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Abstract

The connectivity of cortical neuronal networks is complex, exhibiting clustered network mo-

tifs and ensembles of neurons with high connection probability. However, the significance of

these connectivity properties for computation and dynamics in cortex is unclear. In this the-

sis, I present several studies concerning the behavior of model cortical neurons receiving input

from a surrounding network. I begin by studying pairs of neurons, investigating how overlap-

ping excitatory and inhibitory inputs control the statistics of their outputs. I then study fully

recurrent networks of neurons with nonuniform connection structures in the form of highly

connected neuronal assemblies. These assemblies represent functionally related subsets of neu-

rons, and I investigate their collective behavior in both spontaneously generated activity and

evoked conditions. I show that the presence of assembly structure in recurrently coupled, bal-

anced excitatory-inhibitory networks introduces slow timescales in the networks’ dynamics and

relate these modeling results to the experimental literature. Next, I present results on how these

assemblies form and are maintained with realistic models of synaptic plasticity. In total, these

results represent a step toward understanding how connectivity can be modified by sensory

experience, and how these changes in turn shape cortical dynamics.
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1. Introduction

The responses of cortical neurons to repeated stimulus presentations are irregular [1, 2], with

spikes occurring at different times on each trial. What are the sources of this variability? This

thesis focuses on network sources of collective fluctuations in neuronal activity, and in this

introductory chapter I will describe prior work on this topic. I begin by providing an overview on

the sources of neuronal variability, arguing that noise from bombardment by presynaptic action

potentials is a major contributor to the irregularity of neuronal responses. I then discuss various

network models of neuronal variability, culminating with the idea of the balanced network as a

starting point for examining noise in cortical networks.

1.1 Intrinsic versus synaptic sources of variability

Cortical neurons receive inputs from thousands of other neurons, but they also have complex in-

ternal dynamics. These internal dynamics include stochastically opening ion channels, multiple

ionic currents, and various molecular signaling cascades. Each of these processes is potentially

noisy and may contribute to irregularity in output spiking. It is therefore important to estimate

what proportion of spiking irregularity can be attributed to intrinsic versus network processes.

One source of noise is thermal noise, due to which the voltage across a resistor fluctuates, a

phenomenon known as Johnson noise. For a resistor of resistance R, the Johnson noise causes

fluctuations in voltage given by 〈V 2〉 = 4kBTRB, where kB is the Boltzmann constant, T is

temperature, and B is the bandwidth over which one measures the noise [3]. Manwani & Koch

[3] performed an analysis of the voltage fluctuations in a patch of membrane for a cortical

pyramidal neuron, finding that fluctuations due to Johnson noise are negligible compared to

those due to ionic or synaptic sources, so we focus on those other sources.

1



Chapter 1. Introduction

We next turn to the case of channel noise. Current flow across a neuron’s membrane is due

to charges flowing through permeable ion channels. These channels have some probability of

being open or closed that depends on variables such as membrane voltage or the presence of

bound ligands. In classic modeling work like that of Hodgkin & Huxley [4], the number of

channels was assumed to be large enough that finite size fluctuations could be neglected, but

in actual neurons the stochastic opening and closing of channels may contribute to response

variability.

To directly assess the effect of ion channel stochasticity on neuronal firing, it is possible to

study the responses of isolated neurons driven by current injections, which removes network

fluctuations and synaptic effects from the response. Instead, ionic currents due to action po-

tential generation will contribute to the majority of noise in spiking output. The spike trains

generated under these conditions can then be analyzed and statistics compared to those pro-

duced in vivo. A simple way to quantify the temporal irregularity of spike trains is the coefficient

of variation (CV) of the inter-spike interval (ISI) distribution (for a reference on the spike train

statistics most commonly used in this thesis, see Appendix A):

CVISI =

√
〈(ti+1 − ti)2〉 − 〈ti+1 − ti〉2

〈ti+1 − ti〉
(1.1)

where {ti} are the neuron’s spike times. For a Poisson process with constant rate, CVISI is 1.

Cortical responses to visual stimuli have CVISI values near 1, indicating irregular activity.

Another important view of variability is trial-to-trial variability, which focuses on the irreg-

ularity of responses to repeated stimulus presentations. A commonly used metric is the Fano

factor, which measures the ratio of variance to mean of the number of spikes NT
i emitted by

neuron i in an interval of time T aligned with respect to stimulus onset:

FF(i, T ) =
Var

(
NT
i

)
〈NT

i 〉
. (1.2)

For homogeneous Poisson processes, the Fano factor is 1. Observations from many cortical

regions have demonstrated Fano factors near or above 1 with repeated stimulus presentations

[1, 2].

2



1.2. Experimental observations of cortical spiking co-variability

Mainen & Sejnowski [5] studied isolated neurons in rat cortical slices driven by dc and fluc-

tuating current injection. They found that the first spike in response to dc inputs was tightly

locked (with a standard deviation of less than 1 ms across trials). Furthermore, CVISI was low

on each trial, reflecting the fact that neurons fired in a temporally regular manner. Trial-to-trial

spiking became less precise at later points in the trial, due to gradual desynchronization of the

responses. The authors concluded that dc pulses produce reliable firing rates and regular fir-

ing. Temporally varying input currents produced, in addition, precise trial-to-trial spike timing.

These results were reproduced in a Hodgkin-Huxley model with ion channels modeled stochas-

tically [6]. In total, the results argue that, while some trial-to-trial variability in response to

current injections, particularly dc inputs, may be attributed to non-network sources, isolated

neurons do not have temporal variability consistent with in vivo recordings, as measured by

CVISI [5, 7].

In addition to ion channel stochasticity, other sources of variability that are not due to net-

work effects, such as fluctuations in intracellular and extracellular ion concentrations or neuro-

modulators, or the action of ion pumps, may also contribute to response variability. However,

the above results argues that, even in the face of these local sources of noise, neurons are ca-

pable of producing regular responses on their own. Hence, it is necessary to examine the input

from the surrounding network to understand neuronal irregularity.

1.2 Experimental observations of cortical spiking co-variability

Before discussing network models of variability, we review further experimental observations

of spiking variability in cortex. In addition to the Fano factor, which depends on the spikes of

a single neuron, trial-to-trial variability can also be characterized for multiple neurons. At the

pairwise level, the correlation between the spike counts of neurons i and j can be quantified as:

Corrsignal(i, j, T ) =
∑

s∈Stimuli

∑
t∈Trials

Cov(NT
i (s, t), NT

j (s, t))√
Var(NT

i (s, t))Var(NT
i (s, t))

. (1.3)

The above quantity, known as signal correlation, measures the correlation between the responses

of two neurons to multiple stimulus presentations. However, some of this correlation may simply

be due to the fact that the neurons respond to the same stimuli, not that they are correlated

3



Chapter 1. Introduction

trial-to-trial because of common input, for example. To quantify this second type of correlation,

the noise correlation is defined as:

Corrnoise(i, j, s, T ) =
∑

t∈Trials

Cov(NT
i (s, t), NT

j (s, t))√
Var(NT

i (s, t))Var(NT
i (s, t))

. (1.4)

Note that noise correlation depends on s, the stimulus condition. More generally, noise corre-

lations can also be defined for spontaneous conditions, in which there is no stimulus and all

correlations are due to shared input or coupling.

Correlations have been measured in many cortical regions, with visual cortex being the

most studied. Most studies report noise correlations with a magnitude of approximately 0.1

on average [8], although some recent results argue that correlations are near zero [9]. These

discrepancies may be attributed to a variety of factors. One is firing rate, as higher firing rates

promote correlations by mitigating the decorrelating effect of the threshold nonlinearity [10].

Correlations also depend on the layer from which pairs are recorded [11]. Internal brain state

fluctuations (which can be modulated by alertness, anesthetics, or other variables) can influence

trial-to-trial covariability, as may methodological differences in correlation measurement such

as spike sorting or choice of counting window, which increases correlation with T [8].

Recently, modulation of trial-to-trial variability with stimulus condition has attracted inter-

est. Stimulus conditions [12, 13], adaptation [14], and attentional state [15, 16], all influence

noise correlations. The effects of attention have been of particular interest, with results show-

ing both reduced Fano factor and correlations in attended compared to unattended conditions

[15, 16]. Evoked activity also exhibits a reduction in Fano factor and noise correlation compared

to spontaneous activity in many cortical regions [17], a topic that has generated theoretical in-

terest and will be discussed in later chapters.

1.3 Rate and spiking descriptions of neuronal variability

Several theories of the network source of fluctuations in neuronal activity have been proposed,

with different levels of detail in their description. Early models considered only the firing rates

of units in the network, making interpretations in terms of CVISI, for example, difficult. Later

models examined full spiking networks.
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Figure 1.1: Simulations of equation (1.5) for (a) N = 800 and g = 0.9 and (b) g = 1.5 . The
trajectories of 5 units are shown. For g < 1, the system has a globally stable fixed point at the
origin. For g > 1, trajectories exhibit chaos. (c) Normalized autocovariance function for units

in a network with g = 5 and N = 200.

1.3.1 Chaotic firing rate networks

An early and influential model of neuronal activity fluctuations was proposed by Sompolinsky

et al. [18]. In this model, the variables of interest are the activations of N rate-like units, each

of whose activity is given by si. Each unit linearly sums its inputs according to some weight

matrix Jij and produces an output according to a sigmoidal nonlinearity along with an intrinsic

decay, leading to the system of ordinary differential equations:

dsi(t)

dt
= −si(t) + tanh

 N∑
j=1

Jijsj(t)

 . (1.5)

Each entry of matrix Jij is Gaussian distributed with a mean of 0 and a variance of g2/N .

The model thus features two common features of biological neuronal networks: nonlinearity in

activation and disorder in connections.

Sompolinsky et al. [18] developed a dynamic mean field theory for (1.5), leading to an

elegant calculation of the ensemble-averaged temporal autocorrelation of the activity 〈s(t)s(t+

τ)〉. This calculation led to a surprising result about the dependence of the activity on the weight

matrix in the large system-size limit. When g < 1, the system has only one stable fixed point

at the origin, and all trajectories eventually lead to it (Figure 1.1a). Above g = 1, however, the

system exhibits extensive chaos, leading to irregular trajectories (Figure 1.1b). In the chaotic

regime, trajectories have an autocorrelation time longer than that of an individual unit (Figure

1.1c).
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This model has proven highly influential, both as a model of irregularity in neuronal net-

works and as a framework in which to study reservoir computing [19, 20]. However, it models

neural activity only at the level of firing rates, not at the level of spiking. Whether or not it is a

good model for spiking networks is unresolved.

1.3.2 How can threshold neurons generate irregular spikes?

We next turn to spiking neuron, which have two essential ingredients: a threshold in voltage

above which spikes are likely to occur and temporal integration of inputs over a timescale spec-

ified by neuronal properties. With simplifying assumptions, the problem of understanding vari-

ability in spike output can be reduced to understanding the first passage time problem presented

by the voltage integrating to threshold.

The simplest model of a neuron with a spiking threshold and an integration time constant τ

is the leaky integrate-and-fire model, whose voltage obeys:

dV

dt
= −V/τ + I(t). (1.6)

When V reaches 1, its threshold, the neuron emits a spike and V is instantaneously reset to 0.

For this simple example, we neglect refractory effects. The input current I(t) is given by the

sum of the synaptic currents due to the firing of neurons presynaptic to the integrate-and-fire

neuron. We take I(t) to be a sum of instantaneous currents, so that:

I(t) =
∑
k

Jδ(t− tEk ) +
∑
k

Jδ(t− tIk), (1.7)

where δ is the Dirac delta function. In this simplified model, V is increased (decreased) by

an amount J , whenever a presynaptic excitatory (inhibitory) input arrives. The times of these

arrivals are given by {tEk } for excitation and {tIk} for inhibition. We assume the arrival times are

given by Poisson processes with rates rE for excitation and rI for inhibition.

Softky & Koch [21] argued that integration of small excitatory postsynaptic potentials (EP-

SPs) without inhibition could not produce highly irregular output firing rates. First consider the

limit of τ → ∞, corresponding to a perfect integrator. In this case, it takes N = 1/J synaptic

inputs to produce an output. Assuming these inputs come from a Poisson process with rate

6



1.3. Rate and spiking descriptions of neuronal variability

rE , the expected time between spikes is given by 〈ISI〉 = N
rE

. Furthermore, the ISI variance is

Var(ISI) = N
(rE)2

, where we have used the fact that the time between synaptic inputs is given by

an i.i.d. exponential random variable with variance 1
(rE)2

. Consequently, we find CVISI = 1/
√
N ,

so that if many Poisson inputs are integrated to produce a spike, CVISI is low.

There are several possible solutions to this problem, and we outline the discussion presented

by Shadlen & Newsome [22]. First, neurons are not perfect integrators, meaning that the

argument above is valid only in the limit of high firing rates, when the membrane time constant

can be neglected. We simulated a more realistic situation in which J = 0.05 and τ = 10 ms

(Figure 1.2a). For an output firing rate of 20 Hz, CVISI = 0.61, which is still substantially lower

than cortical neurons.

Two possible solutions are immediately apparent: J can be increased or τ can be decreased.

For J = 0.5, CVISI = 0.88 at a firing rate of 20 Hz (Figure 1.2b). However, it is unlikely

that on average only two inputs are needed to make a neuron spike. The fact that neurons

make hundreds or thousands of contacts with presynaptic neurons, and the fact that those

neurons exhibit spontaneous activity, would suggest that such high values of J would lead to

unrealistically high firing rates.

If the time constant τ is decreased to 2 ms, the neuron becomes a coincidence detector, and

CVISI = 0.89 at a firing rate of 20 Hz (Figure 1.2c). However, this time constant is substantially

lower than estimates for cortical neurons even in high conductance states [23].

If we are forced to use realistic J and τ , how can integrate-and-fire neurons produce irreg-

ular spiking? Shadlen & Newsome [22] suggested that the solution is integration of inhibition.

If neurons receive both positive and negative inputs of approximately equal magnitude, their

voltages will exhibit dynamics similar to a random walk, so that the crossing times at the thresh-

old will be highly variable. Indeed, for the neuron model above, excitation and inhibition of

approximately equal magnitude lead to CVISI = 0.95 with realistic J and τ (Figure 1.2d).

The above results suggest balanced excitation and inhibition as a candidate mechanism for

irregular cortical firing. However, how such a precise balance can be maintained is unclear. In

later work, van Vreeswijk & Sompolinsky [24, 25] described how this balance occurs generically

in large recurrent networks.
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Figure 1.2: Simulations of leaky integrate-and-fire neuron defined by equation (1.6). In each
case, the firing rate was approximately 20 Hz. Vertical bars above the voltage traces correspond

to action potentials.
(a) τ = 10 ms, J = 0.05, rE = 1.7 kHz, rI = 0 kHz. CVISI was 0.61.
(b) τ = 10 ms, J = 0.5, rE = 0.1 kHz, rI = 0 kHz. CVISI was 0.88.
(c) τ = 2 ms, J = 0.05, rE = 6.75 kHz, rI = 0 kHz. CVISI was 0.89.

(d) τ = 10 ms, J = 0.05, rE = 10.5 kHz, rI = 10 kHz. CVISI was 0.95.
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1.4. Balanced spiking networks

1.4 Balanced spiking networks

1.4.1 Derivation of the balance conditions

The balanced network of van Vreeswijk & Sompolinsky [24, 25] describes irregularity in net-

works of randomly coupled excitatory and inhibitory neurons. In the simplest formulation of

the model, neuron i is described by the binary variable si, which is a simple threshold function

of its inputs:

si(t) = H

(
µ+

N∑
i=1

Jijsj(t)− θ

)
, (1.8)

where H(·) is the Heaviside step function, µ is a constant bias to each neuron, and θ is the

threshold. Neurons are partitioned into excitatory and inhibitory subpopulations, which we will

denote by superscript E and I, respectively. Each neuron receives input from K excitatory and

K inhibitory neurons.

A central aspect of balanced networks is the scaling of the strength of synaptic weights with

the number of connections, K (if K ∝ N , as is the case in studies of dense local networks,

this is the same as the scaling with N). In studies of large networks, it is often assumed that

connection strengths scale inversely with K, that is, J ∝ 1/K. This ensures that the mean of

the presynaptic input from population Y to population X, IXY ∝ KJ , remains order 1 as K

approaches infinity. However, this necessarily implies, if each presynaptic input is uncorrelated,

that Var(IXY ) ∝ K(1/K)2 = 1/K. Consequently, the variance of the input approaches zero for

large K, and neurons fail to exhibit fluctuations.

In balanced networks, this is solved by assuming that the strength of synaptic weights from

population Y to population X are given by JXY = J̄XY /
√
K, where X,Y ∈ {E, I} and J̄XY =

O(1) is a constant. In this case, the variance issue is solved, as Var(IXY ) ∝ K(1/
√
K)2 = O(1).

A new apparent problem is introduced, however, since 〈IXY 〉 ∝ K(1/
√
K) =

√
K. In other

words, the synaptic input from one population to another diverges with K. This problem is

solved by assuming that the synaptic inputs from different populations (plus the mean neu-

ronal bias µ) exactly cancel. We write the mean input to neurons in excitatory and inhibitory
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Chapter 1. Introduction

subpopulations as:

〈IE〉 =µE +KJEE〈sE〉 −KJEI〈sI〉 =
√
K
(
µ̄E + J̄EE〈sE〉 − J̄EI〈sI〉

)
(1.9)

〈II〉 =µI +KJIE〈sE〉 −KJII〈sI〉 =
√
K
(
µ̄I + J̄IE〈sE〉 − J̄II〈sI〉

)
, (1.10)

where we have assumed that µ also scales as
√
K and have thus defined µ̄ = µ/

√
K. In order

for these equations to have a solution that is stable as K grows, we must have:

0 =µ̄E + J̄EE〈sE〉 − J̄EI〈sI〉 (1.11)

0 =µ̄I + J̄IE〈sE〉 − J̄II〈sI〉. (1.12)

This immediately leads to a solution for 〈sE〉 and 〈sI〉, without any assumption about their

dynamics. Without loss of generality, we consider the case of JEE = JIE = 1, which can be

obtained by rescaling the thresholds and other weights. This leads to the following solution:

〈sE〉 =
J̄II µ̄E − J̄EI µ̄I

J̄EI − J̄II
(1.13)

〈sI〉 =
µ̄E − µ̄I

J̄EI − J̄II
. (1.14)

For 〈sE〉 and 〈sI〉 to be positive, we need one of the following to be true:

J̄EI > J̄II ,
µ̄E

µ̄I
>
J̄EI

J̄II
(1.15)

J̄EI < J̄II ,
µ̄E

µ̄I
<
J̄EI

J̄II
. (1.16)

The second solution can be rejected because it allows for an imbalanced solution in which

〈IE〉 → −∞ implying 〈sE〉 = 0. To see this, suppose 〈sE〉 = 0. Then by forcing equation

(1.12) to be O(1), we find 〈sI〉 = µ̄I

J̄II . Indeed, in this case, 〈IE〉 =
√
K
(
µ̄E − J̄EI µ̄

I

J̄II

)
→ −∞

by the assumptions of equation (1.16). We therefore obtain equation (1.15) as the unique

requirement for balanced activity. As long as these conditions are satisfied, a balanced solution

will exist [25].
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1.4. Balanced spiking networks

1.4.2 Dynamics in the balanced state

When equation (1.15) is satisfied, balanced networks produce irregularity in the spike times of

each neuron (Figure 1.3a). This is reflected in CVISI (spikes here are defined as transitions from

si = 0 to 1), which is 0.83 on average for the network of Figure 1.3. The excitatory and in-

hibitory components of the input current to any neuron are equal in magnitude, so the summed

current is near zero and crosses threshold only occasionally (Figure 1.3b). This mechanism is

identical to that of Figure 1.2d, but the network dynamics ensure that parameters do not need

to be fine tuned for the currents to exhibit balance.

Another feature of the balanced state is a fast response to inputs. This can be understood

by examining the dynamics of the mean rates of the two subpopulations in the mean field limit

[25, 26]:

ṁX(t) = −mX(t) + 〈H(IX(t)− θ)〉, (1.17)

where mX(t) is the time-dependent firing rate of population X and 〈H(IX − θ)〉 represents an

average over the distribution of input currents to neurons in the population. Assuming that the

input current is Gaussian distributed, the second term can be expressed using a complementary

error function:

〈H(IX − θ)〉 = erfc

(√
K
(
J̄XEmE(t) + J̄XImI(t)

)
(J̄XE)2mE(t) + (J̄XI)2mI(t)

)
. (1.18)

It is clear that derivatives of equation (1.17) with respect to mX(t) will be proportial to
√
K

because of the numerator of equation (1.18). In other words, perturbations recruit feedback

of order
√
K. As a result, the magnitudes of the eigenvalues increase with K. Thus, for large

systems, the system responds very quickly to input perturbations.

These fast dynamics are evident in the autocorrelation times of individual units (Figure

1.3c). Neurons in balanced networks behave like Poisson processes, which are memoryless.

This can be contrasted with chaotic rate networks (Figure 1.1c), whose trajectories have au-

tocorrelations longer than that of an individual unit. This distinction will be returned to in

Chapter 3.
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Figure 1.3: (a) Spike raster for a network with N = 2000 and K = 500. 250 excitatory and
250 inhibitory neurons are shown. (b) Input currents to one neuron in the network, compared
to the threshold at θ = 1 (dashed line). (c) Normalized autocovariance function for excitatory
neurons in the network (compare with Figure 1.1c). Other parameters are θ = 1, µ̄E = 0.15,

µ̄I = 0.1, J̄EE = J̄IE = J̄II = 1, J̄EI = 1.3.

1.4.3 Asynchrony in densely connected balanced networks

A puzzling feature of Figure 1.3 is the lack of synchrony in the population. In fact, the dis-

tribution of correlation coefficients between si and sj for 5000 randomly sampled excitatory

neuron pairs in the network is centered at zero (0.0002±0.04). An assumption of independence

was necessary to obtain expressions for the variance of the input currents and to evaluate the

dynamics of mX(t) in the mean field limit (equation (1.17)). But this assumption seems poorly

motivated in the network of Figure 1.3, since, on average, neuron pairs shared 25% of their

inputs. In van Vreeswijk & Sompolinsky [25], it was assumed that K � N so that this over-

lap was negligible, thus guaranteeing independence of input currents. Why does the network

continue to produce asynchronous activity even with high levels of presynaptic overlap?

This mystery was addressed by Renart et al. [27], who showed that balanced networks

produce asynchronous activity even when they are densely connected. They demonstrated

that, while neurons indeed receive correlated input currents due to shared presynaptic sources,

shared excitatory and inhibitory fluctuations cancel. This can be seen by calculating sep-

arately the correlation of the excitatory and inhibitory input currents (which we define as

IXEi =
∑

j J
XE
ij sEj and IXIi =

∑
j J

XI
ij sIj , so that IX = µX + IXE + IXI), and comparing

to the summed input current correlation. We have that:

Corr(IXi , I
X
j ) = Corr(IXEi , IXEj ) + Corr(IXIi , IXIj ) + 2Corr(IXEi , IXIj ). (1.19)
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The last term in this expression will be negative if the two currents are anticorrelated, thus

canceling the correlating influence of common excitatory or inhibitory currents.

Examining the excitatory subpopulation of the network of Figure 1.3, Corr(IEEi , IEEj ) was

0.56 ± 0.03, while Corr(IEIi , IEIj ) was 0.43 ± 0.04. Thus, the components of the input current

to neuron pairs were highly correlated. But Corr(IEi , I
E
j ) was 0.10± 0.05, far lower than either

of the two components that formed it (additional decorrelation due to spiking nonlinearities

accounts for the difference between this correlation and Corr(sEi , s
E
j ) [10]). This was because

Corr(IEEi , IEIj ) was negative, −0.44± 0.03.

Renart et al. [27] showed that this dynamic cancellation of current fluctuations is a conse-

quence of the balanced state, and that correlations decrease with N . We will give a brief sketch

of this result that demonstrates why a cancellation of correlations leads to a self-consistent

solution. This derivation does not show that this solution is stable, only that it is possible.

We will start with the expression 〈IXi sZk 〉, the temporal correlation between the input current

to neuron i in populationX, and the activity of neuron k in population Z (we will abuse notation

and assume that averages written as 〈a1a2〉 correspond to the covariance of a1 and a2; that is,

the random variables are mean-subtracted). We can then write:

〈IXi sZk 〉 =
∑
j,Y

JXYij 〈sYj sZk 〉

= JXZik 〈sZk sZk 〉+
∑

(j,E)6=(k,Z)

JXEij 〈sEj sZk 〉+
∑

(j,I)6=(k,Z)

JXIij 〈sIjsZk 〉. (1.20)

The first term on the last line of the above equation represents the influence of a direct con-

nection from neuron k in population Z to the postsynaptic neuron. The next terms represents

the fact that, if sYj and sZk are correlated, then connections from the former to the postsynaptic

neuron induce correlations between the postsynaptic neuron and sZk .

We next derive a self-consistency condition for equation (1.20). We assume that activity-

activity correlations are linearly related to current-activity correlations:

〈sXi sZk 〉 ≈ A〈IXi sZk 〉, (1.21)
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for some constant A. This is a linear response assumption, similar to the one we will use in

Chapter 2. This allows us to write:

〈sXi sZk 〉 ∝ JXZik 〈sZk sZk 〉+
∑

(j,E)6=(k,Z)

JXEij 〈sEj sZk 〉+
∑

(j,I)6=(k,Z)

JXIij 〈sIjsZk 〉. (1.22)

Now, we show that a self-consistent asynchronous state requires cancellation of correlations. In

an asynchronous state, we require that 〈sXi sYj 〉 = O(1/N). If this were not the case, then the

variance of the input current to a neuron would be dominated by covariances:

〈IXi IXi 〉 =
∑
j,Y

(JXYij )2〈sYj sYj 〉+
∑

j,k,X,Y

JXYij JXZik 〈sYj sZk 〉. (1.23)

The first term is O(1), and the second term is O(1) if 〈sXi sYj 〉 = O(1/N).

Hence, assuming asynchrony and using the linear response assumption (1.21), the l.h.s. of

equation (1.20) is O(1/N). The first term on the r.h.s. is O(1/
√
N), since J = O(1/

√
N) and

〈sZk sZk 〉 = O(1). The other terms are a sum of N terms, each of which contains J = O(1/
√
N)

and 〈sIjsZk 〉 = O(1/N). Hence, these terms are also O(1/
√
N). In other words, the l.h.s. of the

equation is O(1/N) while the r.h.s. is O(1/
√
N), unless individual terms on the r.h.s. cancel.

This is the conclusion of Renart et al. [27], and demonstrates that a self-consistent solution can

occur if the appropriate terms cancel.

1.4.4 Experimental evidence for the balanced state

Several studies have tested predictions of balanced network models, indicating that many cor-

tical networks are in fact balanced. In vitro intracellular recordings of ferret prefrontal and

occipital cortices found that neurons underwent transitions between periods of activity and

quiescence (termed “UP” and “DOWN” states, respectively) [28]. During UP states, recurrent

activity is generated by balanced barrages of EPSPs and IPSPs. This result was subsequently

verified in anesthetized, in vivo conditions [29].

Tests of the stronger hypothesis that excitatory and inhibitory inputs balance not only in

magnitude but are also temporally anticorrelated [27] have also been made. Indirectly, the

lack of very synchronous activity in nearby cortical neurons that likely share many connections

has been taken as evidence for the decorrelating effect of balanced inputs [9]. However, the
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extent of this decorrelation is a subject of debate [8]. More direct evidence comes from intra-

cellular measurements that indicate excitatory and inhibitory currents are indeed temporally

anticorrelated [30].

In summary, balanced activity has been observed in many cortical regions, and much work

on the statistics of cortical responses is influenced by the idea of co-varying excitatory and

inhibitory currents [31, 32, 33]. Nonetheless, there is debate over its computational role [34].

Theoretical approaches are necessary to understand what types of computations such networks

can support.

1.5 Outline of this thesis

In this thesis, I will present the results of several studies, some of which have been published.

All of the results presented will involve the study of trial-to-trial variability in spiking neurons

that receive balanced input. In Chapter 2, I study neuron pairs in isolation and assume that they

receive balanced input from external sources. I then investigate how the statistics of the spike

trains they produce depend on the input they receive. This work has been published previously

[35] and involved a collaboration between myself, my advisor Dr. Brent Doiron, Dr. Anne-Marie

Oswald, and Dr. Nathan Urban. In Chapter 3, I consider a fully recurrent network of spiking

neurons in the balanced state, and investigate how its dynamics depend on the structure of its

connections. Unlike Chapter 3, I therefore no longer need to assume any form for the statistics

of a particular neuron’s input. This work has also been published previously [36] and was done

in collaboration with my advisor. In Chapter 4, I present results on balanced networks with

plasticity and the emergence of the network structures that were assumed in Chapter 3. This

work was done in collaboration with my advisor. Finally, in Chapter 5, I present a simplified

model of interacting neuronal populations that qualitatively reproduces many of the features

of the spiking networks studied in the previous chapters. This work was done in collaboration

with an undergraduate student, Aubrey Thompson, and my advisor.
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2. Balanced synaptic input shapes the correlation

between neural spike trains

2.1 Abstract

Stimulus properties, attention, and behavioral context influence correlations between the spike

times produced by a pair of neurons. However, the biophysical mechanisms that modulate these

correlations are poorly understood. With a combined theoretical and experimental approach,

we show that the rate of balanced excitatory and inhibitory synaptic input modulates the mag-

nitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote

spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic

inputs produce opposite results. This correlation shaping is due to a combination of enhanced

high frequency input transfer and reduced firing rate gain in the high input rate state compared

to the low state. Our study extends neural modulation from single neuron responses to pop-

ulation activity, a necessary step in understanding how the dynamics and processing of neural

activity change across distinct brain states.

2.2 Introduction

Correlations between the spike trains of neuron pairs are observed throughout the central ner-

vous system [8]. The correlation between a pair of neurons’ spike trains can change depending

on the state of their neural circuit. For instance, correlated neural activity is altered by stimulus

properties [12, 37], anesthetics [38, 39], stimulus adaptation [14], focus of spatial attention

[15, 16], and the behavioral context of a task [40]. The level of spike train correlation be-

tween neuron pairs has implications for the accuracy of population codes [41], the formation
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of neural assemblies [42], and the propagation of neural activity [43, 44]. Nonetheless, only

recently has attention been given to the mechanisms by which correlated activity is modulated

[45, 46, 47, 10, 48, 49, 50].

Cortical neurons receive a mixture of excitatory and inhibitory synaptic inputs, resulting in

spiking activity that is driven by input fluctuations rather than the input mean [51, 23]. This

state is often described as balanced, to denote that the mean excitatory and inhibitory inputs

that neurons receive are approximately equal [22, 24]. Balanced activity is influenced by stim-

ulus properties and history [32, 51], as well as internal brain state [28]. These changes can

modulate the integration properties of single neurons, strongly influencing neuronal activity

[23]. For example, increases in the firing rate of balanced pre-synaptic activity afferent to a

neuron can reduce single neuron firing rate gain [52, 53, 54, 55, 56, 57]. Further, an increase

in the temporal correlation between the arrival times of excitatory pre-synaptic inputs increases

the firing rate of a post-synaptic target neuron [58, 59, 60], while correlations between excita-

tory and inhibitory inputs can reduce output activity [59, 61]. The impact of such shifts in the

temporal structure of synaptic input is amplified when the post-synaptic cell has a small inte-

gration timescale, as expected for neurons in the high input rate, balanced state [23]. These

examples deal with synaptic activity convergent to a single target cell. However, what is less

studied is the role that the balanced state plays in modulating the responses of a pair of neurons

subject to a common synaptic input. In this study, we consider this latter scenario and show

that shifts in balanced pre-synaptic population activity modulate the magnitude and timescale

of the correlations of spike trains from pairs of post-synaptic neurons.

We first explore a model system and show that output spike train correlations from a pair

of neurons are modulated by varying the rate of fluctuating, balanced excitatory and inhibitory

inputs. Specifically, we demonstrate that an increased synaptic input rate leads to an increase

of short-timescale output correlation (i.e. precise spike synchrony) while correlation at long

timescales (i.e firing rate co-variation) remains unaffected, or even decreases. Due to the differ-

ential effects of our mechanism on short and long timescale spiking activity we label the com-

bined modulation correlation shaping. Correlation shaping has been observed in various sensory

systems [12, 37, 13, 62], yet the core mechanisms underlying the modulation remain unknown.

We present linear response analysis showing that the enhancement of output synchrony through

an increase of input rate results from a shift in single neuron integration properties that favors
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the transfer of high frequency inputs. Dynamic clamp recordings from cortical neurons verify

our theoretical predictions. Finally, in a feedforward network model, we show how correlation

shaping supports a selective propagation of network responses, so that activity can be gated

by correlations in complex neuronal networks. In total, our work extends mechanisms of sin-

gle neuron firing rate control include the control of pairwise correlations, thereby providing a

bridge between single neuron and network state modulation.

2.3 Methods

2.3.1 Conductance-based neuron model

We modeled neurons as leaky integrate-and-fire units receiving conductance input [63]. Each

neuron had an intrinsic timescale τ = 20 ms and leak reversal potential EL = −65 mV. Exci-

tatory and inhibitory synaptic input caused conductance changes ge(t) and gi(t) with reversal

potentials Ee = 0 mV and Ei = −75 mV so that the membrane potential dynamics followed:

dV

dt
=

1

τ
(EL − V ) +

ge(t)

C
(Ee − V ) +

gi(t)

C
(Ei − V ).

When V reached a threshold voltage Vth = −55 mV, the neuron spiked and the voltage was

reset to Vre = −65 mV.

We modeled the excitatory and inhibitory synaptic conductances as Poisson processes with

rates Re and Ri consisting of series of δ-functions with heights ae = .01 and ai = .02. This

framework was used for all of the simulations presented and provides a minimal model that

captures our main results (for simulations of other models, see Figures 2.8, 2.10, and 2.12).

These inputs consisted of independent processes private to each neuron as well as a shared

component presynaptic to all neurons, yielding Re/i = cRse/i + (1− c)Rie/i where superscripts i

and s denote independent and shared components, respectively. For large rates, this input was

approximated as a diffusion process [63, 64, 65, 66] (Figure 2.8):

ae/i(Ee/i − V )
∑
n

δ(t− tne/i) ≈ ae/i(Ee/i − V )
(
Re/i +

√
Re/iξe/i(t)

)
,
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Chapter 2. Shaping correlations with balanced input

where ξe/i(t) =
√

1− cξie/i(t) +
√
cξse/i(t) was a Gaussian white noise process with unit intensity.

This allowed us to write our voltage equation in the form

dV

dt
=

1

τeff
(Eeff − V ) + σ(V )ξ(t), (2.1)

where τeff ≡ τ
1+τaeRe+τaiRi

, Eeff ≡ EL+τReaeEe+τRiaiEi
1+τReae+τRiai

, and σ2(V ) = a2
eRe(Ee − V )2 +

a2
iRi(Ei − V )2. Note that as the rates of excitation and inhibition Re and Ri increase in a

balanced manner, τeff decreases, σ increases, and Eeff does not change substantially because

of the excitation and inhibition balance.

For our simulations and calculations, we set σ(V ) = σ(Eeff ). This approximation ignored

the multiplicative nature of the noise, which in our simulations did not substantially change the

results (Figure 2.8), since the change in τeff and σ(Eeff ) were sufficient to modulate neuronal

responses. To simulate pairs of neurons receiving correlated input, we set the fluctuating input

to each neuron to be

σ(V )ξ(t) = σ(Eeff )(
√
cξs(t) +

√
1− cξi(t)), (2.2)

where ξs(t) was shared across both neurons while ξi(t) was independent for each neuron. We

note that, although the correlation in output spike trains depended on the degree of pre-synaptic

overlap, equation (2.2) shows that σ(Eeff ), and hence the firing rate of neurons in our model,

was independent of c. The rate of excitatory input in the low state was 1.50 kHz and 6.16 kHz

in the high state, with the inhibitory rate chosen to elicit a firing rate of 15 Hz in both cases.

Simulations were performed using an Euler-Maruyama numerical integration scheme with a

simulation timestep of 0.005 ms.

2.3.2 Solving for transfer function and power spectrum with Fokker-Planck tech-

niques

We next developed a theoretical framework to study the behavior of the above system and

compared our theory against simulations of the stochastic system. For completeness, we write

the governing equations used to calculate the single neuron power spectrum Ĉii(f) and transfer

function Â(f); these techniques are fully presented in [66] and we refer the reader there for

further details. Letting h(V ) = 1
τeff

(Eeff − V ), the voltage distribution P (V, t) associated with
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the stochastic differential equation (2.1) obeys the Fokker-Planck equation:

∂P

∂t
= − ∂J

∂V
= − ∂

∂V
[h(V )P ] +

1

2

∂

∂V

(
σ2 ∂P

∂V

)
,

where J(V, t) is the probability flux [67]. The boundary conditions for the probability distri-

bution and flux at threshold are P (Vth) = 0 and J(Vth, t) = ν(t), where ν(t) is the firing rate.

Furthermore, the flux obeys J(V, t) = ν(t) for V ∈ [Vre, Vth] and is 0 otherwise.

For time independent Eeff and σ the steady state distribution P0(V ) :

∂P0

∂V
= − 2

σ2
[J0 − h(V )P0] ,

∂J0

∂V
= ν0δ(V − Vre)− ν0δ(V − Vth).

Using the normalization condition
∫ V th
−∞ P0(V )dV = 1, we can solve for the steady state firing

rate ν0.

In order to study the system’s response to a correlated, fluctuating input, it is necessary to

study the system’s response to time-dependent inputs. This is done most effectively by writing

a time-dependent Fokker-Planck equation in the Fourier domain:

∂P̂

∂V
= − 2

σ2

[
Ĵ − h(V )P̂

]
,

∂Ĵ

∂V
= −2πifP̂ − ν̂(f)δ(V − Vth) + e−2πifδ(V − Vre),

where X̂ denotes the Fourier transform of X with respect to t and ν̂(f) is computed with initial

condition V = Vre. Solving this equation yields the Fourier transform of the first passage time

density ĥ(f) [66]. The power spectrum Ĉii(f) = ν0 (1 + 2<[ĝ(f)]), where ĝ(f) is calculated

from the well known renewal relation ĝ(f) = ĥ(f)/(1− ĥ(f)) [68].

Finally, we compute the transfer function Â(f). Suppose that we add a time-varying periodic

current I(t) = I0e
2πift to the right hand side of equation (2.1). If we let I0 be sufficiently small,

we can compute the spike train response to these time-dependent modulations. Decomposing

the probability density, flux, and firing rate into steady state and modulated components:

P = P0 + PIe
2πit, J = J0 + JIe

2πift, r = r0 +Ae2πift,
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and then solving the Fokker-Planck equation for the time-dependent terms, we obtain a new set

of equations:

−∂P̂I
∂V

=
2

σ2(V )

[
ĴI + h(V ) + I0P0

]
,

−∂ĴI
∂V

= iωP̂I − r̂Qe−iωδ(V − Vre),

with boundary conditions

P̂I(Vth) = 0, ĴI(Vth) = Â.

These equations were solved numerically [66] obtaining a solution for the transfer function

Â(f).

2.3.3 Experimental techniques

Surgery: Somatosensory (S1) cortical slices were prepared from CBJ/Bl6 mice age P19-26. All

surgical procedures followed the guidelines approved by the Carnegie Mellon Animal Welfare

Committee. The mice were anesthetized with isoflourane and decapitated. The brain was

exposed, removed from the skull and immersed, in ice cold oxygenated (95%O2−5%CO2) ACSF

(in mM: 125 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 1.0 MgCl2, 25 Dextrose, 2 CaCl2) (all

chemicals from Sigma, USA). Coronal slices (300 µm) of barrel cortex made using a vibratome

(Leica, Place). The slices were maintained in ACSF at 37◦C for 30 min then rested at room

temperature (20− 22◦C) for 1 hr prior to recording (31− 35◦C).

Electrophysiology: L2/3 pyramidal neurons were visualized using infrared-differential inter-

ference contrast microscopy (Olympus, Center Valley, PA). Whole cell, dynamic clamp record-

ings were performed using a MultiClamp 700B amplifier (Molecular Devices, Union City, CA).

Data were low pass filtered (4 kHz) and digitized at 50 kHz using an ITC-18 (Instrutech, Mine-

ola, NY) controlled by custom dynamic clamp software (R. Gerkin; http://rick.gerk.in/software/

recording-artist/) written in IgorPro (Wavemetrics, Lake Oswego, OR). Pipettes were pulled

from borosilicate glass (2.0 mm, outer diameter) on a Flaming/Brown micropipette puller (Sut-

ter Instruments, Novato, CA) to a resistance of 6-10 MΩ. The intracellular solution consisted of

(in mM) 130 K-gluconate, 5 KCl, 2 MgCl2, 4 ATP-Mg, 0.3 GTP, 10 HEPES, and 10 phosphocrea-

tine.

22



2.3. Methods

Stimulation: Pyramidal cells (n=8) were directly stimulated by a series (50-100 trials) of

simulated noisy synaptic currents in dynamic clamp. Each trial was 4 s in duration with a 5 s

inter-trial interval; the period of rest was used to ensure that stability of the recordings. For each

trial, excitatory (Ee: 0 mV) or inhibitory (Ei: -60 mV) synaptic conductance inputs were simu-

lated as Poisson distributed spike times convolved with alpha function ge,i(t) = ḡe,i
t
τe,i
e1−t/τe,i .

(ḡe = 1 nS, ḡi = 1 nS, τe = 6 ms, τi = 8 ms). The Poisson rates for excitatory and inhibitory

inputs were equal to one another (Re = Ri), and were set to 3 kHz in the low state and 7.5

kHz in the high state. These rates were higher than in the simulations to ensure high spike time

variability, since the input variability is attenuated by the finite temporal extent of the synaptic

timescales. For each state, half of these inputs were common to all neurons stimulated and half

were newly generated on each trial for every neuron. This produced an input correlation, c,

of 0.5 between any given pair of neurons. This setup permitted 8 · (8 − 1)/2 = 28 pairwise

comparisons. Since the synaptic drive was subthreshold, a bias current (0.3-0.7 nA) was added

such that the balanced conductance fluctuations produced a mean cortical firing rate of 4-6 Hz

in both the low and high states.

2.3.4 Feedforward network

We studied a layered network in which a population of 100 leaky integrate-and-fire neurons

(Layer 2) received balanced input from a pre-synaptic layer (Layer 1) with c = .2 and pro-

vided excitatory input to two distinct downstream targets. Neurons in Layer 1 were assumed

to be Poisson as in previous sections, and the total input to a Layer 2 neuron was therefore

approximated by a diffusion process. In particular, the voltage dynamics of each Layer 2 neuron

followed equations 2.1 and 2.2.

The downstream target was also modeled as leaky integrate-and-fire neuron. Because we

wished to fix the timescale of the downstream target, we assumed delta-function, current-based

synapses so that the voltage V of the downstream neuron followed:

dV

dt
=

1

τdownstream
(EL − V ) + ad

100∑
c=1

∑
k

δ(t− tkc ),

where c = 1 . . . 100 indexes the neurons in Layer 2 and k indexes the spikes in each Layer

2 neurons’ spike train. We compared τdownstream = 20 ms and τdownstream = 3 ms. For
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Chapter 2. Shaping correlations with balanced input

τdownstream = 20 ms, we set ad = 0.12 mV and for τdownstream = 3 ms, ad = 0.4 mV so that

the neurons fired at comparable rates given identical input. Other parameters, including leak,

threshold, and reset voltages were identical to the model previously studied.

2.4 Results

2.4.1 Modulation of correlation susceptibility

In general, it is difficult to determine the specific changes in a neural system’s dynamics that

cause changes in spike train correlations. We studied a framework in which common inputs

drive the correlations between the spike trains of a pair of neurons [69, 70, 71]. If the degree of

input correlation, c, is small, a linear approximation relating c to the output spike correlation,

ρ, is written as:

ρ ≈ Sc.

Here the quantity S, termed the correlation susceptibility, determines the extent to which two

neurons’ spike trains will be correlated given a fixed level of correlation between the inputs they

receive [10].

Throughout this study, we focused on a pair of neurons that shift their output correlation

(ρ1 → ρ2) due to a change in their pre-synaptic drive (Figure 2.1a). Under our linear model, two

simple explanations for the shift in output correlation are possible. First, the shift may simply

reflect a change in the correlation of the inputs that the neuron pair receives (c1 → c2; Figure

2.1b). While this answer appears straightforward, understanding shifts in input correlation

requires detailed anatomical knowledge of the network architecture, in the absence of which

simplifying assumptions are required [27].

A second explanation for the shift in output correlation is a shift in correlation susceptibility

(S1 → S2), even when the input correlation remains fixed (Figure 2.1c). Because S relates the

correlations in the spiking output of neurons to their common input, we expect S to be sensitive

to how each neuron integrates its input. Indeed, single neuron response properties such as

firing rate and neural excitability determine the extent to which neurons become synchronized
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Figure 2.1: Mechanisms of correlation modulation. (a) The spike train correlation between a
pair of neurons shifts from ρ1 to ρ2 as the state of pre-synaptic field shifts. (b) Mapping be-
tween input correlation c and output correlation ρ. The change in output correlation in panel A
may be due to a change in input correlation from c1 in state 1 to c2 in state 2. (c) An alterna-
tive mechanism by which output correlation can change is that the correlation susceptibility S

changes from S1 in state 1 to S2 in state 2, with input correlation c fixed throughout.

by shared input [46, 10, 48, 49, 50]. There has been substantial work on how single neuron

properties, such as firing rates, are modulated [52, 53, 54, 55, 56, 57, 72, 73, 74, 75, 76],

suggesting that S should also be open to modulation. We focused on this second mechanism and

established how modulations of single neuron responses also modulated pairwise correlations

in cortical populations.

2.4.2 Low and high rate synaptic input states

We first investigated the transfer of input correlations to output spike train correlations in a

simplified two-neuron network. Each neuron received conductance-based, pre-synaptic inputs

from a mixed population of excitatory and inhibitory neurons (Figure 2.2a). To model the

stochastic nature of cortical activity, the arrival times of both excitation and inhibition were

modeled as Poisson processes. We set the relative strengths and rates of excitation and inhibition

so that the mean input was balanced [22, 24], and the average membrane potential was below

spiking threshold. Balanced pre-synaptic activity results in large membrane fluctuations that

trigger spikes in a random, aperiodic pattern, consistent with in vivo recordings from cortical

neurons [51, 23].

Shifts in the activity level of a recurrent cortical population are observed in many neural

systems and have been shown to affect the response properties of neurons in vitro and in vivo

[23, 28, 56]. To explore the modulatory effects of balanced synaptic input, we considered the
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neuron model in two states: a low state, in which pre-synaptic input arrived at a low rate, and

a high state, in which pre-synaptic input arrived at a high rate (Figure 2.2a). While the level of

balanced fluctuations may lie on a continuum, we compared two representative points, analo-

gous to high and low activity states in a cortical network [77, 28]. A clear consequence of the

shift from low to high states was an increase in the variability of both the input current and

membrane potential response, due to greater fluctuating input (Figure 2.2b). This increase of

input variability was reflected in an increase in spiking variability, with the coefficient of varia-

tion of the inter-spike intervals increasing from 0.73 in the low state to 0.91 in the high state.

A second consequence of an increase in pre-synaptic rate was the reduction of the membrane

time constant τ (Figure 2.2b). This was expected, since the membrane time constant τ ∼ C/g,

with C the membrane capacitance and g the total membrane conductance [78]. As g is roughly

proportional to the pre-synaptic rates, an increase in the rate of synaptic input lead to a decrease

in τ . Taken together, the shift from the low to high state evoked a more stochastic and faster

membrane potential response.

We first examined the effect of balanced synaptic input on firing rate gain, the slope of the

firing rate curve when plotted as a function of excitatory input strength. When the rate of

balanced excitatory and inhibitory synaptic input changed from low to high, the neuron’s firing

rate gain was substantially reduced (Figure 2.2c). This gain decrease in the high background

state has been studied extensively in theoretical and in vitro work [52, 53, 54, 55, 56, 57] as

well in vivo under specific stimuli conditions [56]. In the high state, larger membrane potential

fluctuations increased firing rates for weak inputs. However, there was also a decrease of the

net membrane input resistance, causing an increase in the rheobase current (minimum steady

current required to recruit spiking). The combination of these two effects lead to an overall

reduction in firing rate gain [54]. We next explored the consequences of gain modulation via

balanced activity for correlation transfer by pairs of neurons.

2.4.3 Correlation shaping with synaptic activity

To study the effects of balanced excitatory and inhibitory inputs on pairwise spike train correla-

tions, we extended our model to include a pair of post-synaptic neurons receiving overlapping

pre-synaptic inputs (Figure 2.3a). Previous work has shown that the output firing rate affects
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Figure 2.2: Single cell statistics in low and high synaptic input states. (a) Left: Schematic
of low (top) and high (bottom) states. Excitatory inputs occurred at a rate of 1.5 kHz in the
low state and 6.2 kHz in the high state, modeling the activity from a pool of pre-synaptic
cells. Inhibitory inputs were chosen so that output firing rates were fixed at 15 Hz in both
states. Right: Synaptic inputs converged onto a conductance-based leaky integrate-and-fire
neuron model. Sample membrane potential traces of the neuron model in both the low (top)
or high (bottom) states are shown. The total input current in either state is plotted below each
membrane potential trace. (b) The input current variability (σ) and membrane potential time
constant (τ) for both the low (top) and high (bottom) input states. (c) Firing rate of a neuron as
the level of excitatory input is varied, showing decreased gain in the high input state compared
to the low input state. The balanced condition in both low and high states resulted in an output

firing rate of 15Hz. Curves were calculated using our theory (see Methods).

correlation susceptibility [10]. To preclude any firing rate-induced effects, the synaptic input

was adjusted so that the average output firing rate of each neuron remained at 15 Hz in low

and high states (Figure 2.2c). Furthermore, there was a fixed overlap in the input populations,

so that the input correlation also remained constant in both network states (Figure 2.3a). Thus,

any change in the output spike train correlation induced by changing synaptic input will be due

exclusively to a shift in correlation susceptibility (Figure 2.1c).

We found that the timescale over which the two spike trains were correlated was dependent

on the level of balanced synaptic activity (Figure 2.3a, right). When the synaptic rate increased

from the low to high state, the magnitude of the peak of the cross-covariance function near

zero lag increased, reflecting greater spike time synchrony between the neurons. However,

this increase was not present for longer lags, and the spike train cross-covariance function was

unchanged or reduced for sufficiently long lags (> 10ms).

To quantify this change in output correlation over a range of timescales, we first counted the

number of spikes nT1 and nT2 that the two neurons emitted in intervals of T milliseconds. We
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next computed the spike count correlation as a function of window size:

ρT =
Cov(nT1 , n

T
2 )√

Var(nT1 )Var(nT2 )
, (2.3)

where Cov and Var denote covariance and variance, respectively. In the framework of our simple

circuit (Figure 2.3a), correlation in output spike trains ρT was a consequence of a shared input

correlation c. For small c, linear response theory [10] takes the output correlation to be a linear

function of the input correlation (Figures 2.1b,c; 2.3b):

ρT = ST c. (2.4)

In our model, this linear relationship held for a range of c, in both low and high states and

at both short and long T (Figure 2.3b). Further, the ρT values produced were, in magnitude,

consistent with in vivo recordings from a variety of systems [79, 37, 12, 14]. When comparing ρT

for the low and high states at fixed c, a differential change of correlation at different timescales

was evident. Specifically, ρlowT < ρhighT for small T (Figure 2.3b, T=3 ms), while ρlowT > ρhighT

for large T (Figure 2.3b, T=50 ms). This differential modulation of correlation occured over a

broad range of timescales, with ρlowT and ρhighT intersecting only once (Figure 2.3c), and we label

the modulation a shaping of correlation [62]. This substantial change in both the magnitude

and timescale of correlation must involve a nontrivial change in how the neurons process their

inputs, since the input correlation c and firing rate were the same in both low and high states.

We note that the qualitative results of our study are also valid for larger c (Figure 2.10) and

different synaptic strengths (Figure 2.12).

Since ρT → 0 as T → 0 [80], changes in ρT at small T are necessarily smaller in magnitude.

However, synchrony at short timescales can have large effects on downstream targets sensitive

to coincident pre-synaptic spikes [43] and indeed the peak of the cross-covariance function

increased substantially in the high state (Figure 2.3a, right). To properly compare correlation

shaping at small and large T we considered the ratio ShighT /SlowT = ρhighT /ρlowT , providing a

relative measure across the low and high states. The ratio was a decreasing function of T ,

with substantial changes in correlation at both short and long timescales (Figure 2.3d). The

negative slope of the curve indicates that increases in the rate of balanced synaptic activity
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favor spike synchronization rather than long timescale correlation. Finally, the spectral measure

of spike train coherence between the two spike trains in both states exhibited a decrease for

low frequencies but a significant increase for high frequencies in the high state (Figure 2.3e).

Here, the increase for high frequencies, which occurs over a broad range of frequency space, is

related to the increase in short timescale synchrony, consistent with the spike count correlation

shaping.

Correlation shaping is an unexpected feature of balanced synaptic activity. For subthreshold

membrane potential dynamics (or any other linear system) the ratio ρhighT /ρlowT is equal to 1 for

all T assuming a fixed input correlation (Figure 2.3d, gray line). The mechanism that shapes

correlation transfer so to promote spike train synchronization over long timescale correlation in

the high state (Figure 2.3d) is the focus of the next section.

2.4.4 Relationship between correlation susceptibility and neuronal integration

Correlation shaping is a property of the joint statistics of a pair of neurons. However, since the

input correlation was the same in the low and high states of our model, then the mechanism un-

derlying the shaping is hypothesized to be related to changes in single neuron input integration

and spike emission across the two synaptic states (Figure 2.1c rather than 2.1b). In this section,

we show that correlation shaping is a consequence of a shift in the single neurons’ frequency

response across the low to the high input state.

The spike train autocovariance Cii(t) and cross-covariance Ci 6=j(t) functions are written as:

Cij(t) =

∫ ∞
−∞

yi(τ)yj(τ − t)dτ − ȳiȳj , (2.5)

where yi(t) =
∑

i δ(t− tik), with tik labeling the kth spike time from neuron i (i = 1, 2). Here ȳi

is the mean firing rate of neuron i. We are interested in the joint spike count correlation for the

neuron pair, where the spike count for neuron i over a window of length T is nTi =
∫ T

0 yi(t)dt

(we take the neuron’s stochastic dynamics to be in statistical equilibrium). The spike count

variance and covariance are related to integrals of auto- and cross-covariance functions [68],
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Figure 2.3: Pairwise cell statistics in low and high rate synaptic input regimes. (a) Schematic
of low (left) and high (center) states with sample membrane traces. The marginal statistics
of both cells are as reported in Figure 2.2, with a fixed overlap of excitatory and inhibitory
pre-synaptic inputs for the cell pair. The input correlation is c = 0.5 for membrane traces and
c = 0.1 otherwise, in both low and high states. Right: Spike train cross-covariance functions
for the firing of the two neurons when receiving correlated input, showing state dependent
shaping. (b) Relationship between spike count correlation ρT for windows of length T and
input correlation c, showing linearity for small c and a dependence on T . (c) Output correlation
as a function of window size in the high and low states. Asterisks mark the values of T that
correspond to the plots in Figure 2.3b. (d) Ratio of correlations as a function of window size
in the high and low states, showing favoring of short timescale synchrony in the high state.
For comparison, the lack of correlation shaping for a purely linear neural transfer is indicated.

(e) RMS coherence (|Ĉ12(f)|/
√
Ĉ11(f)Ĉ22(f)) between spike trains showing a decrease in low-

frequency coherence and increase in high frequency coherence in the high state. The theoretical
results (solid lines) shown in in panels (b) through (e) were derived from a linear response
calculation valid in the small c limit (see Methods). Bars denote standard error in (b) through

(d). In (b), standard error is smaller than the width of the dots.
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yielding an alternate expresion for ρT :

ρT =
Cov(nT1 , n

T
2 )√

Var(nT1 )Var(nT2 )
=

∫ T
−T Cij(t)(T − |t|)dt∫ T
−T Cii(t)(T − |t|)dt

. (2.6)

The triangular weighting factor T − |t| arises from the conversion from spike trains to spike

counts and can be understood as the convolution of a boxcar function of width T with itself.

In the second equality we have, for simplicity, assumed that C11(t) = C22(t) (or equivalently

Var(nT1 ) = Var(nT2 )). These integrals can be transformed to the frequency domain, using the

Wiener-Khinchin theorem [68] to relate covariance functions Cij(t) to their spectral analogues

Ĉij(f), yielding

ρT =

∫∞
−∞ Ĉij(f)kT (f)df∫∞
−∞ Ĉii(f)kT (f)df.

(2.7)

Here kT (f) ≡ 1
π2Tf2

sin2
(

2πfT
2

)
is the Fourier transform of the triangular weighting term in

equation (2.6). Our strategy was to relate the cross spectrum between the spike trains, Ĉij(f),

to single neuron integration properties.

Single neuron input-output transfer is typically expressed through its spectral transfer func-

tion Â(f). The transfer function measures the ratio of the amplitudes of a neuron’s firing rate

response and a small amplitude sinusoidal signal of frequency f (Figure 2.4a). For very slow

inputs, the transfer function |Â(0)| equals the firing rate gain, since this measures the sensitivity

of firing responses to static (f ≈ 0) inputs. For f > 0, |Â(f)| is the susceptibility for a neuron’s

trial averaged response to be locked to a time varying signal. The transfer function |Â(f)| is

experimentally measurable [81], and is related to the more commonly reported spike triggered

average [82]. In general, for neurons in the fluctuation-driven regime, |Â(f)| is a decaying

function of f (Figure 2.4b).

If each neuron receives a small shared signal Q(t), then we can write the expectation of the

Fourier transform of the spike train from neuron i as:

〈ŷi(f)〉 ≈ ÂQ(f)Q̂(f), (2.8)

where the brackets denote an average over repeated frozen presentations of the shared signal

Q(t) with different realizations of the independent noise driving the neurons [83]. Here, ÂQ(f)
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Figure 2.4: Relating correlation shaping to single neuron transfer. (a) Illustration of neuronal
transfer function. A perturbing input of amplitude I and frequency f causes a modulation of
the spike response of a fluctuation driven neuron. Averaging across stimulus presentation trials
gives the average output firing rate r(t) with amplitude O. The output-input ratio defines the
neural transfer Â(f) = O/I. (b) Example |Â(f)| for a fluctuation driven neuron (black curve).
The weighting function kT (f) for T = 3ms and 50ms (grey curves). (c) Left: transfer function
|Â(f)| for neurons in the low and high background states. Center: Ratio of transfer functions in
the two states (normalized by change in input strength σhigh/σlow). Right: Ratio of correlations
as in Figure 2.3d. (d) Same as (c), but for a current-based model in which τeff does not change

in the high state. Note correlation shaping in (c), Right but not (d), Right.

is the linear response of the system to the perturbation Q(t). Finally, averaging the quantity

〈ŷ∗1(f)〉〈ŷ2(f)〉 over different realizations of the process Q(t) yields the cross-spectrum between

neurons 1 and 2 [10, 83, 84, 85]:

Ĉ12(f) = 〈〈ŷ∗1(f)〉〈ŷ2(f)〉〉Q ≈ |ÂQ(f)|2〈Q̂∗Q̂〉. (2.9)

For the case of white noise input, we have that 〈Q̂∗Q̂〉 = cσ2. With equations (2.7) and (2.9)

we calculated the spike count correlation coefficient between the two neurons receiving shared
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white noise input as

ρT ≈ ST c =

(
σ2
∫∞
−∞ |Â|

2(f)kT (f)df∫∞
−∞ Ĉii(f)kT (f)df

)
c. (2.10)

Our theory then relates single neuron transfer |Â(f)| and power spectrum Ĉii(f) to the joint

pairwise response ρT .

The theoretical predictions given in equation (2.10) gave a very good quantitative match to

simulations of the leaky integrate-and-fire neuron pair (Figures 2.3b-e, compare solid curves to

points), capturing the correlation shaping between the two states. Equation (2.10) has been

previously derived [10, 48], however, the model neurons considered in those studies were cur-

rent driven model neurons. We considered conductance driven model neurons, meaning that

the calculation of |Â(f)| and Ĉii(f) must account for the linked shifts of the membrane time

constant and membrane potential fluctuations from the low to the high state (Figure 2.2b). For

our conductance based integrate-and-fire model neurons, the quantities Â(f) and Ĉii(f) were

calculated by numerically integrating the Fokker-Planck equation associated with the stochas-

tic differential equation expressed in equation (2.1) (see [66] and Methods). The distinction

between current and conductance based neural integration will be shown to be critical for cor-

relation shaping.

Before correlation shaping is related to the shifts in Â(f) between the low and high states,

we first discuss the dependence of susceptibility ST on the window size T (Figure 2.3b). This

dependence enters equation (2.10) through the weighting term kT (f), which determines the

contribution of Â(f) across frequency to ST . For long timescales (large T ), kT (f) is low-pass,

so that only the neurons’ response to low frequencies contributes to correlation susceptibility.

In contrast, for short timescales (small T ), kT (f) weighs the transfer function approximately

equally across all frequencies. Hence, the neurons’ high frequency response determines precise

spike synchrony. Indeed, for T →∞ we have that kT (f)→ δ(f), while T → 0 limits kT (f) to a

constant function on (−∞,∞). Therefore, for large T , only the zero-frequency components of

Â(f) contribute to the integral, while for small T , all frequencies contribute.

A mechanistic understanding of correlation shaping (Figure 2.3d) requires knowledge of

how the rate of balanced synaptic activity affects the transfer function. As discussed previously,

the increase in synaptic input from the low to the high state decreased the effective membrane
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time constant of the neuron τ while it increased the input variability σ (Figure 2.2b). The

decrease in τ corresponded to a decrease in the timescale over which a neuron integrates inputs

and hence an attenuation of the neuron’s transfer function. For low frequency inputs, this

reduction was precisely the firing rate gain control known to occur with increased synaptic input

(Figure 2.2c). Increased variability and shunting due to heightened conductance reduced the

neuron’s ability to respond to slow depolarizing inputs. However, the reduction in the transfer

function from the low to high state was not uniform across all frequencies (Figure 2.4c, left).

This was because the smaller value of τ in the high state enhanced the tracking of fast inputs,

mitigating the attenuation of the transfer function for high frequencies. The combination of the

non-uniform attenuation of the transfer function and increase in σ from the low to high state

determined the shaping of the correlation susceptibility ST (see equation (2.10)).

To illustrate the shift in single neuron response between the low and high states, we con-

sidered the quantity σ|Â(f)|, the strength of the input fluctuations multiplied by the input

transfer function. The ratio |σÂ|high/|σÂ|low was an increasing function of frequency (Figure

2.4c, center), indicating that high frequency transfer is favored in the high state. In general, a

favoring of high frequencies corresponds to a favoring of synchrony, measured over only small

T (since kT (f) is nearly flat across f for small T ). Thus, the high state is expected to favor

small T correlation transfer compared to the low state (Figure 2.4c, right). In contrast, for large

T which corresponds to low frequencies, correlation transfer was disfavored in the high state

(since kT (f) only weights low f for large T ). This ratio allowed us to intuitively link corre-

lation shaping over different timescales to the shaping of the transfer function over different

frequencies.

We argue above that a change in the effective membrane time constant is central to the

correlation shaping we discuss. To demonstrate this fact, we computed the transfer function

and correlations for a current-based model in which τ remained unchanged in the low and high

state, although σ increased by the same amount. If firing rates were again fixed at 15 Hz, the

transfer function was again reduced in the high state, but the ratio |σÂ|high/|σÂ|low remained

close to unity (Figure 2.4d, left and center). As a result, no substantial correlation shaping

was observed (Figure 2.4d, right). The above comparison shows that this shaping requires the

modulation of cellular properties that is allowed by a conductance-based model.
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Finally, we note that, although our analysis has focused on the numerator of equation (2.7),

the denominator also affects the correlation for large time windows (Figure 2.11). For these

values of T , the denominator was increased in the high state, reflecting the higher variability of

firing due to stronger input fluctuations. This further attenuated the value of ρT for large T in

the high state.

2.4.5 Correlation shaping with different output firing rates

To avoid changes in correlation owing to firing rate [10], we chose the balance between excita-

tion and inhibition in previous sections so that firing rate was fixed across both the low and high

states (Figure 2.2c). However, it is unlikely that firing rates will remain fixed as a network shifts

from a low conductance to a high conductance state. Thus, it is important to understand how

correlation shaping via balanced excitatory and inhibitory inputs interacts with the correlation

changes expected due to firing rate changes. In this section we show how the modulations of

correlation due to balanced excitatory and inhibitory inputs and those due to firing rate changes

from imbalanced inputs are distinct.

The firing rates of our output neurons were determined by the input rate of both the excita-

tory (Re) and inhibitory (Ri) inputs. In fact, for any desired output rate, there was a curve in

(Ri, Re) space that achieved that rate (Figure 2.5a). For moderate input rates, a balanced shift

in input (approximately linear in Ri and Re) preserved output firing rate. A change in output

firing rate (switching from one curve to another in Figure 2.5a), can occur from a shift in Re,

a shift in Ri, or some combination of the two. When we fixed Ri to its value in the low state

and increase Re so that the output rate increased, ρT increased over all timescales T (Figure

2.5b, top), as expected [10]. A similar effect occured if we repeat this in the high state (Figure

2.5b, bottom). Thus, the modulation of ρT by a rate change due to an imbalanced shift of Re

simply scales ρT for all T (collapsed blue and orange curves in Figure 2.5c). Nevertheless, after

correcting for the rate scaling of ρT , the shaping of correlation between the low and high states

remained clear (Figure 2.5c), demonstrating that correlation shaping due to a change from low

to high states is distinct from correlation shifts due to arbitrary output firing rate changes.

To illustrate this, we considered a shift from 8 Hz in the low state to 35 Hz in the high

state. In the shift from the low to high state, the effective membrane timescale τeff shifted
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Figure 2.5: Comparing correlation shaping due to balanced excitatory and inhibitory inputs and
correlation shifts due to shift in output rate. (a) Output firing rate as a function of Ri and Re

(firing rates above 100 Hz not shown). The curves in the space that yield output firing rates
of 8,15, and 35 Hz are labeled. The lines lie in a small region of the full space, corresponding
to the region where excitation and inhibition are balanced. (b) Top: Spike count correlation
as a function of T for the three output rates, where rate changes are due to a change Re, with
Ri fixed at the low state value. Bottom: same as top, except that Ri is fixed at the high state
value. (c) The curves in B for the low and high states scaled to match the center curve (15 Hz)

at T = 100 ms.

from 10.8 to 2.9 ms and the amplitude of the input fluctuations σ from 0.16 to 0.37 nA. These

shifts changed σ|Â(f)| significantly (as discussed in the previous section), and changed the

timescales over which the neuron pair was correlated. This was contrasted by a shift from 8

Hz to 35 Hz in the low state: a change in firing rate without a change between low and high

states. Here, τeff shifted from 10.8 to 10.2 ms and the input fluctuations σ from .16 to .18 nA,

having little influence on σ|Â(f)| other than a uniform scaling due to the output rate change.

In total, by changing both Re and Ri, it was possible to not only change the output firing rate

so as to amplify or attenuate ρT , but also to shape the timescales over which a neuron pair was

correlated.

2.4.6 Experimental verification with dynamic clamp recordings

Our two-neuron framework for studying correlation transfer (Figure 2.1a) permited an exper-

imental verification of correlation shaping with balanced, fluctuating conductance inputs. We

performed in vitro patch clamp recordings from cortical pyramidal neurons receiving simu-

lated excitatory and inhibitory inputs. Unlike past experimental studies of correlation transfer

[86, 10], our model involved conductance-based, rather than current-based synapses. There-

fore, we simulated synaptic input using dynamic clamp [87] (see Methods), which affected the
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membrane integration timescale as well as membrane potential variability. We chose maximal

excitatory and inhibitory conductances of 1 nS and synaptic timescales of 6 and 8 ms, respec-

tively, producing a synaptic input that was more biophysically realistic than the diffusion process

used in previous sections (Figure 2.6a). The shift from low to high state caused a near two-fold

reduction in firing rate gain (Figure 2.6b), in qualitative agreement with our model simulations

(Figure 2.2c) and past dynamic clamp studies [54]. Further, as was done in the model, we set

the synaptic balance in the low and high states to produce approximately the same firing rate

(5.5± .9 Hz in the low state and 6.0± 1.5 Hz in the high state).

The correlated input for a given neuron pair was a mixture of shared and independent

excitatory and inhibitory inputs, mimicking the input provided to the model (Figure 2.3a).

The partial overlap in the synaptic input produced correlated membrane potential and spike

dynamics for every neuron pair in both the low and high states. Our recorded spike trains

showed a dependence of spike count correlation on T that was qualitatively similar to that of

the model, apparent in the ratio of ρT in the high and low states (Figure 2.6c). The ratio was

a decreasing function of T , indicating a bias toward synchrony in the high state compared to

the low state. This shape was consistent with our model results (Figure 2.3d), although the

ratio did not fall substantially below unity in the limit of large T . This suggested that the

decrease in gain |Â(0)| and the increase in variability σ from the low to high state were of

similar magnitudes, since in the limit of large T correlation susceptibility is proportional to

σ2|Â(0)|2 (see Methods). A conductance-based simulation using the same synaptic parameters

used for dynamic clamp stimulation produced results in agreement with the experiment (Figure

2.9). The favoring of synchrony (T=2 ms) over long timescale correlation (T=200 ms) in the

high state was statistically significant in a pairwise analysis across the dataset (Figure 2.6c,

inset; P < 3 × 10−5, paired t-test). The experiments demonstrated that an increase in the rate

of balanced conductance input shapes pairwise correlation so as to favor synchronization over

long timescale correlation, thereby verifying the main theoretical predictions of our study.

Our theoretical treatment has ignored the timescale of synaptic input, and has associated

all filtering to the membrane and spike properties of the model (Figure 2.4). Correlation trans-

fer with realistic synaptic timescales did quantitatively differ from the case with instantaneous

synaptic input (Figure 2.8b). Nevertheless, our theoretical work captured the main effects of
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Figure 2.6: Correlation shaping in cortical dynamic clamp experiments. (a) Left: Recorded
average EPSPs and IPSPs from resting neurons showing membrane voltage (Vm) deflections,
with corresponding conductances ge,i. Right: Voltage traces from example recorded neuron
pairs in high and low states. The degree of synaptic overlap was 0.5 for both high and low
states. The inter-spike interval coefficient of variation increased from 0.40 in the low state to
0.48 in the high state. (b) Firing rate versus mean input current curves for neurons in low
and high states showing reduction in gain in the high background state. (c) The ratio of ρT
in the high to low state as a function of window size T (compare to Figure 2.3d). Curves are
population average results (n=28) with the shaded region denoting the standard error. Inset:

Correlation ratio shown at T=2ms and 200ms for each recorded pair.

correlation shaping when synaptic timescales were realistic (Figures 2.8 and 2.12). This is be-

cause only the effective membrane time constant was sensitive to a shift in input firing rate,

which our theory accounts for, while synaptic filtering did not change between low and high

states. We remark that, for synapses with very long timescales, correlation shaping should only

be present for large T , since correlations at small T will be negligible.

2.4.7 Consequences of correlation shaping for signal propagation

The spike train correlations between neuron pairs substantially influence the propagation of

neural activity in feedforward architectures [44]. For example, while our study has so far
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focused on the transfer of correlation for neuron pairs receiving common input, the firing rate

of a single downstream neuron also depends on the correlation between neurons in its pre-

synaptic pool [43]. If the integration timescale of the downstream target is small, only precise

spike synchrony will effectively drive the neuron. In contrast, neurons that slowly integrate

inputs will be sensitive to long timescale correlations. In our study, we demonstrated that

an increase in the rate of synaptic input increases spike count correlation at small T while

simultaneously decreasing the correlation at large T (Figure 2.3d). We therefore expected that

this correlation shaping would influence the extent to which activity can be propagated to a

downstream layer. Further, that the magnitude of this effect would depend on the integration

timescales of the downstream targets.

As an illustration of this effect in a simplified system, we studied the firing rate of a down-

stream neuron receiving input from an upstream population of correlated neurons (Figure 2.7a;

see Methods). The level of synaptic drive from layer 1 shaped the correlation of pairs of layer

2 neurons (Figure 2.7a, insets). The network was constructed so that the activity of any given

pair of neurons in Layer 2 was equivalent to that of the neuron pairs studied in previous sec-

tions. As the correlation of layer 2 spike outputs was shaped, so too was the magnitude and

timescale of the synaptic drive to the downstream target neuron (Figure 2.7b). For comparison,

we show that downstream target’s synaptic input when the layer 2 neurons were uncorrelated

(Figure 2.7b, bottom), showing significantly reduced variability [43]. In the uncorrelated case,

the firing rate of the downstream target was much less than 1 Hz, indicating that correlated

input was necessary for its recruitment.

We study how correlation shaping of the layer 2 projections affected the recruitment of the

downstream target neuron. In particular, we focused on how the changing timescale of correla-

tion recruited downstream targets differentially, depending on their own integration properties.

We varied the rate of balanced synaptic input from layer 1 to layer 2 in a smooth manner (fol-

lowing the Re and Ri path for 15Hz output in Figure 2.5a), gradually shaping the covariance

function between any given layer 2 neuron pair. The shaping included the low and high states

described earlier as near endpoints on a continuum (Figure 2.7c). When the downstream target

had a smaller time constant (3 ms), its firing rate was increased when the pre-synaptic pop-

ulation was in the high state (Figure 2.7c, dashed line). This contrasted with the decreased

firing rate in the high state when the downstream target had a longer time constant (20 ms)
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Figure 2.7: Effects of correlation shaping on the propagation of neural activity. (a) Schematic
of layered network. Layer 1 neurons are modeled as Poisson processes and are either in the
low (top) or high (bottom) state. Each layer 2 neuron receives a combination of private input
and a globally common input from layer 1. The common input correlates each pair of layer 2
neurons, while the state of layer 1 shapes the correlations (cross-covariance function insets).
The layer 2 neurons have marginal and pairwise statistics identical to the neurons in Figures
2.2 and 2.3. The spike outputs of the layer 2 neurons converge onto a downstream neuron with
integration timescale τdownstream. (b) Example realization of the summed synaptic activity that
drives the downstream target neuron in the low (top), high (middle), and, for comparison,
when the layer 2 neurons are uncorrelated (bottom). (c) Effect of the state change on the
downstream neuron’s firing rate. The horizontal axis Re shows the level of excitatory synaptic
activity that the neurons in the second layer received from the first layer. Ri is adjusted in a
balanced fashion so that the layer 2 neurons fire at 15 Hz (see Figure 2.5A). The downstream
target neuron has either τdownstream = 3 ms or τdownstream = 20 ms. The neuron with the fast
time constant was driven more strongly in the high state. However, the neuron with the slow

time constant showed a decreased firing rate in the high state.

(Figure 2.7c, solid line). This differential effect was due to matching between the correlation

timescale of layer 2 and the integration timescale of the downstream target. In the high state,

synchrony drove the neuron with the short integration timescale, while, in the low state, long

timescale correlations drove the slower neuron. Note that the firing rate of layer 2 neurons was

unchanged in all cases studied. This simple example demonstrates that the structure of correla-

tions between pre-synaptic neuron pairs can differentially drive downstream targets depending

on their integration properties.
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2.5 Discussion

We have demonstrated that the rate of balanced synaptic input changes the correlation timescale

of spike trains of a pair of neurons receiving partially correlated input. High rate synaptic input

promoted precise spike time synchrony, while low rate synaptic input enhanced long timescale

correlation. This correlation shaping was independent of changes in input correlation or the

output firing rate of the neuron pair. Rather, it required a thresholding nonlinearity between

input and spike train response as well as a state-dependent integration timescale. Both of these

are properties of many neurons in the central nervous system, and hence we expect that similar

correlation shaping may occur in a variety of brain regions.

2.5.1 Correlation shaping compared to other forms of correlation modulation

Correlated neural activity continues to receive increasing attention [8], prompting investiga-

tions of the mechanisms that determine the transfer of correlation. Correlations are typically

measured only at one timescale, but as we have shown, the magnitude of correlation depends on

the timescale being considered, as does the likely significance of this correlation for activation

of downstream neurons. Past studies have highlighted the dependence of spike train correla-

tions on the magnitude of input correlation [46, 86], the form of spike excitability [49, 88, 89],

or the firing rate of the neuron pair [10, 48]. However, how the timescale of correlations are

modulated through plausible mechanisms had not been addressed. Changes in membrane con-

ductance have been widely studied and strongly influence the dynamics of single neuron activity

[23]. In our study, we found that timescale-specific changes in neural correlations are a neces-

sary consequence of conductance based modulation schemes. Previous work that has examined

how correlated activity is transferred has used linear response methods to examine the response

of neurons to current fluctuations, thereby leaving membrane integration invariant [10, 48]. As

a result, cellular properties such as timescale were not modulated (see Figure 2.4d). We showed

that when synaptic conductance is considered, it is possible to shape both the magnitude and

timescale of output spike train correlations. This is a novel result that is nevertheless consistent

with, and complementary to, the observation that firing rate also modulates correlations (see

Figure 2.5).
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2.5.2 Noise correlation shaping in neural circuits

The widespread use of multi-unit recording techniques to study population activity has pro-

duced an increasingly clear picture of how neuronal spike trains are correlated in a variety

of neural states. Recently, there has been particular interest in noise correlations, which are

specific to within trial comparisons and cannot be directly attributed to a common signal [41].

Several groups have reported noise correlation measurements, ranging from small positive

values [79, 12, 37, 14, 15, 16] to values that are, on average, zero, with positive and negative

values equally represented [38, 9, 27]. Furthermore, in cases where significant noise correlation

is measured, it can be modulated on distinct timescales. In the visual system, for example, noise

correlation measured on timescales less than 100 ms is largest for cells with similar preferred

stimulus orientations being driven at that orientation, observed in both spike responses [12]

and synaptic input [13]. Further, while increasing stimulus contrast enhances short timescale

correlation, it reduces long timescale (> 100 ms) correlation [12]. In primate area V4, stimulus

attention reduces noise correlation when measured on timescales that are larger than 100 ms,

yet has little influence on short timescale correlation [15, 16]. In contrast, other groups have

shown that stimulus attention enhances spike synchrony measured at the gamma frequency

timescale (20-40 ms) [90]. In the electrosensory system, long timescale noise correlation is

reduced by recruitment of a non-classical receptive field, while synchrony is increased under

the same conditions [37]. Thus, spike train noise correlations provide an excellent framework

to study how the magnitude and timescale of correlations are shaped by neural state changes.

While a shaping of output correlation observed in these systems may be inherited from

a state-dependence of input correlation (Figure 2.1b), single neuron response properties are

often also modulated by network state. This suggests that a shift in correlation susceptibility

may underlie a shift in pairwise correlation (as in Figure 2.1c). Indeed, firing rate gain is

modulated by attention [91], stimulus contrast [51], and the recruitment of a non-classical

receptive field [92]. In many cases, intracellular recordings have established that gain control

is mediated by an increase in the rate of excitatory and inhibitory synaptic inputs [51, 56], in a

fashion similar to the case presented in our study. Dual intracellular experiments that measure

both input and output correlation across distinct neural states [69, 70, 13] are required to

parcel the contribution of correlation inheritance and correlation transfer to the full shift in
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noise correlations.

2.5.3 Connecting single neuron and network modulations

A central result of our paper is that changes in synaptic input rate shape the correlation be-

tween the output spike trains from a pair of neurons. This is a consequence of how synaptic

input modulates the timescale of membrane integration and response sensitivity of the two

neurons. Our theoretical analysis formalizes this concept by explicitly relating the spike train

correlation coefficient to the single neuron transfer function. Though we focused on modula-

tion by balanced synaptic inputs, the relationship between transfer function and correlation is

general, requiring only that the input correlation be sufficiently small. Thus, we predict that

any synaptic or cellular mechanism that modulates single neuron transfer will necessarily affect

spike train correlations.

Modulation of single neuron transfer with the level of synaptic input rate is well studied

[52, 53, 54, 55, 56, 57]. However, how other cellular processes affect neuronal transfer is

equally well studied. For example, increases in the spike after-hyperpolarization [72] or de-

creases in the spike after-depolarization [73] reduce the gain of the firing rate response to static

driving inputs. Sustained firing often recruits slowly activating adaptation currents that also

reduce gain [74, 75]. We predict that these modulations will reduce long timescale spike rate

correlations. In contrast, the presence of low threshold potassium currents in the auditory brain-

stem [93] promotes high frequency single neuron transfer and thus may also promote pairwise

synchronization. In total, our result gives a general theory that links the modulation of single

neuron and network responses, thereby expanding the applicability of studies of single neuron

modulation.

2.5.4 Selective propagation of neural activity

How the brain selectively propagates signals is a basic question in systems neuroscience. One

control mechanism is through an ‘unbalancing’ of feedforward excitation to inhibition, with dis-

inhibited populations propagating activity and excessive inhibition silencing propagation [94].
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Modulation of correlation is an alternative mechanism to control signal propagation. The cor-

relation between spike trains from neurons in a population enhances the ability of that pop-

ulation’s activity to drive downstream targets [43, 44]. We have shown that modulating the

timescale of correlation in the upstream population to match the integration timescale of the

downstream population improves signal propagation (Figure 2.7). Matching the integration

dynamics of distinct neuronal populations to one another is a common theme in the binding of

distributed activity [95]. In previous studies, the phase relationship between distinct neuronal

populations both oscillating at some frequency gated the interaction between distinct brain

regions. Our study did not assume rhythmic population dynamics, but rather only matched

integration timescales.

The nonlinearity of spike generation allows for the transfer of shared input to multiple

neurons to be controlled in complex ways. We have shown that well-studied mechanisms of

single neuron response modulation, such as firing rate gain control, have direct relations to

changes in correlation for neuron pairs. Thus, state dependent shifts in single neuron transfer

also influence how populations of neurons coordinate their activity. Our results are a step in

understanding how the collective behavior of neuronal networks can be controlled in different

brain states.
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2.6 Supplementary figures

a b c
Conductance Diffusion Limit

(Multiplicative Noise)
Diffusion Limit

(Non-Multiplicative Noise)

Figure 2.8: Diffusion limit shows qualitative effects of correlation shaping. (a) Top: Correlation
in the low and high states for a conductance-based model with alpha-function synapses. The
excitatory time constant was 2.5 ms and the inhibitory time constant 5 ms. The amplitude of the
alpha function was taken so that it matched with the delta-function synapses described earlier.
Other parameters were as before. Bottom: Ratio of correlations between the high and low
states. (b) Same as (a), but after taking the diffusion approximation (see equation (2.1)). (c)
Same as (b), but after taking σ(V ) = σ(Eeff ). The ratio ρThigh/ρ

T
low exhibits similar correlation

shaping in all cases.
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Figure 2.9: Comparison between simulation and experimental results. (a) Top: Correlation in
the low and high states calculated from dynamic clamp experiments. Bottom: Ratio of correla-
tions between the high and low states. (b) Similar to (a), showing results from a conductance-
based model with alpha-function synapses. The excitatory time constant was 6 ms and the
inhibitory time constant 8 ms. The firing rate was 5 Hz to match experiments. Other parame-

ters were as before.

Figure 2.10: Results hold for large c. Top: Correlation in low and high states for c = 0.5,
parameters otherwise identical to Figure 2.3. Bottom: Ratio of correlations in the low and high

states.
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Figure 2.11: Change in power spectrum of the spike train y(t) from low to high states. In both
cases, the high-frequency limit of the power spectrum is equal to the firing rate of the neuron.
For low frequencies, however, the power was increased in the high state, reflecting the increased
variability of firing in the high state (note that as frequency → 0, the power spectrum is equal
to the firing rate multiplied by the square of the inter-spike interval CV). To determine the
denominator of equation (2.7), we integrate the power spectrum by kT (f) to obtain Var(nT ).
When T is small, Var(nT ) is identical in the two states, because the high frequency limits of the
power spectrum are equal. When T is large, Var(nT ) is increased in the high state, because the

low frequency limit of the power spectrum is enhanced.

a b

Figure 2.12: Correlation shaping occurs for different synaptic strengths. (a) Theoretically cal-
culated correlation curve for ae = .02, ai = .04, Re = 1 kHz in the low state and 4.08 kHz in
the high state. The time constant decreased from 7.5 ms in the low state to 1.9 ms in the high
state. Firing rates were 15 Hz in both states. (b) Theoretically calculated correlation curve for
ae = .005, ai = .01, Re = 2 kHz in the low state and 8 kHz in the high state. The time constant
decreased from 15.2 ms in the low state to 4.8 ms in the high state. Firing rates were 15 Hz in

both states.
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3. Slow dynamics and high variability in

balanced cortical networks with clustered

connections

3.1 Abstract

Anatomical studies demonstrate that excitatory connections in cortex are not uniformly dis-

tributed across a network but instead exhibit clustering into groups of highly connected neurons.

The implications of clustering for cortical activity are unclear. We study the effect of clustered

excitatory connections on the dynamics of neuronal networks that exhibit high spike time vari-

ability due to a balance between excitation and inhibition. Even modest clustering substantially

changes the behavior of these networks, introducing slow dynamics during which clusters of

neurons transiently increase or decrease their firing rate. Consequently, neurons exhibit both

fast spiking variability and slow firing rate fluctuations. A simplified model shows how stimuli

bias networks toward particular activity states, thereby reducing firing rate variability as ob-

served experimentally in many cortical areas. Our model thus relates cortical architecture to

the reported variability in spontaneous and evoked spiking activity.

3.2 Introduction

Cortical neurons receive input with strong temporal fluctuations and produce spike trains with

high variability [2, 96]. Models of recurrent cortical networks often employ balanced excitation

and inhibition to account for this variability [22, 25, 97]. Consistent with these studies, bal-

anced excitatory and inhibitory synaptic input has been measured in cortex [28] and is thought
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to substantially influence cortical processing [23]. However, along with spike emission vari-

ability, cortical neurons show firing rate fluctuations over long timescales [12, 17, 98]. These

stochastic dynamics reflect large trial-to-trial variability in cortical responses [99, 100, 101,

102]. Balanced cortical networks with simple uniform connection structures do not capture

these dynamics [25, 27]. Our study’s central aim is to uncover which network features, beyond

balanced architecture, are responsible for slow firing rate fluctuations in cortical networks. Re-

cent studies show that synaptic connections between excitatory neurons in cortex are clustered

rather than uniform [103, 104]. In visual cortex, clusters are related to processing, with highly

connected neurons within a cortical column receiving similar visual input [105, 106]. Cluster-

ing may also be related to activity level, with frequently firing neurons participating in clustered

subnetworks [107]. In total, this suggests cortical wiring involving distinct, densely connected

functional subnetworks.

Functional subnetworks are a popular architectural feature supporting attractor dynamics

in network models [108, 109, 110, 111, 112]. Such models typically have neuronal subpopula-

tions with increased local excitation, leading to a multitude of stable states in which particular

subpopulations exhibit sustained firing. While attractor models have been studied in the con-

text of working memory, their connection to fluctuations in spontaneous and stimulus-evoked

cortical dynamics has not been examined.

We investigate the dynamical consequences of clustered excitatory connections in balanced

networks. In these networks, specific neuronal clusters increase or decrease their firing rates

over long timescales, promoting high trial-to-trial variability. Stimuli that excite particular clus-

ters bias activity in those clusters while recurrent inhibition suppresses others, placing the net-

work collectively into particular activity states. Thus, stimulation reduces firing rate variability

while Poisson-like spiking variability remains, consistent with recent cortical recordings [17].

Our results show that even small perturbations from uniform connection structures – here a

rewiring of only three percent of excitatory connections – can substantially change balanced

network dynamics.
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3.3 Methods

3.3.1 Spiking network simulations

Neurons were modeled as leaky integrate-and-fire units whose voltages obeyed:

V̇ =
1

τ
(µ− V ) + Isyn(t). (3.1)

When neurons reach a threshold Vth = 1, a spike is emitted and they are reset to Vre = 0 for

an absolute refractory period of 5 ms. The membrane time constant τ was 15 ms and 10 ms for

excitatory and inhibitory neurons, respectively. The bias µ was chosen according to a uniform

random distribution between 1.1 and 1.2 for excitatory neurons and between 1 and 1.05 for

inhibitory neurons. Although these values are suprathreshold, balanced dynamics ensured that

the mean membrane potentials were subthreshold [25]. In Figure 3.1, the nondimensionalized

voltages were transformed so that Vth = −50 mV and Vre = −65 mV.

Synapses between neurons were modeled as differences of exponentials, and the total synap-

tic input to neuron i in population x was:

Ixi,syn(t) =
∑
jy

Jxyij F
y ∗ syj (t), (3.2)

where x, y ∈ {E, I} denote excitatory or inhibitory populations of NE = 4000 and N I = 1000

neurons each, Jxyij is the strength of synaptic connections from neuron j in population y to

neuron i in population x, F y(t) is the synaptic filter for projections from neurons in population

y, ∗ denotes convolution, and syj (t) is the spike train of neuron j in population y, a series of

delta-functions at time points where the neuron emits a spike.

F y(t) =
1

τ2 − τ1

(
e−t/τ1 − e−t/τ2

)
, (3.3)

with τ2 = 3 ms for excitatory synapses and 2 ms for inhibitory synapses while τ1 = 1 ms.

Connection probabilities pxy from neurons in population y to xwere pEI = pIE = pII = 0.5; pEE

was on average 0.2 for all networks but depended on clustering as described in the Results. If a

connection from neuron j in population y to neuron i in population x existed, Jxyij = Jxy (unless

51



Chapter 3. Balanced networks with clustered connections

x, y = E and neurons were in the same cluster, then connection strength was multiplied by 1.9

for homogeneous clustered networks and 1.8 for heterogeneous clustered networks); otherwise

Jxyij = 0. Synaptic strengths were JEE = 0.024, JEI = −0.045, JIE = 0.014, and JII = −0.057.

These parameters, multiplied by 15 mV, would give the deflection of the membrane potential

of the postsynaptic target, neglecting leak, in our dimensionalized units. When clusters of

excitatory neurons were stimulated (Figure 3.7), stimulation was accomplished by increasing µ

for neurons in those clusters by 0.07. Simulations were performed using Euler integration with

a timestep of 0.1 ms.

To generate an imbalanced network (Figure 3.2, dashed curve), we assumed weak synapses

by reducing JEE and JIE by a factor of 20 and chose µE uniformly between 1.05 and 1.15.

Consequently, excitatory neurons were mean-driven rather than fluctuation-driven.

Finally, to vary the size of the network (Figure 3.4e), we kept all network parameters the

same except that we scaled the connection strengths Jxy by a factor proportional to 1/
√
N , so

that the Jxy were multiplied by
√

2 for the network with N = 2, 500 and 1/
√

2 for N = 10, 000.

3.3.2 Visualizing and measuring clustering

Visualizations of connectivity for subsets of the excitatory networks in Figures 3.1 and 3.4 were

created using NetworkX (networkx.lanl.gov). The layout of nodes was performed using the

Fruchterman-Reingold force-directed algorithm [113], which places connected nodes nearby

and yields layouts that respect the clustering of the network. For the purposes of these analyses,

connections were taken to be undirected and unweighted.

3.3.3 Spike train statistics

Spike train statistics were computed for excitatory neurons. We denote the spike times of neuron

i as {ti1, ti2, ti3, . . . }. We can then define neuron i’s spike train: yi(t) =
∑

k δ(tik). The number

of spikes emitted by the neuron between times t and t+ ∆t is

Ni(t, t+ ∆t) =

∫ t+∆t

t
yi(t
′)dt′. (3.4)

52



3.3. Methods

The firing rate of a neuron over an interval (t, t+ ∆t) was defined as

ri(t, t+ ∆t) =
1

∆t
Ni(t, t+ ∆t). (3.5)

For the networks studied, firing rates and other statistics for the spontaneous state were calcu-

lated with t = 1.5s to prevent effects due to initial conditions and ∆t = 1.5s.

We also computed the Fano factor Fi(t, t+ ∆t) for neuron i by evaluating

Fi(t, t+ ∆t) =
Var (Ni(t, t+ ∆t))

〈Ni(t, t+ ∆t)〉
, (3.6)

where the expectations are over repeated trials of the same network with random initial con-

ditions. When computing the Fano factor as a function of time relative to stimulus onset, we

computed the mean-matched Fano factor described in Churchland et al. [17] to control for

changes in firing rate. Fano factors were computed over 100-ms windows.

We computed correlation coefficients for the spike counts of neuron pairs. The correlation

between neurons i and j was given by

ρij =
Cov (Ni(t, t+ ∆t), Nj(t, t+ ∆t))√

Var (Ni(t, t+ ∆t)) Var (Nj(t, t+ ∆t))
, (3.7)

where the covariances and variances were computed over overlapping windows within each

trial and then averaged across trials.

Finally, we computed the mean-subtracted spike train autocovariance and cross-covariance

functions Cii(T ) and Ci 6=j(T ). These were defined as

Cij(T ) =

∫ t+∆t

t
yi(t
′)yj(t

′ − T )dt′ − ri(t, t+ ∆t)rj(t, t+ ∆t). (3.8)

To estimate this quantity, spike trains were discretized with a timestep of δt = 2ms, so that

yi(t)→ yi(tn) with tn = nδt and yi(tn) = Ni(tn, tn + δt). Then Cij(T ) =
∑

n yi(tn)yj(tn − T )−

ri(t, t+ ∆t)rj(t, t+ ∆t) with T = . . . ,−δt, 0, δt, . . . and n such that tn ∈ (t, t+ ∆t).
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3.3.4 Analysis of simplified network model

For our binary network model, the activity of neuron i in population x was given by sxi (t) =

Θ (Ixi (t)) ∈ {0, 1}, where Ixi (t) is the input to the neuron and Θ is the Heaviside step func-

tion. For simplicity, excitatory and inhibitory populations both consisted of NE = N I = 4, 000

neurons with an average connection probability of 0.2 for all connection types, so that neurons

received K = 800 connections on average from each population. The input was given by

Ixi (t) =
∑
jy

Jxyij s
y
j (t) + µx, (3.9)

where µE = 0.075
√
K, µI = 0.05

√
K. The presence of synaptic connections, including the

effects of clustering, was determined in the same way as in the spiking networks, although for

our initial analysis only one cluster was generated in the network.

In balanced networks, it is assumed that the synaptic strengths scale as J ∼ 1/
√
K so that the

input variance remains constant as K grows [25]. In our network, the synaptic strengths were

JEE = 1/
√
K (unless neurons belonged to the same cluster, in which case connection strength

was multiplied by 1.5), JEI = −1.2/
√
K, JIE = 1/

√
K, and JII = −1/

√
K. Simulations were

performed using discrete time steps, on each of which NE +N I neurons were chosen randomly

and updated asynchronously.

For uniform networks, the average activity of neurons in each population 〈sE〉, 〈sI〉 can be

calculated in the infinite K limit [25]:

〈sE〉 =
JIIµE − JEIµI√
K(JEI − JII)

〈sI〉 =
µE − µI

K(JEI − JII)
. (3.10)

Furthermore, by assuming that each neuron is independent and active randomly and sparsely,

the input variances can be calculated:

Var(IE) = (JEE)2K〈sE〉+ (JEI)2K〈sI〉 (3.11)

Var(II) = (JIE)2K〈sE〉+ (JII)2K〈sI〉. (3.12)
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Assuming the input distribution is Gaussian, we have

〈sx〉 =
1

2
erfc

(
−〈Ix〉√
2Var(Ix)

)
, (3.13)

which allows us to infer the mean input 〈Ix〉 = −
√

2Var(Ix)erfc−1 (2〈sx〉) .

To analyze the effect of clustering, we calculate the deviation from the mean input in a

uniform network induced by the presence of clustered connections. This approach has been

taken in previous studies of memory networks [114, 110, 111]. In a uniform network, the

mean input is given by

〈IE〉 = KJEE〈sE〉+KJEI〈sI〉+ µE . (3.14)

For a clustered network, we assume that the mean firing rate of neurons outside the cluster is

given by 〈sEout〉 = 〈sE〉, while inside the cluster 〈sEin〉may vary. Hence, the mean input to neurons

in the cluster is

〈IEin〉 = KEE
in JEEin 〈sEin〉+ (K −KEE

in )JEEout 〈sEout〉+KJEI〈sI〉+ µE , (3.15)

where KEE
in and denotes the average number of connections from inside the cluster. With

µ ∼
√
K, the final three terms in (3.15) are O(

√
K) but are balanced by the recurrent network

dynamics, ensuring that their contribution does not diverge as K becomes large.

We next calculate ∆IEin = IEin − IE:

∆IEin = KEE
in (JEEin 〈sEin〉 − JEEout 〈sE〉). (3.16)

For cluster activity to have an effect on the mean input a neuron receives, this difference must

be O(1), which implies thatKEE
in JEEin ∼ O(1). Since JEEin ∼ 1/

√
K and pEEin ∼ O(1), this implies

that KEE
in ∼

√
K, so that the number of local cluster inputs scales as the square root of the total

number of connections. In particular, for large K, KEE
in << K.

We next analyze the time dynamics of the average cluster activity. The dynamics will follow

[26]:

˙〈sEin〉 = −〈sEin〉+
1

2
erfc

(
−(〈Ix〉+ ∆IEin)√

2Var(Ix)

)
≡ d

d〈sEin〉
U(〈sEin〉), (3.17)
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where we have defined a potential U as the integral of ˙〈sEin〉 with respect to 〈sEin〉. Minima of this

potential correspond to self-consistent solutions of average cluster activity. This potential can

be obtained using the equations defined above (for Figure 6b, empirically measured values of

〈sE〉 and 〈sI〉 were used in the calculations, to correct for deviations from (3.10) due to finite

size effects).

Assuming that the fluctuations in ˙〈sEin〉 can be modeled as Gaussian white noise and are small

relative to well depth ∆U , the average transition time T out of a potential well should follow

the Kramers formula [115]: T ∝ ek∆U/D, where D is the diffusion coefficient governing the

fluctuations of the mean activity. While we can calculate ∆U using our theory above, the effec-

tive D depends on system size and correlations and cannot be easily evaluated. Nonetheless,

we find a relationship between ∆U and T consistent with the Kramers formula (Figure 3.5).

3.4 Results

3.4.1 Clustering of connections yields new dynamics

Many real-world networks exhibit nonuniform connectivity structures, often including cluster-

ing of connections between different units [116]. Indeed, clustering of synaptic connections

between pyramidal neurons in cortex has been observed in many studies [103, 104, 106]. How-

ever, inferring dynamical consequences from these architectural properties is challenging [117].

In cortex, the random nature of synaptic connectivity and individual neuron physiology adds

to this difficulty. We used a simple model of excitatory clustering in a recurrent network to

investigate its consequences for neural activity.

Our network consisted of 4000 excitatory (E) neurons and 1000 inhibitory (I) model neu-

rons. Connections involving inhibitory neurons were non-specific and occurred with probability

pEI = pIE = pII = 0.5 [118, 119], where pxy denotes the probability of a connection from

a neuron in population y to a neuron in population x. Connections between excitatory neu-

rons occurred with probability pEE = 0.2. Synaptic dynamics were consistent with fast acting

excitatory and inhibitory neurotransmitters (see Methods).

We began by replicating the known asynchronous dynamics of uniform (non-clustered) bal-

anced networks (Figure 3.1, left). Neuronal membrane potentials exhibited fluctuations due to
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a balance between excitation and inhibition [25] (Figure 3.1c, left), and spiking activity was

asynchronous (Figure 3.1d, left). We note that our network models required no assumptions

on the structure or timescale of external fluctuations, as variability arose solely from internal

interactions [25, 97].

We next introduced clustered excitatory connections. The excitatory population was par-

titioned into clusters of 80 neurons each, and the connection probability pEE was set to pEEin

for neuron pairs in the same cluster or pEEout for neuron pairs in different clusters. The ratio

REE = pEEin /pEEout controlled neuronal clustering. Higher values of REE favored connections

within a local cluster over non-local connections. The quantities pEEin and pEEout were chosen so

that the connection probability between excitatory neurons remained 0.2 when averaged across

all pairs. We also increased the synaptic strength for neurons in the same cluster [104].

For a clustered network with REE = 2.5, visualizing the connectivity of a subset of excita-

tory exposed clear divisions between distinct neuronal clusters (Figure 3.1a,b, right). However,

on average only 38 of 800 excitatory connections that these neurons received came from within

their local cluster, and others were randomly distributed. In clustered networks, neurons exhib-

ited dynamic transitions between periods of higher and lower firing rate (Figure 3.1c,d, Right).

These fluctuations reflected changes in the average firing rate of neurons in the same cluster

and coexisted with randomness in the spike times of any individual neuron, yielding dynamics

substantially different than those of the uniform network despite the small charge in architec-

ture.

3.4.2 Spiking statistics for uniform and clustered networks

To quantify changes in network dynamics introduced by clustering, we calculated spike train

statistics for excitatory neurons in uniform and clustered networks. The firing rate distribution

was similar for both network types (3.3 ± 4.1 Hz for clustered networks and 2.0 ± 1.8 Hz for

uniform networks; ± denotes standard deviation across the population). Although neurons

in the clustered network exhibited transient high activity states, both networks exhibited low,

broadly distributed time-averaged firing rates, consistent with recordings from spontaneously

active cortex [120] (Figure 3.2a).
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Figure 3.1: Comparison between uniform and clustered network connectivity and dynamics.
(a) Schematic of recurrent network, showing excitatory (triangles) and inhibitory (circles) neu-
rons. Connections within and between populations were non-specific for the uniform network.
Shaded regions in the clustered network schematic indicate subpopulations with increased con-
nection probability and strength for neurons belonging to the same cluster. The full network
contained 4,000 excitatory neurons in 50 clusters of 80 neurons each and 1,000 inhibitory neu-
rons. (b) Visualization of connectivity for a subpopulation of 240 excitatory neurons in three
clusters. Nodes correspond to excitatory neurons and edges synaptic connections. Nodes are
positioned according to the Fruchterman-Reingold force algorithm (see Methods). Edge widths
reflect synaptic strength. (c) Example voltage trace for an excitatory neuron. (d) Spike raster

showing the spike times of a subpopulation of 1,000 excitatory neurons.
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To measure spiking variability, we calculated the spike count Fano factor for each excita-

tory neuron, defined as the ratio of the trial-to-trial variance to mean of the number of spikes

a neuron emits in a fixed time window (here 100 ms; see Methods). For a Poisson process

with a fixed firing rate, the Fano factor is 1, and Fano factors above 1 may be interpreted as

evidence for variability in a neuron’s underlying firing rate. High Fano factors prior to and dur-

ing stimulus application have been observed in many cortical systems [1, 2, 17]. In uniform

networks, the mean Fano factor was 0.78 (S.D. 0.09; Figure 3.2b). In clustered networks, it

was substantially larger, with a mean of 1.4 (S.D. 0.7). This additional variability arose from

firing rate fluctuations introduced by cluster state transitions from low to high activity (Figure

3.1b). Because these transitions were stochastic, the configuration of highly active clusters for

any given moment across trials was variable.

Cortical variability is also reflected in the joint activity of neuron pairs [8]. Excitatory neu-

rons in both network types exhibited near-zero average spike count correlations (0.001 ± 0.06

for clustered networks and 0.0005± 0.05 for uniform networks, Figure 3.2c; see Methods), con-

sistent with theoretical studies of balanced networks [27]. However, differences emerged when

the calculation of correlation was restricted to neurons in the same cluster. Clustered networks

exhibited a distribution of correlation coefficients for intra-cluster pairs with a long positive tail

and a mean of 0.13 (S.D. 0.18; Figure 3.2d). The distribution’s tail reflected the slow correlated

fluctuations in average firing rate that neurons experienced. Because intra-cluster pairs only

accounted for 2% of all excitatory neuron pairs, this tail was not visible in the distribution of

randomly sampled correlation coefficients (Figure 3.2c).

To analyze this long timescale spiking activity, we computed spike train autocovariance and

cross-covariance functions for excitatory neurons (see Methods). Neurons in uniform networks

exhibited no long timescales in their autocovariance or cross-covariance functions, while in clus-

tered networks both exhibited long timescale decays (Figure 3.2e,f). Both functions indicated a

weak oscillatory tendency in the gamma frequency range due to interactions between excitatory

and inhibitory populations [121].

Finally, we explicitly related the system’s long timescales to trial-to-trial variability by com-

puting Fano factors as a function of time window. Compared to an imbalanced network in which
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responses were mean-driven, Fano factors for balanced networks were substantially larger (Fig-

ure 3.2g), though sub-Poisson due to refractory effects (Figure 3.2e), saturating by T < 100

ms. However, Fano factors increased for longer time windows in clustered networks. In total,

clustered networks had increased slow firing rate fluctuations while retaining the fast spiking

variability characteristic of balanced networks, making neuronal activity effectively a “doubly-

stochastic” process [122, 17, 98].

3.4.3 Heterogeneity in cluster membership

In previous sections, we studied an idealized model in which all clusters were identically sized

and neurons belonged to only one cluster. This connectivity led to discrete and unambiguous

transitions between high and low activity states (Figure 3.1). However, cortical assemblies may

involve heterogeneity in size and overlap in membership. To determine whether our results

hold for heterogeneous clustered networks, we generated a new network architecture in which

cluster membership was random. Each excitatory neuron was assigned to two clusters out of

100 total, and connection probability and strength were increased for neuron pairs that shared

membership in at least one cluster (Figure 3.3a). Because of the random assignment of neurons

to clusters, cluster sizes were heterogeneous (Figure 3.3b).

Because neurons were not ordered by group membership, transitions were not immediately

apparent in an unordered raster (Figure 3.3c). However, when rows in the raster were sorted by

cluster, slow transitions appeared (Figure 3.3d). To compare homogeneous and heterogeneous

clustered network dynamics, we calculated average firing rates for all neurons in individual

clusters. Clusters in homogeneous networks exhibited discrete transitions between low and

high activity states with average firing rates of 50-60 Hz (Figure 3.3c, top). In contrast, hetero-

geneous clustered networks exhibited more complicated temporal dynamics (Figure 3.3c, bot-

tom). Hence, networks with clustered architectures can generate complex firing rate patterns

reminiscent of spontaneous cortical recordings [101], although our study’s primary results can

be understood in the idealization of homogeneous clustered networks.
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Figure 3.2: Marginal and pairwise spiking statistics for neurons in clustered and uniform net-
works. Statistics for each network type were computed over 12 realizations for each of the
two connectivities, with 9 trials for each realization of connectivity. (a) Histogram of excita-
tory neuron firing rates in clustered and uniform networks. Triangles denote mean value. (b)
Histogram of excitatory neuron Fano factors computed over 100 ms windows. (c) Histogram
of correlation coefficients computed over 50 ms windows for all excitatory neuron pairs. (d)
Same as c, but only computed for neuron pairs belonging to the same cluster. The distribution
of correlation coefficients for a random subset of pairs from the uniform network is shown,
since the uniform network lacked clusters. (e) Average autocovariance function for excitatory
neurons. (f) Average cross-covariance function for neuron pairs belonging to the same cluster.
Correlation functions are normalized to firing rate. (g) Fano Factors computed over different
counting windows. Uniform, clustered, and imbalanced networks were compared. For imbal-
anced networks, a balance between excitation and inhibition was not obeyed and responses

were mean-driven, rather than fluctuation-driven (see Methods).
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Figure 3.3: Heterogeneous clustered network. (a) Schematic of connectivity for heterogeneous
network. Each excitatory neuron was assigned randomly to two clusters (schematic only shows
a subset of neurons and clusters). Connection probability and strength was increased for any
neuron pair that shared membership in at least one cluster. (b) Histogram of the number of
neurons per cluster for the network shown in the following panels. Cluster size was heteroge-
neous since membership was assigned randomly. For this network, clusters ranged in size from
63 to 99 neurons. (c) Spike raster showing the spike times of 1,000 excitatory neurons. Since
cluster membership was chosen randomly, the neurons are not ordered by cluster. (d) Same
as c, but row indices reordered so that blocks of rows correspond to clusters. Some rows are
repeated, since neurons belonged to multiple clusters. (e) Example average cluster firing rates
for different clusters from the clustered network studied previously (Figure 3.1b) and the het-
erogeneous network. Rates were estimated from the number of spikes emitted by all neurons

in a cluster in a sliding window of 100 ms.

3.4.4 Increased clustering lengthens rate fluctuation timescale

We have shown that clustered connections introduce new, slow dynamics not present in uniform

networks (Figure 3.1). We next show that this timescale is related to the density of clustering.

We examined three different clustered network connectivities with REE increasing from 2

to 3. As REE was increased, neurons were more easily separated into distinct clusters (Figure

3.4a), and clusters exhibited longer periods of high activity (Figure 3.4b). To quantify the firing

rate fluctuations’ dependence on network connectivity, we calculated the average excitatory

neuron Fano factor as a function of REE (Figure 3.4c). Fano factors increased for sufficiently

high clustering. The degree of clustering REE can be recast in terms of the percentage of

excitatory connections that need to be rewired to generate a clustered network from a uniform

one. This quantity was below five percent for the range studied (Figure 3.4d). Thus only a small

perturbation from uniform connectivity is required for substantial firing rate fluctuations.
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Figure 3.4: Effect of increased clustered connection probability. (a) Visualization of connectivity
for a subset of 240 neurons in three different networks. The network for REE = 2.5 was
identical to the network shown in Figure 3.1, right. (b) Spike raster for a subset of 1,000
excitatory neurons from the three different network configurations. As clustering was increased,
the timescale of cluster activity state transitions lengthened. (c) Average Fano factor computed
over 100 ms windows among excitatory neurons as a function ofREE (d) Average percentage of
excitatory connections rewired as a function ofREE . Percent rewired was defined by calculating
the average number of connections an excitatory neuron received from other neurons within
its cluster, subtracting the average number of such connections it would have received if REE

= 1, and dividing by the total number of connections. (e) Dependence of firing rate variability
on clustering REE , for different values of cluster size C and total network size N . The firing
rate variability for each cluster was estimated by computing the population firing rate for the C
neurons in the cluster over 2 seconds, in 20 windows of 100 ms each. This was then averaged

over all clusters and realizations.
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3.4.5 Dependence of dynamics on cluster and network size

We next investigated whether changes in network dynamics were robust to different connectiv-

ity parameters. Previously, we saw that, above a critical level of clustering (above approximately

REE = 2.5), the exhibited high firing rate variability. However, for large REE , transitions oc-

curred over very long timescales (Figure 3.4b, right). Hence, variability on biophysically rele-

vant timescales should be maximized for a fixed level of clustering, a prediction we investigated

with varying network parameters.

We evaluated cluster firing rate variability as a function of REE , for different network sizes

N and cluster sizes C (Figure 3.4e). For each combination of N and C, a critical value of REE

above which firing rate variability increased existed. However, variability eventually decreased

for higher REE , when the transition timescale was longer than the simulation time. This is in

contrast to the dependence of the Fano factor on clustering (Figure 3.4c), since Fano factors

were computed across trials with different initial conditions while firing rate variability was

computed over time.

The shape of these curves depended both on N and C. As C increased, the firing rate

variability peak location and height decreased, since more excitatory connections were present

and cluster transition times diminished. However, the peak location increased as N grew, since,

in balanced networks, synaptic strength scales inversely with network size (see Methods). Since

a peak occurred for each combination of N and C, our results are robust to changes in network

parameters. We further explore network scaling in the next section.

3.4.6 Theoretical analysis of clustered subnetworks in balanced networks

Our results indicate that network architecture, more so than individual neuron dynamics, gives

rise to cluster state transitions. We therefore use a simplified binary neuron model to relate

architecture to transitions. Similar analyses have been performed for memory networks [114,

110, 111], but the timescale of spontaneous transitions between different states has not been

examined.

Our model simplifies the state of neuron i, denoted si, to either “inactive” (si = 0) or “active”

(si = 1). The input to neuron i, denoted Ii, is a weighted sum of the activities of the neurons
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to which it is connected plus a constant mean bias: Ii =
∑

j Jijsj + µi, where µi is the bias and

Jij is the strength of a synaptic connection from neuron j to neuron i. If Ii is positive, then the

neuron is active; otherwise, it is inactive.

We begin by studying a network whose connectivity is uniform except for a single cluster

of C neurons. A neuron within the cluster receive KEE
in = pEEin C synaptic inputs from other

neurons in this cluster. The mean and variance of the total input to such a neuron is:

〈IEin〉 = JEEin KEE
in 〈sEin〉+ JEEout (K −KEE

in )〈sEout〉+ JEIK〈sI〉+ µE , (3.18)

Var(IEin) = (JEEin )2KEE
in 〈sEin〉+ (JEEout )2(K −KEE

in )〈sEout〉+ (JEI)2K〈sI〉. (3.19)

Here Jxy denotes the strength of synaptic connections from neurons in population y to those in

population x, and 〈sx〉 corresponds to the average activity of neurons in population x. Subscripts

“in” and “out” refer to excitatory neurons within the cluster and outside of the cluster, respec-

tively. Since Var(IEin) ∼ J2K, we need J ∼ 1/
√
K for Var(IEin) to be O(1). As a consequence, IEin

will diverge as
√
K unless excitation and inhibition balance [25].

Under these conditions, we analyze the effect of the local cluster input. The first term in

equation (3.18) is the average recurrent excitation from other neurons in the cluster:

Irec = JEEin KEE
in 〈sEin〉. (3.20)

For Irec to be O(1) as K gets large, we need KEE
in to be inversely proportional to JEEin . Because

J ∼ 1/
√
K, we therefore require

KEE
in ∼

√
K. (3.21)

In other words, for a balanced network, local cluster inputs may be much smaller in number

(by a factor of
√
K) than total inputs K but still have a substantial effect. Indeed, as noted

previously, neurons received on average only 38 of 800 total excitatory inputs from within their

local cluster in our integrate-and-fire simulations. This sensitivity to rewiring is a consequence

of the balance between excitation and inhibition; small deviations in balance due to local cluster

activity strongly affect neurons’ firing rates.
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3.4.7 Transitions between low and high activity states

With our simplified model, we next study the dynamics of 〈sEin〉, the average firing rate of neu-

rons within the cluster. We determined the potential energy landscape U that governed this

quantity (see Methods). Minima in U corresponded to stable values of 〈sEin〉. For small REE ,

the only minimum was at a low firing rate, so no transitions could occur (Figure 3.5a). When

REE increased sufficiently, a second minimum appeared, and 〈sEin〉 was therefore bistable, as is

common in networks with local recurrent excitation [108, 109, 114, 110, 111]. Furthermore,

because the cluster size was small, dynamic fluctuations due to finite size effects caused transi-

tions between minima. Deeper potential wells corresponded to more attractive activity states,

as quantified by average time spent in a well (Figure 3.5b).

Transitions between low and high activity states introduced long timescale variability to the

cluster’s activity (Figure 3.5c, top). Although transitions between wells were a source of vari-

ability in our model, we emphasize that they were not the only source of variability. Balanced

excitation and inhibition ensured that neurons were bombarded with many synaptic inputs that

produced high input variability relative to input mean, even when conditioned on their cluster

being in one state (Figure 3.5c, bottom). Model neurons were therefore doubly stochastic, with

spike time variability because of this broad input distribution and firing rate variability because

of transitions between wells.

What controls the timescale of these transitions? For deep enough potential wells and as-

suming that the effective noise driving average cluster activity is Gaussian and white, the tran-

sition time out of a well of depth ∆U will scale as:

T ∝ ek∆U/D, (3.22)

where k is a constant and D is the amplitude of the effective diffusion driving the fluctuations

in mean activity [115] (see Methods). D depends both on system size, with larger clusters ex-

hibiting diminished fluctuations due to averaging, and on correlations between neurons, which

amplify fluctuations in mean activity.

As increased clustering increases the high activity state’s well depth (Figure 3.5a), we expect

highly clustered networks to take longer to transition out of this state. To verify this prediction,
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Figure 3.5: Emergence of bistability in simplified model. (a) Potential governing dynamics of
average cluster activity 〈sEin〉, for different values of clustering REE . As clustering is increased
beyond a critical value, bistability emerges and switches between the two stable states can occur
(black curve). (b) Potential (top) and corresponding histogram for average cluster activity
(bottom). (c) Top: Example activity raster for the parameters in b. Transitions between the
high activity (red) and low activity (blue) states are evident. Bottom: Histogram of input
currents for neurons in the cluster conditioned on the cluster being in the low or high activity
state (defined as average activity less than or greater than 0.5, respectively) and normalized in
peak height. (d) Average timescale of transitions from high activity to low activity state as a
function of well depth ∆U . Each point corresponds to an average over four networks simulated
for 200,000 timesteps. The line corresponds to a linear regression of well depth against the

logarithm of the transition time (R2 = 0.89).

we measured the average transition time out of the high activity state for networks with different

degrees of clustering and plotted the result as a function of ∆U (Figure 3.5d). The logarithm of

T increased linearly with ∆U as predicted by equation (3.5). In total, architectural clustering

controls U and hence the presence of bistability and the attractiveness of high activity states.

We next seek to understand how clusters interact. So far, our analysis has focused on a single

cluster’s dynamics, neglecting its influence on other clusters or the possibility of other clusters

changing state. Indeed, if every cluster was independent and all were governed by the potential

in Figure 3.5b, we would expect most clusters to remain in the high activity state and average

activity to be unrealistically high. In the fully recurrent network, this is not the case. Recurrent

inhibition mediates cluster-cluster interaction, limiting the number of clusters simultaneously

in the high activity state and thus promoting transitions. We examine this more closely as we

next consider the relationship between stimulation and clustered network dynamics.

3.4.8 Biasing activity state with stimulation

Recently, the relationship between spontaneous and evoked trial-to-trial variability has attracted

attention [17, 123]. Throughout the cortex, trial-to-trial spiking variability in sensory systems is
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Figure 3.6: Effects of stimulation. (a) Potentials for REE = 2 and different values of stim-
ulus applied to the cluster. A stimulus can bias activity toward the low or high activity state
depending on its sign. (b) Consequences of stimulation and recurrent inhibition. Left: When
all clusters are symmetric, any cluster can transition to the high activity state. Right: When
Cluster 2 receives a stimulus to bias it to the high activity state, other clusters are suppressed

by recurrent inhibition. Hence, the network remains in one particular activity configuration.

reduced when a stimulus is presented [17]. Despite its generality, the mechanisms responsible

for this variability reduction are undetermined. With our theory, we examined stimulation’s

effects on variability in clustered networks.

We calculated U for different stimulus values (Figure 3.6a). Negative stimuli made the high

activity state less attractive, while positive stimuli increased its attractiveness. This, along with

previous observations about recurrent inhibition, leads to a prediction about network dynamics

under stimulation. Without stimulation, clusters are symmetric and any cluster may transition

between states (Figure 3.6b, left). When a fraction of clusters are stimulated, this symmetry

is broken and stimulated clusters are more likely to have high activity. Recurrent inhibition

discourages other clusters from transitioning to high activity states, forcing the system into a

single configuration and thus suppressing long timescale variability (Figure 3.6b, right). We

next investigate this prediction, returning to a full spiking network.

3.4.9 Effect of stimulation on spiking variability

Because our spiking model exhibited high trial-to-trial variability consistent with cortical data,

we investigated stimulation’s effect, using a simple depolarizing stimulus applied to 5 of the

50 clusters for 400 ms. During spontaneous activity, clusters exhibited transitions. When the

stimulus was applied, stimulated clusters became highly active, while unstimulated clusters
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were suppressed (Figure 3.7a,b, compare shaded and unshaded region in a). After stimulus

application ceased, the system eventually relaxed to spontaneous dynamics.

To quantify reductions in variability, we calculated the mean matched Fano factor over 100

ms windows as a function of time. Mean matching controlled for stimulus-induced changes in

firing rate, ensuring that observed changes in Fano factor were due to a change in underlying

rate variability [17]. For clustered networks, Fano factors were above 1 during spontaneous

activity but dropped slightly below 1 during stimulation (Figure 3.7c). Similar results were ob-

tained for heterogeneous clustered networks (Figure 3.8), clustered networks with more com-

plex stimulus tuning (Figure 3.9), and clustered networks with ring or feed forward structure

(Figure 3.10). In contrast, uniform networks exhibited no noticeable decrease in variability

when the stimulus was applied (Figure 3.7c). The Fano factor restricted to either stimulated

or unstimulated neurons also exhibited a reduction in Fano factor only for clustered networks

(Figure 3.7d). These results are consistent with cortical recordings in which neurons whose

preference did not match a presented stimulus nevertheless showed a stimulus-induced drop in

variability (Figure 5 in Churchland et al. [17]), a feature not present in other models of cortical

variability [112].

Because our spiking model exhibits high trial-to-trial spiking variability consistent with cor-

tical data, we investigated the effect of simple external stimuli to a subset of clusters in our

spiking networks.

3.4.10 Variability of inhibitory neurons

To this point we have been interested in excitatory neuron spiking variability, but inhibitory

neuron variability may also be stimulus dependent. In visual area V4, a reduction in inhibitory

neuron Fano factor with stimulation has been reported [124], but firing rates increased substan-

tially during stimulation, and no rate matching was performed to control for this modulation.

We show that inhibitory neurons in clustered networks may also exhibit decreased Fano factors

due to stimulation, an effect that depends on the specificity of their afferent connections from

excitatory neurons.

In the above model the connections involving inhibitory neurons were uniform. Anatom-

ical evidence suggests that inhibitory innervation of pyramidal neurons is nonspecific [119],
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for 400 ms. The stimulus caused the clusters that received it to transition into a high activity
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matching techniques presented in Churchland et al. [17].
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Figure 3.9: Effect of stimulation on spiking variability in a clustered network with randomly
assigned stimulus strengths. Instead of stimulating five clusters with a fixed stimulus strength,
all excitatory neurons received a stimulus input. For each cluster, the stimulus strength was
chosen independently from a Gaussian distribution with zero mean and standard deviation of
0.05. All neurons in the same cluster received the same stimulus strength. The curve shows
the mean-matched Fano factor computed over 100 ms windows as a function of time, averaged
over excitatory neurons. Green shaded region denotes 95% confidence interval. Gray shaded

region denotes the interval during which the stimulus was applied.

but there is some evidence for selectivity in excitatory input to certain classes of inhibitory

interneurons [125]. We therefore studied the dependence of inhibitory neuron variability on

excitatory-to-inhbitory input specificity.

We compared clustered networks presented previously to ones in which inhibitory neurons

were more likely to receive input from excitatory neurons in a particular cluster (Figure 3.11a).

In clustered E+I networks, inhibitory neurons were assigned to 50 clusters of 20 neurons each.

Excitatory to inhibitory connections occurred with probability pIEin if both neurons belonged to

the ith cluster of their respective population and otherwise with probability pIEout. R
IE = pin/pout

was set to 1.5.

Excitatory neurons in both networks had high variability and exhibited a reduction in Fano

factor with stimulus (Figure 3.11b). However, inhibitory neuron Fano factors in clustered E+I
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Figure 3.10: Effect of stimulation on spiking variability in ring and feed forward networks. (a1)
Schematic of ring network connectivity. To generate the ring network, excitatory neurons i and
j were connected with probability pEE

in if |i− j| < 40 (with periodic boundary conditions); other-
wise, they were connected with probability pEE

out. Hence, the effective cluster size was again 80
neurons, but the clusters overlapped throughout the domain. REE was set to 2.4. All other pa-
rameters were identical to the original clustered network. As in the original clustered networks,
JEE was also increased for those neurons that had an increased probability of connection. (b1)
Raster plot showing a subset of excitatory neurons in the ring network. Gray region denotes
those neurons that received the stimulus. (c1) Time course of stimulus, a depolarizing current
step that lasted for 400 ms. (d1) Mean matched Fano factor computed over 100 ms windows
as a function of time, averaged over excitatory neurons in the networks. Shaded region denotes
95% confidence interval. (a2)-(d2): Same as (a1)-(d1) but for feed forward networks. In the
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in
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out. This resulted in an architecture similar to the ring network, but with a directional bias in
the connections, leading to propagating waves which were pinned by stimuli. REE was set to
2.5. All other parameters were identical to the original clustered network. As in the original
clustered networks, JEE was also increased for those neurons that had an increased probability

of connection.
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Figure 3.11: Effect of stimulation on inhibitory neuron spiking variability. (a) Schematic of
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ms windows as a function of time for excitatory neurons in the clustered E+I network and the
clustered E network (Figure 3.7). Shaded region denotes 95% confidence interval. (c) Same as

b but for inhibitory neurons.

networks increased substantially compared to the clustered excitatory network, with a corre-

spondingly greater reduction with stimulation (Figure 3.11c). Thus, excitatory input specificity

can drive stimulus-induced variability reduction in inhibitory neurons. Studies have shown

that the specificity of excitatory input to different inhibitory cell classes varies [125], with

fast-spiking interneurons receiving more specific input than adapting interneurons. We predict

adapting interneurons should therefore exhibit a smaller effect of stimulus on variability.

3.5 Discussion

We have shown that clustering of excitatory connections [103, 104, 106] substantially changes

balanced network dynamics. Small perturbations of connectivity that introduced excitatory

clustering yielded dynamical phenomena observed in cortex experimentally but not present in

simple uniform networks: slow firing rate fluctuations in spontaneous conditions and stimulus-

induced reductions in trial-to-trial rate variability with spike time variability remaining intact

[17].

3.5.1 Anatomical realism and attractor dynamics

The network connectivity in this study was motivated by anatomical evidence for clustering

of connections between pyramidal neurons in cortex. Bidirectional and clustered three-neuron

connection motifs occur with frequencies significantly above chance in the visual system [103].

These subnetworks also receive similar feedforward input, suggesting that clustering may be
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related to functional maps [105], an idea with recent in vivo support [106]. Inhibitory projec-

tions were not similarly clustered in our model, consistent with studies showing that inhibitory

neurons connect densely and nonspecifically to pyramidal neurons [119] and that inhibitory

neuron connectivity is less tuning-specific than pyramidal neurons [126].

The dynamics we investigated are reminiscent of persistent state activity, often studied in

attractor networks with highly segregated subnetworks [109, 112]. Spatially dependent con-

nection probabilities can also lead to persistent activity when excitation is more local than inhi-

bition [127]. Our result for clustered networks, although it involves excitation to a local subset

of neurons, assumes neither a spatial distribution of connections nor an excessive reorgani-

zation from an unstructured network. Similar results are obtained in networks with spatially

dependent connection structures, as long as underlying multistability is present (Figure 3.10).

3.5.2 Robustness and dependence of cluster size

Our results depend on cluster size, and our parameter choices are consistent with anatomical

evidence for fine-scale clusters of tens, rather than thousands of neurons [104]. Large scale, bio-

physically realistic network models have shown clusters of this size emerging with spike time

dependent plasticity [128]. For a variety of cluster and network sizes, high firing rate variability

emerged in our model (Figure 3.4). Because larger clusters have smaller fluctuations in mean

firing rate due to averaging, very large clusters were unlikely to exhibit frequent transitions and

also tended to suppress smaller clusters (Figure 3.3). However, large scale correlated fluctua-

tions, adaptation, or other mechanisms not modeled in our study could promote cluster state

transitions even for very large clusters.

We also note that our model exhibits sharp transitions between attractor states with large

differences in firing rate (Figure 3.3e). These shifts are consistent with rapid state transitions

observed in behaving animals [129]. Although average firing rates in our model are consistent

with spontaneous data (Figure 3.2a), the activity within active clusters are more regular than

typically recorded in spontaneous activity. This observation has been made in previous stud-

ies of bistability in balanced networks [108, 109, 110]. Matching exactly higher order spike

train statistics is difficult, yet the agreement for time-averaged firing rate and spike train vari-

ability is promising. As such, clustered networks provide a simplified framework for studying
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multistability and the spiking variability it produces.

3.5.3 Models of cortical variability and co-variability

ecently, it has been shown that uniform, balanced networks evolve to an asynchronous state

in which correlations are negligible even when connections are dense [27], consistent with

some experimental data [9]. The distribution of correlation coefficients in clustered networks

has a near-zero mean, similar to these studies (Figure 3.2c). However, neuron pairs within

the same cluster do exhibit nonzero correlations (Figure 3.2d). Assuming that clusters are re-

lated to functional processing, this observation is consistent with experimental studies showing

that correlations are enhanced for similarly tuned neurons [12, 8] and predicts that measured

correlations will depend on the subset of neurons to which recording is restricted.

Our modeling studies have examined networks exhibiting high variability from conductance

modulations or other biophysical properties [97, 130], but long timescale firing rate variability

(Figure 3.2g) has not been addressed. Our minimal model captures the distribution of firing

rates [120] (Figure 3.2a), pairwise spiking correlations [9, 8] (Figure 3.2c,d,f), and rate vari-

ability [17] (Figure 3.2b,e) characteristic of spontaneous unanesthetized cortex. However, dual

whole-cell recordings from excitatory cells in awake, spontaneous rodent somatosensory cortex

show prominent, low frequency correlated membrane potential fluctuations [131]. Our model

does not capture this correlation, nor does any other spiking model (to our knowledge) lacking

externally imposed variability. Imaging studies suggest that the correlated fluctuations are likely

due to traveling waves between motor and sensory cortex [132], and spatial effects would need

to be introduced into a model to properly account for these dynamics (Figure 3.10). Nonethe-

less, this membrane potential correlation does not transfer to synchronous excitatory neuron

spiking (Figure 6b in Gentet et al. [131]), presumably due to sparse firing in the spontaneous

state. Understanding the source of these fluctuations is an important topic for future study.

3.5.4 Relationship between spontaneous and evoked activity

Patterns of neuronal activity evoked by sensory stimulation are thought to be a subset of those

sampled during spontaneous activity [100, 102]. Clustered network dynamics are consistent

with this idea, with activity states sampled stochastically in spontaneous conditions and biased
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toward particular states with stimuli. The relationship between strong local connectivity and

increased attractiveness of high activity states (Figure 3.4) suggests that Hebbian plasticity may

wire together stimulated clusters so that they are sampled more frequently. Thus, the sponta-

neous state’s statistics would reflect past stimulus input statistics, as reported in visual cortex

[133].

Observations of reductions in single neuron trial-to-trial variability from spontaneous to

evoked conditions complement the above data [17]. In describing these results, spiking activity

is typically characterized as a “doubly stochastic” process, in which variability in spike emission

and rate dynamics can be separated. While this simplification is attractive, the two are not

easily segregated in mechanistic models. Stimulus-induced reductions in variability have been

studied in firing rate models [123]; however, these models implicitly separate firing rate and

spiking variability. In contrast, a recent attractor-based study [112] also modeled variability

reduction but assumed doubly stochastic external inputs. We studied generation of both rate

and spike time variability by internal network interactions, providing mechanistic plausibility

for the intuition presented in Churchland et al. [17].

Finally, our work begins to link cortical architecture, variability, and computation. There

is growing evidence that probabilistic inference is central to neural coding [134, 98]. Rich,

stochastic spontaneous dynamics may reflect sampling that supports probabilistic inference

[135]. Merging attractor theories of computation with probabilistic coding schemes is an impor-

tant direction for systems neuroscience, for which a clear theory of neural variability in cortical

circuits will be needed.
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4. Formation of neuronal assemblies and

modification of spontaneous activity through

plasticity in a model cortical network

4.1 Abstract

The patterns of fluctuating spontaneous activity cortical neurons exhibit are related to the archi-

tecture in which they are embedded. This architecture may be modified by sensory experience,

but the mechanisms that lead to the formation and persistence of structured connectivity in

large recurrent networks are unclear. We demonstrate a network model that can be reorganized

by stimuli through realistic plasticity and homeostatic mechanisms. Stimulus presentation leads

to the formation of neuronal assemblies composed of neurons that receive common input. After

training, spontaneous activity reflects prior evoked activity and stabilizes the learned network

architecture. Sufficiently strong novel stimuli, however, can remap this architecture to reflect

the new stimulus set. The model makes several predictions concerning the effect of sensory

experience on spiking activity in spontaneous and evoked conditions. It also suggests that spon-

taneous activity fluctuations may consolidate learned connectivity patterns, rather than simply

being a source of noise.

4.2 Introduction

Cortical neurons undergo complex and variable activity fluctuations during spontaneous dynam-

ics [99, 102, 17], but how this activity is related to functional processing is poorly understood.
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Several studies have shown that reactivation of evoked activity patterns can occur without stim-

ulus application [133, 136, 137, 138]. Noise correlations, which reflect shared fluctuations

from underlying network architecture, tend to co-vary with signal correlations, which reflect

similar evoked stimulus preferences [139, 12, 140]. Together, these observations suggest that

spontaneous dynamics are related to previously experienced stimuli. One explanation for the

relationship between spontaneous and evoked activity is that synaptic plasticity reorganizes a

network to reflect past patterns of activation [141, 142, 143]. This view is consistent with ob-

servations from the visual system that neurons with similar stimulus preference are more likely

to be connected [106] and that this specificity emerges after eye opening [144].

Determining which plasticity mechanisms are needed for stimuli to reorganize neuronal

architecture requires a realistic model of both plasticity and spontaneous dynamics. Recur-

rent model networks with a balance between excitation and inhibition have been successful

in reproducing the high spike time variability consistent with the spontaneous state of cortex

[24, 27, 36]. Models of attractor circuits in such networks have related simplified plasticity

dynamics to the appearance of working memory states [108, 145]. However, embedding real-

istic spike time dependent plasticity (STDP) rules into balanced networks has proven difficult,

often leading to pathological behavior [130]. Recently, detailed and biologically plausible STDP

models have been proposed [146, 147, 148], but so far their application has been restricted to

small systems, making it difficult to assess their effects on collective dynamics and trial-to-trial

variability. Further, spontaneous activity in plastic networks can potentially destabilize a learned

network architecture, especially if the magnitude of spontaneous fluctuations is comparable to

that of evoked responses [102]. Many models assume that plasticity is inactivated after learning

or do not study the persistence of learned architectures, underscoring the necessity of models

that incorporate these features.

We study the dynamics of a balanced network with realistic excitatory STDP [146], showing

that stimulus application leads to strongly connected neuronal assemblies. After training, spon-

taneous dynamics reflect experienced stimuli, with transient activations of assemblies that have

been activated in the past. Our study demonstrates the importance of homeostatic mechanisms

in maintaining this learned architecture [149, 150]. Furthermore, we show that spontaneous

reactivation of assemblies promotes the stability of well-learned patterns, mitigating the desta-

bilizing effect of random firing on structured connectivity. The model provides a framework in
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which to study the effect of stimulus presentation on neuronal architecture, stimulus represen-

tation, and trial-to-trial variability.

4.3 Methods

4.3.1 Membrane potential dynamics

The model network consisted of NE excitatory (E) and N I inhibitory (I) neurons. Throughout,

we will denote population (E or I) with superscripts and neuron index (1 through NE/I) by

subscripts. The equation for the voltage dynamics of neuron i in population X was:

d

dt
V X
i (t) =

1

τX

(
EXL − V X

i (t) + ∆X
T exp(

V X
i (t)− V X

T,i(t)

∆X
T

)

)

+
gXEi (t)

C

(
EE − V X

i (t)
)

+
gXIi (t)

C

(
EI − V X

i (t)
)
− wXi (t)

C
. (4.1)

Parameter values are summarized in Table 4.1. Excitatory units were modeled as exponential

integrate-and-fire neurons with an adaptation current and adaptive threshold [151, 152]. In-

hibitory units were modeled as simple non-adapting integrate-and-fire neurons (∆I
T , w

I
i (t) →

0). The dynamics of the neuronal threshold for excitatory neurons, V E
T,i, were given by:

d

dt
V E
T,i(t) =

1

τT

(
VT − V E

T,i(t)
)
. (4.2)

When neuron i spiked due to its voltage diverging (in simulation, determined by voltage ex-

ceeding 20 mV), its potential was reset to Vre and clamped for an absolute refractory period of

τabs. If it was excitatory, its threshold V E
T,i was set to VT +AT . For inhibitory neurons, V I

T,i = VT

at all times. We denote the spike train of neuron i in population X as sXi (t) =
∑n

k=1 δ(t− tXi,k),

where tXi,1 . . . t
X
i,n are the times when the neuron spiked and δ is the Dirac delta function.

The adaptation current for excitatory neuron i, wEi , was given by:

d

dt
wEi (t) =

1

τw

(
aw(V E

i (t)− EEL )− wEi (t)
)
. (4.3)

When excitatory neuron i spiked, wEi was increased by bw. Simulations were performed using

code written in Python and C++ implementing Euler integration with a timestep of 0.1 ms.

79



Chapter 4. Formation of neuronal assemblies

4.3.2 Dynamics of synaptic conductances

Connections occurred with probability p, and the strength of a connection from neuron j in

population Y to neuron i in population X was denoted JXYij . If a connection did not exist,

JXYij = 0. Recurrent excitatory connection weights were bounded by JEEmin and JEEmax, while

weights from inhibitory to excitatory neurons were bounded by JEImin and JEImax. JIE and JII

were fixed and constant for all connected i, j.

The total excitatory or inhibitory conductance of neuron i in population X was given by:

gXYi (t) = F Y (t) ∗

JXYext s
XY
i,ext(t) +

∑
j

JXYij sYj (t)

 , (4.4)

where Y ∈ (E, I), F Y (t) is the synaptic kernel for input from population Y , and ∗ denotes

convolution. Synaptic kernels were given by a difference of exponentials:

F Y (t) =
1

τYd − τYr

(
e−t/τ

Y
d − e−t/τYr

)
, (4.5)

for t positive. In addition to recurrent input, neurons also received external excitatory input in

the form of a spike train sXEi,ext(t), which was an independent homogeneous Poisson process for

each neuron with rate rXEext . For external excitatory input, the synaptic strength was set to the

minimim recurrent synaptic strength (JXEext = JXEmin ). Neurons did not receive external inhibitory

input (sXIi,ext = 0). Parameters were chosen such that a fully potentiated excitatory or inhibitory

synapse onto an excitatory neuron caused a postsynaptic potential of approximately 2.5 mV if

all other inputs were blocked. Parameter values can be found in Table 4.2.

4.3.3 Excitatory synaptic plasticity

We implemented a voltage based STDP rule [146] that modified JEEij within the bounded range

(JEEmin ,JEEmax). Furthermore, we imposed a homeostatic normalization of the total excitatory

synaptic weights that a neuron received by scaling each row of JEEij every 20 ms to main-

tain a constant row sum [153, 154]. This was accomplished by subtracting a constant amount

from each nonzero entry in the row: JEEij (t) ← JEEij (t) −
∑

j J
EE
ij (t)−JEE

ij (0)

NE
i

, where NE
i is the

number of nonzero entries [155].
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The dynamics of the synapse from excitatory neuron j to excitatory neuron i were given by:

d

dt
JEEij (t) = −ALTDs

E
j (t)R

(
uEi (t)− θLTD

)
+ALTPx

E
j (t)R

(
V E
i (t)− θLTP

)
R
(
vEi (t)− θLTD

)
, (4.6)

where R is a linear rectifying function (R(x) = 0 if x < 0, R(x) = x otherwise), uEi and vEi

represent the membrane voltage V E
i low-pass filtered with time constants τu and τv respectively,

and xEj represents the spike train sEj low-pass filtered with time constant τx. Parameter values

can be found in Table 4.3.

4.3.4 Inhibitory synaptic plasticity

We implemented an inhibitory STDP rule [150] that modified JEIij within the bounded range

(JEImin,JEImax). Weight changes depended on yXi , which represents the spike train sXi low-pass

filtered with time constant τy. Upon a spike from either the presynaptic or postsynaptic neuron,

the weight was modified according to the following:

JEIij ← JEIij + η
(
yEi (t)− 2r0τy

)
if the presynaptic inhibitory neuron fired, (4.7)

JEIij ← JEIij + ηyIj (t) if the postsynaptic excitatory neuron fired.

The rate r0 represents the target firing rate to which the inhibitory plasticity attempts to bal-

ance the postsynaptic neuron. During unstimulated conditions, neurons fired on average less

frequently than their target rate due to synaptic bounds (mean of 1.7 Hz rather than 3 Hz; Fig-

ure 4.8), allowing the system to exhibit a distribution of firing rates because of the variability in

the connectivity matrix. Parameter values can be found in Table 4.4.

4.3.5 Stimulation protocols

For training (Figure 4.1), each stimulus i = 1 . . . 20 was activated sequentially for a period of

1 second, with 3 second gaps in between stimulus presentations. This was repeated until each

stimulus had been repeated 20 times. For retraining (Figure 4.3), each stimulus was presented

100 times. During training, stimuli increased rXEext by 8 kHz. These simulations began with

a 10 second period without STDP to allow transients to die out. To probe the dependence of

Fano factor and correlation before and after training (Figures 4.5 and 4.6), we used a weaker

81



Chapter 4. Formation of neuronal assemblies

stimulus, with a duration of 500 ms and an increase in rXEext of 2 kHz. These simulations were

repeated 50 times for each of 10 stimuli to assess trial-to-trial variability. We disabled STDP for

these short protocols.

For the non-recurrent network (Figure 4.2a,b), we chose the inhibitory STDP target firing

rate for each neuron to be equal to its spontaneous firing rate in the trained system and removed

synaptic bounds for inhibitory STDP. We also increased rEEext by 4 kHz and rIEext by 2 kHz to

compensate for the loss of recurrent excitation. We then allowed the system to run for 200 s

for firing rates to reach their target values before activating excitatory STDP. This allowed for a

matched firing rate comparison between the two networks.
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Symbol Description Value

τE E neuron resting membrane time constant 20 ms
τ I I neuron resting membrane time constant 20 ms
EEL E neuron resting potential -70 mV
EIL I neuron resting potential -62 mV
∆E
T E neuron EIF slope factor 2 mV
C Capacitance 300 pF
EE E reversal potential 0 mV
EI I reversal potential -75 mV
VT Threshold potential -52 mV
AT Post spike threshold potential increase 10 mV
Vre Reset potential -60 mV
τabs Absolute refractory period 1 ms
aw Subthreshold adaptation 4 nS
bw Spike triggered adaptation 0.805 pA

Table 4.1: Parameters for neuronal membrane dynamics

Symbol Description Value

NE Number of E neurons 4,000
N I Number of I neurons 1,000
p Connection probability 0.2
τEr Rise time for E synapses 1 ms
τEd Decay time for E synapses 6 ms
τ Ir Rise time for I synapses 0.5 ms
τ Id Decay time for I synapses 2 ms
rEEext Rate of external input to E neurons 4.5 kHz
rIEext Rate of external input to I neurons 2.25 kHz
JEEmin Minimum E to E synaptic weight 1.78 pF
JEEmax Maximum E to E synaptic weight 21.4 pF
JEE0 Initial E to E synaptic weight 2.76 pF
JEImin Minimum I to E synaptic weight 48.7 pF
JEImax Maximum I to E synaptic weight 243 pF
JEI0 Initial I to E synaptic weight 48.7 pF
JIE Synaptic weight from E to I 1.27 pF
JII Synaptic weight from I to I 16.2 pF

Table 4.2: Parameters for recurrent coupling

83



Chapter 4. Formation of neuronal assemblies

Symbol Description Value

ALTD Long-term depression (LTD) strength .0008 mV−1

ALTP Long-term potentiation (LTP) strength .0014 mV−2

θLTD Threshold to recruit LTD -70 mV
θLTP Threshold to recruit LTP -49 mV
τu Time constant of low-pass filtered membrane voltage (for LTD) 10 ms
τv Time constant of low-pass filtered membrane voltage (for LTP) 7 ms
τx Time constant low-pass filtered spike train (for LTP) 15 ms

Table 4.3: Parameters for excitatory synaptic plasticity

Symbol Description Value

τy Time constant of low-pass filtered spike train 20 ms
η Synaptic plasticity learning rate 1
r0 Target firing rate 3 Hz

Table 4.4: Parameters for inhibitory synaptic plasticity
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4.4 Results

4.4.1 Formation of neuronal assemblies

While many studies have investigated the dynamics of balanced networks with fixed connection

weights, few have investigated the case of plastic synapses. We simulated a model cortical net-

work of excitatory and inhibitory neurons, supplemented with plasticity rules that modified the

connections onto excitatory neurons (see Methods). The network was composed of 4,000 adap-

tive exponential integrate-and-fire excitatory neurons and 1,000 integrate-and-fire inhibitory

neurons [151, 152] coupled randomly with a connection probability of 0.2. Excitatory to ex-

citatory synapses were governed by a voltage based STDP rule (146; Figure 4.1a, top) and

inhibitory to excitatory synapses by a symmetric Hebbian STDP rule [150]. Both synapse types

were bounded between minimum and maximum values. The excitatory STDP rule captured the

dependence of long-term depression and potentiation (LTD and LTP) on firing rate (156; Figure

4.1a, bottom), so that neurons that exhibited correlated rate fluctuations tended to recruit LTP.

The total excitatory conductance onto any neuron was normalized [153, 154], thus imposing

competition between synapses. Inhibitory synaptic plasticity limited the firing rate of excitatory

neurons, as frequently firing neurons recruited more inhibition [150].

We began with a network with a homogeneous weight structure. The network exhibited

irregular and asynchronous firing due to a balance between excitatory and inhibitory currents

[24, 27]. No structured connectivity emerged during spontaneous activity (Figure 4.7). We

investigated how this connectivity could be modified by the application of external stimuli.

To do so, we defined a set of twenty stimulus patterns, which when active corresponded to

increased excitatory drive to neurons targeted by that pattern. Neurons were targeted by each

of these patterns with a probability of 0.05. As a result, the number of stimuli targeting each

neuron was binomially distributed and approximately 36% of neurons were not targeted, 38%

were targeted by one stimulus, and 26% were targeted by multiple stimuli. For each stimulus

i = 1, 2, . . . , 20, we refer to those neurons targeted by the stimulus as neuronal assembly i.

Stimuli were presented sequentially in repeated presentation blocks. We recorded W̄in, the

average synaptic strength of connections in each of the twenty neuronal assemblies. During the
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training period, this quantity increased as stimuli were presented, until the synapses between

neurons in the same assembly were strongly potentiated (Figure 4.1b,c).

Besides modifying synaptic weights, training also changed the network’s spontaneous dy-

namics. The clustered excitatory connectivity led to transient activations of previously stim-

ulated neuronal assemblies (Figure 4.1d,e). These activations occurred over a timescale of

hundreds of milliseconds. We conclude that the network is capable of reorganizing its connec-

tions in response to stimulus presentation, and that this reorganization substantially modifies

spontaneous dynamics to reflect prior stimuli. We refer to these new dynamics as structured

spontaneous activity, in contrast to the uncorrelated activity in the uniformly connected net-

work.

4.4.2 Stability of learned connectivity

We next examined the stability of the network architecture during these spontaneous fluctua-

tions. Many studies have examined how different synaptic dynamics can affect the stability of

learned connectivity in the face of random spontaneous firing [157], employing models that

include, for example, cascades of synaptic states [158] or metaplasticity [159]. We took a com-

plementary approach, asking whether the modification of network dynamics after training could

be beneficial for the persistence of the learned architecture compared to the random firing case.

We reasoned that structured spontaneous activity (Figure 4.1d) could consolidate the learned

assembly structure.

We therefore compared the trained recurrent network to a hypothetical non-recurrent net-

work without structured spontaneous activity. Both networks began with the same initial trained

weight matrix and exhibited the same firing rates (see Methods). However, in the non-recurrent

network, synaptic plasticity modified the weight matrix depending on neurons’ spike times, but

excitatory spikes did not cause EPSPs in postsynaptic targets (Figure 4.2a). Therefore, exci-

tatory inputs were purely external and uncorrelated, which prevented coordinated assembly

activation. We measured W̄in over a period of spontaneous activity in the two models. In

the non-recurrent network, W̄in decayed faster than in the recurrent network with structured

spontaneous activity (Figure 4.2b), suggesting that this activity prevents degradation of learned

connectivity.
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Figure 4.1: Modification of weights and spontaneous activity by training. (a) STDP curve for
different pairing frequencies (top) and weight change as a function of firing rate assuming
both neurons fire as Poisson processes with the same rate (bottom). (b) Average synaptic
weight W̄in for synapses between neurons within an assembly (top) and W̄out for synapses
between neurons in different assemblies (bottom). (c) Graph showing connection strength
between neuron pairs for 50 neurons sampled from three assemblies before (left) and after
(right) training. Orange lines correspond to strong excitatory connections. Neurons in the
same assembly are placed nearby. Colored nodes indicate neurons targeted by stimulus 1. Due
to overlap, some of these targeted neurons are also in the assemblies corresponding to stimulus
2 and 3. (d) Excitatory neuron spike rasters before and after training. Adjacent rows in the
raster correspond to neurons in the same assembly. Some rows are repeated since neurons can
belong to multiple assemblies. Neurons not belonging to assemblies are not shown. (e) Average

firing rate for neurons in each assembly, corresponding to the activity in D.
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Figure 4.2: Stability of trained architecture. (a) Schematic of recurrent and non-recurrent
networks. In both networks, neurons fire leading to STDP that modifies the weight matrix. In
the non-recurrent network, recurrent EPSPs that would be caused by excitatory neuron spiking
are blocked. (b) Average synaptic weight within assemblies W̄in during spontaneous activity
after training for the two networks. (c) Dynamics of W̄in in response to a perturbation that

reduced W̄in for one assembly at t = 15 s (arrow).

To further probe the effect of structured spontaneous activity, we perturbed W̄in, reducing

it by 10% for one assembly, and analyzed the resulting dynamics. After the perturbation, W̄in

increased for that cluster, showing that structured spontaneous activity can retrain a network if

its architecture is disrupted (Figure 4.2c). Hence, this activity both lengthens the timescale over

which a network can retain its learned connectivity and provides an error-correcting mechanism

given disruptions of this connectivity. This error-correcting property is distinct from mechanisms

that operate at the synaptic level, as such mechanisms have no knowledge of learned network-

level structures. Instead, collective activations of entire assemblies underlie this process.
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4.4.3 Remapping architecture with novel stimuli

We have shown that a set of stimulus patterns can be embedded in a recurrent network with

STDP. How flexible is this network; that is, can it respond to the presentation of novel stimulus

sets? We examined this by defining a new set of twenty stimulus patterns and repeatedly pre-

senting them to the network. We then compared W̄in for the new stimulus-defined assemblies

and the old assemblies throughout this protocol.

During this retraining protocol, W̄in increased for the new assemblies and decayed for the

old assemblies (Figure 4.3a). Fully potentiating the new set of assemblies required more stim-

ulus presentations than the original training protocol, indicating that trained stimulus-specific

assemblies can interfere with the formation of new ones. Retraining also shifted spontaneous

activity. Prior to retraining, only the original assemblies were activated during spontaneous ac-

tivity (Figure 4.3b). Afterwards, the new assemblies were activated, as well as some of the old

assemblies that remained potentiated (Figure 4.3c). Given the stability of the trained assemblies

(Figure 4.2) and these results, we conclude that the network is stable to weak perturbations of

its input statistics, but sufficiently strong changes in its inputs cause the network to reorganize

itself.

4.4.4 Effects of homeostatic inhibitory plasticity

So far, we have addressed the dynamics of connections between excitatory neurons. We also

modeled plasticity of inhibitory synapses onto excitatory neurons (iSTDP) using a recently pro-

posed rule [150]. Under the iSTDP rule, inhibitory synapses were on average potentiated when

the postsynaptic excitatory neuron fired above a target firing rate and depressed otherwise.

As a result, the rule homeostatically regulated the distribution of excitatory firing rates in the

network toward this target value.

We next show that this homeostatic mechanism is beneficial for assembly dynamics. Under

the iSTDP rule, strongly interconnected assemblies will receive more inhibition than weakly

interconnected ones (Figure 4.4a,b). This is because stronger assemblies are more likely to

become active and hence have higher average firing rates. Without iSTDP, imbalances in W̄in

or assembly size can lead to winner-take-all dynamics in which the strongest cluster remains
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Figure 4.3: Remapping of architecture with presentation of new stimulus ensemble. (a) Average
synaptic weight within assemblies W̄in for neurons in the new set of assemblies (top) and the
original set of assemblies (bottom), during repeated presentations of the new stimulus set.
(b) Plot of network activity for rows arranged according to the original assemblies (left) and
new assemblies (right). The activity is the same for both rasters, but the rows are permuted
according to assembly membership. (c) Same as B, but after training on the new stimulus set.

active for long periods of time. In general, fine-tuning of parameters is needed to avoid these

pathological states [153]. Indeed, if the training protocol from Figure 4.1 was applied to a net-

work without iSTDP, only a subset of assemblies achieved a high W̄in (Figure 4.4c). This lack of

training occurred because the strongest assembly, once sufficiently potentiated, dominated the

spontaneous activity of the network, unlike the network with iSTDP (Figure 4.4d). Homeostatic

regulation of excitatory activity therefore prevents winner-take-all dynamics and promotes the

formation of multiple heterogeneous assemblies. Such regulation is critical for the network to

robustly exhibit structured spontaneous activity.
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Figure 4.4: Effects of inhibitory STDP (iSTDP). (a) Schematic showing connections between
two assemblies and inhibitory neurons. One strongly connected and one weakly connected
assembly is shown. Orange lines correspond to strong excitatory connections and blue lines
to strong inhibitory connections. (b) Average inhibitory connection strength onto assemblies
of different sizes for networks with and without iSTDP. (c) Average connection strength within
clusters W̄in during training for networks with (left) and without (right) iSTDP. (d) Spike rasters

during spontaneous activity for networks with (left) and without (right) iSTDP.

4.4.5 Spike statistics before and after training

We have investigated the mechanisms that cause the network to respond differently to familiar

and unfamiliar stimulus patterns. Next, we quantify the changes in spike train statistics due

to training. We examined the responses of neurons to the new set of stimulus patterns (Figure

4.3) before and after being trained on those patterns. This allowed us to make predictions about

spontaneous and evoked dynamics before and after training.

We first considered evoked firing rates. Consistent with increased recurrent connectivity, the

gain of stimulated neurons was higher for trained versus untrained inputs (Figure 4.5a). In

addition to amplification, structured excitatory connectivity is often proposed as a mechanism

for pattern completion [160]. To test whether the network was capable of pattern completion,
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we presented stimuli that targeted half of the neurons in assemblies. We then compared the

firing rates of stimulated neurons and non-stimulated neurons that were in targeted assemblies

to baseline firing rates. Before training, stimulated neurons fired at increased rates, but non-

stimulated neurons within a stimulated assembly fired at baseline levels (Figure 4.5b). After

training, both stimulated and non-stimulated neurons had increased firing rates. Hence, the

presence of a stimulus could be read out from neurons that did not directly receive it through

feedforward projections, as long as they were part of the corresponding assembly.

We also examined trial-to-trial variability of excitatory neurons in the network. We com-

puted the Fano factor of spike counts in 100 ms windows over repeated presentations of stimuli.

Stimulation caused a reduction in Fano factor as is frequently observed in cortex [17] (Figure

4.5b). This reduction was due to the suppression of spontaneous fluctuations by the stimulus

[36, 112]. This decrease was greater for trained versus untrained stimuli (Figure 4.5c). The

combination of this decrased trial-to-trial variability and increased gain (Figure 4.5a) suggests

that training improves the reliability of stimulus representation. To test this, we attempted to

detect the presence of a stimulus using the spike count of single neurons in 200 ms intervals af-

ter stimulus onset. The resulting receiver operating characteristic (ROC) curve was higher after

training (Figure 4.5d). Hence, training led to a measurable improvement in stimulus encoding,

even at the single neuron level.

We also quantified collective activity using the spike count correlation between neuron pairs

measured in 100 ms windows across trials. On average, noise correlations during spontaneous

activity were near zero consistent with an asynchronous state (27; Figure 4.6a). However, neu-

ron pairs in the same cluster had positive average spike count correlation after training (Figure

4.6b). This correlation reflected collective fluctuations due to structured spontaneous activity.

Notably, the contribution of these positive correlations was suppressed when the network was

stimulated, with greater suppression for trained stimuli (Figure 4.6c). We conclude that, after

training, networks exhibit collective spontaneous fluctuations consistent with their previous in-

puts. However, when external input is applied, these fluctuations are suppressed and reliable

responses are produced.
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Figure 4.5: Changes in evoked spike statistics after training on a new stimulus ensemble. (a)
Average evoked firing rate in stimulated neurons as a function of stimulus strength, defined
here as the change in the firing rate of the external excitatory input to stimulated neurons. All
error bars denote standard error of the mean across different stimuli. (b) Pattern completion
before and after training. Average firing rates are shown in baseline spontaneous conditions
(b), for non-stimulated neurons within a stimulated assembly (NS) and for stimulated neurons
(S). (c) Fano factor as a function of time for all excitatory neurons. Evoked stimulation interval
is denoted by the orange bar. Fano factor was computed using the mean matching techniques
presented in 17. (d) Average receiver operating characteristic (ROC) curve for detecting the
presence of a stimulus using the spike count of single neurons in the first 200 ms after stimulus

onset.
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4.5 Discussion

4.5.1 Predictions of the model

Clearly identifying neuronal assemblies is difficult because accessing a large fraction of the

connections in a local circuit is experimentally challenging, although some progress has been

made [104]. Our model, however, makes predictions that can be tested with single neurons

or pairs (Figures 4.5 and 4.6). The first prediction, that recurrent connectivity is responsible

for a large proportion of stimulus-tuned excitatory input, is consistent with findings from vi-

sual and auditory cortex that tuned recurrent excitation amplifies responses to thalamic input

[161, 162, 163]. The fact that these responses are associated with slow dynamics [36] is also

consistent with results from auditory cortex suggesting that recurrent excitation prolongs re-

sponse duration [163].

Stimulus evoked reductions in Fano factor are seen in many cortical regions [17]. We further

predict that training can reduce Fano factors. This observation has been made in prefrontal

cortex, in which an increase in firing rate and decrease in variability was found after training

on a working memory task [164]. However, in that study, Fano factor was reduced during the

fixation period as well. This result would be consistent with our model assuming that task

relevant assemblies were trained and remained active during the performance of the task and

hence suppressed spontaneous fluctuations.

Our network also makes predictions about spike train co-variability. Structured spontaneous

activity leads to increased noise correlation for neurons with similar stimulus preference, as

is commonly reported [139, 12]. Further, because connectivity is related to stimulus prefer-

ence in our network, this implies that neurons that share strong connections have higher noise

correlations (Figure 4.6b). This is consistent with findings from visual cortex showing noise

correlations are higher for connected pairs [106].

4.5.2 Homeostatic mechanisms and synaptic dynamics

We have shown that homeostatic regulation of firing rates in the form of inhibitory synaptic

plasticity is crucial for robust training of the network (Figure 4.4). We do not claim that this
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particular form of plasticity is necessary, but rather that regulation of average firing rate is likely

an important mechanism in maintaining reasonable activity patterns. Firing-rate modulated

scaling of total excitatory input weight, for example, could accomplish similar effects. Indeed,

miniature excitatory postsynaptic current (mEPSC) sizes and firing rates increase following sen-

sory deprivation that initially causes a decrease in visual cortex activity [165]. Previous the-

oretical studies have shown that homeosynaptic scaling can be beneficial for heterogeneous

working memory circuits, similar to the way inhibitory synaptic plasticity prevents the largest

of a heterogeneous set of assemblies from dominating network activity (153; Figure 4.4).

Our network also relied on heterosynaptic competition, which maintained the total excita-

tory synaptic strength onto a neuron, and bounds on synaptic strength. Heterosynaptic compe-

tition has been studied experimentally and in model networks [166, 149, 154]. In a previous

computational model, normalization of both presynaptic and postsynaptic weights along with

a simple STDP rule led to the spontaneous development of feedforward chains [154]. Our

model, in contrast, includes a dependence of STDP on firing rate and fewer constraints on

synaptic weights, leading to qualitatively different dynamics. Bounds on synaptic strength were

also necessary to curb the instrinsic instability of excitatory STDP. Without them, strong stimuli

could cause assemblies’ recurrent weights to increase without limit, or, conversely, parts of the

network to become completely disconnected. Such pathological behavior has been observed in

previous models of balanced excitatory-inhibitory networks with STDP that lacked the homeo-

static mechanisms in our study [130].

4.5.3 Other forms of plasticity and network dynamics

We made several assumptions on plasticity in our network. For simplicity and due to lack of

experimental studies, we did not model plasticity of synapses onto inhibitory neurons. Given re-

cent studies focusing on the diversity of interneuron subtypes [167, 168], future computational

studies should explore the dynamics of networks with multiple inhibitory populations. We also

assumed that the feedforward inputs to neurons were fixed during training. In development,

thalamic input specificity occurs prior to the establishment of specific recurrent connectivity

[144]. On the other hand, simultaneous plasticity of feedforward and recurrent pathways may

yield new principles. For example, inhibitory plasticity of feedforward pathways may compete
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with the increases in gain seen in our study (Figure 4.5a), transforming the primarily feedfor-

ward untrained system to a primarily recurrent trained system with similar response character-

istics. This shift from a feedforward to a pattern-completing network is somewhat reminiscent

of predictive coding theories, in which higher regions predict the activity in lower regions and

feedforward connections serve primarily to transmit errors in this prediction [169].

A critical aspect of our model was the dependence of potentiation and depression on the

firing rate of the postsynaptic neuron (Figure 4.1a, bottom). Such dependence has been shown

experimentally and is a feature of multiple biophysically motivated STDP rules [156, 170, 146,

148]. For an analysis of these other rules in the context of assembly formation, see Appendix

B. Unlike previous studies in which spike timing was the only determinant of synaptic changes,

rate, not spike timing, was the most important quantity in our network. Indeed, our reduced

model captured many features of the spiking network using a plasticity rule similar to the rate-

based BCM rules [171]. However, while we have shown that neuronal assemblies constitute

stable configurations of the synaptic weights for our system, we have not shown that they

are the only ones. Other structures, such as feedforward chains, may also be stabilized by

the voltage based STDP rule we studied or other rules. Such structures may be important for

explaining spontaneous activation of temporal activity sequences [137]. Relating biophysically

motivated plasticity rules to the stable weight configurations they can support remains an open

area of inquiry.
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4.6 Supplementary Figures
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Figure 4.7: No development of structure during spontaneous activity without stimulation. (a)
200 × 200 subset of the excitatory weight matrix after 500 s of spontaneous activity. Vertical
bars indicate that the output weights of individual neurons are correlated. (b) Average output
weight W̄ of neurons as a function of the presynaptic neuron’s firing rate. Lower firing rate
neurons tend to have higher output weights, as would be expected for depression-dominated

plasticity.
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Figure 4.8: Firing rate distributions for excitatory neurons after training. (a) Neurons belonging
to one or more assemblies. (b) Neurons not belonging to any assembly.

97





5. Analysis of simplified birth-death process

network model

5.1 Introduction

In the previous two chapters, we presented results from simulations of spiking systems with

multiple interacting subpopulations. These subpopulations could exhibit bistability (Chapter

3). When plasticity was added, this bistability promoted the stability of clustered weight con-

figurations (Chapter 4). To understand the mechanisms behind these dynamics, we developed

a simple model of plastic neuronal populations. By reducing the system to a small number of

populations, this model allowed us to formally demonstrate how rich spontaneous activity leads

to stability of trained weight configurations. It also indicates that this result is not specific to

the particular spiking implementation of the previous chapter.

5.2 Escape rates for a simplified bistable neuronal population model

To obtain a tractable model of interacting neuronal populations, we use techniques of Bressloff

[172]. We consider simplified dynamics in which each population i is characterized by ni(t), the

number of active units within the population at time t. ni(t) takes nonnegative integer values

but is not bounded above. It evolves according to a birth-death process characterized by T+
i (n)

and T−i (n), which represent the rate of transitions from the state of n neurons active to n+ 1 or

n− 1 neurons active, respectively. Hence, the probability distribution over the states of ni(t) is

given by:

dPi(n, t)

dt
= T+

i (n− 1)Pi(n− 1) + T−i (n+ 1)Pi(n+ 1)−
(
T+
i (n) + T−i (n)

)
Pi(n). (5.1)
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Figure 5.1: Plot of f(x) with xb = 0, f0 = 2, γ = 4, and θ = 0.85. Intersections with the line
y = x (dashed curve) correspond to equilibrium points of the Wilson-Cowan equations (5.4) in

the limit of large N .

Following Bressloff [172], we construct T+ and T− so that, in the limit of large population size,

we recover the deterministic Wilson-Cowan equations. This can be seen by using the master

equation to calculate the time evolution of the expectation of n, neglecting the influence of

higher order moments. To that end, we define an abstract size parameter N (note that this

parameter is not the upper bound on the number of active neurons per population). We then

define:

T+
i (n) = Nf(n/N), T−i (n) = n, (5.2)

where f is a standard sigmoidal function of its inputs:

f(x) = xb +
f0

1 + e−γ(x−θ) . (5.3)

Here, γ controls the sharpness of the sigmoid, θ controls the offset, xb the baselane, and f0

controls the maximum value. As N →∞, the birth-death process (5.1) obeys the equation:

dx

dt
= −x+ f(x), (5.4)

if n/N is identified as x.

To begin, we consider the case of a single neuronal population and omit the subscript i.

We first note that, for sufficiently strong activation f , the deterministic equation (5.4) exhibits

bistability (Figure 5.1). Simulations of the birth-death processes described in this section can be

performed using the Gillespie algorithm. Simulating a finite-sized system with N = 20 confirms
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Figure 5.2: Transition rates for a single population with xb = 0, f0 = 2, γ = 4, N = 20, and
θ = 0.85. Solid lines represent transition rates estimated from simulations using the Gillespie

algorithm. Dashed lines represent the theoretical estimates from equations (5.5).

that n/N spends most of its time near two equilibria, which we label x− and x+. We seek to

analyze the transitions between these two states.

By approximating the solution in the vicinity of the two equilibria x− and x+ and then

matching the two solutions near the saddle point x0, we obtain expressions for r− and r+, the

rate of escape from the lower and higher equilibrium, respectively [172] (see Appendix C):

r− =
Ω+(x−)

2π

√
|S′′(x0)|S′′(x−)e−N(S(x0)−S(x−)),

r+ =
Ω+(x+)

2π

√
|S′′(x0)|S′′(x+)e−N(S(x0)−S(x+)). (5.5)

where Ω±(xi) = T±i (ni/N) and S(x) =
∫ x

ln Ω−(y)
Ωx(y) dy. This approximation provides an excellent

match of simulations of the birth-death process (Figure 5.2).

5.3 Transition rates for multiple populations

5.3.1 Identical populations

We extended the results of Bressloff [172] to the case of M identical bistable neuronal popu-

lations with inhibition, forming a competitive network. To implement recurrent inhibition, we

assume that, for each neuron in population i, the rate of transitions from quiescent to spiking is

given by:

T+
i (n) = Nf

∑
j

(Wij − winh)nj/N

 . (5.6)
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This corresponds to homogeneously coupled populations in which every neuron in population i

receives input of strength (Wij − winh)/N from every neuron in population j. We assume that

Wij is positive for i = j reflecting self-excitation and negative for i 6= j reflecting inhibition

between populations. We are interested in the probability distribution P (m), where m is the

number of populations in the high activity state. To calculate the probability distribution, we

make several simplifying assumptions:

1. Each population is composed of N neurons.

2. Wii = Win ∀i.

3. Wij = Wout ∀i 6= j.

4. Transitions between different network states (that is, between states of different m) oc-

cur only as transitions of a single population at a time. In other words, we neglect the

possibility of two or more populations transitioning simultaneously.

5. In between a transition, the input from other clusters can be approximated as constant.

With these assumptions, populations can be treated as indistinguishable and hence the system

is described as a birth-death process with respect to m. In this situation, P (m) is determined

solely by r+(m) and r−(m), the rate at which populations transition to or from the active state

given that m are currently active. Once these rates are calculated, the dynamics of the system

can be analyzed by studying the matrix of transition probabilities:

Q =



1−Mr+(0) Mr+(0) 0 · · ·

r−(1) 1− r−(1)− (M − 1)r+(1) (M − 1)r+(1) · · ·

0 2r−(2) 1− 2r−(2)− (M − 2)r+(2) · · ·
...

...
...

. . .


. (5.7)

In particular, the steady-state distribution of P (m) is given by the eigenvector of Q correspond-

ing to an eigenvalue of 1 (the Perron-Frobenius eigenvector).
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We now describe the calculation of r±(m). First, we calculate x±(m), which now depend on

m. This is done by numerically solving the two-dimensional system of equations:

0 = −x− + f ((Win − winh)x− + (Wout − winh) [mx+ + (M −m− 1)x−]) , (5.8)

0 = −x+ + f ((Win − winh)x+ + (Wout − winh) [(m− 1)x+ + (M −m)x−]) . (5.9)

for each m. We then calculate r+ and r− using the same procedure as in the single population

case, with equation 5.5, but with:

γ ← (Win − winh)γ, (5.10)

and

θ ← 1

Win − winh
(θ − (Wout − winh)[mx+ + (M −m− 1)x−]) (5.11)

for r−, and

θ ← 1

Win − winh
(θ − (Wout − winh)[(m− 1)x+ + (M −m)x−]) (5.12)

for r+. These redefinitions become apparent when observing that f((Win − winh)x− + (Wout −

winh) [mx+ + (M −m− 1)x−]) (see equation (5.3)) is equal to f̃(x) if f̃(x) corresponds to f(x)

with the redefined γ and θ. The redefinition of θ amounts to approximating the sum
∑

i 6=j(Wij−

winh)xj as
∑

i 6=j(Wout − winh)x±; that is, assuming all other populations’ activities are fixed at

the low or high activity local minimum, making this external input equivalent to a constant bias.

We computed P (m) for M = 2 using these assumptions, finding a good approximation between

theory and simulations (Figure 5.3).

5.3.2 Non-identical populations

If the populations are not identical (that is, Wij is arbitrary), it is no longer possible to reduce

the 2M possible states to M states as before. To find the stable states of the system, we solve

numerically the set of M nonlinear equations:

0 = −xi + f

(Wii − winh)xi +
∑
i 6=j

(Wij − winh)xj

 . (5.13)
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Figure 5.3: Estimation of the equilibrium state distribution P (m) for two populations with
xb = 0, f0 = 2, γ = 4, N = 16, θ = 0.85, win = 1.05, wout = 0, and winh = 0.05. Solid lines
represent transition rates estimated from simulations using the Gillespie algorithm. Dashed

lines represent the theoretical estimates from the Perron-Frobenius eigenvector of Q.

We assume that the stable solutions of this system are of the form xi = x±; that is, the popula-

tions may be bistable. Note that depending on W , any given population may have two or only

one stable states. We denote the possible states of the system as:

S = {(0, 0, . . . 0), (0, 0, . . . , 1), . . . (1, 1, . . . , 1)}, (5.14)

where 0 corresponds to the low activity state x−, 1 corresponds to the high activity state x+,

and the ith term in the M dimensional ordered pair corresponds to the ith population. Not all

2M states may be stable solutions of equations (5.13). Assuming that population i is bistable,

we next compute ri+(s) or ri−(s) for state s ∈ S. Define xi(s) as the equilibrium solution for

xi obtained from equations (5.13) in states s. Then we again apply equation (5.5) which we

derived for the one population case, but with the substitutions:

γ ← (Win − winh)γ, (5.15)

and

θ ← 1

Win − winh
(θ −

∑
i 6=j

(Wij − winh)xj). (5.16)

Using the computed r±i, the matrix of transition probabilities between states Q can again be

developed. In this case, Q will be 2M dimensional, but for any state sk ∈ S that is not a stable

solution of equations (5.13), we set Qkl = Qlk = 0 ∀l. Otherwise, for any transition rate ri±(sk)

that corresponds to a transition from state sk to state sl, we set Qkl = ri±(sl). The diagonal
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Figure 5.4: Possible equilibria of the set of nonlinear equations (5.13) with xb = 0, f0 = 2, γ =
4, N = 16, and winh = 0.05. Solid circles correspond to stable equilibria while unfilled circles
represent unstable equilibria. Lines correspond to nullclines. Each stable equilibrium is labeled
with its state s ∈ S. Red arrows indicate the direction of possible transitions between stable
states that can be computed using our theory. (a) Symmetric system with win = 1.05, wout = 0,
and θ = 0.85. Four stable solutions exist. (b) Same as (a) but with a higher threshold θ = 1.2
so that the s = (1, 1) state is no longer a solution. (c) Asymmetric system with W11 = 0.9,
W12 = 0.15, W22 = 1.05, W21 = 0, and θ = 0.85. Population 1 can only be in the high activity

state when it receives excitation from population 2.

elements for all stable states sk are then given by Qkk = 1 −
∑

l rkl. Similar to the identical

population case, the equilibrium distribution P (s) can be determined from the Perron-Frobenius

eigenvector of Q.

As an illustration of this technique, we plot the possible steady states of the system for a

variety of Wij (Figure 5.4). The fixed point structure of such Wilson-Cowan systems has been

characterized previously [173]. Depending on the parameters of the system, the number of

stable equilibria may change, and for asymmetric Wij some populations may be bistable while

others may not (Figure 5.4c).

5.4 Activity-dependent plasticity in a multiple-population model

5.4.1 Timescale separation of activity dynamics and weight dynamics

We next extend the framework we developed above to the case of slowly varying weights Wij .

We assume that the weights change according to some function g of the activity of populations
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i and j:

τW
dWij

dt
= g(xi, xj ,Wij). (5.17)

In the limit of τW →∞, dWij

dt can be expressed in terms of the average weight change for fixed

weights:

τW
dWij

dt
≈ 〈g(xi, xj ,Wij)〉xi,xj |Wij

, (5.18)

where the expectation is over the stationary distribution of xi and xj given Wij . We find this

stationary distribution by determining the stable states of the system using equations (5.13).

This yields the set of states S. By assuming the system spends most of its time near these

equilibria, we can write:

τW
dWij

dt
≈
∑
s∈S

P (s)g(xi(s), xj(s),Wij). (5.19)

The above amounts to a double timescale separation. We neglect the fast dynamics of individual

neurons and focus only on switches in the activity of the neuronal populations, which in turn

drive the much slower plasticity dynamics.

5.4.2 Application to two population model

We now apply this ansatz to the case of two interacting populations to study how spontaneous

activation of neuronal populations influences the weight dynamics. We consider two popula-

tions i = 1, 2, each of which contains N neurons. The weight matrix is given by

W =

 W11 W12

W21 W22

 . (5.20)

The change in weight from population j to i is given by:

dWij

dt
= ηxjxi(xi − µ) (5.21)

with the threshold µ = 1.8 and η = 0.001. This learning rule is similar to the classic Bienenstock-

Cooper-Munro rule, without the sliding threshold [171]. When the postsynaptic population i
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Figure 5.5: Plot of the plasticity rule ∆W12 ∝ g(x1, x2) as a function of the postsynaptic popu-
lation’s activity x1. The curve is shown for two values of x2.

is in the high activity state, potentiation occurs, while it is in the low activity state, depression

occurs.

In analogy with the spiking network simulations, we impose hard weight bounds so that

Wij ∈ (wmin, wmax). We also constrain the summed presynaptic input to each population, so

that Wi1 +Wi2 = Wsum. The constraint is implemented by adding a constant to Wi1 and Wi2 on

each timestep:

Wij ←Wij − (Wi1 +Wi2 −Wsum)/2. (5.22)

Because of the weight normalization, there are only two degrees of freedom among the four

weight variables Wij . Synaptic parameters were wmin = 0, wmax = 1, winh = 0.2, and Wsum = 1.

N was set to 16.

When all synaptic weights were equal, both populations exhibited low levels of activity

(Figure 5.6a, left). However, when recurrent excitation within population 1 and 2 was strong

(W11 = W22 = wmax), the populations transitioned between low and high activity states, similar

to the trained spiking network (Figure 5.6a, right). These different dynamics led to differential

recruitment of plasticity. In particular, little plasticity was recruited when both populations had

low rates, but the within-population weight Wii was strongly potentiated whenever population

i was in a high activity state (Figure 5.6a, bottom).

As described above, and similar to the spiking model of the previous chapter, we assumed

that each row of the 2 × 2 matrix defining the weights for the two populations summed to a

constant (synaptic normalization). This led to competition between the synapses onto each

population. This assumption also allowed us to reduce the four-dimensional dynamics of the
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weights to a two-dimensional plane. The axes corresponded to W11 and W22, the strength of

the synaptic weight within each of the two populations. When both Wii were not potentiated,

the network had only one stable activity level, and Wii did not change substantially (Figure

5.6a, left and 5.6b, bottom left). But when the Wii were sufficiently large, the system exhibited

structured spontaneous activity and activation of populations drove the Wii to wmax, their fully

potentiated value (Figure 5.6a, right and 5.6b, top right). In total, the model illustrated that

when Wii is potentiated, structured spontaneous activity appears and causes Wii to approach

wmax.

5.4.3 Four population model

Next, we extended the model to study the effects of remapping. We defined a four-population

model in which each population was half the size of the two-population case (N = 8). Further,

synaptic strengths were halved (wmax = 0.5, winh = 0.1) so that pairs of populations could

together form assemblies with identical dynamics to Figure 5.6a. When populations 1 and 3

were strongly connected and populations 2 and 4 were strongly connected, each pair (1,3) and

(2,4) formed an assembly that underwent correlated fluctuations (Figure 5.6c, left). Further, if

the connectivity was changed such that the pairs (1,2) and (3,4) were strongly connected, the

new pairs underwent correlated fluctuations (Figure 5.6c, right).

We examined the dynamics of the synaptic weights in the subspace spanned by W12 and

W34. We found that both the (1,3) and (2,4) pairing (Figure 5.6c, left and 5.6d, bottom left)

and the (1,2) and (3,4) pairing (Figure 5.6c, right and 5.6d, top right) were stable weight con-

figurations. The model therefore shows that learned synaptic weight matrices can be stabilized

by structured spontaneous activity, and that there may be multiple such stable weight matrices.

As the number of possible combinations of subpopulations that can form assemblies increases,

the number of stable weight matrices will grow exponentially.
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Figure 5.6: Weight dynamics in reduced model. (a) Two population model in the untrained
(left) and trained (right) states. Top: Schematic illustrating weights. Thicker lines correspond
to stronger weights. Middle: Dynamics of population firing rates. Bottom: Change in synaptic
weights from population 1 onto itself (∆W11) and population 1 to 2 (∆W21) due to the rate
fluctuations in the middle subpanel. (b) Vector field showing the weight dynamics for W11 and
W12. The top right is stable and corresponds to the right side of (a). Red trajectories correspond
to individual simulations of the model. (c) Similar to (a) but for the four population model.
Left: State in which populations (1,3) and populations (2,4) form a strongly connected assem-
bly. Right: State in which populations (1,2) and populations (3,4) form a strongly connected
assembly. (d) Vector field for the four population model showing the weight dynamics for W12

and W34. The bottom left corresponds to the left side of (c), and the top right corresponds to
the right side of (c).
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6. Conclusion

In this thesis, I presented several studies on collective behavior of neurons in balanced networks.

In Chapter 2, this took the form of correlations driven by common presynaptic input. In Chapters

3, 4, and 5, I focused primarily on the dynamics of neuronal assemblies. In this concluding

chapter, I will discuss the relationship between these results and other models and discuss

possible extensions of the work.

6.1 Uniform versus structured connectivity

A recent study demonstrated that networks with balanced excitation and inhibition can exhibit

tuning for stimulus features such as orientation even if both inputs from tuned neurons in a

previous layer and recurrent connections are random [174]. The mechanism relies on an am-

plification of the quenched component of the feedforward projections due to a balance between

excitation and inhibition. The authors argue that this mechanism helps explain the presence of

orientation tuning in rodents, whose visual cortices lack orientation columns.

On the other hand, it is known that recurrent connections in mouse visual cortex are not

random [106]. Neurons are orientation-tuned at eye opening and seemingly random synaptic

connections are refined through experience so that similarly tuned neurons are more likely to

be connected [144]. The model of Hansel & van Vreeswijk [174], therefore, may be more

appropriate for the immature visual cortex or other cortical regions.

However, the study raises the question: why is specific recurrent connectivity present if

stimulus tuning can be accomplished through random connections? Our study provides a few

possible reasons. First, recurrent circuitry can amplify responses and perform pattern comple-

tion if a partial stimulus is presented. This amplification is observed in several primary sensory
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regions [161, 162, 163]. Second, we show that recurrent inhibitory circuitry can suppress fluc-

tuations when stimuli are presented (Figure 4.5). Third, this recurrent connectivity may serve

to temporally prolong the response to stimuli, as observed in auditory cortex [163]. This re-

sult may be beneficial for neuronal computations that rely on dynamical “traces” of past inputs

[175].

6.2 Balanced attractor networks and scaling

Since cortical networks exhibit specific recurrent connectivity, we developed the models ex-

amined in this thesis, composed of many neuronal assemblies embedded in a sea of random

connections. These networks can be seen as a merging of ideas from the balanced network

literature [24, 27], which proposes models of trial-to-trial variability, and the Hopfield network

literature [160], which proposes models of neuronal assemblies. This connection has been made

in many studies previously [108, 114, 111]. Our contribution is specifically to study the implica-

tions of such attractor structures for trial-to-trial variability (Chapter 3) and how such attractors

could form in networks with realistic plasticity mechanisms (Chapter 4). Below, we discuss

more thoroughly the plausibility of merging these ideas in the context of scaling arguments.

One of the requirements to merge these two lines of research was a specific scaling of the

size of the neuronal assemblies. In balanced networks, if neurons receive K connections, then

the connection strength J must be proportional to 1/
√
K (see Chapter 1). We consider the case

of dense connectivity, so that K ∝ N . We want the perturbation away from a homogeneous

balanced network due to the attractor structure to be O(1), to prevent large attractors from

dominating the network activity. We let the size of a neuronal assembly be C neurons and

define the coding fraction as C/N . Then we must have:

C(Jinpin − Joutpout) = O(1), (6.1)

where Jin−Jout is how much stronger connections within the assembly are and pin−pout is how

much more probable they are. There are three scenarios:

1. C ∝ K, that is, each assembly is composed of a macroscopic number of neurons and the

coding fraction is constant. This is the case of a classic Hopfield network [160]. However,
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to satisfy equation (6.1), we must have Jinpin−Joutpout ∝ 1/K. This presents a fine-tuning

problem, as the J ’s themselves are proportional to 1/
√
K, much larger than the desired

difference between Jin and Jout. Classic Hopfield networks avoided this problem as J was

proportional to 1/K.

2. C ∝
√
K, so the coding fraction is small. This was the case considered in our studies and

does not require fine-tuning as setting Jin = aJout for some constant a ensures equation

(6.1) is satisfied. In such networks, the number of neurons in a local assembly is smaller

by a factor of
√
K than the total number of inputs received. If stimuli are assumed to

excite a few assemblies at once, this corresponds to a network exhibiting sparse coding,

which is frequently encountered in cortex [120].

3. C ∝ 1. This corresponds to a case of extremely sparse coding, as assembly size does not

grow at all with K. Further, in this case we must have Jin = O(1) while Jout = O(1/
√
K),

corresponding to a few extremely strong local connections. For these reasons, we do not

consider this case.

Typically, spiking implementations of attractor networks fall into the second category, as was

true for our study [108, 114, 110]. Roudi & Latham [111] took an alternative approach and

studied the first category, differentiating between “background weights” that were O(
√
K) and

“foreground weights” (connections between neurons in the same assembly) that were O(1/K).

In order to obtain stable assembly activation, these foreground weights needed to be tuned to

within 6% in a network of 10,000 neurons, and it is unclear that such fine-tuning is plausible.

It is therefore an open question how to robustly merge balanced and attractor networks

with a nonvanishing coding fraction. Unlike primary sensory regions, higher-order associative

regions such as prefrontal cortex have a large degree of “mixed selectivity,” with high coding

fractions and assembly overlap [176]. The fine-scale architecture of such regions has yet to be

determined.
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6.3 Future work

6.3.1 Modulations of correlation in different states

In Chapter 2, we showed that a change in the cellular properties of neuron pairs (in that case,

a change in membrane conductance via increased balanced input) can change the correlation

between their spike trains. In showing this, we assumed that the neurons received external,

correlated input (Figure 2.3). This assumption of external correlating input is often made in

modeling studies concerned with pairwise statistics [86, 46, 10, 49, 177, 178]. However, in

recurrent balanced networks, correlations are often weak [27]. As a result, modulations of

pairwise statistics that require external correlating inputs can be difficult to observe in randomly

coupled networks.

In Chapter 3 we demonstrated that particularly connectivity structures can induce corre-

lated fluctuations in networks without assuming correlated input. This and other recent studies

that focus on the generation of collective activity in balanced networks [112, 179] open the

possibility of studying the modulation of correlations that emerge internally from network in-

teractions, instead of being imposed externally. For example, Deco & Hugues [112] modeled the

influence of attention as a signal that biased activity in particular states of a multistable system,

similar to the influence of a signal in our clustered network (Figure 3.5). It was found that

this signal decreased correlation, as observed in visual cortex [15]. Recently, it was shown that

burstiness and action-potential height are modulated with attention [180]. Studies that include

recurrently generated correlated activity along with such modulations of cellular properties may

shed light on the mechanisms of correlation modulation.

6.3.2 Sequence generation

Several experimental studies have shown that spontaneous activity patterns in cortical networks

can exhibit repeatable spatiotemporal structure. For example, stereotyped waves of activity in

visual cortex occur spontaneously after stimulation [133, 138, 137]. The fact that these activity

patterns reflect previously experienced stimuli suggest that the visual cortex may be sampling

from a statistical model of the external world [136, 135].
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The attractor networks studied in this thesis demonstrate complex temporal dynamics, con-

sisting of activations of neuronal assemblies that persist for timescales longer than the neuronal

time constant. However, the sequence of activations of different assemblies is unpredictable.

This is because between-cluster connectivity is uniform, so that no cluster is preferentially acti-

vated by another. We briefly investigated sequential neuronal activation in the form of feedfor-

ward networks (Figure 3.10). However, the plasticity mechanisms that are necessary to stabilize

such structures are unclear. A recent study used simple STDP with normalization of both presy-

naptic and postsynaptic weights to produce feedforward chains in a simplified network [154].

Whether these results can be applied to balanced networks with more realistic plasticity rules

remains to be studied.

Klampfl & Maass [181] showed that a purely timing-based STDP rule can lead to sponta-

neous activity that includes patterns of spikes that reflect past inputs. This rule also did not

account for the firing rate dependence of STDP [156]. Nonetheless, the authors demonstrated

that this plasticity mechanism allows the network to integrate long-term memory with current

inputs, a potentially useful feature for reservoir computing [175].

6.3.3 Diversity of interneuron subtypes

Modeling studies often segregate neurons into two classes: excitatory and inhibitory. Indeed,

this partition is a central assumption in the derivation of the balance conditions (Section 1.4.1).

However, cortical circuits actually consist of a diverse set of neurons, each with different cel-

lular and connectivity properties. Recently, the functional and architectural properties of local

inhibitory interneurons in cortical sensory areas have been probed experimentally [119, 168,

167, 182, 183, 184]. Future theoretical models should be informed by these advances.

In our results concerning neuronal assemblies, connections involving inhibitory neurons

was assumed to be nonspecific (Figure 3.1). This assumption led to a model in which excitatory

neuronal assemblies contained strong excitatory recurrence and projected lateral inhibition to

other assemblies. If, on the other hand, inhibitory neurons were highly localized and projected

strongly only within an assembly, the activation of any assembly would be discouraged. In this

situation, multistability of the network may be lost. Hence, inhibitory connectivity can modulate

activity fluctuations.
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The functional and connectivity properties of somatostatin-expressing (SOM) and parvalbumin-

expressing (PV) neurons, two important classes of cortical inhibitory neurons, have recently

been probed using optogenetics. In mouse frontal cortex, SOM neurons target local pyramidal

neurons densely and nonspecifically [119], an observation that motivated the assumption of

unstructured inhibition in Chapter 3. SOM neurons have been shown to receive long-range

horizontal excitation, suggesting that they may be responsible for lateral inhibition in visual

cortex [167]. On the other hand, PV neurons appear to target pyramidal neurons with similar

orientation preference more specifically than SOM neurons [168].

These distinctions offer rich possibilities for future studies of functionally clustered net-

works. Our work predicts that selectively activating PV or SOM neuron subpopulations will

differentially effect ongoing dynamics, with PV neurons suppressing assembly dynamics and

SOM neurons promoting it. PV neurons may also be important for modulating the timescale of

evoked responses within an assembly. Future studies should construct models that incorporate

nonuniform connectivity among pyramidal neurons and multiple inhibitory neuron classes.

6.4 Final remarks

Balanced excitation and inhibition in large recurrent networks is ubiquitous in the modeling lit-

erature. In addition to its consistency with experimental data, it is a seemingly necessary compo-

nent in model networks that exhibit substantial trial-to-trial variability. However, the dynamics

of randomly connected balanced networks are relatively uninteresting, at least at the level of the

mean-field. This thesis attempts to extend the balanced network approach to nonuniform con-

nection structures and demonstrates novel dynamical phenomena in these networks. However,

much work remains to understand how balanced networks can perform complex computations.

How do systems with so much seeming randomness, both in connection structure and dynamics,

compute? Further work that merges ideas from disordered systems, machine learning, signal

processing, and neuroscience will be necessary to answer this question.
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A. Spike train statistics

In this appendix we define some elementary quantities for measuring properties of spike trains

that are used throughout the text. Suppose a neuron produces spikes at times t1, t2, t3, . . . .

We refer to these times {tk} as the neuron’s spike train. Sometimes, we will be interested

in situations in which we record spike times over multiple trials, or from multiple neurons

simultaneously. In these cases, we will use additional indices to denote the trial or neuron

index.

A.1 Firing rate

The firing rate of a neuron is the rate at which it emits spikes. Typically, the firing rate is

estimated by counting the number of spikes in some time window, say between t and t+T , and

dividing by T . Therefore, the rate r is

r(t, t+ T ) =
#{tk|tk ∈ (t, t+ T )}

T
. (A.1)

A.2 Inter-spike interval distribution

One measure of the variability of a spike train is how regularly spaced the spikes are. We can

look at the inter-spike intervals, or ISIs of the spike train to evaluate this. If {tk} are the neuron’s

spikes, define

dk = tk+1 − tk (A.2)

as the kth ISI. We can examine the distribution of these intervals P (d), which is the inter-

spike interval distribution. A frequently calculated measure is the coefficient of variation of this

117



Appendix A. Spike train statistics

distribution, which is the ratio of the standard deviation of the distribution to the mean.

CVISI =
STD(d)

E(d)
=

√
1
N

∑
k d

2
k − ( 1

N

∑
k dk)

2

1
N

∑
k dk

. (A.3)

where N is the number of ISIs. For a homogeneous Poisson process, CVISI is 1.

A.3 Fano factor

The above quantities relate to the temporal properties of spike train; that is, the statistics of one

spike train over time. We are also often interested in the trial-to-trial variability of a spike train.

Trial-to-trial variability tells us how reliably a neuron produces spikes when presented with the

same stimulus multiple times on different trials. Let s = 1, 2, 3, . . . be the stimulus presentation

index and let {tsk} be the neuron’s spike times on the sth stimulus presentation.

An important measure of trial-to-trial variability is the Fano factor, which is defined as the

ratio of the variance of the spike counts across trials to the mean in some time window. Let

N s(t, t+ T ) = #{tsk|tsk ∈ (t, t+ T )} be the number of spikes on trial s that happened between t

and t+ T . Then the Fano factor is

FF(t, t+ T ) =
Var (N(t, t+ T ))

E (N(t, t+ T ))
=

1
N

∑
s(N(t, t+ T ))2 −

(
1
N

∑
sN(t, t+ T )

)2
1
N

∑
sN(t, t+ T )

, (A.4)

where N is the number of trials. For a homogeneous Poisson process, the Fano factor, like the

CV of the ISI distribution, is 1.

A.4 Spike count correlation

So far we have only been considering one neuron at a time, but we may wish to ask how

related the spikes of two neurons are. For neurons that are recorded under multiple stimulus

conditions, we can compute the signal correlation:

Corrsignal(i, j, T ) =
∑

s∈Stimuli

∑
t∈Trials

Cov(NT
i (s, t), NT

j (s, t))√
Var(NT

i (s, t))Var(NT
i (s, t))

. (A.5)
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In order to isolate correlations due to common stimulus preference from those due to network

architecture, we define the noise correlation:

Corrnoise(i, j, s, T ) =
∑

t∈Trials

Cov(NT
i (s, t), NT

j (s, t))√
Var(NT

i (s, t))Var(NT
i (s, t))

. (A.6)

Throughout this thesis, we are primarily interested in noise correlations, as we measure corre-

lations either when neurons receive a fixed stimulus across trials, or during spontaneous condi-

tions.

A.5 Covariance functions

Finally, we may be interested in how spikes are correlated in time. The temporal covariance

function (sometimes called correlation function) of two spike trains tells us the likelihood of

a spike in spike train 2 at time t + τ , given that there was a spike in spike train 1 at time t.

Specifically, let {tik} be the spike times of neuron i. Also, let yi(t) =
∑

k δ(t − tik). Then the

covariance function between spike trains i and j is

Cij(τ) = E [yi(t)yj(t+ τ)]− E [yi(t)] E [yj(t)] . (A.7)

The expectation is taken over time, and the variable τ is known as the lag. When i = j, the

above function is called the autocovariance function. Otherwise, it is called the cross-covariance

function.
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B. Models of synaptic plasticity

In recent years, several biophysically motivated models of spike timing dependent plasticity

(STDP) have been developed [146, 148]. In this thesis, we used one of them, the voltage-based

model of Clopath et al. [146], to study the formation of neuronal assemblies. In this appendix,

we review a few models of plasticity and discuss their application to the formation of assemblies.

B.1 The BCM Rule

The Bienenstock-Cooper-Munro (BCM) rule [171] is a theory for the change in synaptic weight

wij from neuron j to neuron i. It depends only on the firing rates of the two neurons, ri and rj .

It was developed to explain the formation of orientation selectivity and binocular tuning in cat

visual cortex. In its typical form, weights evolve according to:

dwij
dt

= ri(ri − θ)rj − εwij . (B.1)

The variable θ represents the threshold in firing rate of the postsynaptic neuron above which

potentiation is recruited. In the original formulation of the model, θ is the expectation of ri

raised to some power and scaled by a constant, θ = cEp[ri]. This “sliding threshold” allows the

ratio of potentiation to depression to be modulated by the level of activity of the postsynaptic

neuron, making potentiation more difficult to recruit for high firing rate neurons.

B.2 Classic pair based STDP

Classic experimental studies have demonstrated that the recruitment of long-term potentiation

(LTP) and long-term depression (LTD) depends on the timing of action potentials [185, 186].
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Typically, the dependence of wij on a pair of spikes ti and tj separated by a time lag ∆t = ti− tj

is modeled as ∆wij ∝ F (∆t), with F (∆t) defined as the following [187]:

F (∆t) =


A+e

−|∆t|/τ+ if ∆t > 0,

A−e
−|∆t|/τ− if ∆t < 0.

(B.2)

Under such a rule, timing relationships between the two neurons contribute most of the weight

changes. Pairings with positive ∆t (“pre-post” pairings) tend to recruit potentiation, while

negative ∆t (“post-pre” pairings) recruits depression. If the integral of F (∆t) is zero, then two

neuron firing independently will recruit on average zero weight change, regardless of firing

rate, in contrast to the BCM rule.

B.3 Triplet rules

Motivated by the dependence of LTP and LTD on firing rate [156], several authors have at-

tempted to extend the classic pair based STDP model above. An obvious approach is to consider

interactions between more than two spikes. This has motivated “triplet rules” in which weight

changes depend on three spikes [170, 147]. We review the triplet rule of Pfister & Gerstner

[170]. The dynamics of the model depend on four dynamical variables:

dr1

dt
= −r1/τ+ +

∑
k

δ(t− tkpre)

dr2

dt
= −r2/τx +

∑
k

δ(t− tkpre)

do1

dt
= −o1/τ− +

∑
k

δ(t− tkpost)

do1

dt
= −o1/τy +

∑
k

δ(t− tkpost). (B.3)

The sums increment the r and o variables by 1 whenever a pre- or postsynaptic spike, respec-

tively, occurs. Upon a presynaptic spike, wij is updated according to:

∆wij = −o1

(
A− +A−3 r2

)
, (B.4)
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while upon a postsynaptic spike, the update is:

∆wij = −r1

(
A+ +A+

3 o2

)
. (B.5)

If A−3 = A+
3 = 0, the rule reduces to the pair based rule above. Hence, these two terms

determine the extra influence of spike triplets. Positive A−3 yields additional LTD when a pre-

post-pre pairing occurs compared to a classic post-pre pairing. Similarly, positive A+
3 yields

additional LTP when a post-pre-post pairing occurs compared to a classic pre-post pairing.

B.4 Voltage based rule of Clopath et al.

Pair and triplet rules depend only on spike times, while the cellular processes involved in plas-

ticity likely involve other quantities. It has been shown that postsynaptic voltage influences LTP

and LTD [188], and, based on this, Clopath et al. [146] developed a voltage based STDP rule.

According to the rule, the dynamics of wij were given by:

dwij
dt

= −ALTDsj(t)R (ui(t)− θLTD) +ALTPxj(t)R (Vi(t)− θLTP)R (vi(t)− θLTD) , (B.6)

where R is a linear rectifying function (R(x) = 0 if x < 0, R(x) = x otherwise), ui and vi

represent the membrane voltage Vi low-pass filtered with time constants τu and τv respectively,

and xj represents the spike train sj(t) =
∑

k δ(t− tkj ) low-pass filtered with time constant τx.

Under this rule, LTD occurs when the low-pass filtered postsynaptic voltage ui(t) exceeds

θLTD. Similarly, LTP occurs when the low-pass filtered postsynaptic voltage vi(t) exceeds θLTD

and the instantaneous voltage Vi(t) exceeds θLTP.

B.5 Calcium based rule of Graupner & Brunel

Calcium concentration in the dendritic spine has been proposed as a determinant of synaptic

plasticity [189], and models have been created based on this observation [190, 191, 148]. We

review the model of Graupner & Brunel [148]. According to the model, the efficacy of a synapse
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is given by:

τ
dwij
dt

= −wij(1− wij)(w∗ − wij) + γp(1− wij)H(c(t)− θp)− γdwijH(c(t)− θd), (B.7)

where H is the Heaviside step function, γp, γd are the strengths of LTP and LTD, and θp, θd are

the calcium concentration thresholds for recruitment, respectively. The first term implements

bistability in the synaptic weight, with a saddle point at w∗. For large γp, γd, this term can be

neglected. The calcium concentration c(t) is given by τCa
dc(t)
dt = −c(t) and is incremented by

Cpre or Cpost when a pre- or postsynaptic spike occurs, respectively. Depending on model param-

eters, several types of STDP curves can be produced. When Cpost > Cpre, curves qualitatively

similar to that of classic pair based rules occur at low frequency.

B.6 STDP rules and formation of neuronal assemblies

In Chapter 4, we used the voltage based rule [146] in a network that was capable of forming

neuronal assemblies. What were the necessary aspects of this rule that allowed this to occur, and

could other rules reproduce this result? In this section, we provide a non-rigorous discussion

of the requirements, based on extensive simulations. Since homeostasis and synaptic bounds

were imposed through other mechanisms, the requirements of a synaptic rule to reproduce the

results of Chapter 4 are:

1. Depression dominates at low firing rates, so that assemblies do not form spontaneously,

2. Potentiation is recruited when pre- and postsynaptic neurons fire at elevated firing rates,

3. Strong potentiation is not recruited when only the presynaptic neuron is firing.

Assuming the network can be approximated as asynchronous and Poisson, the above require-

ments depend only on the dependence of the ∆wij on ri and rj . Thus, a BCM-type analysis

is appropriate. In Figure B.1a, we plot ∆wij as a function of pre- and postsynaptic firing rate

for the three modern rules described above. Note that for traditional pair-based rules with∫
F (∆t)d∆t = 0, the corresponding plot would have no potentiation or depression.
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All three rules have a strong dependence of potentiation or depression on postsynaptic firing

rate, with intermediate rates recruiting net depression and higher rates recruiting net potentia-

tion. Thus, all three rules satisfy requirements 1 and 2. The only qualitative difference is in the

calcium based rule’s dependence on presynaptic firing rate: for sufficiently strong presynaptic

firing rates, potentiation can be recruited even if the postsynaptic neuron is firing at a low rate.

This can be easily seen in the definition of the model: if the presynaptic neuron fires enough,

c(t) will eventually spend substantial time above θp, recruiting potentiation. In the context of

assembly formation, this has a deleterious effect: when assembly A is active, synapses from

assembly A to assembly B will potentiate while synapses from assembly B to assemby B will

not. Thus, stimulation of assembly A interferes with the training of assembly B. In numerical

simulations, the qualitative results of Chapter 4 were reproduced with the triplet and calcium

based rules, but the calcium based rule had fewer assemblies remain potentiated than the other

rules due to this interference (Figure B.1b,c). Nonetheless, these results show that the effects

of structured spontaneous activity occur similarly for a variety of STDP rules.
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Figure B.1: Results for different STDP rules: the triplet STDP rule of 170, the voltage based
STDP rule of 146, and the calcium based rule of 148. (a) Schematic showing the average
change in synaptic strength as a function of pre- and postsynaptic firing rate, assuming both
neurons fire as Poisson processes. (b) Comparison between recurrent and external networks
as in Figure 2b of the main text. Although the number of stored assemblies depends on the
specific rule, structured spontaneous activity improves the stability of assemblies in all cases.
(c) Structured spontaneous dynamics during spontaneous activity after training. For the triplet
based rule, the following parameters were used (following the notation of 170): τ+ = 16.8 ms,
τ− = 33.7 ms, τx = 101 ms, τy = 125 ms, A+

2 = 7.5× 10−10, A+
3 = 9.3× 10−3, A−

2 = 7× 10−3,
A−

3 = 2.3× 10−4. The voltage based rule is described in Chapter 4. For the calcium based rule,
the following parameters were used: γp = 7.25, γd = 3.31, θp = 1.3, θd = 1, τCa = 22.7 ms,

Cpre = 0.56, Cpost = 1.24.
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C. Derivation of escape rates for bistable

population

In this appendix we follow closely the derivation and notation of Bressloff [172] to obtain esti-

mates of the escape rate between bistable potentials in a finite-sized population model governed

by a birth-death process.

As in Chapter 5, we will work with a system that in the large system size limits obeys the

birth-death process:

dP (n, t)

dt
= T+(n− 1)Pi(n− 1) + T−(n+ 1)P (n+ 1)−

(
T+(n) + T−(n)

)
P (n), (C.1)

with

T+(n) = Nf(n/N), T−(n) = n. (C.2)

We then define the normalized variable x = n/N and treat it as a continuous variable. We also

define the scaled transition rates NΩ± = T±(Nx), allowing us to rewrite our master equation

as:

dP (x, t)

dt
= Ω+(x−1/N)P (x−1/N)+Ω−(x+1/N)P (x+1/N)−

(
Ω+(n) + Ω−(n)

)
P (n), (C.3)

We next assume that the system has two metastable states, whose locations we write as x+ and

x−, separated by a saddle point x0. We seek to find the rate of transitions from x± to the other

metastable state, which we define as r±. We will take advantage of our knowledge that r±

decrease exponentially with the system size N .

Suppose that Π(x) is a quasistationary solution of the master equation corresponding to the

system spending time in one of the basins of attraction of the fixed points x±, which we denote
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x∗. We assume that the solution takes the form:

Π(x) = K(x)e−NS(x), (C.4)

with K(x∗) = 1 and S(x∗) = 0. We then substitute this into the master equation (C.3) with

P (x, t) = Π(x) and dP
dt = 0. Then, we perform a Taylor expansion about x∗ which leads to the

equation:

Ω−(x)
(
e−S

′(x) − 1
)

+ Ω+(x)
(
eS
′(x) − 1

)
= x

(
e−S

′(x) − 1
)

+ f(x)
(
eS
′(x) − 1

)
. (C.5)

This equation can be interpreted as a stationary Hamilton-Jacobi equation H(x, S′(x)) = 0

where the Hamiltonian is given by equation (C.5). So we can think of the dynamics of x as

being governed by that of a particle, whose position is x and momentum is p = S′(x), governed

by the corresponding Hamiltonian dynamical system. Hamilton’s equations yield:

ẋ =
∂H

∂p
= −xe−p + f(x)ep (C.6)

ṗ = −∂H
∂x

= xe−p − 1 + f ′(x)[ep − 1] (C.7)

Here S(x) is interpreted as classical action along the least-action trajectory from x∗ to x (as-

suming S(x∗) = 0). This least action trajectory is the one that minimizes the integral of the

Lagrangian L = pẋ−H(x, p):

S(x) = inf
x(t0)=x∗,x(T )=x

∫ T

0
L(x, ẋ)dt. (C.8)

Along this path, p = S′(x), so we can find S(x) =
∫ x
x∗ p(x

′)dx′ where the integral is taken along

the path. So the leading order term in the WKB approximation corresponds to zero-energy

solutions such that H(x, p(x)) = 0. It then remains to determine the multiplicative factor K(x)

in the WKB approximation. This can be accomplished by plugging the WKB ansatz into the

master equation (C.3), which leads to the following expression that can be used to obtain K(x):

∂H

∂p

K ′

K
= −1

2
p′
∂2H

∂p2
− ∂2H

∂p∂x
. (C.9)
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There are two types of solutions corresponding to H(x, p(x)) = 0. The first is the p =

0 solution, corresponding to the deterministic Wilson-Cowan equation. In other words, this

solution represents the deterministic relaxation back to x∗ given a perturbation away from it.

The second solution is the so-called activation solution, p(x) = p∗(x) = ln Ω−(x)
Ω+(x) .. We can solve

equation (C.9) to obtain Π(x) for activation trajectories:

Π(x) =
A√

Ω+(x)Ω−(x)
e−NS(x), (C.10)

with S(x) =
∫ x

ln Ω−(x′)
Ω+(x′)dx

′, and for relaxation trajectories:

Π(x) =
B√

Ω+(x)Ω−(x)
. (C.11)

There is one remaining calculation before we can determine r±: we must match the two

quasistationary solutions at the saddle point x0. This is done by using a diffusion approximation

of the master equation around x0 and matching the flux from the relaxation and activation

trajectories.

The constant flux through the saddle is given by:

J = (Ω+(x)− Ω−(x))Π(x)− 1

2N

∂

∂x
[(Ω+(x) + Ω−(x))Π(x)]. (C.12)

Taylor expading this equation and integrating, we find:

Π(x) =
JN

Ω+(x0)
e(x−x0)2/σ2

∫ ∞
x

e−(x′−x0)2/σ2
dx′, (C.13)

with:

σ =

√
2Ω+(x0)

N [Ω′x(x0)− Ω′−(x0)]
. (C.14)

The asymptotic behavior of this solution is given by:

Π(x) =


NJσ2

(x−x0)Ω+(x0) , x− x0 � σ

NJσ
√
π

Ω+(x0) e
(x−x0)2 , x− x0 � σ.

(C.15)
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Appendix C. Derivation of escape rates for bistable population

Matching the first case to the relaxation trajectory leads to B = J while matching the second

case to the activation trajectory requires a Taylor expansion of S(x) around x0, leading to:

J =
AΩ+(x0)√

Ω+(x0)Ω−(x0)

√
|S′′(x0)|

2πN
e−NS(x0). (C.16)

The escape rate r− is given by the integral r−1
− = 1

J

∫ x0
0 Π(x′)dx′.. This integral is strongly

peaked around x−, and a Gaussian approximation of Π(x) around that point yields:

r− =
Ω+(x−)

2π

√
|S′′(x0)|S′′(x−)e−N(S(x0)−S(x−)), (C.17)

and similar arguments for r+ yield:

r+ =
Ω+(x+)

2π

√
|S′′(x0)|S′′(x+)e−N(S(x0)−S(x+)). (C.18)
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[81] H. Köndgen et al. The dynamical response properties of neocortical neurons to tempo-
rally modulated noisy inputs in vitro. Cereb. Cortex 18(9), 2086 –2097 (2008).

[82] P. Dayan & L. F. Abbott. Theoretical Neuroscience: Computational and Mathematical Mod-
eling of Neural Systems (The MIT Press, 2001), 1st edition.

[83] R. D. Vilela & B. Lindner. Comparative study of different integrate-and-fire neurons:
Spontaneous activity, dynamical response, and stimulus-induced correlation. Phys. Rev.
E 80(3), 031909 (2009).

[84] B. Doiron, B. Lindner, A. Longtin, L. Maler & J. Bastian. Oscillatory activity in electrosen-
sory neurons increases with the spatial correlation of the stochastic input stimulus. Phys.
Rev. Lett. 93(4), 048101 (2004).

[85] B. Lindner, B. Doiron & A. Longtin. Theory of oscillatory firing induced by spatially
correlated noise and delayed inhibitory feedback. Phys. Rev. E 72(6), 061919 (2005).

135



Bibliography

[86] R. F. Galan, N. Fourcaud-Trocme, G. B. Ermentrout & N. N. Urban. Correlation-induced
synchronization of oscillations in olfactory bulb neurons. J. Neurosci. 26(14), 3646–3655
(2006).

[87] A. A. Prinz, L. F. Abbott & E. Marder. The dynamic clamp comes of age. Trends Neurosci.
27(4), 218–224 (2004).

[88] A. K. Barreiro, E. Shea-Brown & E. L. Thilo. Time scales of spike-train correlation for
neural oscillators with common drive. Phys. Rev. E 81(1), 011916 (2010).

[89] A. Abouzeid & B. Ermentrout. Correlation transfer in stochastically driven neural oscil-
lators over long and short time scales. Phys. Rev. E 84, 061914 (2011).

[90] P. Fries, J. H. Reynolds, A. E. Rorie & R. Desimone. Modulation of oscillatory neuronal
synchronization by selective visual attention. Science 291(5508), 1560–1563 (2001).

[91] J. H. Reynolds & D. J. Heeger. The normalization model of attention. Neuron 61(2),
168–185 (2009).

[92] M. J. Chacron, B. Doiron, L. Maler, A. Longtin & J. Bastian. Non-classical receptive
field mediates switch in a sensory neuron’s frequency tuning. Nature 423(6935), 77–81
(2003).

[93] S. J. Slee, M. H. Higgs, A. L. Fairhall & W. J. Spain. Two-dimensional time coding in the
auditory brainstem. J. Neurosci. 25(43), 9978–9988 (2005).

[94] T. P. Vogels & L. F. Abbott. Gating multiple signals through detailed balance of excitation
and inhibition in spiking networks. Nat. Neurosci. 12(4), 483–491 (2009).

[95] T. Womelsdorf et al. Modulation of neuronal interactions through neuronal synchroniza-
tion. Science 316(5831), 1609–1612 (2007).

[96] M. London, A. Roth, L. Beeren, M. Hausser & P. E. Latham. Sensitivity to perturbations in
vivo implies high noise and suggests rate coding in cortex. Nature 466(7302), 123–127
(2010).

[97] T. P. Vogels & L. F. Abbott. Signal propagation and logic gating in networks of integrate-
and-fire neurons. J. Neurosci. 25(46), 10786 –10795 (2005).

[98] A. K. Churchland et al. Variance as a signature of neural computations during decision
making. Neuron 69(4), 818–831 (2011).

[99] A. Arieli, A. Sterkin, A. Grinvald & A. Aertsen. Dynamics of ongoing activity: explanation
of the large variability in evoked cortical responses. Science 273(5283), 1868–1871
(1996).

[100] M. Tsodyks, T. Kenet, A. Grinvald & A. Arieli. Linking spontaneous activity of single
cortical neurons and the underlying functional architecture. Science 286(5446), 1943–
1946 (1999).

[101] M. M. Churchland, B. M. Yu, S. I. Ryu, G. Santhanam & K. V. Shenoy. Neural variability
in premotor cortex provides a signature of motor preparation. J. Neurosci. 26(14), 3697
–3712 (2006).
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