SwE-Toolbox: Fast and accurate modelling of longitudinal neuroimaging data

Thomas Nichols
University of Oxford
w/
Bryan Guillaume, Tom Maullin-Sapey

Dependent Data in Neuroimaging

- More and more studies have dependent data
 - Longitudinal data with ≥ 3 visits, imbalance
 - Repeated measures, e.g. ≥ 2 contrasts at 2nd level
 - Heritability twin/family studies

ADNI Subject Counts by Visit

	AD	MCI	NC	Total
0 Mo	188	400	229	817
6 Mo	159	346	208	713
12 Mo	138	326	196	660
18 Mo	0	286	0	286
24 Mo	105	244	172	521
36 Mo	0	170	147	317

Dependent Data in Neuroimaging: Current Methods Naïve OLS Design Matrix

- 'Naïve OLS' just add subject dummies
 - Only valid for balanced design & compound symmetry (CS)
 - FSL: FEAT can account for 1st level variance, making this 'Naïve WLS'
 - SPM: Accounts for dependence, but one model for whole brain, giving a 'Global GLS'

Compound Symmetric Correlation

- Permutation w/ PALM
 - Accounts for dependence structure
 - But no Cl's/SE's, just P-values, as model is OLS
 - http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM

Dependent Data in Neuroimaging: Non-Imaging Approach

- Best practice: Linear Mixed Effects
 - Bread & butter biostatistics problem
 - Optimise mixed effects likelihood
 - R's Ime & Imer, SAS's proc_mixed
 - But these "Gold standards" are slow & unreliable
 - Simulation: R's Ime with 12 subjects, 8 visits, &...
 - Toeplitz truth, unstructured correlation model
 95% convergence failure rate!
 - CS truth, random intercept & slope model
 2% convergence failure rate!
 - Not so bad, but 2,000 NaN voxels in a 100k brain!

ADNI Example: Longitudinal TBM

- 6 visits, highly imbalanced
- Naïve OLS model
 - Cannot have betweensubject covariates
 - e.g. Age, gender
 - Questionable validity
 - Unbalanced design!
 - Compound symmetry?
 - Over 3 years?
 - With uneven sampling?» 0/6/12/18/24 -> 36

ADNI Subject Counts

	AD	MCI	NC	Total
0 Mo	188	400	229	817
6 Mo	159	346	208	713
12 Mo	138	326	196	660
18 Mo	0	286	0	286
24 Mo	105	244	172	521
36 Mo	0	170	147	317

Marginal Model

OLS "Marginal model" (no subject dummies)

$$y_i = X_i eta + B_{ij} + e_i$$
Fixed effects Family indicator covariates

- Estimate arbitrary intra-subject correlation
- Adjust variance estimate of $\hat{\beta}_{OLS}$
 - $var(\hat{\beta}_{OLS})$ estimated by the Sandwich Estimator (Eicker, 1963):

$$SwE = \underbrace{\left(\sum_{i=1}^{M} X_i' X_i\right)^{-1}}_{Bread} \underbrace{\left(\sum_{i=1}^{M} X_i' \hat{V}_i X_i\right)}_{Meat} \underbrace{\left(\sum_{i=1}^{M} X_i' X_i\right)^{-1}}_{Bread}$$

with
$$\hat{V}_i = r_i r_i'$$
 and $r_i = y_i - X_i \hat{\beta}$

- Asymptotic method!
- But we identified special sauce of small sample performance
 - Residuals (r_i) studentization and pooling V_i over subjects

Sandwich Simulations: Imbalanced Design

- Compound symmetry (CS), homogeneous variance
 - SwE nearly as powerful as LME
 - N-OLS has OK FPR (not shown)

ADNI design Compoun Symmetry Visit effect (AD vs. MCI)

- Without CS
 - N-OLS has catastrophic FPR
 - Even worse with het. var. over groups (not shown)

ADNI Real Data Analysis

- Model
 - a. {N, MCI, AD} Intercept
 - b. Cross-sectional age
 - Average age of each subject, subject, centered
 - c. Visit
 - Intrasubject centered age
 - d. "Acceleration"
 - Product of b & c
- Results (1)

- Between Subj.
- Between Subj.

- Within Subj
- Btwn & Within Subj

- N-OLS appears way more powerful, but power difference should be subtle
- N-OLS significance likely inflated due to non-CS correlation

Generally, cross-sectional and longitudinal change similar

Results (2): "Acceleration"

- In atrophic areas: MCI & AD Deceleration!
 - Cohort effects most likely cause

HCP Repeated Measures Example

- HCP N-Back
 - 4 versions: body parts, faces, places and tools
 - 80 unrelated subjects, 3 contrasts:
 - 1) Avg +ve, 2) Avg –ve, 3) F-test for any diffs among the 4
 - F-test depends on accurate repeated measures variance
 - Interaction finds areas with no main effect

Main Effect

Avg +ve, -ve

Interaction (Any diffs)

Longitudinal & Repeated Measures Neuroimaging Modelling

- Sandwich Estimator redux
 - Fit OLS marginal model
 - Estimate intrasubject (or intra-family) correlation
 - Compute StdErr's with "sandwich estimator", T's & P's
- Fast, flexible, reliable mixed effects inference

Guillaume, Hua, Thompson, Waldorp, Nichols. (2014). Fast and accurate modelling of longitudinal and repeated measures neuroimaging data. *NeuroImage*, 94, 287–302.

- Matlab SwE Toolbox available
 - http://www.nisox.org/Software/SwE
- FSL SwE Toolbox in beta testing

Running SwE

- Launch: swe
 - (Need to add SwE to Matlab path)
- Specify model
 - SwE Type: "Modified"
 - Pool covariance estimates over subjects, w/in group
 - Subjects, Groups & Visits must be specified
 - SwE Type: "Classic"
 - No pooling
 - Only subjects specified

SPM Example: Henson Faces fMRI

Informed Basis Set

- 12 subjects
- 3 contrasts / subject
 - "Informed HRF"
- Want to test for "any" effect

$$- H_0: \beta_1 = \beta_2 = \beta_3 = 0$$

$$-H_1$$
: $\beta_1 \neq 0$ or $\beta_2 \neq 0$ or $\beta_3 \neq 0$

 SPM can do this *but* assumes common 3x3 covariance (scaled locally) for whole brain