grasping task performance

and decreases the load on the arm during the lifting action. Other recent work on non-

prehensile manipulation include Omrcen et al. (2009), Kappler et al. (2010), Cosgun et al.

(2011), Lau et al. (2011), Kappler et al. (2012), Zito et al. (2012).

In this thesis one of our key contributions is the integration of a planning system based

on non-prehensile actions with the geometric planners traditionally used in grasping. We

enhance the geometric planners by enabling the robot to interact with the world according

to physical laws, when needed. With this framework, we approach a number of key problem

domains in robotic manipulation in human environments. In the next few sections we review

the related work in each of these domains.

1.3.1 Manipulation under Uncertainty

There have been different approaches in addressing uncertainty in object manipulation. In

one approach manipulation is sensorless, but the goal is achieved through actions which

funnel the uncertainty to the goal state(s). Erdmann and Mason (1988) present a planner

which can orient an object on a tray through a sequence of tilting operations without the use

of any sensors. Brost (1988) presents an algorithm that plans parallel-jaw grasping motions

for polygonal objects with pose uncertainty. Similar strategies have been extensively used

in designing manipulation primitives which work even under significant uncertainty. Recent

examples include the planner from Berenson et al. (2009b) which plans static grasps given

an uncertainty distribution of an object. Stulp et al. (2011) presents a system to learn

grasping actions which succeed under uncertainty.
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Another strategy involves using sensor feedback, especially contact feedback, during

manipulation to reduce uncertainty. An early example is the work by Lozano-Perez et al.

(1984) which proposes pre-image backchaining for the automatic generation of actively

compliant actions that lead to successful execution of manipulation tasks under sensing

and control uncertainty. Brost and Christiansen (1996) describe how to assign probabilities

to such actions. Lynch et al. (1992) describes a pushing control system which uses tactile

feedback and physics-based predictions about how the pushed object moves. More recently,

Hsiao et al. (2007) casts the problem as a partially observable Markov decision process

(POMDP, Kaelbling et al. (1998)) and investigates strategies to generate robust policies

efficiently. Platt et al. (2010) present an approach to solve the POMDP problem quickly

by assuming that the maximum likelihood observations will always be obtained and by

re-planning when necessary. Platt et al. (2011, 2012) also propose an approach to represent

non-gaussian belief states which enables fast planning of information gethering actions.

There is also a significant body of work which simply aims to localize an object through

contact feedback. Jia and Erdmann (1999) uses the physics of pushing to build analyti-

cal state estimators to track the pose of the object from contact positions on the hand.

Zhang and Trinkle (2012) use particle filters (Thrun et al., 2005) for object pose estima-

tion during manipulation with stochastic motion and observation models. Recent work

uses probabilistic methods for the tactile localization of immovable objects (Javdani et al.,

2013, Petrovskaya and Khatib, 2011). These systems try to produce a minimum number of

distinct touch actions that provide information about the object pose.

1.3.2 Manipulation with Environmental Contact

Environmental contact can be dealt with in two basic ways: making the manipulator com-

pliant and/or taking advantage of the environmental compliance.

One approach to making the manipulator compliant is by designing passive mechanical

compliance. Pratt and Williamson (1995) analyzes the use of series elastic actuators. Using

force feedback, manipulators can also display active compliance, implemented in software

as a control loop (Whitney, 1977, Mason, 1981). A recent work by Jain et al. (2013) applies

a force-control approach to manipulation in cluttered environments.

The problem of planning in domains with environmental compliance has also been stud-

ied. Rodriguez et al. (2006) presents an extension of the RRT algorithm which works in

deformable environments, and Frank et al. (2011) presents a system which uses a PRM

formulation to solve a similar problem.

Environmental contact is also important for robot locomotion, as a robot’s feet make and

lose contact with the ground. Among the different trajectory optimization approaches taken

to solve this problem, Erez and Todorov (2012) and Posa and Tedrake (2013) formulate
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contact in a general way which allows their methods to be applied to certain manipulation

problems as well.

1.3.3 Rearrangement Planning

The idea of rearranging objects to accomplish a task has been around for a few hundred

years. We encounter this idea in games like the Tower of Hanoi (Chartrand, 1985), the 15-

Puzzle, and the blocks-world problem (Winograd, 1971). STRIPS (Fikes and Nilsson, 1971)

is an early well-known planner to solve this problem. In robotics, the problem is named

planning among movable obstacles (Stilman and Kuffner, 2006). The general problem is

NP-hard (Wilfong, 1988).

Most of the existing planners work in the domain of two-dimensional robot navigation

and take advantage of the low-dimensionality by explicitly representing, or discretizing, the

robot C-space (Ben-Shahar and Rivlin, 1998a, Chen and Hwang, 1991, van den Berg et al.,

2008). These approaches are not practical for a manipulator arm with high degrees of

freedom. Another group of planners are based on a search over different orderings to move

the obstacle objects in the environment (Ben-Shahar and Rivlin, 1998b, Overmars et al.,

2006, Stilman and Kuffner, 2006).

Planners that solve similar rearrangement problems in manipulation using real robotic

hardware are also known (Stilman et al., 2007). This planner works backwards in time

and identifies the objects that needs to be moved by computing the swept volume of the

robot during actions. Recently, Kaelbling and Lozano-Perez (2011) proposed a planner

which uses pre-image backchaining to identify obstacles by computing the swept volumes

of future actions. This planner can perform rearrangement in the presence of uncertainty.

1.3.4 Object Search

Traditionally, the problem of searching for an object in an environment has been treated

as an instance of geometric sensor placement (de Berg et al., 2008). Ye and Tsotsos (1995,

1999), Shubina and Tsotsos (2010) use a mobile robot with an active camera and formulate

an optimization problem where the goal is to maximize the probability of detecting the

target object with minimal cost. This sensor-based approach also leads to strategies which

takes into account the properties of specific object detection algorithms (Sjo et al., 2009,

Ma et al., 2011, Anand et al., 2013).

Recent work discusses the object search by manipulation problem, where the environ-

ment is configured so that a previously hidden object becomes visible. Gupta and Sukhatme

(2012) present a planner which selects the action maximizing a k-step information gain.

Kaelbling and Lozano-Perez (2012) present a general hierarchical planning framework, and

use object-search as one example problem the planner can solve. In human environments,
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one can associate different probabilities with a target object being hidden in different re-

gions. Wong et al. (2013) present a framework to learn and generate such probabilities, and

to use them for object search planning.

1.4 Roadmap

Chapter 2 introduces the push-grasping primitive and how it is used for physics-based grasp-

ing under uncertainty. Chapter 3 presents our planner for manipulation with environmental

contact. Chapter 4 presents our rearrangement planner. Chapter 5 introduces our formula-

tion of the object search by manipulation problem. Chapter 6 and Chapter 7 presents future

work and preliminary results involving physics-based manipulation with feedback. Chap-

ter A presents our proof showing how to compute conservative capture regions. Chapter B

presents a partial proof of optimality for the algorithm presented in Chapter 5.

1.5 Publication note

Most of Chapter 2 appeared in Dogar and Srinivasa (2010) and Dogar and Srinivasa (2012).

Most of Chapter 3 appeared in Dogar et al. (2012) and is joint work with Kaijen Hsiao and

Matei Ciocarlie. Most of Chapter 4 appeared in Dogar and Srinivasa (2011) and Dogar

and Srinivasa (2012). Most of Chapter 5 appeared in Dogar et al. (2013) and is joint work

with Michael Koval and Abhijeet Tallavajhula. Most of Chapter 6 appeared in Koval et al.

(2013) and is joint work with Michael Koval, Michael being the principal investigator.
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Chapter 2

Physics-Based Grasping under

Object Pose Uncertainty

In this section, we demonstrate how the mechanics of pushing can be harnessed to funnel

an object into a stable grasp, despite high uncertainty and clutter. We call this capability

push-grasping. A push-grasp aims to grasp an object by executing a pushing action and

then closing the fingers. We present an example push-grasp in Fig. 2.1. Here, the robot

sweeps a region over the table during which the bottle rolls into its hand, before closing

the fingers. The large swept area ensures that the bottle is grasped even if its position is

estimated with some error. The push also moves the bottle away from the nearby box,

making it possible to wrap the hand around it, which would not have been possible in its

original location.

Intuitively, under large uncertainty, the wider the robot opens its fingers and the longer

it pushes, the larger the area it can sweep into its grasp. However, this is in direct conflict

with avoiding surrounding clutter. Hence, for a successful and efficient push-grasp, we need

a detailed analysis enabling the robot to decide on necessary parameters; e.g. the initial

hand pose, the pushing distance, and the hand shape.

In a given scene, to find the right parameters of a push-grasp efficiently, the robot must

predict the consequences of the physical interaction. For this purpose, we introduce the

concept of a capture region, the set of object poses such that a push-grasp successfully

grasps it. We compute capture regions for push-grasps using a quasi-static analysis of

the mechanics of pushing and a simulation based on this analysis. We show how such a

precomputed capture region can be used to efficiently and accurately find the minimum

pushing distance needed to grasp an object at a certain pose. Then, given a scene, we

use this formalization to search over different parametrizations of a push-grasp, to find

collision-free plans.

Our key contribution is the integration of a planning system based on task mechanics to
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Figure 2.1: An example push-grasp of an object in contact with the surrounding clutter.

Figure 2.2: Notation used for hand-object contacts. The hand’s velocity is given by vh.
The friction cone edges, (fL, fR), and the normal n̂ at the contact are illustrated.

the geometric planners traditionally used in grasping. We enhance the geometric planners

by enabling the robot to interact with the world according to physical laws, when needed.

Our planner is able to adapt to different levels of uncertainty and clutter, producing direct

grasps when the uncertainty and clutter are below a certain level.

2.1 The Mechanics of Pushing

When pushing an object with a robot finger, one question is whether the object will roll

into or out of the hand. Mason (1986) develops the voting theorem stating that the pushing

direction and the edges of the friction cone at the contact determine the sense of rotation for

a pushed body. We can use the voting theorem to immediately reject pushing if the rotation

sense indicates the object will roll out of the hand. In order to predict the instantaneous

velocity of a pushed object in the quasi-static case, we can use the limit surface (Goyal

et al., 1991).

Using the notation in Fig. 2.2, consider a scene where the robot hand is moving in the

direction vh and contacts an object. We further assume that the object is resting on a

planar support surface parallel to the xy plane, and that both the initial pose of the hand

and its velocity are parallel to this plane. We use n̂ to show the normal to the contact,

and CoM to show the center of mass of the object. The hand applies a generalized force,

q = (fx, fy,m), to the object, causing it to move. Our goal is to compute the resulting
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generalized object velocity, p = (vx, vy, ω), represented relative to CoM.

Given the coefficient of friction, µc, between the finger and the object, Coulomb friction

restricts the tangential force ft as a function of the normal force fn at the contact:ft ≤ µcfn.

It follows that the possible directions of the force, f = (fx, fy), that is applied to the object

by the contact is bounded by a friction cone (Mason, 1986), defined by edges fL and fR

making an angle α = arctan(µ) with the contact normal n̂. If the object is sliding on the

finger as it is being moved, the force applied at the contact lies at these extreme boundaries.

If we can compute the force applied to the object by the hand, we can then convert

it into a velocity for the object using the limit surface (Goyal et al., 1991), which takes

into account the contact between the object and the support surface. This contact occurs

over an area rather than a point, allowing for the transmission of both forces in the xy

plane and a moment around an axis perpendicular to it. Given a generalized force on the

object, we find the corresponding general velocity by taking the normal to the limit surface

at the point the generalized force intersects it. Our quasi-static assumption implies that

the applied force always lies exactly on the limit surface.

In general, computing the limit surface of an object is not analytically solvable. Howe

and Cutkosky (1996), however, show that the limit surface can practically be approximated

by an ellipsoid centered at the CoM assuming the object’s pressure distribution displays

periodic rotational symmetry. Given this model, we can express how limit surface relates

the generalized velocity of the object to the applied generalized force as:

√

vx2 + vy2

ω
=

√

fx
2 + fy

2

m
(
mmax

fmax
)2

where fmax is the maximum force the object can apply to its support surface during sliding

and mmax is the maximum moment the object can apply about CoM, which happens when

the object is rotating around CoM. We find the ratio of fmax to mmax by:

fmax = µsf
s
n (2.1)

mmax = µs

∫

A

|x|p(x) dA (2.2)

where µs is the coefficient of friction between the object and the support surface, f s
n is

the normal force that the support surface applies on the object, A is the area between the

object and the support surface, dA is a differential element of A, x is the position vector

of dA, and p(x) is the pressure at x. Note that µs cancels out when computing the ratio.

Similarly, the mass of the object is part of the normal force f s
n in Eq. (2.1), and also part of

the p(x) in Eq. (2.2) such that it can be taken out of the integral since we assume that the

pressure distribution displays periodic rotational symmetry. Therefore, they do not play

a role in predicting the motion of the pushed object. We still need to know the pressure

distribution at the contact.Section 3.1.1.
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Another constraint on the relation between the applied force to the object and its motion

comes from the fact that the limit surface ellipsoid is a circle at the force plane: the linear

velocity of the object v = (vx, vy) is always parallel to the applied force f = (fx, fy) (Howe

and Cutkosky, 1996).

As mentioned above, when the contact between the finger and the object is sliding, the

applied force is at the friction cone edge opposing the direction of relative motion, and the

two constraints listed above are sufficient to solve for the corresponding generalized velocity.

When the contact is sticking and the applied force is interior to the friction cone, an extra

constraint is needed. We can derive one from the fact that, by definition, in the case of

sticking the contact point on the object moves with the same velocity vh as its counterpart

on the finger.

We determine whether the contact will be a sticking or sliding by computing the velocity

vectors at the contact point that correspond to the edges of the friction cones: i.e. if the

force applied to the object was at a friction cone edge, how would the contact point on the

object move? Solving the above constraints for fL and fR defines the motion cone (Mason,

1986). If the velocity vector at the contact point on the hand, vh, lies inside the motion

cone, the contact will stick; otherwise, it will slide. Since µc determines the shape of this

friction cone, it is another object property which affects the motion of the object. See Lynch

et al. (1992), Howe and Cutkosky (1996) for more details.

2.2 Push-Grasping

In this section, we demonstrate how the mechanics of pushing described above can be

extended to produce capture regions for real-world objects with dexterous robot hands.

2.2.1 The push-grasp

The push-grasp is a straight motion of the hand parallel to the pushing surface along a

certain direction, followed by closing the fingers (Fig. 2.1). We parametrize (Fig. 2.3(a))

the push-grasp G(ph, a, d) by:

• The initial pose ph = (x, y, θ) of the hand relative to the pushing surface.

• The aperture a of the hand during the push. The hand is shaped symmetrically and

is kept fixed during motion.

• The pushing direction v along which the hand moves in a straight line. In this study

the pushing direction is normal to the palm and is fully specified by ph.

• The push distance d of the hand measured as the translation along the pushing direc-

tion.
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(a) (b) (c) (d)

Figure 2.3: (a) Parametrization of a push-grasp. (b) The capture region of a radially sym-
metric bottle is the area bounded by the black curve. We divided the plane into different
regions using the green dashed lines. (c) Capture regions for push-grasps of different dis-
tances. (d) 3D capture region of a rectangular box with horizontal dimensions of 4cm×6cm.

We execute the push-grasp as an open loop action.

2.2.2 The Capture Region of a Push-Grasp

A successful push-grasp is one whose execution results in the stable grasp of an object.

Given the push-grasp, the object’s geometry and physical properties, which we term O,

and the object’s initial pose, we can utilize the mechanics of manipulation described before

to predict the object’s motion. Coupling the simulation with a suitable measure of stability,

like caging or force-closure, we can compute the set of all object poses that results in a stable

push-grasp. We call this set the capture region C(G,O) ⊂ SE(2) of the push-grasp.

We present the capture region of a juice bottle produced by our pushing simulation in

Fig. 2.3(b), which is a 2D region as the bottle is radially symmetric. The capture region is

the area bounded by the black curve. The shape of the curve represents three phenomena.

The part near the hand (inside regions IV, V, and VI) is the boundary of the configuration

space obstacle generated by dilating the hand by the radius of the bottle. The line at the top

(inside region II) represents the edge of the fingers’ reach. We conservatively approximate

the curve traced out by the fingers while they are closing by the line segment defining the

aperture.

Regions I and III of the capture region curve are the most interesting. Let us consider

the left side of the symmetric curve. If an object is placed at a point on this curve then

during the push-grasp the left finger will make contact with the object and the object will

eventually roll inside the hand. If an object is placed slightly to the left of this curve, then

the left finger will push that object too, but it will not end up inside the hand at the end
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of the push: it will either roll to the left and out of the hand or it will roll right in the

correct way but the push-distance will not be enough to get it completely in the hand. We

can observe the critical event at which the object starts to slide on the finger, producing a

discontinuity on the upper part of the curve.

We also present the three-dimensional capture region of a rectangular box in Fig. 2.3(d).

We compute it by computing the two-dimensional capture regions of the object at different

orientations.

The left and right sides of the capture region are no longer symmetric in (x, y, θ). The

ramps on the right side “ramps up” since the objects, as they are pushed, rotate positively

there and jump to the higher level. The ramps on the left side “ramps down” as the objects

there are rotating in the negative direction as they are pushed.

As we noted Section 2.1, the shape, the pressure distribution supporting the object

on the surface and the friction between the robot finger and the object, µc, affect the

quasi-static motion of the object. We assume that the robot knows the shape of objects.

We compute capture regions conservatively with respect to the other parameters, so that

the capture region will be valid for a wide range of values these parameters can take.

For a cylindrical object the conservative capture region is given by assuming the pressure

distribution to be at the periphery of the object, and assuming µc to have a very large

value. A proof is presented in Appendix A.

2.2.3 Efficient Representation of Capture Regions

Each push-grasp G for an object O produces a unique capture region C(G,O). By comput-

ing C(G,O) relative to the coordinate frame of the hand, we can reduce the dependence

to the aperture a and the pushing distance d. Every other capture region is obtained by

a rigid transformation of the hand-centric capture region. This can be formally stated as

C(G(ph, a, d), O) = T (ph)C(G(0h, a, d), O).

To illustrate the effects of the pushing distance d on the shape of a capture region, we

overlaid the capture regions produced by different pushing distances in Fig. 2.3(c). We can

see that as the pushing distance gets smaller, the upper part of the larger capture region

(regions I, II, and III in Fig. 2.3(b)) is shifted down in the vertical axis. To understand why

this is the case, one can think of the last part of a long push as an individual push with the

remaining distance.

This lets us pre-compute the capture region for a long push distance, Dmax, and use it

to produce the capture regions of shorter pushes. Given all the other variables of a push-

grasp, our planner uses this curve to compute the minimum push distance d required by an

object at a certain pose (Fig. 2.4). The cases to handle are:

• If the object is already inside the hand (see P1 in Fig. 2.4), no push is required;
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Figure 2.4: Given an object pose, the minimum required pushing distance d to grasp that
object can be found using a precomputed capture region of a push-grasp with pushing
distance Dmax. In the figure, d = 0 for P1 since it is already in the hand; P2 can not
be grasped with a push shorter than Dmax since it is outside the capture region; for P3
and P4 the required pushing distances can be found by computing d = Dmax − d3sub and
d = Dmax − d4sub respectively.

d = 0m.

• Else, if the object is outside the capture region (see P2 in Fig. 2.4) there is no way

to grasp it with a push shorter than Dmax. Reject this object.

• Else, the minimum pushing distance required can be found by using the formula

d = Dmax − dsub

where dsub is the distance between the object and the top part of the capture region

curve along the pushing direction v (see P3 and P4 in Fig. 2.4). dsub can be interpreted

as the value we can shorten the push-distance Dmax such that the object is exactly

on the boundary of the capture region.

We use Dmax = 1m, as an overestimate of the maximum distance our robot arm can

execute a pushing motion.

The effect of changing the hand aperture, a, is straightforward. Referring again to

the regions in Fig. 2.3(b), changing a only affects the width of the regions II and V, but

not I and III. Therefore, we do not need to compute capture regions for different aperture

values. Note that this is only true assuming the fingertips are cylindrical in shape, hence

the contact surface shapes do not change with different apertures. If the fingertip contact

surfaces dramatically change with different apertures of the hand, one can compute the

capture regions for a predefined set of different apertures.
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(a) (b) (c)

Figure 2.5: Capture region generated with our push-grasping simulation and validated
by robot experiments. (a) Simulation and real-world experiments. Green circles: real
world successes; red crosses: real world failures. (b) Push-grasping validation setup. 150
validation tests were performed in total. (c) Two example cases where the push fails (top
row), and succeeds (bottom row).

2.2.4 Validating Capture Regions

We ran 150 real robot experiments to determine if the precomputed models were good

representations of the motion of a pushed object, and whether they were really conservative

about which objects will roll into the hand during a push.

To validate the capture region, we repeatedly executed a push of the same d and placed

the object in front of the hand at different positions on a grid of resolution 0.01m (Fig. 2.5b).

Then we checked if the object was in the hand at the end of a push. The setup and two

example cases where the push grasp failed and succeeded are shown in Fig. 2.5c.

The results (Fig. 2.5a) show that, the simulated capture region is a conservative model

of the real capture region. There are object poses outside the region for which the real

object rolled into the hand (green circles outside the black curve); but there are no object

poses inside the curve for which the real object did not roll into the hand. This is in

accordance with our expectations, since, for the system parameters that are hard to know

(the pressure distribution underneath the object, and the coefficient of friction between the

finger and the object) our simulation of pushing uses conservative values. This guarantees

success, in the sense that our planner always overestimates the pushing distance needed.

One can also see that the experiment results are not perfectly symmetric for the left

and right fingers, whereas the simulated result is. This is due to the fact that the physics

of the real fingers are not exactly same: the exact joint angles, the stiffnesses, the geometry

of the padding at the fingertips differ between fingers.
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2.3 Object Pose Uncertainty

For a robot, object poses are often not exactly known. This section explains how we

represent uncertainty about object poses and their relationship to capture regions.

2.3.1 Object Poses and Uncertainty Regions

Errors produced by a pose estimation system can usually be modeled, either analytically

or by collecting statistics on deviations from ground truth. Then, given an estimate we can

represent the uncertainty as a probability distribution. This distribution is six-dimensional

in general, but for push-grasping we assume that the objects are on a surface and their

poses are described as a three dimensional vector (x, y, θ).

Continuous probability distributions, in general, can extend to infinity. In that case we

define the uncertainty region about an object pose to be the region bounded by a certain

isocontour of the probability distribution. If the distribution is already bounded, we define

it as the uncertainty region.

2.3.2 Overlapping Uncertainty and Capture Regions

The overlap between a capture region and an uncertainty region indicates whether a push-

grasp will succeed under uncertainty. To guarantee that a push-grasp will succeed it is

sufficient to make sure that the uncertainty region of the goal object is included in the

capture region of the push-grasp, assuming that there is no other clutter.

We illustrate this idea in Fig. 2.6. Here the robot detects a juice bottle (Fig. 2.6a). We

illustrate the uncertainty region of the juice bottle in Fig. 2.6b, and the capture region of

the push-grasp in Fig. 2.6c. If the uncertainty region is completely included in the capture

region as in Fig. 2.6c, then we can guarantee that the push-grasp will succeed.

The uncertainty and capture regions are two-dimensional in Fig. 2.6 only because the

bottle is radially symmetric. In general, these regions are three-dimensional, noncon-

vex and potentially even disjoint (e.g. multimodal uncertainty regions). Checking in-

clusion/exclusion of two generic three-dimensional regions is a computationally expensive

problem.

We use a sampling strategy to overcome this problem. We draw n random samples

from the uncertainty region, and check if all of these samples are in the capture region of a

push-grasp. Samples are drawn according to the probability distribution of the uncertainty

region: poses of higher probability also have a higher chance of being sampled.

Using this sampling strategy, we can not guarantee the success of a push-grasp anymore,

since we are not checking the inclusion of the full uncertainty region but only of samples

from it. On the positive side, probabilities of poses play a role, contrary to taking all
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(a) Detected object (b) Uncertainty region (c) Capture region

Figure 2.6: If the uncertainty region of an object is included in the capture region of a
push-grasp, then the push-grasp will be successful.

the region as a uniform distribution. The number of samples n we draw is an important

parameter here that can be tuned. If n is large, we approach guaranteeing the success of a

push-grasp, but we may be acting too conservatively and the planning may take longer. If

n is small, the planning will be fast, but we move away from guaranteeing the success of a

push-grasp.

2.4 A Push-Grasp Planner

This section details our push-grasp planner. Given an environment, the planner computes

a collision-free trajectory for the robot arm and hand that can perform the successful push-

grasp of a desired object.

2.4.1 Finding a successful push-grasp

The planner searches for a push-grasp such that (i) it can grasp all the samples drawn from

the uncertainty region of the goal object; (ii) the hand does not collide with any samples

from the uncertainty regions of the obstacle objects; (iii) the resulting hand motion can be

executed with the arm.

Given a goal object in the environment, the planner searches for a push grasp by chang-

ing the parameters v, a, and the lateral offset in approaching the object, o. The lateral

offset o changes the initial pose of the hand by moving it along the line perpendicular to

the pushing direction v.

During the search, these parameters are changed between certain ranges, with a user

defined step size. v changes between [0, 2π); a changes between the maximum hand aperture

and the minimum hand aperture for the object; and o is changed between the two extreme

positions, where the object is too far left or right relative to the hand.
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Algorithm 1: t ← PlanPushGrasp(goalObject, obstacleObjects)

1 c ← goalObject.captureRegion;
2 gSamples ← Sample(goalObject, n);
3 oSamplesi ← Sample(obstacleObjectsi, n);
4 while {v, a, o} ← GetNextParam(goalObject) do
5 p ← FindInitialHandPose(goalObject, v, a, o);
6 maxd ← NULL;
7 for i← 1 to n do
8 if IsInCaptureRegion(p, a, gSamplesi, c) then
9 di ← PushDistNeeded(p,a,gSamplesi,c);

10 maxd ← max(maxd, di);

11 else
12 maxd ← NULL;
13 break;

14 if maxd ! = NULL then
15 d ← maxd;
16 t ← GenerateTraj(p,a,d);
17 if CheckIK(t) and CollisionFree(t, oSamples) then
18 return t;

The push-grasp planner is presented in Algorithm 1. The planner starts with loading

the precomputed object capture region (line 1), and sampling from the uncertainty region of

the goal and obstacle objects (lines 2-3). The planner loops over different parametrizations

of the push-grasp relative to the goal object (line 4). For each such parametrization, first,

an initial hand pose is found which is not in collision with any object samples (line 5). Here,

the FindInitialHandPose function returns a hand pose (p = (x, y, θ)) by first placing the

hand over the goal object with direction v, offsetting in the perpendicular direction by o,

and then backing up in the −v direction until it is collision-free. Lines 6-15 checks whether

it is possible to grasp all the goal object samples from this initial hand pose. If it is possible,

the pushing distance needed is computed. The IsInCaptureRegion function returns true if

the sample is in the capture region.

The maximum of the push distances required by all the goal samples is set as the push

distance d (line 17), to ensure that all samples end up in the hand. A trajectory is generated

from the initial pose p, with aperture a, and push distance d (line 18). Then we check if a

smooth inverse kinematic solution for the trajectory exists, and also check for collision with

the environment and the obstacle object samples.

One potential problem this planner does not deal with is the object-to-object contacts.

In principle this can be handled by extending the precomputed object models with the

trajectory the pushed object travels. Then, during planning we can check for collision at

each point on this trajectory. This would increase the number of collision-checks needed,
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Table 2.1: Planner Performance.

No Clutter Medium Clutter High Clutter

TSR PG TSR PG TSR PG

σ1
10 10
0.01 0.02

10 10
0.01 0.04

5 8
0.54 1.98

σ2
9 10

0.52 0.58
9 10

1.02 1.17
0 5

1.97 12.93

σ3
0 10

0.86 1.00
0 10

1.61 5.17
0 3

3.22 28.16

σ4
0 5

0.86 1.44
0 0

1.63 3.91
0 0

3.08 7.46

though. In general, the volume of space that the pushed object sweeps but the hand does

not is very small. Hence object-to-object contacts are rarely a real problem, or are already

handled by the hand-to-environment collision check.

2.5 Results

This section presents extensive experiments in simulation and on HERB to evaluate the

performance of our planner. Simulation experiments are performed in OpenRAVE (Diankov

and Kuffner, 2008).

2.5.1 Robotic Platform

HERB has a 7-DoF WAM arm, and a 4-DoF Barrett hand with three fingers. We use the

vision system from Martinez et al. (2010) to estimate object poses.

2.5.2 Planner performance

We compared the performance of our grasp planner with another grasp planner that can

handle uncertainty about the object pose. We used the uncertainty task space regions

(TSRs) algorithm from Berenson et al. (2009b). Uncertainty TSRs try to generate static

hand poses to grasp an object with given pose hypotheses representing uncertainty. In our

implementation, to supply the TSRs with a set of hypotheses we used samples from the

uncertainty region of our objects. We used the same number of samples that we use for our

push-grasp planner.
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Figure 2.7: A high-clutter scene where the TSR planner fails but push-grasp planner is able
to find a plan.

Table 2.1 presents results in simulation comparing the performance of our push-grasp

planner (PG) and the Uncertainty TSR planner. We categorize scenes as no clutter (1

object), medium clutter (2-3 objects placed apart from each other), and high clutter (3-4

objects placed close to each other). For each category we created ten different scenes. For

each scene we added increasing amount of uncertainty, where σ1 is no uncertainty, and σ4

is the highest uncertainty.

In each cell of Table 2.1 we present four numbers. The top left number indicates in how

many of the ten scenes Uncertainty TSR planner was able to come up with a plan. The same

value for the Push-Grasp planner is in the top right. We indicate the average planning time

in seconds, for TSR, on the lower left corner. The same value for the push-grasp planner is

at the lower right. We used normal distributions as the uncertainty regions. For different

uncertainty levels the standard deviations in object translation and rotation are: σ1: no

uncertainty; σ2: (0.005m, 0.034rad); σ3: (0.02m, 0.175rad); σ4: (0.06m, 0.785rad). The

number of samples, n, we used for these uncertainty levels are: 1, 30, 50, 50.

Table 2.1 shows that the push-grasp planner is able to plan in environments with higher

uncertainty. When the uncertainty is high, the Uncertainty TSR planner is not able to

find any static pose of the hand that grasps all the samples of the object. The push-grasp

planner, on the other hand, is not limited to static grasps, and can sweep larger regions over

the table than any static hand pose can. Note also that a push-grasp with no real pushing

(d = 0) is possible, hence the push-grasp planner is able to find a solution whenever the

TSR planner finds one.

We can see from Table 2.1 that push-grasp planner also performs better in high clutter.

One example scene of high clutter, where push-grasp planner is able to find a grasp but

the Uncertainty TSR planner cannot, is presented in Fig. 2.7. Here the goal object is right

next to other objects. The Uncertainty TSR planner cannot find any feasible grasps in this

case since any enveloping grasp of the object will collide with the obstacle objects. In this

case, the push-grasp planner comes up with the plan presented in Fig. 2.7, which moves the

object away from the clutter first and then grasps.
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Figure 2.8: Example push-grasps executed by our robot.

The planning times also shown in Table 2.1. The push-grasp planner takes more time

than the TSR planner. This is due to the fact that it searches a larger space. It is usually

able to find a plan in about ten seconds. The planning time increases to be around a minute

for scenes with higher uncertainty or clutter, due to the larger number of push-grasps the

planner needs to evaluate in these scenes.

2.5.3 Real Robot Experiments

We conducted two sets of experiments on our real robot. In the first, we used the actual

uncertainty profile of our object pose estimation system. In the second set of experiments,

we introduced artificial noise to the detected object poses.

In the first set of experiments we created five scenes, detected the objects using the

palm camera and planned to grasp them using both the Uncertainty TSR planner and our

push-grasp planner. The uncertainty TSR planner was able to find a plan three out of five
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times, and the push-grasp planner was able to find a plan four out of five times. All the

executions of these plans were successful. Again the Uncertainty TSR planner was not able

to find a plan when the goal object was right next to another obstacle object, making it

impossible to grasp the goal object without colliding with the obstacles. The push-grasp

planner was not able to find a plan when the amount of clutter around the goal object was

even denser.

In another set of experiments on the real robot we introduced artificial uncertainty by

adding noise to the positions of the objects reported by the object detection system. For

Gaussian noise with σ = 0.02m, the Uncertainty TSR planner was not able to find a plan for

any of the five scenes, while the push-grasp planner found a plan and successfully executed

them in three of the five scenes. This shows that with push-grasping the robot can increase

its success rate in grasping objects, under high uncertainty about object pose.

Execution of some of the push-grasps can be seen in Fig. 2.8. Videos of our robot

executing push-grasps are online at: www.cs.cmu.edu/˜mdogar/pushgrasp

2.6 Discussion

In this work we present a push-grasp planner that can reduce the uncertainty about an

object’s pose by acting on it. We pre-compute capture regions, and execute push-grasps as

open-loop actions. Open-loop actions have advantages: they do not depend on the existence

of specific sensors, and their execution is fast as they do not require an expensive sensor

processing step in their control loop.

However, planning open-loop actions have limitations as well. These actions try to

address all the initial uncertainty in the system during planning time. When the uncertainty

is large, this leads to failure in finding solutions and long planning times.

Another drawback of planning open loop actions is that, for successful execution, it re-

quires accurate physical predictions. Such high-accuracy predictions are expensive to make.

This forces us to precompute the physics-based interactions. However, precomputation can

quickly become a limiting factor. It does not work for novel objects, which are an impor-

tant part of human environments. Even for known objects, it quickly becomes difficult to

precompute all the useful interactions between the robot hand and the object.

One solution to both problems is to integrate sensor-feedback to the push-grasping

process. We present future work and preliminary results along this direction in Chapter 6.

http://www.cs.cmu.edu/~mdogar/pushgrasp




Chapter 3

Grasping through Clutter with

Environmental Contact

Robots operating in our homes will inevitably be confronted with scenes that are congested,

unorganized, and complex - or, simply put, cluttered. Consider, for example, the following

representative problem: the robot must acquire an object from the back of a cluttered

bookcase or fridge shelf (Fig. 3.1, Left). Approaching the target object from the top is

impossible due to the constrained space inside the shelf; various obstacles block approaches

from the front or side. Some of the obstacles are too large for the robot to grasp. How can

the robot complete the task?

Planning for manipulation in clutter requires understanding the consequences of a

robot’s interaction with a complex scene. The most direct approach to grasping is object-

centric, in that it separates the scene into two simple categories: the target object vs.

everything else. The desired interaction with the target object is to touch it with the end-

effector, instantly transitioning into a stable grasp where the object is rigidly attached to

the arm. Sets of hand poses and configurations that create stable grasps for the target can

be pre-computed (Miller and Allen, 2004, Berenson et al., 2007, Goldfeder et al., 2009).

Any interaction with the rest of the scene is utterly avoided, and as such, no consequences

must be predicted.

The object-centric approach works well in structured or semi-structured settings where

objects are well-separated. However, unstructured and complex environments pose serious

challenges: clutter often makes it impossible to guarantee avoiding the rest of the world

while reaching for an object.

In this section, we propose a clutter-centric perspective, where the fundamental action

primitives enable simultaneous contact with multiple objects. For grasping, this enables

the robot to reach for and grasp the target while simultaneously contacting and moving

obstacles, in a controlled manner, in order to clear the desired path (Fig. 3.1, Right). In
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Figure 3.1: Manipulation in a constrained and cluttered environment. Left: a robot tries
to acquire a partly occluded object from a constrained shelf space. Right: the robot clears
a path to the target by pushing obstacles in a controlled manner, and completes the grasp.

addition to simply closing the gripper on the target, interaction with objects in the scene

is done through quasi-static pushing, similar to push-grasping (Chapter 2). However, while

push-grasping avoids all contact with any obstacles, we now explicitly represent clutter and

reason about how it will interact with the intended grasp trajectory. Rather than shying

away from complex and sustained interactions with the world while grasping, the robot uses

them to its advantage.

For predicting the outcome of an intended grasp, we use a physics-based simulation

method that computes the motion of the objects in the scene in response to a set of possible

robot motions. In order to make the problem computationally tractable, our method allows

multiple simultaneous robot-object interactions, which can be pre-computed and cached,

but avoids object-object interaction, which would have to be computed at run-time.

We compare this approach against a “static” planner that avoids all contact except for

closing the gripper on the target. We also compare it against the object-centric implemen-

tation of the original push-grasp planner, which uses non-prehensile manipulation on the

target but avoids all obstacles. Our results show that, for a large set of simulated cluttered

scenarios, our method returns more possible grasps for a given scene, and succeeds in more

scenes. We validate these findings on a real robot, a PR2, showing that the predicted out-

comes of simulated tasks match the real-life results. We also show that our approach can

be used in conjunction with existing object recognition tools operating on real sensor data,

allowing the robots to complete grasping tasks in challenging real-life scenarios such as the

above shelf.
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Figure 3.2: Example objects, their trimesh models, and computed trajectories of objects as
the hand pushes them. The hand motion is towards the top of the page in each diagram,
and is not shown.

3.1 Physics-Based Grasping in Clutter

At its core, our approach relies on predicting the interactions between the robot’s end-

effector and the objects in a scene, as the robot reaches for a target. For a given trajectory

of the end-effector, we would like to compute the resulting motion of all contacted ob-

jects, including the target and potential obstacles. We can predict these motions using

physics-based simulations; however, these simulations are prohibitively expensive from a

computational standpoint, and do not scale well with the multiple objects involved: com-

puting contact forces between multiple rigid bodies is an NP-hard problem (Baraff, 1993).

Additionally, we need to evaluate many candidate grasps to find one successful grasp, which

further increases the computational costs.

As the general space of possible robot-scene interactions is intractable to compute, we

believe that a viable path forward is to identify assumptions and constraints that allow

us to study parts of this space, increasing the capabilities of our robots. As a first step,

we focus on a subset of all possible hand trajectories, comprising linear motion along a

pre-defined approach direction relative to the palm. If an object is contacted, this motion

results in quasi-static pushing, as the hand continues to advance, with a low velocity in

order to avoid inertial effects.

A second step for reducing the computational complexity of physics-based planning is

to pre-compute complete object trajectories in response to hand motion along the pushing

direction. For each object in our database, we compute trajectories analogous to the ones

shown in Fig. 3.2 for many possible initial object poses relative to the hand. It is important

to note that these trajectories are computed for each object in isolation, in the absence of

other obstacles.

Finally, at run-time, we evaluate a potential hand trajectory by checking its effect

on each object in the scene. We base our approach on this observation: we can evaluate
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scenarios in which the hand touches multiple objects as simultaneous individual interactions

that are pre-computed, as long as the objects do not touch each other and do not affect

the hand’s trajectory. We can also detect situations where our conditions are violated, and

thus avoid executing trajectories whose side-effects are not fully accounted for.

3.1.1 Pre-Computed Object Trajectories

We use the quasi-static contact model outlined in Section 2.1 to compute object trajectories

as the hand performs a linear pushing motion. We perform the pre-computation for each

object in isolation: throughout its motion, the object’s only contacts are with the hand and

the support surface. During a push the hand is always parallel to the support surface at a

pre-specified height, and the object is resting on the support surface. Combined with the

quasi-static assumption, this means that the resulting motion of the object depends on the

geometry of the hand, as well as the object’s geometry, frictional and mass properties, and

pose relative to the hand at the onset of pushing.

Possible initial poses of an object in the hand’s coordinate frame are given by the

physically plausible subset of SE(2) for which the object and the hand do not interpenetrate.

Furthermore, of interest to us are only the initial object poses for which the hand and the

object actually make contact at some point during the hand trajectory. We refer to this set

of object poses as the contact region:

C(o, τ) = {c ∈ SE(2)| hand contacts o during τ
if o is initially at c }

where o is the object, τ is the hand trajectory, and c is the initial pose of the object in the

hand’s coordinate frame.

To precompute all possible motions of o in response to τ , one can discretize C(o, τ) (in

this study, we used intervals of 5mm and 10 degrees for the discretization), place the object

at every resulting pose, simulate the motion of the hand during τ , and record the object

trajectory. The resulting set To,τ contains the trajectory of the pushed object o for each

starting pose c ∈ C(o, τ), assuming hand trajectory τ .

In this work, we execute linear pushing actions with different pushing distances, push(d).

We computed To,push(d) for a very large d; in this study, we used 0.5m. Then, at planning

time, we can extract the object trajectories for shorter distances from the trajectories of

this long push.

The linearity of our actions simplify the computation of To,push(d) and reduce the amount

of data we need to store. We do not need to place the object at every pose in C(o, push(d)).

Instead we placed the object only at the poses where the object is initially in contact with

the hand. There will be cases where the hand contacts the object later during the push.

However, we represent these hand trajectories using their last part during which the hand
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Figure 3.3: Left: An example object and its trimesh model. Center: Simulated object
trajectory when contact pressure distribution is concentrated at the object’s CoM. Right:
Simulated object trajectory when contact pressure distribution is concentrated at the ob-
ject’s periphery.

is in contact with the object. The linearity of our actions implies that this last part is

also a linear push, for which we already have the object trajectory data. Examples of

pre-computed object trajectories can be seen in Fig. 3.2.

The object’s pressure distribution also affects the trajectory of the object. However,

this property is difficult to determine accurately, as is the coefficient of friction between

the hand and the object. For the hand-surface contact, we assumed that the pressure

distribution can take one of two different forms, one where the mass is concentrated on the

periphery of the object, and one concentrated on the center of the object; Fig. 3.3 shows the

resulting object motion for each of these two cases (each trajectory stops when the object

is inside the hand). For the experiments in this study, we used a fixed value for the hand-

object friction coefficient of 0.6. Generalizing these assumptions, future implementations

can further discretize the space of these parameters and compute separate trajectories for

each resulting point in this space.

We set the simulated robot hand at a specific preshape when we are computing the

object trajectories. We would need to compute a new set of object trajectories if we were

to set the hand at a different preshape, or if we were to use a different hand.

3.1.2 Grasp Evaluation in Clutter

Armed with the pre-computed data described in the previous sub-section, we are ready to

evaluate grasps on complete scenes. We consider a scene to be composed of the following

elements: a set of objects of known identity comprising both the target and any movable

obstacles, a planar surface that the objects are resting on, and additional obstacles for

which no additional semantic information is available and are thus treated as immovable.
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Figure 3.4: Illustration of evaluating a grasp with a given approach direction, a, and lateral
offset, l.

Figure 3.5: Illustration of grasps that will be rejected. Left: The pushed object contacts
another object. Right: The pushed object contacts a non-movable object (the side-wall).

We define a grasp as the following action: starting from a given gripper pose in the

scene, the robot executes a linear gripper trajectory in the pre-defined direction normal to

the palm, followed by closing the fingers. We parameterize the space of grasps by the initial

pose of the gripper in the scene as well as the length of the linear motion. A successful

grasp will result in the target object stably enclosed in the gripper.

Given the pose of the target object in the scene, we first generate a set of possible

grasps that approach the object from different approach directions, and at different lateral

offsets. The grasps in this set are evaluated in random order using the method below until

a feasible grasp is found. At that point, the robot computes a collision-free motion plan to

bring the gripper to the initial pose in the linear trajectory, then executes the rest of the

grasp open-loop.

We present an illustration of evaluating a grasp in Fig. 3.4, with an environment con-

strained by immovable walls on three sides, and populated with three objects, the one in the

middle being the target. Let us assume the grasp we evaluate has an approach direction,

a, pointing upwards, and a lateral offset, l, a few centimeters to the right (relative to the

target object’s CoM). Our evaluation algorithm performs the following steps:

1. Compute the initial pose: We place the hand on top of the target object, pointing

in the approach direction and applying the given lateral offset. We then back up (in the

opposite approach direction) until the hand is collision-free to find the initial pose, ph, for

the grasp trajectory.
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2. Compute pushing distance for successful grasp: Starting from ph, we draw on

our database of pre-computed object motions to see what distance d traveled by the gripper

along the approach direction, if any, will bring the target object into a position where it

can be grasped. In this study, we use the following heuristic: if the center of mass of the

object passes behind the line connecting the fingertips of the hand, it is considered to be in

a graspable pose. We found this heuristic to work well in practice for parallel grippers; for

dexterous hands, checks based on force- or form-closure can be used instead.

3. Check immovable obstacles: Once we know ph and d, we need to check if the

grasp will succeed in the given environment. We first check if the hand will penetrate any

non-movable objects (e.g. walls) during the grasp. If yes, we discard the grasp.

4. Check movable obstacles: We continue by identifying the movable objects the hand

will make contact with during the grasp. For each of them, we use the respective pre-

computed trajectories to predict motion in response to the grasp. However, since these

trajectories were computed with the objects in isolation, their validity needs to be main-

tained. Therefore, if at any point during the grasp, pre-computed trajectories show any

object colliding with an obstacle (movable or immovable), the grasp is discarded, as we can-

not safely predict the resulting object motions. Fig. 3.5 shows modifications of the original

scene where our example grasp is discarded by this process.

5. Confirm grasp for execution: Once all the tests above have passed, the grasp is

deemed safe to execute.

3.1.3 Handling Uncertainty

The evaluation algorithm described above is based on knowing the relative locations of

the objects in the scene. However, when operating in unstructured environments, these

poses are inevitably affected by uncertainty, due to imprecise localization, imperfect robot

calibration, etc.

If any of the parameters affecting the behavior of an object in the scene is uncertain,

our planner will generate multiple possible samples for that object, sampling the space of

possible values for the uncertain parameter. We refer to these as uncertainty samples of the

object. We can predict how each of these uncertainty samples will react to gripper contact

based on the pre-computed data described in the previous section. Our planner accepts a

grasp only if it works for all samples of all objects in the environment.

For avoiding object-object collisions, this implies performing a number of collision tests

on the order of (O × N)2, where O is the number of objects in the scene and N is the

number of uncertainty samples for each object. In practice, however, most of the samples

in the environment are not moved by the hand, and so we do not need to collision check

between them.
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3.2 Planner performance

To better understand how the clutter-grasp planner performs, we quantified its ability to

plan valid grasps in randomly-generated, cluttered scenes, and compared its performance

to that of two other grasp planners using geometry-only simulation. The grasp planners

that we used in our experiments were as follows:

• Clutter-Grasp: The planner presented in this chapter using precomputed object tra-

jectories for a pushing height of 9 cm.

• Push-Grasp: This planner, similar to the one presented in Chapter 2, is constrained

to moving only the target object. No surrounding object is allowed to be contacted

or moved.

• Static-Grasp: This planner is not allowed to move the target object or any of the other

objects in the scene; it is restricted to checking whether the object can be grasped in

its current pose without collisions.

We randomly-generated 100 simulated scenes, each with 6 objects (1 target and 5 obstacle

objects) that were placed, uniformly at random, in an area of 0.4m×0.5m. Scenes in which

objects interpenetrated were rejected and replaced. All three planners use the same search

space when planning grasps: all grasps are from the side, and the same search parameters

are used for approach direction and lateral offset. Thus, the total number of evaluated

grasps is the same for all three planners. For this experiment, we assume zero uncertainty;

the main feature of the clutter-grasp planner over the push-grasp planner is its ability to deal

with clutter, and so we are primarily concerned with the effect of increasing clutter. The

clutter-grasp planner has the same ability as the push-grasp planner to deal with varying

levels of uncertainty.

Fig. 3.6 shows how the number of grasps planned for each grasp planner changes when

the 100 random scenes are sorted by scene complexity, defined here by the inverse of the

number of grasps found by the static-grasp planner. The fewer grasps found by the static-

grasp planner, the more cluttered and constrained the environment around the target object;

the bottom images in Fig. 3.6 show example scenes for varying levels of scene complexity.

For scenes of medium complexity, the clutter-grasp planner finds more grasps than the other

two, although all three planners are able to find some valid grasps. However, for the very

most cluttered scenes, only the clutter-grasp planner is able to find valid grasps that allow

the robot to shove through the clutter surrounding the target object.

Planning times for the three grasp planners are shown in Table 3.1. The clutter-grasp

planner takes longer to evaluate each grasp, but because a larger fraction of evaluated

grasps are feasible, the average planning time until the first feasible grasp is found is lower
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Figure 3.6: Top: A comparison of number of grasps found, in randomly-generated scenes
sorted by scene complexity (the 60 most complex in the set of 100 generated), for our three
grasp planners. Bottom: Bird’s eye view of example scenes for varying levels of complexity.
The target object is shown in light gray.

Table 3.1: Planning Times for Grasping in Clutter

Time per grasp evaluation
(sec)

Time until first successful
grasp (sec)

Clutter-Grasp 0.14 0.62
Push-Grasp 0.08 2.43
Static-Grasp 0.03 2.44

than for the other two planners. Planning time until the first feasible grasp is found is also

plotted for varying scene complexity in Fig. 3.7; for the most complex scenes where the

push-grasp and static-grasp planners return no feasible grasps, the planning time reflects

the time taken to check all grasps in the given search space and then return failure.
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Figure 3.7: Time until first grasp for all three planners, for the most complex 60 of the 100
random scenes, sorted by scene complexity.

Figure 3.8: An example execution of a randomly-generated scene. Left: Object
meshes in the randomly-generated scene configuration, along with point cloud from a
KinectTMcamera. Middle: Actual scene with gripper at start of push. Right: Actual
scene after object has been grasped.

3.3 Real Robot Experiments

We performed two sets of experiments on an actual two-armed mobile manipulator. The

first set of experiments validated the grasps generated by the clutter-grasp planner in our

geometry-only planning experiments by running them on a real robot; the second set of ex-

periments tested the performance of the clutter-grasp planner using real-world uncertainty

levels from an actual, state-of-the-art object recognition algorithm.

In the first set of real-world experiments, we executed grasps planned by the clutter-

grasp planner on a randomly-chosen set of 10 scenes from the set of 100 randomly-generated

scenes used in the geometry-only experiments in the previous section. Only scenes with

clutter-grasps that were reachable and that had feasible motion plans were chosen; of the

100 total scenes, 78 had grasps within reach of the robot, and all but 6 of those had feasible
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Figure 3.9: More randomly-generated scenes with kinematically-feasible clutter-grasps. The
target objects are marked with green triangles. All attempted clutter-grasps were executed
successfully.

motion plans for at least one grasp. Real-world objects were placed at the randomly-

generated locations on the table by carefully aligning their locations as seen by the robot’s

KinectTMpoint cloud with the object meshes rendered at their desired locations using rviz

(Willow Garage, 2012), a 3D visualization tool. The resulting point clouds with aligned

meshes are shown in Fig. 3.8 and Fig. 3.9, along with a sample grasp execution. For these

experiments, grasps were generated for uncertainty standard deviations of 1 cm in both

translation directions, and 0.1 radians in rotation, which is roughly appropriate for the

accuracy of placement. 10 out of 10 grasps planned by the clutter-grasp planner succeeded

in picking up the target object, while successfully moving aside obstacles as predicted.

In the second set of experiments, we used the textured object detector described in

Rublee et al. (2011) to recognize objects placed on the shelf shown in Fig. 3.1. We only used

movable objects. The resulting object poses were then fed to the clutter-grasp planner to

use in planning grasps for a hand-selected target object. Scenes in which the object detector

failed to recognize objects were rejected, but even when the objects are correctly identified,

the poses returned by the object detector have significant amounts of pose uncertainty. The

resulting object detection results are shown as point cloud object outlines overlaid on the

images seen by the robot’s KinectTMcamera, along with the evaluated grasp hypotheses, in
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(a) (b) (c) (d) (e)

Figure 3.10: A wide range of scenes and objects for which our planner succeeds by moving
obstacles in a controlled manner. Each column shows one grasping task. For each column,
top image: Initial scene; middle image: Scene as seen by the robot, showing an acquired
point cloud superimposed with object recognition results (red point object outlines) and
evaluated grasping directions (arrows); bottom image: Final result of successful grasp
execution.

the middle images in Fig. 3.10 and Fig. 3.11. The clutter-grasp planner succeeded in picking

up the target object in all five scenes shown in Fig. 3.10, and failed to plan grasps in the

two scenes shown in Fig. 3.11. The two shown failures are representative of the most typical

failure modes seen by the clutter-grasp planner (not including object detection failure): if

objects start out in contact with each other, or if there is no way to shove obstacle objects

aside without their hitting other objects or static obstacles such as shelf walls, the clutter-

grasp planner will not find any grasps. Also, if there is uncertainty in the object pose, as in

this case, both the push-grasp planner and the clutter-grasp planner require a clear space

behind the target object so that it can be pushed into the hand; if there is no such space,

then no grasps will be found.

Videos of these and other real-world examples of the clutter-grasp planner being used

to grasp objects in cluttered scenes can be seen here: www.cs.cmu.edu/˜mdogar/RSS2012

3.4 Discussion

In this section we propose a clutter-centric perspective to grasp planning, where the action

primitive enables simultaneous contact with multiple objects. The robot reaches for and

grasps the target while simultaneously contacting and moving obstacles, in a controlled

http://www.cs.cmu.edu/~mdogar/RSS2012


3.4. DISCUSSION 45

(a) (b)

Figure 3.11: Examples of cases where our planner cannot find a solution. In (a), multiple
objects start out in contact with each other and object-object interaction during pushing
is inevitable. In (b), insufficient space behind the target object prevents the execution of
sufficiently long pushes.

manner, in order to clear the desired path.

Our approach has two important limitations. First, it does not address object-object

contacts. We believe fast but approximate physics predictions can be used with sensor

feedback to overcome this problem.

Second, the existing framework limits robot-object interactions to happen only at the

end-effector. Extending this to the whole manipulator is a major and exciting challenge for

us.





Part III

Manipulating Clutter





Chapter 4

Rearrangement Planning with

Pushing Actions

Humans routinely perform remarkable manipulation tasks that our robots find impossible.

Imagine waking up in the morning to make coffee. You reach into the fridge to pull out the

milk jug. It is buried at the back of the fridge. You immediately start rearranging content

— you push the large heavy casserole out of the way, you carefully pick up the fragile crate

of eggs and move it to a different rack, but along the way you push the box of leftovers to

the corner with your elbow.

The list of primitives that we use to move, slide, push, pull and play with the objects

around us is nearly endless. But they share common themes. We are fearless to rearrange

clutter surrounding our primary task — we care about picking up the milk jug, and every-

thing else is in the way. We are acutely aware of the consequences of our actions — we

push the casserole with enough control to be able to move it without ejecting it from the

fridge.

How can we enable our robots to fearlessly rearrange the clutter around them while

maintaining provable guarantees on the consequences of their actions? How can we do this

in reasonable time? We would rather not have our robot stare at the fridge for 20 minutes

planning intricate moves. Finally, can we demonstrate that these human-inspired actions

do work on our robots with their limited sensing and actuation abilities? These are the

research questions we wish to address.

We present a framework that plans sequences of actions to rearrange clutter in ma-

nipulation tasks. This is a generalization of the planner from Stilman et al. (2007). But

our framework is not restricted to pick-and-place operations and can accommodate other

non-prehensile actions. We also present mechanically realistic pushing actions that are in-

tegrated into our planner. Through the use of different non-prehensile actions, our planner

generates plans where an ordinary pick-and-place planner cannot; e.g. when there are large,
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Figure 4.1: An example scene. The robot’s task is picking up the cylindrical can. The robot
rearranges the clutter around the goal object and achieves the goal in the final configuration.
The robot executes the series of actions shown in Fig. 4.2. We present the planning process
in Fig. 4.4.

Figure 4.2: We show the snapshots of the planned actions in the order they are executed.
The execution timeline goes from left to right. Each dot on the execution timeline corre-
sponds to a snapshot. Planning goes from right to left. Each dot on the planning timeline
corresponds to a planning step. The connections to the execution timeline shows the robot
motions planned in a planning step. Details of this planning process are in Fig. 4.4.

heavy ungraspable objects in the environment. We also show that our planner is robust to

uncertainty.

4.1 Planning Framework

We present an open-loop planner that rearranges the clutter around a goal object. This

requires manipulating multiple objects in the scene. The planner decides which objects to

move and the order to move them, decides where to move them, chooses the manipulation

actions to use on these objects, and accounts for the uncertainty in the environment all

through this process. This section describes how we do that.

We describe our framework with the following example (Fig. 4.1). The robot’s task is

picking up the can. There are two other objects on the table: a box which is too large to
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be grasped, and the dumbbell which is too heavy to be lifted.

The sequence of robot actions shown in Fig. 4.2 solves this problem. The robot first

pushes the dumbbell away to clear a portion of the space, which it then uses to push the

box into. Afterwards it uses the space in front of the can to grasp and move it to the goal

position.

Fig. 4.2 also shows that the actions to move objects are planned backwards in time.

We visualize part of this planning process in Fig. 4.4. In each planning step we move a

single object and plan two arm trajectories. The first one (e.g. Push-grasp and Sweep in

Fig. 4.4) is to manipulate the object. The second one (GoTo in Fig. 4.4) is to move the

arm to the initial configuration of the next action to be executed. We explain the details

of these specific actions in Section 4.2. We discuss a number of questions below to explain

the planning process and then present the algorithm in Section 4.1.5.

4.1.1 Which objects to move?

In the environment there are a set of movable objects, obj. The planner identifies the

objects to move by first attempting to grasp the goal object (Step 1 in Fig. 4.4). During

this grasp, both the robot and the can, as it is moved by the robot, are allowed to penetrate

the space other objects in obj occupy. Once the planner finds an action that grasps the

can, it identifies the objects whose spaces are penetrated by this action and adds them to

a list called move. These objects need to be moved for the planned grasp to be feasible. At

the end of Step 1 in Fig. 4.4, the box is added to move.

We define the operator FindPenetrated to identify the objects whose spaces are pen-

etrated:

FindPenetrated(vol, obj) = {o ∈ obj |

vol penetrates the space of o}

We compute the volume of space an object occupies by taking into account the pose uncer-

tainty (Section 4.1.2).

In subsequent planning steps (e.g. Step 2 in Fig. 4.4) the planner searches for actions

that move the objects in move. The robot and the manipulated object are again allowed to

penetrate other movable objects’ spaces, and penetrated objects are added to move.

This recursive process continues until all the objects in move are moved. The objects

that are planned for earlier should be moved later in the execution. In other words, we do

backward planning to identify the objects to move.

Allowing the planner to penetrate other objects’ spaces can result in a plan where objects

are moved unnecessarily. Hence, our planner tries to minimize the number of these objects.

This is described in Section 4.2.
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Figure 4.4: The plan-
ning timeline. Three
snapshots are shown
for each planning step.
The planner plans two
consecutive arm mo-
tions at each step, from
the first snapshot to
the second snapshot,
and from the second
snapshot to the third
snapshot. These mo-
tions are represented by
dashed lines. The re-
gions marked as NGR
show the negative goal
regions (Section 4.1.4).
The object pose uncer-
tainty is represented us-
ing a collection of sam-
ples of the objects.

We also restrict the plans we generate to monotone plans; i.e. plans where an object

can be moved at most once. This avoids dead-lock situations where a plan to move object

A results in object B being moved, which in turn makes object A move, and so on. But

more importantly restricting the planner to monotone plans makes the search space smaller:

the general problem of planning with multiple movable objects is NP-hard (Wilfong, 1988).

We enforce monotone plans by keeping a list of objects called avoid. At the end of each

successful planning step the manipulated object is added to avoid. The planner is not

allowed to penetrate the spaces of the objects in avoid. In Fig. 4.4 in Step 2 the avoid list

includes the red can, in Step 3 it includes the can and the box.

4.1.2 How to address uncertainty?

Robots can detect and estimate the poses of objects with a perception system (Martinez

et al., 2010). Inaccuracies occur in pose estimation, and manipulation plans that do not

take this into account can fail. Non-prehensile actions can also decrease or increase object

pose uncertainty. Our planner generates plans that are robust to uncertainty. We explicitly

represent and track the object pose uncertainty during planning. Fig. 4.4 visualizes the

pose uncertainty using copies of the object at different poses.

In this chapter we use the word region to refer to a subset of the configuration space of
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a body. We define the uncertainty region of an object o at time t as the set of poses it can

be in with probability larger than ǫ:

U(o, t) = {q ∈ SE(3)|o is at q at time t with prob. > ǫ}

The manipulation actions change the uncertainty of an object. This is represented as a

trajectory ν:

ν : [0, 1]→ R

where R is the set of all subsets of SE(3). We call ν the evolution of the uncertainty region

of that object.

In the rest of this chapter, we will drop the time argument to U and use U(o) to stand

for the initial uncertainty region (i.e. the uncertainty region before manipulation) of the

object o. We will use ν to refer to the uncertainty region as the object is being manipulated,

and specifically ν[1] to refer to the final uncertainty region of the object after manipulation.

We get U(o) by modeling the error profile of our perception system. Each manipulation

action outputs ν. Section 4.2 describes how this is computed for our actions.

During planning, we compute the volume of space an object occupies using U , not only

the most likely pose. Likewise we compute the space swept by a manipulated object using ν.

We define the operator Volume, which takes as input an object and a region, and computes

the total 3-dimensional volume of space the object occupies if it is placed at every point in

the region. For example, Volume(o, U(o)) gives the volume of space occupied by the initial

uncertainty region of object o. We overload Volume to accept trajectories of regions too;

e.g. Volume(o, ν) gives the volume of space swept by the uncertainty of the object during

its manipulation.

4.1.3 How to move an object?

The traditional manipulation planning algorithms assume two types of actions: Transfer

and Transit (Siméon et al., 2004, Stilman and Kuffner, 2006) or Manipulation and Naviga-

tion (Stilman et al., 2007). Transit does not manipulate any objects, Transfer manipulates

only an already rigidly grasped object. Our algorithm lifts this assumption and opens the

way for non-prehensile actions. At each planning step, our planner searches over a set of

possible actions in its action library. For example in Step 1 of Fig. 4.4 the planner uses the

action named push-grasp, and in Step 2 it uses the action sweep. Push-grasp uses pushing to

funnel a large object pose uncertainty into the hand. Sweep uses the outside of the hand to

push large objects. We will describe the details of specific actions we use (e.g. push-grasp

and sweep) in Section 4.2. Below we present the general properties an action should have

so that it can be used by our planner.
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In grasp based planners robot manipulation actions are simply represented by a tra-

jectory of the robot arm: τ : [0, 1] → C where C is the configuration space of the robot.

The resulting object motion can be directly derived from the robot trajectory. With non-

prehensile actions this is not enough and we also need information about the trajectory of

the object motion: the evolution of the uncertainty region of the object. Hence the interface

of an action a in our framework takes as an input the object to be moved o, a region of

goal configurations for the object G, and a volume of space to avoid avoidV ol; and outputs

a robot trajectory τ , and the evolution of the uncertainty region of the object during the

action ν:

(τ, ν)← a(o, G, avoidV ol) (4.1)

The returned values τ and ν must satisfy:

• ν [1] ⊆ G; i.e. at the end all the uncertainty of the object must be inside the goal

region.

• Volume(robot, τ) and Volume(o, ν) are collision-free w.r.t avoidV ol; where robot

is the robot body.

If the action cannot produce such a τ and ν, it returns an empty trajectory, indicating

failure.

We also use a special action called GoTo, that does not necessarily manipulate an object,

but moves the robot arm from the end of one object manipulation action to the start of

other.

4.1.4 Where to move an object?

The planner needs to decide where to move an object — the goal of the action. This is easy

for the original goal object, the can in the example above. It is the goal configuration passed

into the planner, e.g. the final configuration in Fig. 4.1. But for subsequent objects, the

planner does not have a direct goal. Instead the object (e.g. the box in Step 2 of Fig. 4.4)

needs to be moved out of a certain volume of space in order to make the previously planned

actions (Step 1 in Fig. 4.4) feasible. We call this volume of space the negative goal region

(NGR) at that step (shown as a purple region in Fig. 4.4) 1. Given an NGR we determine

the goal G for an object o by subtracting the NGR from all possible stable poses of the

object in the environment: G← StablePoses(o)−NGR.

The NGR at a planning step is the sum of the volume of space used by all the previously

planned actions. This includes both the space the robot arm sweeps and the space the

1Note that the NGR has a 3D volume in space. In Fig. 4.4 it is shown as a 2D region for clarity of
visualization.
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manipulated objects’ uncertainty regions sweep. At a given planning step, we compute the

negative goal region to be passed on to the subsequent planning step, NGRnext, from the

current NGR by:

NGRnext ← NGR+Volume(robot, τ) +Volume(o, ν)

where τ is the planned robot trajectory, o is the manipulated object, and ν is the evolution

of the uncertainty region of the object at that planning step.

4.1.5 Algorithm

In our problem, a robot whose configurations we denote by r ∈ C ⊆ R
n interacts with

movable objects in the set obj. We wish to generate a sequence of robot motions plan that

brings a goal object goal ∈ obj into a goal pose qgoal ∈ SE(3). The planning process is

initiated with the call:

plan← Reconfigure(goal, {qgoal}, {}, {}, ∗)

The ∗ here means that the final configuration of the arm does not matter as long as the

object is moved to qgoal.

Each recursive call to Reconfigure is a planning step (Alg. 2). The function searches

over the actions in its action library between lines 1-21, to find an action that moves the

goal object to the goal configuration (line 4), and then to move the arm to the initial

configuration of the next action (line 7). On line 11 it computes the total volume of space

the robot and the manipulated object uses during the action. Then it uses this volume of

space to find the objects whose spaces have been penetrated and adds these objects to the

list move (line 12). If move is empty the function returns the plan. On line 15 the function

adds the volume of space used by the planned action to the NGR. On line 16 it adds the

current object to avoid. Between lines 17-20 the function iterates over objects in move

making recursive calls. If any of these calls return a plan, the current trajectory is added at

the end and returned again (line 20). The loop between 17-20 effectively does a search over

different orderings of the objects in move. If none works, the function returns an empty

plan on line 22, indicating failure, which causes the search tree to backtrack. If the planner

is successful, at the end of the complete recursive process plan includes the trajectories in

the order that they should be executed.

4.2 Action Library

In this section we describe the actions implemented in our action library. The generic

interface for actions is given in Eq. (4.1). There are four actions we implemented.
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Algorithm 2: plan← Reconfigure(o, G,NGR, move, avoid, rt+2)

1 repeat
2 a ← next action from action library
3 avoidV ol←

∑

i∈avoid
Volume(i, U(i))

4 (τ1, ν)← a(o, G, avoidV ol)
5 if τ1 is empty then
6 Continue at line 2
7 τ2 ← GoTo(τ1[1], r

t+2, avoidV ol +Volume(o, ν[1]))
8 if τ2 is empty then
9 Continue at line 2

10 τ ← τ1 + τ2
11 vol← Volume(robot, τ) +Volume(o, ν)
12 movenext ← move+ FindPenetrated(vol, obj)
13 if movenext is empty then
14 return {τ}
15 NGRnext ← NGR+ vol
16 avoidnext ← avoid+ {o}
17 foreach i ∈ movenext do
18 plan← Reconfigure(i,StablePoses(i)−NGRnext, NGRnext, movenext −

{i}, avoidnext, τ [0])
19 if plan is not empty then
20 return plan+ {τ}

21 until all actions in action library are tried
22 return empty

• Push-grasp: Grasp objects even when they have large initial uncertainty regions.

• Sweep: Push objects with the outer side of the hand. Useful to move large objects.

• GoTo: Moves from a robot configuration to another.

• PickUp: Combination of Push-grasp and GoTo. Used to grasp an object and move it

to somewhere else by picking it up.

Each action can be parametrized in different ways in a given environment. For example

the robot can Push-grasp an object by pushing in different directions. An action searches

over its parameter space to find valid robot and object trajectories. In this section we

specify these parameters for each action and present the way the search is done. We also

explain how we compute the evolution of the uncertainty region.
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(a) Parametrization (b) Example sweep (c) Capture Re-
gion

Figure 4.5: (a) Sweep is parametrized by the initial hand pose and pushing distance. (b)
Sweeping can move objects that are too large to be grasped. (c) The capture region of the
sweep action for the a cylindrically symmetric bottle.

4.2.1 Push-Grasp

This action is presented in detail in Chapter 2. Here we explain how it is used in the context

of rearrangement planning.

While a push-grasp we compute avoids the objects in avoid it is allowed to penetrate

the space of other movable objects as explained in Section 4.1.1. But we try to minimize the

number of such objects to get more efficient plans. Therefore we compute a heuristic value

for the 36 different directions to push-grasp the object. We rotate the robot hand around

the goal object and check the number of objects it collides with. We prefer directions v

with a smaller number of colliding objects.

We also use the capture region to represent the evolution of the uncertainty region, ν.

As the push proceeds, the top part of the capture region shrinks towards the hand and

the resulting uncertainty region is captured inside the hand (Fig. 2.3(c)). Since the object

cannot escape out of the capture region during the push-grasp, the uncertainty during the

action can be conservatively estimated using the shrinked capture region at every discrete

step. These series of capture regions can be used to represent ν. Volume operator samples

poses from a capture region to compute the total volume.

4.2.2 Sweep

Sweep is another action we use to move obstacles out of negative goal regions. Sweep uses

the outside region of the hand to push an object. Sweeping can move objects that are too

large to be grasped (Fig. 4.5b). Similar to Push-grasp, we parametrize a Sweep by S(ph, d);

the hand pose and the pushing distance (Fig. 4.5a).

A push-grasp requires a minimum pushing distance because it has to keep pushing the

object until it completely rolls into the hand. Since sweeping only needs to move an object
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out of a certain volume of space, it does not require a particular pushing distance. But we

still use the capture region to guarantee that the object will not escape the push by rolling

outside during the sweep. When computing the capture region for sweep (Fig. 4.5c) we use

the pushing simulation for the side of the fingers but approximate the other side with a

straight line located at the end of the wrist link.

The sweep action can also address initial object pose uncertainty. Similar to Push-

grasp, we check that the capture region of the Sweep includes all the poses sampled from

the uncertainty region of the object (Fig. 4.5c).

We cannot know the exact location of the object after the sweep because a sweep action

does not have a particular minimum pushing distance. We know that the object ends up

inside the hand at the end of a push-grasp, and the uncertainty is very small. However, for

sweeping this uncertainty can be large. We approximate the evolution of the uncertainty

region of sweep by using samples from two different regions. The first region is object’s

initial uncertainty region. Until the sweeping hand makes a contact with a sample from

this region that sample is included in ν. The second region is around the sweeping surface

of the hand representing all possible poses of the object in contact with the hand surface.

4.2.3 GoTo

The GoTo action moves the robot arm from one configuration to the other. The search

space of the GoTo action is the configuration space of the arm. We use the Constrained

Bi-directional RRT planner (CBiRRT) (Berenson et al., 2009a) to implement this action.

The GoTo action either does not manipulate an object or moves an already grasped

object. At the end the object pose is derived from the forward kinematics of the arm.

4.2.4 PickUp

In highly cluttered environments, moving objects locally may not be possible because all

the immediate space is occupied. In such cases, picking up an obstacle object and moving

it to some other surface may be desirable. We implement this action in our planner as the

PickUp action. PickUp is also useful to move the original goal object of the plan to the

final goal configuration. We implement PickUp as a Push-grasp followed by a GoTo.

4.3 Implementation and Results

4.3.1 Implementation

We implemented the planner on our robot HERB. We conducted simulation experiments

using OpenRAVE. We created scenes in simulation and in real world. The robot’s goal was
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Figure 4.6: The plans that the pushing planner and the pick-and-place planner generates
in the same scene are presented. The pushing planner is more efficient as it is able to sweep
the large box to the side. The pick-and-place plan needs to move more objects and takes
more time to execute. The planning time is also more for the pick-and-place planner (27.8
sec vs. 16.6 sec) as it needs to plan more actions.

to retrieve objects from the back of a cluttered shelf and from a table. We used everyday

objects like juice bottles, poptart boxes, coke cans. We also used large boxes which the

robot cannot grasp.

We present snapshots from our experiments in the figures of this section. The video

versions can be viewed at www.cs.cmu.edu/˜mdogar/pushclutter

4.3.2 Pushing vs. pick-and-place

Here, we compare our planner in terms of the efficiency (planning and execution time) and

effectiveness (whether the planner is able to find a plan or not) with a planner that can only

perform pick-and-place operations. To do this, we used our framework algorithm to create

a second version of our planner, where the action library consisted of only the PickUp and

GoTo actions, similar to the way traditional planners are built using Transfer and Transit

operations. We modified the PickUp action for this planner, so that it does not perform

the pushing at the beginning, instead it grasps the object directly. We call this planner the

pick-and-place planner, and our original planner the pushing planner.

An example scene where we compare these two planners is given in Fig. 4.6. The robot’s

goal is to retrieve the coke can from among the clutter. We present the plans that the two

different planners generate. The pushing planner sweeps the large box blocking the way.

The pick-and-place planner though cannot grasp and pick up the large box, hence needs

to pick up two other objects and avoid the large box. This results in a longer plan, and a

longer execution time for the pick-and-place planner. The planning time for the pick-and-

http://www.cs.cmu.edu/~mdogar/pushclutter
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Figure 4.7: An example plan to retrieve a can hidden behind a large box on a shelf. The
pick-and-place planner fails to find a plan in this scene. But pushing planner finds the
presented plan. Planning time is 51.2 sec.

Figure 4.8: An example plan under high uncertainty and clutter. The pick-and-place plan-
ner fails to find a plan in this scene, as it cannot find a feasible grasp of the objects with
such high uncertainty. Pushing planner succeeds in generating a plan, presented above.

place planner is also longer, since it has to plan more actions. These times are shown on

the figure.

In the previous example the pick-and-place planner was still able to generate a plan.

Fig. 4.7 presents a scene where the pick-and-place planner fails. The pushing planner

generates a plan and is presented in the figure.

4.3.3 Addressing uncertainty

One of the advantages of using pushing is that pushing actions can account for much higher

uncertainty than direct grasping approaches. To demonstrate this we created scenes where

we applied high uncertainty to the detected object poses. Fig. 4.8 presents an example

scene. Here the objects have an uncertainty region which is a Gaussian with σx,y = 2cm

for translation and σθ = 0.05rad for the rotation of the object. The pick-and-place planner

fails to find a plan in this scene too, as it cannot find a way to guarantee the grasp of the

objects with such high uncertainty. The pushing planner generates plans even with the

high uncertainty.
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Table 4.1: Planning Times for Rearrangement Planning

Total GT PU SW PG

Pushing 25.86 10.92 6.76 6.08 1.92
Pick-and-Place 12.52 6.54 5.98 - -

4.3.4 Effect on planning time

We also conducted experiments to see the effect of adding the pushing actions to the pick-

and-place planner in cases where both planners would work. We created five random scenes

with different graspable objects and generated plans using the pushing and pick-and-place

planner in these scenes. We ran each planner three times for each scene, due to the random

components of our GoTo and PickUp actions. The average planning time for each planner

is shown in Table 4.1 in seconds. The division of this time to each action is also shown

(GT: GoTo, PU: pick-up, SW: sweep, PG: push-grasp).

On average, the pushing planner takes two times the time the pick-and-place planner

takes. This is due to a variety of reasons. First, our implementation gives priority to pushing

actions Push-grasp and Sweep before trying PickUp. An ordering where the PickUp comes

first will generate results similar to the pick-and-place planner. The second reason is the

large uncertainty region the Sweep action generates. This usually causes more objects to

be moved, which is reflected in the higher time spent on the GoTo action.

4.4 Discussion

An important idea in the rearrangement planning algorithm is planning manipulator mo-

tions which are allowed to violate constraints (i.e. go through some objects): this is the

method through which objects are identified to be moved out of the way. Currently this is

achieved using an RRT implementation which is allowed to go through any of the objects

in the environment if a free-space trajectory cannot be found. Most of the time this leads

to spurious rearrangement actions, and making the problem harder than it really is, runs

the risk of causing the rearrangement planner to fail.

Ideally, one would want a motion planner which goes through only the absolutely nec-

essary objects for the rearrangement plan. An approximation would be to use a motion

planner which minimizes the number of constraints violated. Hauser (2012) presents a mo-

tion planner which can produce paths violating the minimum number of constraints. Our

current effort includes integrating this planner into our rearrangement planner to produce

shorter rearrangement plans.
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Another limitation of our planner is due to planning backwards in time. At any step

we take into account all uncertainty associated with previously planned actions. This is

reflected in the negative goal regions for our planner. When the uncertainty about the

consequence of an action is large, this is reflected as a large negative goal region in the

following planning steps. If the NGR becomes too large, the planner runs out of space to

move objects to and fails. This is a result of our planner being conservative with respect to

uncertainty. A solution may be to interleave the execution of actions with re-inspection of

the environment. In Chapter 7 we present our ideas about this for future work.



Chapter 5

Manipulating Clutter for Object

Search

Imagine looking for the salt shaker in a kitchen cabinet. Upon opening the cabinet, you

are greeted with a cluttered view of jars, cans, and boxes—but no salt shaker. It must

be hidden near the back of the cabinet, completely obscured by the clutter. You start

searching for it by pushing some objects out of the way and moving others to the counter

until, eventually, you reveal your target.

Humans frequently manipulate their environment when searching for objects. If robotic

manipulators are to be successful in human environments, they require a similar capability

of searching for objects by removing the clutter that is in the way. In this context, clutter

removal serves two purposes. First, removing clutter is necessary to gain visibility of the

target. Second, it is necessary to gain access to objects that would be otherwise inaccessible.

Prior work has addressed the issues of interacting with objects to gain visibility and

accessibility as separate problems. Work on the sensor placement (Espinoza et al., 2011)

and search by navigation (Ye and Tsotsos, 1995, 1999, Shubina and Tsotsos, 2010, Sjo et al.,

2009, Ma et al., 2011, Anand et al., 2013) problems focuses on moving the sensor to gain

visibility.

Conversely, the rearrangement planning approach which presented an example of in

Chapter 4 problems focus on moving objects to grant the manipulator access to previously-

inaccessible configurations. These approaches would be effective at gaining access to the

salt shaker once its pose is known, but are incapable of planning before the target is visually

revealed.

Fig. 5.2 shows a scene in which both situations occur. In this figure, HERB is searching

for the white battery pack hidden on a cluttered table. HERB uses its camera to detect

and localize objects. As Fig. 5.2-Top shows, HERB is initially unable to detect the battery

pack because it is occluded by the blue Pop-Tart box. From HERB’s perspective, the
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Figure 5.2: An example of the
object search problem on a real
robot. The robot is searching for
a target object (highlighted by
the bounding box) on the table,
but its view is occluded (drawn
as gray regions) by other objects.
The robot must remove these ob-
jects to search for the target. Ob-
jects may block the robot’s ac-
cess to other objects.

����������	

battery pack could be hiding in any of the occluded regions shown in Fig. 5.2-Left. With

no additional knowledge about the location of the target, HERB must sequentially remove

objects from the scene subject to the physical limitations of its manipulator until the target

is revealed. For example, Fig. 5.2-Right shows that HERB is unable to grasp the large

white box without first moving the brown juicebox out of the way.

In this section, we formally describe the object search by manipulation problem by

defining the expected time to find the target as a relevant optimization criterion and the

concept of accessibility and visibility relations. armed with these definitions, we are able to

propose and analyze algorithms for object search by manipulation. We make the following

theoretical contributions:

Greedy is sometimes optimal: We prove that, under an appropriate definition of utility,

the greedy approach to removing objects is optimal under a set of conditions, and provide

insight into when it is suboptimal (Section 5.2).

The connected components algorithm: We introduce an alternative algorithm, called

the connected components algorithm, which takes advantage of the structure of the scene to

approach polynomial time complexity on some scenes (Section 5.4). Our extensive experi-

ments show that this algorithm produces optimal plans under all situations, and we present

a partial proof of optimality.

Finally, we demonstrate both algorithms on our robot HERB (Section 5.5.1 and Sec-

tion 5.5.2) and provide extensive experiments that confirm the algorithms’ theoretical prop-

erties (Section 5.5).
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5.1 Formulation

We start with a scene S that is comprised of a known, static world populated with the set

of movable objects O, each of which has known geometry and pose.

A robot perceives the scene with its sensors and has partial knowledge of the objects

that the scene contains. To the robot, the scene is comprised of the set of visible objects

Oseen ⊂ O and the volume of space V that is occluded to its sensors. In the object search

problem, the occluded volume hides a target object target ∈ O with known geometry, but

unknown pose. For the remainder of this section, we study a specific variant of the problem

in which the target is the only hidden object, i.e. O = Oseen ∪ {target}. We discuss the

presence of other hidden objects in Section 5.7.

The robot searches for the target by removing objects from Oseen until the target is

revealed to its sensors. We define the order in which objects are removed from the scene as

an arrangement.

Definition 1 (Arrangement). An arrangement of the set of objects o is a bijection

Ao : {1, . . . , |o|} → o where Ao(i) is the ith object removed.

Additionally, we defineAo(i, j) as the sequence of the i
th through the jth objects removed

by arrangement Ao.

Given an arrangement Ao that reveals the target, the expected time to find the target

is

E(Ao) =

|o|
∑

i=1

PAo(i) · TAo(1,i) (5.1)

where PAo(i) is the probability that the target will be revealed after removing object Ao(i)

and TAo(1,i) is the time to move all objects up to and including Ao(i).

Our goal is to find the arrangement A∗
Oseen

that minimizes E(A∗
Oseen

); i.e. reveals the

target as quickly as possible.

5.1.1 Visibility

When the robot removes a set of objects from the scene it reveals the volume behind those

objects.

Definition 2 (Revealed Volume). The volume of space Vo revealed by removing objects

o ⊆ Oseen from scene S.

In Fig. 5.3a we show the revealed volumes of objects in an example scene1. Vjoint is

1We use two-dimensional examples, e.g. Fig. 5.3, throughout the section for clarity of illustration. Our
actual formulation and implementation uses complete three-dimensional models of the scene, objects, and
volumes.
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(a) Initial Scene
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(b) A Removed

Figure 5.3: (a) An example of a scene containing a joint occlusion. Occlusions are drawn
as dark gray and the joint occlusions as light gray. (b) The scene after A is removed.

jointly occluded by object A and B, and is not included in either VA or VB. This is because

Vjoint will not be revealed if only A or only B is removed from the scene.

The volume that is revealed by removing an object may change as the scene changes. In

Fig. 5.3b we show VB after A is removed from the scene in Fig. 5.3a. Since A is no longer in

the scene, VB now includes Vjoint. Similarly, VA would expand to include Vjoint if B was the

first object removed from the scene. Regardless of the order in which A and B are removed,

the revealed volume of {A, B} is VA,B = VA+VB+Vjoint. In the most general case, an arbitrary

number of objects can jointly occlude a volume. In that case, the volume would be revealed

only after all of the occluding objects are removed from the scene.

We compute the probability that removing an object A will reveal the target using the

revealed volume:

PA =
VA

VOseen

(5.2)

We compute the revealed volume in the configuration space (C-space) of the target

object. In our implementation we assume that the target rests stably on the workspace;

i.e. the target’s pose can be represented by (x, y, θ) ∈ SE(2). We discretize the target’s

C-space to generate a set of candidate poses and estimate Vo as the number of target poses

that become visible when o is removed.

Our framework supports any deterministic visibility criterion. However, partial views

of objects are often hard to detect. Therefore, our implementation uses a conservative

condition: we consider the target at a certain pose visible if and only if the sensor can see

it completely. This is implemented by sampling points on the target, raytracing from the

sensor to each point, and verifying that no ray is occluded.
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(b) A Removed

Figure 5.4: A scene where the greedy algorithm performs suboptimally due to an accessi-
bility constraint.

5.1.2 Accessibility

The manipulator uses a motion planner to grasp an object and remove it from the scene. To

achieve this, the object must be accessible to the manipulator. Accessibility is blocked by

other visible objects, and also by the occluded volume, which the manipulator is forbidden

to enter.

Definition 3 (Accessibility Constraint). There is an accessibility constraint from an object

A to object B if A must be removed for the manipulator to access B.

Any arrangement of objects in a scene must respect the objects’ accessibility constraints.

For example, in Fig. 5.2-Right, the access to the big box is blocked by the smaller box in

front of it.

We identify the accessibility constraints using a motion planner, which returns a ma-

nipulator trajectory for each object in the scene. The manipulator trajectory for an object

sweeps a certain volume in the space (illustrated as light blue regions in Fig. 5.2). Objects

that penetrate the swept volume result in accessibility constraints. Additionally, objects

for which the occluded volume penetrates the swept volume also result in accessibility con-

straints.

We also use the manipulator trajectory for an object A to compute TA by estimating the

time necessary to execute the trajectory on the robot. Since there is only a single action

for each object, TA is constant for a given scene and does not depend on the sequence in

which objects are removed.
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Figure 5.5: A scene where the greedy algorithm performs suboptimally due to a visibility
constraint.

5.2 Utility and Greedy Search

In this section, we discuss a greedy approach to solving the object search by manipulation

problem.

While the overall goal is to minimize the amount of time it takes to find the target, a

greedy approach requires a utility function to maximize at every step. The faster the robot

reveals large volumes, the sooner it will find the target. Using this intuition, we define the

utility of an object similar to the utility measures defined for sensor placement (Ye and

Tsotsos, 1995, Espinoza et al., 2011).

Definition 4 (Utility). The utility of an object A is given by

U (A) =
VA
TA

This measure naturally lends itself to greedy search. A greedy algorithm for our problem

ranks the accessible objects in the scene based on their utility and the removes highest

utility object. This results in a new scene, whereby the algorithm repeats until the target

is revealed. In the worst case, this continues until all objects are removed.

Unsurprisingly, it is easy to create situations where greedy search is suboptimal. Con-

sider the scene in Fig. 5.4. In this scene, VB ≫ VC > VA. For the sake of simplicity we assume

that the time to move each object is similar, hence U(C) > U(A). As B is not accessible, the

greedy algorithm compares U(A) and U(C) and chooses to move C first, producing the final

arrangement C → A → B. However, moving the lower utility A first is the optimal choice

because it reveals VB faster (Fig. 5.4b), and gives the optimal arrangement A → B → C. It

is easy to see that greedy can be made arbitrarily suboptimal by adding more and more

objects with utility U(C) to the scene.
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We present a second example of greedy’s suboptimality in Fig. 5.5. In this scene, all

objects are accessible, VC > VA, and VC > VB. The greedy algorithm inspects the utilities

and moves C first. However, there is a large volume jointly occluded by A and B, such

that when either A or B is removed, the volume revealed by the second object significantly

increases. We illustrate this in Fig. 5.5b with A is removed. Hence, the optimal arrangement

is A→ B→ C because it quickly reveals the large volume jointly occluded by A and B.

The examples in Fig. 5.4 and Fig. 5.5 may suggest a k-step lookahead planner for

optimality. However, the problem is fundamental: one can create scenes where arbitrarily

many objects jointly occlude large volumes, or where arbitrarily many objects block the

accessibility to an object that hides a large volume behind it.

Surprisingly, however, it is possible to create nontrivial scenes where greedy search is

optimal. We define the requirements of such scenes in the following theorem.

Theorem 5.2.1. In a scene where all objects are accessible and no volume is jointly oc-

cluded, a planner that is greedy over utility minimizes the expected time to find the target.

Proof. Suppose that A∗ is a minimum expected time (i.e. optimal) arrangement. For any i,

1 ≤ i < |Oseen|, we can create a new arrangement, A, such that the ith and (i+1)th objects

are swapped; i.e. A(i) = A∗(i + 1) and A(i + 1) = A∗(i). A must be a valid arrangement

because all objects are accessible.

No volume is jointly occluded, so the revealed volume of all objects will stay the same

after the swap; i.e. VA∗(i) = VA(i+1) and VA∗(i+1) = VA(i). Since the rest of the two ar-

rangements are also identical, using Eq. (5.1) and Eq. (5.2), we can compute the difference

between E (A) and E (A∗) to be:

E (A)− E (A∗) = VA∗(i) · TA∗(i+1) − VA∗(i+1) · TA∗(i). (5.3)

E (A∗) is optimal, therefore E (A)− E (A∗) ≥ 0 and

VA∗(i)

TA∗(i)
≥

VA∗(i+1)

TA∗(i+1)
,

which is simply U(A∗(i)) ≥ U(A∗(i + 1)). Hence, the optimal arrangement consists of

objects sorted in weakly-descending order by their utilities.

There can be more than one weakly-descending ordering of the objects if multiple objects

have the same utility. To see that all weakly-descending orderings are optimal, the same

reasoning can be used to show that swapping two objects of the same utility does not change

the expected time of an arrangement.

The greedy algorithm is incredibly efficient in terms of computational complexity. At

each step, the algorithm finds the accessible object with maximum utility in linear time.
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In a scene of n objects, this results in a total computational complexity of O(n2). We

show in Section 5.4 that the worst-case complexity of the optimal search is O(n22n). The

theorem, however, shows that there are scenes in which greedy is optimal. We shall show in

Section 5.5 that these scenes do occur surprisingly regularly even with randomly generated

object poses. However, as we have shown above, the greedy algorithm can also produce

arbitrarily suboptimal results.

In the next section we present an algorithm based on A-Star search, which is always

optimal but has exponential computational complexity. Then, in Section 5.4 we present a

new algorithm which approaches the polynomial complexity of the greedy algorithm, yet

maintains optimality in the general case as shown by our empirical evaluations in Section 5.5.

5.3 A-Star Search Algorithm

We use A-Star search to find the optimal arrangement in a scene. A-Star works with a

directed-acyclic-graph structure where the nodes are the set of remaining objects in the

scene. Neighbors are scenes with one accessible object removed. Assume the partial ar-

rangement A of k objects in the scene reaches a node in the search graph. The cost-to-come

is

f =
k

∑

i=1

(

VA(i)

VOseen

)

TA(1,i)

The cost-to-go can be approximated as

g =

(

VOseen
− VA(1,k)

VOseen

)

(TA(1,k) + min
a∈{Oseen\A(1,k)}

(Ta))

The cost-to-go heuristic optimistically reasons that in the (k+1)th action, all the remaining

occluded volume will be revealed. Among the remaining objects, Oseen \ A(1, k), we find

the object that can be removed with the minimum time and use its time as the time of the

(k+1)th action. The heuristic is admissible as it underestimates the time to find the target.

The A-Star search produces the optimal arrangement. However, running it on a large

scene is intractable due to its high computational complexity. A-Star must search over a

graph containing up to 2n nodes and O(n2) edges, resulting in a worst-case complexity of

O(n22n).

5.4 Connected Components Algorithm

The structure of the object search problem becomes more clear once we represent the

visibility and accessibility constraints of a scene as a graph. Each node of this graph

corresponds to an object in the scene. There is an edge between the nodes A and B if:
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Figure 5.6: Left: An example scene. Volumes occluded by a single object are shown in dark
gray, joint occlusions are shown in light gray, and swept volumes are shown in light blue.
Right: The corresponding graph with three connected components.

Algorithm 3: Object Search With Connected Components

1 {c1, c2, ..., cm} ← FindConnectedComponents
2 foreach connected component ci do
3 A∗

ci
← AStar(ci)

4 A∗
Oseen

← [ ]

5 repeat
6 bag ← ∅
7 foreach component arrangement A∗

ci
do

8 for j ← 1 to |ci| do
9 bag.Add( Aci(1, j) )

10 seq ← arg max
A∈bag

U(A)

11 Add seq to the end of A∗
Oseen

12 Remove seq from the A∗
ci

it belongs

13 until all objects are in the plan
14 return A∗

Oseen

• A is blocking the access to B, or vice versa; or

• A and B are jointly occluding a non-zero volume.

An example scene and the corresponding graph is in Fig. 5.6.

We can divide the constraint graph into connected components. A connected component

of the graph is a subgraph such that there exists a path between any two nodes in the

subgraph (Hopcroft and Tarjan, 1973). For example, there are three connected components

in Fig. 5.6: {A, B, C}, {D}, and {E, F}.

A key insight is that the objects in a connected component do not affect the utility of

the objects in another connected component. Hence, we can perform an optimal search, e.g.

using A-Star, to solve the arrangement problem for a connected component independently

and then merge the solutions to produce a complete arrangement of the scene.
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It is non-trivial to merge arrangements of multiple connected components. The complete

plan may switch from one connected component to the other and then switch back to a

previous component. Our algorithm provides an efficient greedy way to perform this merge.

The examples in Fig. 5.4 and Fig. 5.5 show that the utility of a single object is not

informative enough to achieve general optimality with a greedy algorithm. Instead, we

consider the utility of removing multiple objects from the scene.

Definition 5 (Collective Utility). The collective utility of a set of objects o is given by

U(o) =
Vo

To

A general greedy approach which considers the collective utility of all possible sequences

of all sizes in the scene would quickly become infeasible as the number of such sequences

is O(|o|!). In our case, we take advantage of the fact that we have optimal plans for each

connected component in which the objects are already sorted. We then need to compute

collective utilities of only the prefixes (i.e. the first k objects where k ranges from 1 to the

size of the connected component) of these optimal sequences.

We present our algorithm in Alg. 3 that uses the collective utility of sequences from con-

nected components to generate an arrangement of the complete scene. It first identifies the

connected components in the scene (Line 1). Then it finds the optimal arrangement internal

to a connected component using A-Star search (Line 3). It then merges these arrangements

iteratively by finding the maximum utility2 prefixes of the optimal arrangements of the

connected components.

In Section 5.5 we show that Alg. 3 generates the optimal result in all scenes we tried it

on and it uses a fraction of the time A-Star requires on the complete scene. We present a

partial proof of our algorithm’s optimality in the appendix.

5.4.1 Complexity of the Connected Components Algorithm

The connected components algorithm divides the set of objects into smaller sets, runs A-Star

on each connected component, and then merges the plans for each component. If the scene

has no constraints, then there is one object per connected component and this algorithm

reduces to the greedy algorithm. Conversely, if the constraint graph is connected, this

algorithm is equivalent to running A-Star on the full scene. Therefore, the performance of

this algorithm ranges from O(n2), the performance of the greedy algorithm, to O(n22n), the

performance of A-Star, depending upon the size of the connected components. Geometric

limitations put an upper bound on the number of accessibility and joint occlusion constraints

that are possible in a given scene, so it is unlikely that any scene will exercise the worst

2In the rare event that that multiple sequences share the maximum utility, the algorithm breaks the tie
by choosing the sequence with the maximum utility prefix recursively.
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Figure 5.7: Performance of the random, greedy, A-Star, and connected component planners
as a function of number of objects. All results are averaged over approximately 400 random
scenes and are plotted with their 95% confidence interval. The planning times are presented
in log-scale, where the confidence intervals are also plotted as log-scale relative errors (Baird,
1995).
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Figure 5.9: The relationship be-
tween scene size and the size of the
largest connected component is plot-
ted as a two-dimensional histogram.

case performance. These performance gains will be most significant on large scenes in which

objects are spatially partitioned, e.g. on different shelves in a fridge, but will be modest on

small, densely packed scenes.

5.5 Experiments and Results

We investigated the performance of the different algorithms through extensive experiments

in simulation and on a real robot. We implemented the greedy, A-Star, and connected

components algorithms in OpenRAVE (Diankov and Kuffner, 2008). We also implemented

a baseline algorithm which randomly picks an accessible object and removes it from the

scene. We evaluated these algorithms on randomly generated scenes. Each scene contained
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Figure 5.10: (a) 95th percentile of expected time to find the target (b) Two example scenes
where greedy performed poorly. The black lines denote the workspace boundary.

n objects—half juice bottles and half large boxes—that were uniformly distributed over a

wide 1.4 × 0.8 m workspace. None of the generated scenes contained hidden objects and

the planner used a motion planner based on the capabilities of a simple manipulator. The

manipulator was only capable of moving straight, parallel to the table and at a constant

speed of 0.1 m/s. Visibility was simulated using the pinhole camera model under the

conservative assumption that an object is visible if and only if it is completely unoccluded.

We present results from scenes with 4, 6, 8, 10, and 12 objects in Fig. 5.7 along with the

95% confidence intervals. We conducted approximately 400 simulations for each different

number of objects, resulting a in total of 2000 different scenes. The data in Fig. 5.7a

shows that the greedy algorithm becomes increasingly suboptimal as the number of objects

increases. All three algorithms significantly outperform the random algorithm, which serves

as a rough upper bound for the expected search duration. Unfortunately, the optimality

of A-Star comes with the cost of exponential complexity in the number of objects. This

complexity causes the planning time of A-Star to dominate the other planning times shown

in Fig. 5.7b (note the logarithmic scale).

While still optimal in all 2000 scenes, the connected components algorithm achieves

much lower planning times than A-Star. By running A-Star on smaller subproblems, the

connected components algorithm is exponential in the size of the largest connected com-

ponent, k, instead of the size of the entire scene. Fig. 5.9 shows that k ≈ n/2 for n ≤ 8

and increases when n = 10, causing the large increase in planning time between n = 8

and n = 10 in Fig. 5.7b. With fixed computational resources, these results show that the

connected components algorithm is capable of solving most scenes of size 2n in the amount
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of time it would take A-Star to solve a scene of size n. For sparse scenes, the connected

components algorithm achieves optimality with planning times that are comparable those

of the greedy algorithm.

One surprising results of our experiments is that, while greedy is not optimal in the

general case, it does remarkably well on average. We found that in 50% of the 2000 different

scenes, the greedy algorithm produced the optimal sequence. Our explanation for greedy’s

performance is that the geometry of our workspace enforces a tradeoff between the volume

occluded by an object and the number of objects that block its accessibility: For an object

to occlude a large volume it must be near the front of the workspace, which makes it unlikely

that multiple objects can be placed in front of it.

To see the greedy’s worst-case behavior, we plotted the expected time to find the target

for the 5% of scenes where greedy performed worst in Fig. 5.10a. Across all the scenes,

the worst performance was 2.04 times the expected duration of the optimal sequence. We

show two example scenes where greedy performs poorly in Fig. 5.10b. Both scenes include

small bottles blocking access to large boxes. There is very little volume hidden behind the

bottles, so the boxes are—suboptimally—removed late in the plan.

5.5.1 Real Robot Implementation

We implemented the greedy and connected components algorithms on our robot HERB.

We used HERB’s camera and the MOPED (Martinez et al., 2010) system to detect and

locate objects in the scene. We present an example scene where HERB successfully found

the target object using the greedy algorithm in Fig. 5.11. In this scene the target object,

a battery pack, is hidden behind the large box, which also occludes the largest volume.

Since the large box is inaccessible, the greedy planner compares the utilities of the other

three objects, and removes the largest utility object at each step. Even though the large

box is hiding a large volume, the greedy planner removes it last, resulting in a long task

completion time.

In Fig. 5.12 the scene is the same but HERB uses the connected components algo-

rithm. There are three connected components in this scene {BlueBox}, {Bottle}, and

{LargeBox, SmallBox}. The connected components algorithm considers the collective util-

ities of multiple objects from each connected component, including both U(SmallBox) and

U(SmallBox, LargeBox). The utility of SmallBox is very small compared with the other im-

mediately accessible objects, but combined with the LargeBox, their utility is large enough

that the algorithm removes SmallBox as the first object. It then removes the large box and

finds the target object. We present the actual footage of these experiments at

http://youtu.be/i06GBj1iDOo

http://youtu.be/i06GBj1iDOo
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Figure 5.11: Greedy planner. We present the utility of all accessible objects at each step.
The pose of the target (unknown to the robot) is marked with dashed lines in the illustration.

Figure 5.12: Connected-components planner. The utilities of all prefixes from each con-
nected component are presented at each step.
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Figure 5.13: Example executions on scenes inspired by real human environments. Scenes
are inspired from a cluttered human shelf (top), a cabinet (center), and a fridge (bottom).

Table 5.1: Object Search Planning and Execution Times

Total Time Planning Execution

Shelf 132.7s 16.1s 116.6s
Cabinet 94.6s 26.1s 68.5s
Fridge 242.0s 16.7s 225.3

5.5.2 Performance in Human Environments

Objects are not distributed randomly in real human environments: they display a structure

specific to human clutter. We conducted a simple evaluation of our planner by creating

scenes which are similar in structure to human clutter.

For this evaluation we identified three different places where a robot might need to

search for an object by manipulation: a bookshelf, a cabinet, and a fridge. We captured

images of the natural clutter in these environments in our lab. We display these images as

the leftmost column in Fig. 5.13.

Limitations of our robot’s perception system and the difference between the sizes of

a human arm/hand and our robot’s manipulator prevented us from running our planner

directly on these scenes. Therefore, we constructed new scenes that are scaled up to the

dimensions of HERB’s manipulator and consist of objects that our perception system can

reliably detect. We attempted to faithfully mimic the relative size and configuration of
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objects in the original scenes as much as possible. We hid the target object randomly in

the occluded portion of the table.

We present snapshots from our robot’s search for the target as the rows of Fig. 5.13.

All plans were automatically generated by the connected components algorithm and HERB

successfully found the target in all three scenes. Table 5.1 shows the planning time, exe-

cution time, and the total time it took the robot to find the object. Note that execution

time is the dominating factor, emphasizing the importance of generating short plans when

searching for objects with a real robot.

5.6 Planning to Place Objects

The robot must place an object down before picking up another one. If the robot is allowed

to place the object at a new pose where it creates new visibility or accessibility relations,

then the object search problem becomes a version of rearrangement planning. Here, we

avoid this complexity by placing objects only at poses that do not create new accessibility

or visibility relations.

Our formulation requires us to compute the time it takes to manipulate an object before

we decide the arrangement. We use fixed placement poses on a nearby empty surface to

satisfy this constraint. We found this to be a reasonable strategy in practice: Even when

the robot is working in a densely crowded cabinet shelf, there is usually a nearby counter

or another shelf to place objects on.

However, one can also re-use the explored space to place objects: after an object is

picked up and the robot sees the volume behind that object, the planner can safely use this

volume. In particular, for an arrangement AOseen
, object AOseen

(i) can be placed where:

• it avoids penetrating VAOseen
(i+1,|Oseen|),

• it avoids occluding VAOseen
(i+1,|Oseen|),

• it avoids blocking access to the objects

AOseen
(i+ 1, |Oseen|),

• it avoids colliding the placement poses of the objects AOseen
(1, i− 1).

In Fig. 5.14 we illustrate each of these constraints and the remaining feasible placement

poses for an object.

Surprisingly, certain scene structures lead to very simple and fixed placement strategies.

For example, in a scene where there are no accessibility relations and no joint occlusions

(where the greedy algorithm is optimal), an object can be placed where it was picked up:

the robot lifts an object, looks behind it, and places it back. This strategy respects the

constraints listed above.
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(a) (b) (c)

(d) (e) (f)

Figure 5.14: An example illustrating placement constraints. (a) In this scene the small box
is moved to the left and then the large box is picked up. Now the planner must place the
large box. The large box cannot be placed where (b) it will penetrate the volume which is
not explored yet; (c) it will occlude the volume which is not explored yet; (d) it will block
access to the objects which are not moved yet; (e) it will collide with the new poses of the
objects which are already moved. (f) The combined placement constraints for the large
box.

5.7 Replanning for Hidden Objects

All of the algorithms described above can be easily generalized to handle environments that

contain hidden objects in addition to the target. Objects must be smaller than the target

object or there is danger of the arm colliding with an hidden object while searching for the

target. If this condition holds, then one can simply re-execute the planner on the remaining

objects whenever an hidden object is revealed. This strategy is optimal given the available

information if there is no a priori information about the type, number, or location of the

hidden objects. If there are k hidden objects, then this replanning strategy multiplies the

total planning time of an optimal algorithm by a factor of O(k). In the case of the greedy

or random algorithm, the replanning adds O(k) overhead from reevaluating visibility after

each object is revealed.

Fig. 5.15 shows an example of replanning on a scene containing six objects. Two objects,

shown as semi-transparent in the figure, are initially hidden and are revealed once the

occluding objects are removed. The robot begins by executing the connected components

planner on a scene containing the four visible objects. After executing the first two actions

in that plan, the robot detects that a new object has been revealed and replans for the

remaining objects. In this case, the optimal ordering is unchanged and the newly-revealed
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Figure 5.15: Example of replanning on a scene with two hidden objects. Each replanning
stage is shown as a separate frame along with the corresponding plan. Hidden objects are
shown as semi-transparent and the workspace bounds are indicated by a black line.

object is simply appended to the existing plan. After executing another action, the second

hidden object is revealed and the robot must replan a second time. Order of the optimal

sequence is changed by the addition of the hidden object and it is suboptimal to continue

executing the previous plan.

5.8 Discussion

Finally, we discuss some of the limitations of our approach to the object search problem.

Perception Model. Our current implementation assumes that an object can be detected

by the robot only if the object is fully visible. Our general framework is not tied to this

assumption and can in fact accommodate any other deterministic perception model. How-

ever, real perception systems often do not behave deterministically because of unmodeled

conditions such as the lighting of the environment. This may require an object search algo-

rithm to consider the possibility that the perception system does not detect an object even

if it is “out there”.

Complex Motion Planners. Within this planner we use a straight-path reaching for

objects, which is conceptually simple: there is a single action for an object. We are ex-

cited about studying how a more complex motion planner, e.g. one returning a minimum-

constraint violation trajectory Hauser (2012), can be integrated into our system.

Sensor Planning. Aside from reaching to objects, our robot does not move its base. By

combining the ability of searching by manipulation with sensor planning, the robot could

find targets quicker. Sensor planning would include working with multiple camera poses

and planning for the base when searching for a target in a larger environment.
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Chapter 6

Pushing with Contact Feedback

The actions we presented so far are open-loop. In this section we layout our ideas on how

feedback can be used during the execution of low-level actions. In particular, we will discuss

how feedback can be used for push-grasping.

The first question we ask is: given a push-grasp for which the capture region includes the

complete uncertainty, would feedback be useful at all? The answer is yes. Take the example

in Fig. 6.1. The hand is located in front of a bottle, which has a large pose uncertainty. The

robot needs a large pushing distance to capture all the uncertainty (Fig. 6.1(a)). Now, let’s

say, as the robot moves it feels that its fingertip contacts the bottle (Fig. 6.1(b)). Using this

information the robot can shrink the uncertainty region of the bottle (Fig. 6.1(c)). Now

the robot needs to execute a much shorter push-grasp.

The example above shows that even with our current approach to push-grasping, we can

gain by using feedback. But finding push-grasps which cover the whole uncertainty region

are costly. It takes more and more time as there is increasing clutter and uncertainty in the

scene. We can see this effect on the lower-right quarter of Table 2.1. To speed up the search,

we can relax the constraint which requires the capture region to include all uncertainty at

the beginning. We can start executing a push-grasp and then use feedback to increase the

probability of success.

One aspect of the problem is the continuous estimation of the object pose using contact

feedback, and the other aspect is adapting the push-grasp online. We started exploring

the former, using probabilistic methods like particle filters for object pose estimation with

stochastic motion and observation models.

We observed that conventional particle filters (Thrun et al., 2005, Zhang and Trinkle,

2012) suffer from a startling problem in contact manipulation: they systematically perform

worse as sensor resolution or sensor update rate increases. The problem arises because

contact sensing is highly discriminative between contact and no-contact states: if a particle

(i.e. a hypothesized object pose) is infinitesimally close to the robot hand but not touching
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Figure 6.1: (a) A large uncertainty region for a bottle is shown in light blue. It is completely
in the capture region of pushing distance d. (b) The hand moves forward and contacts the
bottle. (c) Based on the feedback the uncertainty region of the bottle changes. Now the
required pushing distance to capture all the uncertainty, d′, is much smaller.

Figure 6.3: The con-
tact states constitute a
lower-dimensional man-
ifold in the object’s
state space.

it, then contact sensors will not discriminate between it and another particle which is much

farther away from the hand. Topologically, the observation space of contact sensors con-

stitute a lower dimensional manifold in the state space of the pose of the object (Fig. 6.3).

In practice, particles sampled from the state space during contact will have very low prob-

ability of falling into the observation space which will result in particle deprivation in the

vicinity of the correct state (Fig. 6.5). This results in particle starvation. Artificially intro-

ducing noise into the observation model sidesteps this problem but comes at the expense

of losing precious information.

We recently developed the Manifold Particle Filter (MPF) to address this problem.

MPF estimates state on multiple manifolds of possibly different dimensions.
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Figure 6.5: The swept volume of contact
sensors shrinks as the update rate or reso-
lution of the sensors increases.

6.1 Manifold Particle Filter for Pose Estimation during

Contact Manipulation

Let x be the state of a dynamical system which evolves under actions u and provides

observations z. The state estimation problem addresses the computation of the belief which

is a probability distribution over the state space

bel(xt) = p(xt|z1:t, u1:t) (6.1)

given the past prior actions u1:t and observations z1:t.

In our problem, the state is the pose x ∈ SE(2) of the manipulated object (Fig. 6.6a).

Actions are motions of the hand, given by the velocity twist u ∈ se(2). During contact, the

object moves with a velocity fΦ(x, u) where the function f encodes the physics of the object

motion in response to pushing actions (Fig. 6.6b). The parameter Φ includes environmental

properties such as the coefficient of friction between the object and the underlying surface,

the coefficient of friction between the robot hand and the object, the mass distribution of

the object, and the pressure distribution of the object.

Contact sensors provide observations z about where the object touches the hand during

manipulation. In Fig. 6.6c we illustrate an example distribution of nine contact sensors

(shown as bold line segments) on the hand.

Suppose we divide a state space S into m disjoint components M = {Mi}
m
1 , where

M1, ...,Mm−1 are manifolds and Mm = S − ∪m−1
i=1 Mi is the remaining free space. Then we

can write the belief in this space as:

bel(xt) =

m
∑

i

bel(xt|Mi) Pr(xt ∈Mi) (6.2)
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Algorithm 4: Manifold Particle Filter

1 Xt−1, previous particles
2 Xt, particles sampled from bel(xt)
3 Xt ← ∅
4 for i = 1, . . . , |Xt−1| do
5 Sample Mi ∼ Pr(xt ∈Mi)
6 if Mi 6= Mm then

7 Sample x
[i]
t ∼

p(zt|xt,ut)
π(zt|ut)

8 w
[i]
t = π(zt|ut) · EstimateDensity(Xt−1, x

[i]
t )

9 else

10 x
[i]
t , w

[i]
t ← ConventionalSampling(Xt−1, ut, zt)

11 Xt ← {x
[i]
t } ∪Xt

12 Xt ← Resample(Xt)

for each manifold that is specifically designed to take advantage of the structure of Mi. In

the case of the free space Mm, we can sample x
[i]
t from S using the conventional technique

and reject any x
[i]
t ∈ ∪

m−1
i=1 Mi.

For the contact manifold, we importance sample using the dual proposal distribution

(Thrun et al., 2000) which samples from the observation model and computes importance

weights using the motion model:

• Sampling from the observation model : Since the contact manifold is a two-dimensional

manifold embedded in SE(2), we can approximate it using a relatively small set of

pre-computed hand-relative object poses. For each pre-computed sample, we compute

its probability using the current action and observation. Then, we sample x
[i]
t from

this weighted set.

• Computing importance weights using the motion model : We estimate the importance

weights of particles by applying a density estimation algorithm. First, we forward-

simulate the set of particlesXt−1 to time t with the motion model. Next, we use kernel

density estimation to approximate
∫

p(xt|xt−1, ut)bel(xt−1)dxt−1 from the forward-

simulated samples.

We present the MPF algorithm in Alg. 4.

We evaluated the regular particle filter (PF) and the Manifold Particle Filter (MPF)

on HERB and in simulation. In simulation we compare the performance of the algorithms

with the following metrics:

• Root-mean-square error (RMSE) between the particles and the true state.
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PF PF

MPF MPF

Figure 6.8: HERB pushing a box across the table. The top and bottom rows show the
belief as estimated by the PF (top, light blue) and the MPF (bottom, light orange) during
different stages of manipulation. The PF and MPF perform similarly when the object
contacts the large palm (left), but the MPF outperforms the PF when contact occurs with
the small distal links (right).

the palm. As expected, the MPF successfully tracks the state through the duration of the

contact.





Chapter 7

Interleaving Rearrangement

Planning with Feedback

The rearrangement framework we presented in Chapter 4 does not use sensor feedback once

the execution starts. The downside is that, to guarantee success the planner needs to be

very conservative.

Fig. 7.1 explains what we mean by being conservative. The robot’s goal is to grasp ‘G’

and the planner identifies that it needs to use the light red region to be able to do that.

This region becomes a negative goal region (NGR) for object ‘A’. Now the robot’s goal

is to move ‘A’ completely out of the NGR. Let’s assume the planner chooses to push ‘A’

left. We have uncertainty about where it will end up after a push. For the specific push in

the figure, this uncertainty is shown as hypotheses ‘A1’ and ‘A2’. There are two things to

notice:

• If the robot plans a shorter push it cannot guarantee that the object will leave the

NGR. This is illustrated in Fig. 7.1(b), where sample ‘A1’ is completely out of the

NGR, but ‘A2’ is not.

• If the robot plans the longer push it needs to move object ‘B’ out of the way, before

it can push ‘A’. This is illustrated in Fig. 7.1(a) where ‘A2’ penetrates the space of

‘B’. Again there is a good chance that ‘A’ will not collide ‘B’ after this push (‘A1’

does not penetrate ‘B’), but to guarantee that this will not happen, ‘B’ needs to be

moved.

Since our planner is conservative it first pushes ‘B‘ out of the way and then moves ‘A’ with

the long push. If the robot pushes ‘A’ without moving ‘B’, there is a possibility that ‘A’

can move out of NGR and does not collide with ‘B‘; but our planner does not take that

risk.
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(a) Long Push (b) Short Push (c) Object dependency graph

Figure 7.1: Robot wants to grasp ‘G’ and need to use the space shown in light red. This
area is the NGR for ‘A’ and it needs to be pushed out of the NGR. There is uncertainty
about the motion of ‘A’, shown as two hypotheses about the final pose: ‘A1’ and ’A2’. (a)
After a long push ‘A’ is guaranteed to leave the NGR, since both ‘A1’ and ‘A2’ are out of
it. But ‘A2’ suggests that there is possibility ‘A’ collides with ‘B’. (b) After a shorter push
‘A2’ does not completely leave the NGR. ‘A’ is not guaranteed to leave the NGR.

Here is the question we ask: After executing an action on an object, if the robot has the

chance to look at the scene, get sensor feedback and see the effect of its action, how would

this be useful for our framework? Below we look at three attempts of formulating how to

use feedback.

Attempt 1: Use the existing planner to produce a plan. During execution, get sensor

feedback after every manipulation action and see if any steps of the plan can be skipped. We

quickly see that this strategy cannot skip any steps. To see why, it is useful to represent

a plan as a graph of object dependencies, which gives us a directed acyclic graph. In this

graph each node corresponds to an object. The sink node is the goal object. An edge

X → Y means X must be moved to free the space that Y , with its uncertainty, will use.

Fig. 7.1(c) shows the graph for the simple example from Fig. 7.1(a). During execution, the

robot moves an object that is a leaf node (i.e. one that has no incoming edges) and removes

it from the graph; then it keeps doing the same until the goal object. For an edge X → Y ,

if an oracle tells us the exact motion of Y , there is a possibility that the edge X → Y

becomes unnecessary. For example, in Fig. 7.1(a) if the oracle tells us that ‘A’ will end up

in ‘A1’ we can skip moving ‘B’. But we never have such a case during execution of a plan

because all we move are leaf nodes at any given state of the graph.

Attempt 2: Use the existing planner to produce a plan. Execute the first action, get

feedback, replan. We see that this attempt also fails in producing a plan shorter than the

one generated by the original planner with no feedback. This follows from the fact that

we have a planner that plans backwards: the object to be moved first is planned for last.

The uncertainty of this object does not constrain any other planning step but the last.
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Hence, resolving this uncertainty does not affect the rest of the planning process. For

example in Fig. 7.1 the planner first plans for object ‘G’. The volume of space needed by

this motion generates constraints for the planning step for ‘A’. The spaces needed for ‘G’

and ‘A’ generate constraints when planning for ‘B’. When the robot moves ‘B’ away, gets

feedback to identify where it moved, and replans, this does not change any of the constraints

for the planning of the motion of ‘G’ and ‘A’.

The two attempts above show that it is not straightforward to integrate feedback into

our planner. This does not mean it is impossible though. Consider this plan for Fig. 7.1:

1. Execute the shorter push on ‘A’ (Fig. 7.1(b)), and get feedback to see where it ended

up.

2. If it is ‘A1’, then go and grasp ‘G’ and stop. If it is not ‘A1’, then move ‘B’ out of

the way.

3. Push ‘A’ further.

4. Grasp ‘G’ and stop.

To produce such a plan, we need to drop the approach of being conservative.

Attempt 3: Do not always be conservative. For this approach we change our planner

slightly. Our planner will now accept an action if its probability to move an object out of

the NGR is larger than or equal to P , where P is a parameter of the planner. Then, during

execution the object will not move out of the NGR with probability 1.0− P , and we need

to use sensor feedback to check if this happens. If it does then we need to call the planner

again in the new scene. The planner can reuse cached information when the planner is

called again during execution. For the example in Fig. 7.1 this planner will first generate

the plan “Execute short push on ‘A’, then grasp ‘G”’. After the robot executes the short

push on ‘A’, it checks to see if it is still inside the NGR. If so, the planner is called again.

The planner reuses the plan to grasp ‘G’. It generates new actions to move object ‘B’ out

of the way, and push ‘A’ more to move it out of the NGR.

In future work, we hope to explore this approach to develop a rearrangement planning

framework which can effectively use feedback between actions.





Chapter 8

Conclusion

In this thesis we presented a series of planners and algorithms for manipulation in cluttered

human environments. We focused on using physics-based predictions, particularly for push-

ing operations, as an effective way to address the manipulation challenges posed by these

environments.

Our work in this thesis leads to the following lessons for us:

• Our work on push-grasping (Chapter 2), on grasping through clutter (Chapter 3),

and on rearrangement planning using non-prehensile actions (Chapter 4) show that

physical predictions has the potential to dramatically improve a robot’s manipulation

skills in cluttered and uncertain human environments.

In this thesis we have taken a relatively small step by exploring the potential of

pushing actions, but we hope we have convincingly made the point that robots needs

to move beyond pick-and-place for skillfull manipulation in human environments.

• We showed that even though accurate physical predictions are computationally ex-

pensive, precomputing primitive-based structures makes fast physics-based planning

possible. The capture region of a push-grasp is a good example of such structures.

We have however also pointed out the limitations of the precomputation approach,

especially when the desired interactions involve object-object contact.

• We showed that choosing the right physics model for a physics-based primitive and

analyzing it is important to minimize and identify the physical properties of objects

the robot needs to know.

In our work we used the quasi-static model, identified the object properties we need

to estimate, and developed planners which can deal with uncertainties in the values

of these object properties.
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• We showed that physics-based actions can reduce uncertainty (e.g. push-grasping), as

well as increase uncertainty (e.g. grasping through clutter).

We proposed conservative planning as a solution to uncertainty for open-loop actions.

We showed that this approach leads to robust and efficient planning. However, we also

showed that there are limitations to the conservative planning approach: if the un-

certainties become too large, the planners can get too constrained, failing to generate

solutions.

• We showed that manipulation in clutter requires reasoning about manipulation and

perception simultaneously.

In Chapter 5 we presented an algorithm to manipulate clutter for searching an object.

We showed that we can take advantage of the structure of everyday environments —

e.g. the visibility and accessibility relations between objects on different shelves of a

fridge — to produce fast but effective solutions to clutter manipulation problems.

• We proposed using sensor feedback during physics-based actions as a remedy to many

of the limitations of our approach.

One important feedback source is the contact between the robot and the object during

manipulation, and in Chapter 6 we presented preliminary results about a system which

can use contact feedback to estimate the pose of a pushed object.

We believe extending the skill set of robots with physics-based primitives will get them

one step closer to being a part of everyday life in human environments.
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Appendix A

Computing Conservative Capture

Regions

We compute the capture region for a push-grasp using a pushing simulation. This simulation

assumes that an object’s limit surface can be approximated with an ellipsoid in the force-

moment space as in Howe and Cutkosky (1996).

As described in Section 2.2.2 two parameters of this simulation affect the boundaries of

the computed capture region: the pressure distribution between the object and the support

surface, ρ; and the coefficient of friction between the robot finger and the object, µc. These

values are difficult to know and we assume that our robot does not know the exact values

for any object.

When we run our simulation we generate capture regions that are conservative with

respect to these parameters; i.e. capture regions that work for a range of reasonable values

of µc and ρ. For µc such a reasonable region is given by the values between a very small value

(a very slippery contact between the robot finger and the object), and a very high value

(a high friction contact). The pressure distribution ρ can take any rotationally symmetric

shape, but it is limited by the boundaries of the object making contact with the support

surface.

One way to achieve a conservative capture region is by discretizing the values a pa-

rameter can take, running the simulation for each of the values, and then intersecting the

resulting capture regions to find a capture region that works for all the values. But for

certain object shapes we can do better.

For a cylindrical object the conservative capture region can be found simply by running

the simulation for specific values of µc and ρ. For µc if we choose a very high value the

computed capture region will also be valid for any lower value. For ρ if we choose a pressure

distribution that is completely at the periphery of the cylinder (like a rim), the capture

region will be valid for any other rotationally symmetric pressure distribution that is closer
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Figure A.1: Some of the force and velocity vectors we will be using in our proof. In the
figure the finger is pushing the cylinder towards right.

to the center of the cylinder. This is equivalent to saying that, as µc gets smaller or as ρ

gets concentrated around the center, the required pushing distance for the push-grasp will

decrease. In this section we prove this claim.

In Fig. A.1 we present some of the force and velocity vectors that determine how a

cylinder moves under quasi-static pushing. The following notation will be used:

• n̂ is the unit normal at the contact between the finger and the object.

• fL and fR are the left and right edges of the friction cone. The friction cone is found

by drawing the vectors that make the angle α = arctanµc with n̂.

• f is the force applied to the object by the finger. The direction of f is bounded by the

friction cone.

• v and ω are the linear and angular velocities of the object at its center. v and ω

can be found by computing the force and moment at the center of the object due

to f , finding the corresponding point on the limit surface, and taking the normal to

the limit surface. Our ellipsoid approximation of the limit surface dictates that v ‖ f

(Howe and Cutkosky (1996)).

• mL and mR are the left and right edges of the motion cone. The edges of the motion

cone are found by:

– taking one of the edges of the friction cone, say the left edge;

– computing the force and moment it creates at the object center;

– using the limit surface to find the corresponding linear and angular velocity of

the object, in response to this force and moment;

– using the linear and angular velocity at the center of the object to find the

velocity at the contact point. This gives the left edge of the motion cone; the

right one is found by starting with the right edge of the friction cone.
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• v̂d is the unit vector pointing in the opposite direction of ω× r where r is the vector

from the center of the object to the contact; v̂d = (ω×r)
|ω×r| .

• vp is the velocity of the pusher/finger at the contact point. The voting theorem

(Mason (1986)) states that vp and the edges of the friction cone votes on the direction

the object will rotate. For a cylinder the friction cone edges always fall on different

sides of the center of the object, and vp alone dictates the rotation direction; vp.(ω×

r) > 0. In terms of v̂d this means vp.v̂d < 0.

• vc is the velocity of the object at the contact point; vc = v + ω × r.

• The grasp-line is the line at the fingertip orthogonal to the pushing direction. The

push-grasp continues until the object center passes the grasp-line.

During quasi-static pushing, the contact between the finger and the object can display

three different modes: separation, sticking, or sliding. The case of separation is trivial, in

which the finger moves away from the object resulting in no motion for the object. In the

case of sticking contact the contact point on the finger and the contact point on the object

moves together, i.e. vp = vc. This happens when f falls inside the friction cone, and

correspondingly when vc falls inside the motion cone. In sliding contact the object slides

on the finger as it is being pushed. In this case f aligns with the friction cone edge opposing

the direction the object is sliding on the finger. Similarly vc aligns with the motion cone

edge opposing the direction the object is sliding on the finger. vp is outside of the motion

cone.

What follows is a series of lemmas and their proofs; which we then use to prove our

main theorem.

Lemma A.0.1. During sticking and sliding contact v.n̂ = vp.n̂.

Proof. During sticking contact vp = vc, which implies

vp.n̂ = vc.n̂

We know that vc = v + ω × r. Then,

vp.n̂ = (v + ω × r).n̂

Since (ω × r).n̂ = 0,

vp.n̂ = v.n̂

During sliding contact, the relation between vc and vp is given by

vc = vp + vslide
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Figure A.2: The relation between v, vp, and vc during sliding contact.

where vslide is the velocity the object slides on the finger. Taking the projection of both

sides along the contact normal gives

vc.n̂ = (vp + vslide).n̂

Sliding can only happen along the contact tangent. For a cylindrical object, this means

vslide.n̂ = 0. Then,

vp.n̂ = vc.n̂

This is also illustrated in Fig. A.2. The rest of the proof proceeds the same as the sticking

contact case.

Lemma A.0.2. During sticking contact, as we change ρ such that it is concentrated closer

to the center of the cylinder, the magnitude of the angular velocity, |ω|, will get larger.

Proof. As ρ concentrates at the center, the limit surface ellipsoid gets a more flattened

shape at the top and bottom. This implies that for the same force and moment applied to

the object, the ratio |ω|/|v| will get larger (Howe and Cutkosky (1996)).

We can express |v| as,

|v| =
√

(v.v̂d)2 + (v.n̂)2

and using Lemma A.0.1,

|v| =
√

(v.v̂d)2 + (vp.n̂)2 (A.1)

During sticking contact vp = vc, hence

vp = v + (ω × r)

Since (ω × r) = −|ω||r|v̂d we have

vp = v − |ω||r|v̂d
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Rearranging and projecting both sides onto v̂d gives:

v.v̂d = vp.v̂d + |ω||r|

Inserting this into Eq. A.1,

|v| =
√

(vp.v̂d + |ω||r|)2 + (vp.n̂)2

Except |ω|, the terms on the right hand side are independent of ρ. Since vp.v̂d < 0, as |ω|

increases |v| decreases, and vice versa. Then the only way |ω|/|v| can increase is when |ω|

increases.

Lemma A.0.3. For a given configuration of the object and the finger, if we change the

pressure distribution ρ such that it is concentrated closer to the center of the object, the

change in v will have a non-negative projection on v̂d.

Proof. We will look at different contact modes separately. The separation mode is trivial.

The object will not move for both values of ρ. The change in v will have a null projection

on v̂d.

Assume that the contact mode is sliding. Then f will be aligned with one of the friction

cone edges; let’s assume fR without loss of generality. Since v ‖ f , then v is also a vector

with direction fR

v = |v|̂fR

where f̂R is the unit direction along fR. Inserting this into the result from Lemma A.0.1

we have

|v|̂fR.n̂ = vp.n̂

Then

|v| =
vp.n̂

f̂R.n̂

Multiplying both sides with f̂R we have

v =
vp.n̂

f̂R.n̂
f̂R

None of the terms get affected by a change in ρ, i.e. the change in v will have a null

projection on v̂d.

As ρ concentrates at the center, |ω|/|v| will get larger. The motion cone edges will then

get more and more aligned with the direction of ω × r, making the motion cone wider. At

the point when the motion cone edge reaches vp the contact is no more a sliding contact

but a sticking one.
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When the contact is sticking we have vp = vc = v + ω × r. Then

v = vp − (ω × r)

If we rewrite (ω × r) using the direction v̂d, we get

v = vp + |ω||r|v̂d

Except |ω|, the terms on the right hand side are independent of ρ. By Lemma A.0.2, we

know that as ρ concentrates around the center of the object, |ω| increases; i.e. the change

in v has a positive projection on v̂d.

Now we look at the effect of µc, the friction coefficient between the object and the finger.

Lemma A.0.4. For a given configuration of the object and the finger, if we decrease the

value of µc, the change in v will have a non-negative projection on v̂d.

Proof. Again we look at the two contact modes separately.

The sticking contact case is trivial. f is inside the friction cone. If we decrease µc,

the friction cone will get narrower, but as long as it does not get narrow enough to leave

f outside, the contact is still sticking. There is no effect to the velocities of the motion,

including v. The change in v has a null projection on v̂d.

If we continue to decrease µc at one point the contact will become sliding. f will be

at the edge of the friction cone and the friction cone will get narrower as we decrease µc.

Without loss of generality, let’s assume f is along fR. Since v ‖ f , v will also move with

fR. Pictorially v will change as in Fig. A.3, resulting in a change along v̂d. Formally, in

the proof of Lemma A.0.3 we showed that during sliding contact

v =
vp.n̂

f̂R.n̂
f̂R

By the definition of the friction cone we have

f̂R = cos (arctanµc)n̂− sin (arctanµc)v̂d

Replacing this into the equation above and noting that v̂d.n̂ = 0 we have

v =
vp.n̂

cos (arctanµc)
(cos (arctanµc)n̂− sin (arctanµc)v̂d)

Then we have

v = (vp.n̂)n̂− (vp.n̂)µcv̂d

Except µc itself, the terms on the right hand side are independent of µc. The contact mode

requires that vp.n̂ > 0. Hence, as µc decreases the change in v will be positive in the

direction of v̂d.
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Figure A.3: v changes along with the edge of the friction cone as µc is decreased.

Figure A.4: Independent of µc and ρ, the finger and the object goes through the same set
of relative configurations during the push-grasp.

Now we are ready to state and prove our main theorem.

Theorem A.0.1. For a cylindrical object under quasi-static pushing, where the quasi-static

motion is approximated by the ellipsoid limit surface (Howe and Cutkosky (1996)), as µc

gets smaller or as ρ gets concentrated around the center, the required pushing distance for

a push-grasp will decrease or stay the same (but not increase).

Proof. The push-grasp starts at a certain configuration between the finger and the object,

and continues until the object’s center passes the grasp-line at the fingertip and orthogonal

to the pushing direction (Fig. A.4). Since we assume that µc is uniform all around the

object, we can ignore the rotation of the cylinder and simply consider its position relative

to the finger. Then, independent of ρ or µc, the finger and the object will go through all the

configurations between rstart to rfinal during the push-grasp. We will show below that the

velocity the object center moves towards the grasp-line never decreases as µc gets smaller

or as ρ gets concentrated around the center.

For a given configuration of the object and the finger, the object center’s velocity is

given by v (ω does not have an effect). We can express v using its components

v = (v.n̂)n̂+ (v.v̂d)v̂d
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Lemma A.0.1 tells us that the component of v along n̂ is fixed for different ρ or µc:

v = (vp.n̂)n̂+ (v.v̂d)v̂d

Hence, the only change in the object center’s motion happens along v̂d. Lemma A.0.3 and A.0.4

states that the change in v will be non-negative along v̂d.



Appendix B

Optimality of the Connected

Components Algorithm for Object

Search

We present a partial proof of optimality for Alg. 3.

We state a property of the collective utility as a lemma.

Lemma B.0.5. Given an arrangement Ao,

U(Ao(1, |o|)) ≥ U(Ao(1, k))→ U(Ao(k + 1, |o|)) ≥ U(Ao(1, |o|))

In other words, if the utility of the complete arrangement is larger than the utility of the

first k objects, then the utility of the last |o| − k objects must be larger than the utility of

the complete arrangement.

Proof. We are given that

VAo(1,k) + VAo(k+1,|o|)

TAo(1,k) + TAo(k+1,|o|)
≥

VAo(1,k)

TAo(1,k)

Rearranging yields

VAo(k+1,|o|) · TAo(1,k) ≥ VAo(1,k) · TAo(k+1,|o|)

Adding VAo(k+1,|o|) · TAo(k+1,|o|) to both sides and rearranging, we get

VAo(k+1,|o|)

TAo(k+1,|o|)
≥

VAo(1,k) + VAo(k+1,|o|)

TAo(1,k) + TAo(k+1,|o|)
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FOR OBJECT SEARCH

Theorem B.0.2. Given an optimal arrangement of a scene A∗, for any two adjacent

sequence of objects in the arrangement A∗(i, j) and A∗(j + 1, k), where i ≤ j < k, if

there are neither accessibility constraints nor joint occlusions between the objects in the

two sequences (i.e. if the sequences are from different connected components), then the

utility of the former sequence is greater than or equal to the utility of the latter sequence:

U(A∗(i, j)) ≥ U(A∗(j + 1, k)).

Proof. The proof proceeds similar to the proof of Theorem 5.2.1. We create a new arrange-

ment A that is identical to A∗ except that the two adjacent sequences are swapped:

A(i, i+ k − j) = A∗(j + 1, k) and

A(i+ k − j + 1, k) = A∗(i, j). A must be a valid arrangement since we are given that no

object in A∗(i, j) is blocking access to A∗(j + 1, k). Then we can compute the difference

E (A)− E (A∗) to be:

j
∑

l=i

(

VA∗(l)

VOseen

· TA∗(j+1,k)

)

−
k

∑

l=j+1

(

VA∗(l)

VOseen

· TA∗(i,j)

)

Since A∗ is optimal, E(A) − E(A∗) ≥ 0. After canceling out the common terms and

rearranging, we are left with
j
∑

l=i

VA∗(l)

TA∗(i,j)
≥

k
∑

l=j+1

VA∗(l)

TA∗(j+1,k)

Simply, U(A∗(i, j)) ≥ U(A∗(j + 1, k)).

We state a lemma and leave its proof to future work.

Lemma B.0.6. The relative ordering of objects in the optimal arrangement of a connected

component will be preserved in the optimal ordering for the complete scene. Formally, if A∗
c

is the optimal arrangement for a connected component c, and A∗
o is the optimal arrangement

of o, such that c ⊆ o, then

i < j → A∗−1
o (A∗

c(i)) < A
∗−1
o (A∗

c(j))

where 1 ≤ i, j ≤ |c|, and A∗−1
o returns the index of an object in the arrangement A∗

o.

Finally we can prove that the connected components algorithm is optimal.

Theorem B.0.3. Let’s say we are given m connected components of a set of objects, o,

and we are also given an optimal arrangement for each connected component Aci for i =

1, . . . ,m. Let’s say we computed the utility of all sequences of objects in the form Aci(1, j)

for all i = 1, . . . ,m and j = 1, . . . , |ci|, and found Ac∗(1, j
∗) to have the maximum utility.

Then an optimal arrangement for o starts with Ac∗(1, j
∗).
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Proof. Assume that the optimal arrangement A∗
o does not start with Ac∗(1, j

∗). We will

prove that this is not possible.

Given an arrangement of o, we can view it as a series of partitions, where each partition

consists of a contiguous sequence of objects from the same connected component. Due

to Lemma B.0.6, each such partition in A∗
o can be represented as subsequences of the

connected component arrangements Aci . In particular, we are interested in two partitions

of the optimal arrangement of o:

A∗
o =

[

Ac′(1, j
′) . . .Ac∗(k, l) . . .

]

where c′ is one of the connected components, and 1 ≤ j′ ≤ |c′|. Ac∗(k, l) is the partition that

includes the object Ac∗(j
∗), hence k ≤ j∗ ≤ l. We know that Ac∗(1, j

∗) has the maximum

utility of all the sequences in the form Aci(1, j) where ci is any connected component and

j = 1, . . . , |ci|. Then,

U(Ac∗(1, j
∗)) > U(Ac∗(1, k − 1)) (B.1)

and also

U(Ac∗(1, j
∗)) > U(Ac′(1, j

′)) (B.2)

Using Lemma B.0.5 and Eq. (B.1), we get

U(Ac∗(k, j
∗)) > U(Ac∗(1, j

∗))

Then from Eq. (B.2),

U(Ac∗(k, j
∗)) > U(Ac′(1, j

′)) (B.3)

Considering the utilities of all the partitions in A∗
o up to Ac∗(k, l), we know that

they should be ordered in decreasing order of utility and be larger than Ac∗(k, j
∗) (Theo-

rem B.0.2):

U(Ac′(1, j
′)) > ... > U(Ac∗(k, j

∗))

which contradicts Eq. (B.3).
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