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Abstract
For decades electrophysiologists have recorded and characterized the bio-

physical properties of a rich diversity of neuron types. This diversity of neuron
types is critical for generating functionally important patterns of brain activity
and implementing neural computations. In this thesis, I developed computa-
tional methods towards quantifying neuron diversity and applied these methods
for understanding the functional implications of within-type neuron variability
and across-type neuron diversity.

First, I developed a means for defining the functional role of differences
among neurons of the same type. Namely, I adapted statistical neuron mod-
els, termed generalized linear models, to precisely capture how the membranes
of individual olfactory bulb mitral cells transform afferent stimuli to spiking
responses. I then used computational simulations to construct virtual popula-
tions of biophysically variable mitral cells to study the functional implications
of within-type neuron variability. I demonstrate that an intermediate amount
of intrinsic variability enhances coding of noisy afferent stimuli by groups of bio-
physically variable mitral cells. These results suggest that within-type neuron
variability, long considered to be a disadvantageous consequence of biological
imprecision, may serve a functional role in the brain.

Second, I developed a methodology for quantifying the rich electrophysio-
logical diversity across the majority of the neuron types throughout the mam-
malian brain. Using semi-automated text-mining, I built a database, Neuro-
Electro, of neuron type specific biophysical properties extracted from the pri-
mary research literature. This data is available at http://neuroelectro.org,
which provides a publicly accessible interface where this information can be
viewed. Though the extracted physiological data is highly variable across stud-
ies, I demonstrate that knowledge of article-specific experimental conditions can
significantly explain the observed variance. By applying simple analyses to the
dataset, I find that there exist 5-7 major neuron super-classes which segregate
on the basis of known functional roles. Moreover, by integrating the NeuroElec-
tro dataset with brain-wide gene expression data from the Allen Brain Atlas,
I show that biophysically-based neuron classes correlate highly with patterns
of gene expression among voltage gated ion channels and neurotransmitters.
Furthermore, this work lays the conceptual and methodological foundations for
substantially enhanced data sharing in neurophysiological investigations in the
future.

http://neuroelectro.org
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Chapter 1

Introduction

Neuronal biophysics describes the complex process by which a neuron’s membrane trans-

forms synaptic and electrical inputs to subthreshold and spiking outputs. Through study-

ing this input-output transformation, neurophysiologists can relate how the intrinsic bio-

physical properties of individual neurons shape the specific computations that each neuron

performs on its inputs. Thus understanding intrinsic biophysics provides insights into each

neuron’s computational role within its larger neural circuit as well the neuron’s potential

role in producing organism-level behaviors (Koch, 1999; Izhikevich, 2010). Because of the

explicit link between neuronal membrane properties and circuit function, studies of neu-

ronal biophysics have led to tremendous insights into the detailed, mechanistic processes

underlying certain neurological disorders such as epilepsy and channelopathies (Zuberi

et al., 1999; Rajakulendran et al., 2007; Depienne et al., 2009).

Rather than each neuron being functionally identical, there are many different types of

neurons. Furthermore, there are a number of different electrophysiological phenotypes that

neurons can express which are associated with unique computational roles in the brain. For

example, cortical basket neurons display a "fast-spiking" phenotype, and are implicated in

mechanisms of gain control and facilitating synchrony among cortical pyramidal neurons

(Moore et al., 2010). A neuron’s biophysical properties arise through expression of combi-

1



nations of ion channels that collectively define the neuron’s electrophysiological phenotype

(Koch, 1999; Llinás, 1988). This functional diversity among neurons is analogous to an-

tibody generation in the immune system, and has been hypothesized to contribute to the

functional robustness of brains (Singer et al., 2010). Intrinsic biophysical diversity among

neurons goes hand-in-hand with other kinds of diversity, including morphological (Parekh

and Ascoli, 2013), molecular (Sugino et al., 2006), and neurotransmitter diversity (Nelson

et al., 2006).

Given this rich electrophysiological diversity among neurons, a long-standing challenge

is defining how exactly to choose and define the parameters for use in determining how

neurons differ (Ascoli et al., 2008; Hamilton et al., 2012). For example, when recording from

neurons in vitro, it is common to inject depolarizing current into the neuron’s cell membrane

while recording the neuron’s membrane voltage (Connors et al., 1982). A common question

to then ask is: when the neuron fires action potentials, do they occur regularly spaced in

time or do they instead come in groups of bursts (Ascoli et al., 2008; Markram et al.,

2004)? The neurophysiologist will then use the differences in spike patterns as a defining

characteristic for use in distinguishing between neuron types.

Ideally, these characteristics that neurophysiologists use to define neurons will corre-

spond to differences that are functionally relevant to neuronal computation. However, there

are not formal community-based standards in place to decide when observations of neurons

should be "split" (into neuron subtypes) or "lumped" (into a single neuron super-class) (As-

coli et al., 2008; Hamilton et al., 2012). Furthermore, a challenge with interpreting the data

from electrophysiological recordings is that they are notoriously sensitive to experimental

conditions, making it difficult to directly compare results across studies. Throughout this

thesis, I address the following 3 questions in order to better describe and define neuronal

electrophysiological diversity:

1. How do neurons transform their inputs to outputs? How should this transformation
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be described?

2. How should electrophysiological differences among neurons be quantified?

3. How should researchers communicate results on the electrophysiological findings from

neurons?

Furthermore, I develop these methodologies to answer the following scientific questions on

the form and function of neuronal electrophysiological diversity:

1. What is the computational role of electrophysiological variability within a neuron

type? Is there an optimal level of within-type neuron variability?

2. How electrophysiologically diverse are neuron types throughout the brain? Are there

unknown electrophysiological similarities among neuron types previously thought to

be functionally distinct?

In the remainder of this chapter, I present background and review material that is most

relevant to the work in this thesis.

1.1 Background and Related Work

1.1.1 Intracellular electrophysiology and the origins of intrinsic

biophysical properties

Neuronal intrinsic biophysical properties are typically obtained using electrophysiologi-

cal methods to record membrane potentials from neurons contained in acute brain slices

(Schwartzkroin, 1975; Connors et al., 1982; Stuart et al., 1993). Using glass electrodes with

fine tips, neurophysiologists can both measure the transmembrane voltage and manipulate

this voltage by injecting current (Fig. 1.1).

Rather than the neuron simply acting as a passive electrical element to an injected

current (i.e. a resistor and capacitor in parallel) and just integrating the current, neurons
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Figure 1.1: Schematic and example data for intracellular electrophysiology. Left: Procedure of recording from a neuron with
a glass electrode and injecting current into the neuron’s cell body. Right: Example voltage trace showing trains of action
potentials.

usually respond to input currents with complex dynamics (Llinás, 1988). Hundreds of types

of ion channels are expressed by neurons (Harmar et al., 2009). Individual ion channels

are made of one or more proteins, each of which is encoded in that cell’s genome. The

opening and closing (gating) of these ion channels is regulated by many factors, including

the transmembrane voltage (Hille, 2001; Ranjan et al., 2011). Thus the conductance of ion

channels is dependent on the current state and past history of the neuron’s activity. The

critical role of ion channels in regulating neuronal activity was first proposed by Hodgkin

and Huxley in their groundbreaking work studying the action potential of the squid giant

axon (Hodgkin and Huxley, 1952) and later confirmed by Erwin Neher and Bert Sakmann

while studying the gating of single ion channels in a patch of cell membrane (Neher and

Sakmann, 1976).

A neuron’s transfer function, which describes the relationship between a neuron’s in-

puts and its outputs (e.g., given by the neuron’s frequency-current relationship), is itself

a function of the kinds of ion channels the neuron expresses in its membrane. For ex-

ample, some neurons, like entorhinal cortex cells (Giocomo et al., 2007) or inferior olive

neurons (Lampl and Yarom, 1997), display subthreshold resonances, allowing the neuron

to selectively amplify and transmit inputs delivered at a specific frequencies. Neuronal

transfer functions define the computation that the neuron’s membrane performs on its

inputs, and contributes to what makes different types of neurons unique in their response
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properties. Because ion channels influence single neuron computation, channelopathies and

other disorders that affect the efficacy of a single channel are often associated with behav-

ioral deficits (e.g. Dravet’s syndrome (Depienne et al., 2009)). Thus a large part of the

study of cellular neurophysiology is to develop a better understanding of the relationship

between electrophysiological phenotypes and expression of specific kinds of ion channels

and corresponding currents.

One complication in this analysis arises because of the mismatch between the descrip-

tion of voltage-gated currents and voltage gated channels (Crasto et al., 2007; Harmar

et al., 2009). Neurophysiologists initially reported the properties of neurons in terms of

the currents that they expressed. For example, Hodgkin and Huxley described the behav-

ior of the squid giant axon in terms of the fast sodium current and the delayer rectified

potassium current (Hodgkin and Huxley, 1952). Later, molecular and genetic analyses

have described the behavior of neurons in terms of the channel proteins (or even the chan-

nel genes) that these neurons express (Coetzee et al., 1999; Toledo-Rodriguez et al., 2004;

Harmar et al., 2009; Marder and Taylor, 2011). Unfortunately the relationship between

currents and channels and genes is not always simple. For example, the sodium currents

in a given neuron may be mediated by a number of types of sodium channels encoded by

one or more sodium channel genes (Momin and Wood, 2008). Similarly, what physiologists

have called A-type potassium current likely is mediated by mixtures of channel subunit

proteins encoded by genes of the Kv1.x and Kv4.x families (Carrasquillo and Nerbonne,

2013).

1.1.2 Describing neuronal electrophysiological phenotypes

Neurons can be described and subdivided based on many different characteristics, in-

cluding morphology (Parekh and Ascoli, 2013), gene expression (Lein et al., 2007) and

physiology (Migliore and Shepherd, 2005). In studying the electrophysiology of neurons,
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neurophysiologists will typically measure a number of electrophysiological characteristics

from each neuron for use in describing the neuron’s electrophysiological phenotype (Woody

and Gruen, 1978; Connors et al., 1982; Toledo-Rodriguez et al., 2004; Bean, 2007). These

include measurement of passive electrical properties like the neuron’s resting membrane

potential, the voltage of the neuron that it "rests" at upon no stimulation, and its input

resistance, which reflects the neuron’s membrane resistivity to a current injection. Active

properties that are typically measured include characteristics of the neuron’s action poten-

tials, including the action potential threshold, width, and height (Fig. 1.2). Additionally,

neurophysiologists will measure regular patterns in which the neuron produces trains of

action potentials. For example, does the neuron tend to fire multiple spikes as a burst or

are action potentials fired at regular intervals in time (Llinás, 1988; Migliore and Shepherd,

2002; Markram et al., 2004)? Does the neuron fire spikes spontaneously in the absence of

an external driving stimulus? To quantify these, neurophysiologists will compute statistics

like the neuron’s frequency-current (FI) curve, which relates the amount of positive current

injected into the neuron to the number of evoked action potentials, or the coefficient of

variation of the neuron’s interspike interval distribution, which provides a metric to use in

quantifying burst versus regular spiking.

A common approach to use in partitioning neurons into electrophysiologically-based

classes is to measure a number of electrophysiological characteristics (such as resting mem-

brane potentials and input resistances) across a set of neurons and then use a clustering

analysis to partition the recorded neurons into different subsets (Markram et al., 2004;

Migliore and Shepherd, 2005; Antal et al., 2006; Padmanabhan and Urban, 2010; Druck-

mann et al., 2012). While a strength of this approach is that it reflects the observed data

and does not rely on a single characteristic such as whether the neuron bursts or not, there

is no guarantee that the electrophysiological characteristics used to separate the neurons

reflect functionally relevant features of the neurons. An extreme example of this is that
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Figure 1.2: Example electrophysiological characteristics that are computed from a neuron’s action potential. Image modified
from Wikipedia user Synaptidude.

though neuron bursting is often a useful characteristic for partitioning neurons (Markram

et al., 2004; Ascoli et al., 2008), a deep understanding of the computational or functional

role of burst firing versus regular firing has generally been lacking (though see (Lisman,

1997; Oswald et al., 2004; Marsat and Pollack, 2006)).

1.1.3 Defining neurons using parameters of a computational model

A different approach towards defining neurons along electrophysiological dimensions is

to first construct a computational model that captures certain features of the recorded

neuron’s activity. Then, to compare neurons, one can simply assess differences in model

parameters between the neurons.

Hodgkin Huxley modeling approach

The most prolific example of this approach in cellular neuroscience is the usage of Hodgkin-

Huxley-type neuron models to capture or recapitulate recorded neuron electrophysiological

activity (Hodgkin and Huxley, 1952; Rall and Shepherd, 1968; De Schutter and Bower,

1994; Bhalla and Bower, 1993; Hines and Carnevale, 1997; Koch, 1999; Ermentrout, 2002;
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Migliore et al., 2003; Prinz et al., 2004; Galán et al., 2006; Brette et al., 2007; Marder

and Taylor, 2011). The Hodgkin-Huxley modeling approach treats neurons as the sum of

passive electrical components (e.g. the neuron’s membrane is treated as a capacitor) and

active components, which are modeled via different ion channel conductances which each

have time and voltage dependent kinetics (Fig. 1.3A, (Koch, 1999; Hille, 2001; Druckmann

et al., 2011)). Often this approach involves the specification of ion channel properties in

multiple or hundreds of individual electrical compartments, corresponding to segments of

axon or dendrite (e.g., (Rall and Shepherd, 1968; Bhalla and Bower, 1993; De Schutter

and Bower, 1994)). The goal of the modeling approach is to find a set of ion channel

conductances that effectively or adequately describes the recorded neuron’s behavior. This

assessment of whether the neuron model adequately captures the real neuron is often done

in a qualitative way in these kinds of models, where the computational modeler will ask

if the model captures some particular phenotypic behavior of the recorded neuron, like a

precise mechanism underlying burst firing (Bhalla and Bower, 1993; Davison et al., 2003).

One reason for the wide adoption of this approach by the community is its biological

plausibility, because the modeling approach directly reflects known features of neurons and

ion channels and allows for the predicted values of ion channel parameters and densities to

be explicitly tested. However, given the inherent difficulty in obtaining best-fit solutions

to systems of non-linear dynamical equations (Strogatz, 2000), finding best sets of model

parameters (i.e. the values of specific ion channel conductances) that best match recorded

neuron data can be difficult. Furthermore, it has been shown that multiple, disparate sets

of model parameters (i.e different sets of ion channel conductances) can lead to the same

or highly similar neuron and neuron network electrophysiological phenotypes (Prinz et al.,

2004). Therefore two neuron models, which may differ greatly in their sets of ion channel

conductances, may yet still possess identical or similar electrophysiological phenotypes.

Thus even if the model perfectly fits the data, inferences to the ion channel properties are
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difficult to make conclusively (Marder and Taylor, 2011).
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Figure 1.3: Example single neuron models. A) Schematic showing equivalent circuit form of Hodgkin-Huxley model. Features
of neuron and its membrane are modeled explicitly. For example, ion channel conductances are modeled by time and voltage
varying resistors. B) Structure of the basic single neuron generalized linear model form. Phenomenological features of the
neuron, like its responses to a stimulus or its average response following an action potential are modeled directly.

Statistical/Phenomenological modeling approach

Given these difficulties with the Hodgkin-Huxley modeling methodology, an alternative

is to take a statistical, phenomenological approach towards neuron modeling (Kass and

Ventura, 2001; Paninski, 2004; Badel et al., 2008). Rather than modeling neurons using

models with parameters which can be mapped onto known physical neuron features like

the expression and kinetics of different ion channels, this approach directly models specific,

phenomenological features of the neuron’s activity (Fig. 1.3B). For example, given that

neurons go into a refractory period following an action potential, this refractory period

duration is often modeled directly in statistical neuron modeling frameworks; this is in

contrast to the Hodgkin Huxley approach where the refractory period is not modeled
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directly and only results as an emergent property of the interaction of multiple ion channel

conductances. An advantage of this approach is that since these models are based in

statistical modeling, the models are typically constructed such that there is a single, unique

"best-fit" solution of model parameters which best capture a given piece of neuron recording

data (Paninski, 2004). This uniqueness of model parameters given a set of recorded data is

an advantage when using this modeling approach as a first step for characterizing neurons

and then using the fit model parameters for the purpose of comparing different neurons on

the basis of model parameters (Mensi et al., 2012).

1.1.4 Criteria for partitioning neurons into neuron types

Neurons are defined according to a number of criteria, including electrophysiological char-

acteristics, which are the focus of this thesis. The most common criteria for characterizing

neurons is by determining the location of the cell body both in the brain and within a

specific cell layer. This approach was used extensively by Santiago Ramón y Cajal, the

father of modern neuroscience, who extensively studied the cellular architecture of many

parts of the brain through investigating stained slices of brain tissue under a microscope

and drawing his observations of the neural cytoarchitecture in fine detail (Ramón y Cajal,

1995). He used neuron location as well as neuron shape to define the major neuron types

throughout the brain; his neuron type-ology remains the basis for the common neuron

types in use today. Moreover, modern tools allow for tracing the detailed morphology of

neurons and digitizing and publicly sharing morphological traces (Parekh and Ascoli, 2013)

as well as clustering neurons based on morphological similarity (Ascoli et al., 2008).

As technology has progressed, neuron types are now defined using additional criteria.

For example, the development of techniques to record from neuron cell bodies using sharp

and patch-clamp electrodes has allowed neurophysiologists to record electrical activity from

neurons and use electrophysiological criteria like burstiness and fast-spiking phenotypes to
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help define neuron classes (Woody and Gruen, 1978; Connors et al., 1982; Llinás, 1988;

Migliore and Shepherd, 2002; Markram et al., 2004). Additional defining metrics include

assessing whether individual neurons express particular marker proteins, such as specific

calcium binding proteins like parvalbumin or calciretinin or neuropeptides like somatostatin

or cholecystokinin (Kawaguchi and Kubota, 1997; Heintz, 2004; Sugino et al., 2006; Ascoli

et al., 2008; Huang and Zeng, 2013).

A challenge with the current practice for defining neurons into distinct classes and types

is that these classes are usually not unambiguous and non-overlapping. For example, virtu-

ally all neocortical basket cells display a "fast-spiking" electrophysiological phenotype, have

a "basket-shaped" cell body, and also express the marker protein parvalbumin (Connors

and Gutnick, 1990; DeFelipe, 1997; Markram et al., 2004; Moore et al., 2010). However,

neocortical basket cells are an exception because it is typically rare for other defined cell

types to also display clear relationships across multiple classification criteria (Wang et al.,

2004; Ma et al., 2006; Ascoli et al., 2008). For example, mitral cells of the olfactory bulb,

defined by Ramón y Cajal because their cell bodies are located in a clearly defined cell layer

in the olfactory bulb and have a cell body shaped like a bishop’s mitre, display significant

variability among their electrophysiological properties which vary from regular firing to

burst firing (Padmanabhan and Urban, 2010; Angelo et al., 2012). Given these findings,

should neurophysiologists choose to separate this cell class into multiple sub-classes on the

basis of electrophysiological evidence? Or treat these neurons as a single neuron type on

the basis of morphological criteria alone?

In light of these challenges for obtaining comprehensive consensus-based definitions for

each neuron type, there have been a number of working groups formed with the goal of

defining the comprehensive list of neuron types in a given brain region and throughout the

brain. Among the best known examples of such a group is the Petilla group for defining

neocortical interneurons (Ascoli et al., 2008); the Neuron Registry Taskforce of the In-
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ternational Neuroinformatics Coordinating Facility is an another such example (Hamilton

et al., 2012; Larson and Martone, 2013). However, the success of the Petilla group has

been mixed. On one hand, the members of the Petilla group can agree upon the basic

classes formed using morphological, electrophysiological, or molecular criteria. For exam-

ple, when recording from a neuron, based on its spiking responses to a series of current

steps, the neuron can be placed into one of approximately ten electrophysiologically de-

fined phenotypic classes (Ascoli et al., 2008). Contrastingly, putting these multiple criteria

together into a single prescriptive guideline for when neuron observations should be "split"

or "lumped" has remained challenging, however. Moreover, due to the inherent diversity

and complexity of neurons, it is unclear whether a single "neuron type-ology" that bridges

multiple definitional criteria will ever emerge for the brain, like it is beginning to crystallize

for neuron types in the vertebrate retina (Field and Chichilnisky, 2007; Siegert et al., 2012;

Helmstaedter et al., 2013). As a practical consequence of the inherent challenges in classi-

fying and naming neurons, communicating results and findings on specific neuron types is

made more difficult as scientists need to reconcile multiple neuron naming schemes.

1.1.5 Databases in cellular and systems neuroscience

There are a number of databases that contain structured information specific to neurons

and their properties. For example, information on the detailed shapes of neurons (i.e.,

their morphology) is being compiled by NeuroMorpho (Parekh and Ascoli, 2013) which

contains user-submitted neuron morphological reconstructions made using the NeuroLu-

cida format (Glaser and Glaser, 1990). The SenseLab database, ModelDB, ((Migliore et al.,

2003),http://senselab.med.yale.edu/modeldb/default.asp) compiles user-submitted

computational models developed for simulating the electrophysiological and neurochemical

properties of single neurons and networks of neurons (e.g., multi-compartment Hodgkin-

Huxley type conductance based models). Similarly, other SenseLab databases, includ-
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ing NeuronDB and CellPropDB ((Crasto et al., 2007), http://senselab.med.yale.edu/

NeuronDB/), contain information on the ionic currents and neurotransmitters expressed

by each neuron and how these are distributed with respect to neuronal morphology. De-

tailed information on ion channel subtypes, including voltage and temporal dynamics,

genetic homology, and corresponding literature references is being compiled by Channelpe-

dia ((Ranjan et al., 2011)), a subproject within the Blue Brain Project (Markram, 2006).

A notable missing resource on neuron properties is a database that compiles information

on neuron type specific electrophysiological phenotypes and basic biophysical properties.

The Allen Institute for Brain Sciences provides brain-wide gene expression atlases,

where the expression of each of the genes in the mammalian genome has been systemati-

cally quantified throughout the brain at the resolution of brain regions and cell layers for

a number of model organisms and across stages of neural development ((Lein et al., 2007),

http://brain-map.org). Similarly, the Allen Institute also provides information on the

anatomical connectivity of different brain regions. Parallel to this effort is the Brain Archi-

tecture Management System (BAMS, (Bota et al., 2005), http://brancusi1.usc.edu) in

which neural connectivity information has been manually curated by domain experts from

the existing research literature. The WhiteText Project takes a complementary approach

to BAMS and uses biomedical Natural Language Processing (bioNLP) to "text-mine" state-

ments on brain region connectivity from literature abstracts (French et al., 2009, 2012).

Another resource which uses text-mining is the NeuroSynth Project which mines fMRI-

based brain activation maps from published x, y, z coordinate data tables from neuroimag-

ing publications (Yarkoni et al., 2011). An advantage of automated approaches for content

extraction is their scale since they can be applied to arbitrary numbers of publications;

however, they typically extract information with less accuracy than human experts.

In addition to these neuroscience subdomain-specific databases are meta-databases that

provide linking facilities for cross-resource data integration. For example, NeuroLex ((Lar-
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son and Martone, 2013),http://neurolex.org), provides a platform for community an-

notation of neuron types on the basis of morphological, neurochemical, or electrophysio-

logical properties. Similarly, OpenSourceBrain (http://www.opensourcebrain.org/) is a

community platform for collaborative development of computational neuron and network

models that utilizes open standards such as NeuroML (Gleeson et al., 2010) to facili-

tate interoperability of models developed by different researchers. Given this wealth of

neuroscience resources, the Neuroscience Information Framework (NIF, (Gardner et al.,

2008),http://www.neuinfo.org), provides tools for semantically searching across these

diverse databases through the development and incorporation of neuroscience domain-

specific ontologies (Bug et al., 2008; Larson and Martone, 2009; Hamilton et al., 2012;

Imam et al., 2012). For example, in NIF, the search query "mitral cell" returns a number

of database records including relevant research literature from PubMed, computational

models from ModelDB, and connectivity information from BAMS.

A challenge with neuroscience databases, especially those that are populated through

user submitted content, is ensuring that these resources are well known in the larger com-

munity and that investigators voluntarily contribute content. This is in contrast to other

fields such as genetics or molecular biology, where uploading data to a publicly accessible

database such as GenBank (Benson et al., 2013) or the protein data bank (PDB,(Bernstein

et al., 1977)) is viewed as necessary and required for publication and continued funding.

In Chapter 3 of this thesis, I develop a database called NeuroElectro in which I use

semi-automated approaches to mine measurements on neuronal biophysics from the exist-

ing neurophysiology literature. Namely, with my semi-automated extraction procedures

I make use of both automated text mining methods (as used by WhiteText and Neu-

roSynth (Yarkoni et al., 2011)) as well as expert curation (like BAMS (Bota et al., 2005))

which combine the benefits of scale provided by automated approaches with the accuracy

provided by manual approaches.
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1.1.6 Investigator-to-investigator variability in neurophysiology

A challenge with electrophysiological data is that it is notoriously difficult to directly

compare results across investigators and laboratories. Obtained results are highly de-

pendent upon the exact conditions in which each experiment was done. For example,

neurophysiologists have observed that the animal species, strain, and age all influence the

values of some of the most commonly measured parameters (e.g., (Zhu, 2000; Spruston and

Johnston, 1992)). Furthermore, neurophysiologists have anecdotally reported that subtle

investigator-specific preparation details that would generally be very difficult to fully spec-

ify in an article’s methods section, such as how neurons are selected for electrophysiological

recording, also influence collected electrophysiological measurements. Therefore, directly

pooling and comparing results across investigators, even within the same lab, is usually

not done or is done only in a qualitative rather than a quantitative way. Moreover, this

question of data standardization is often the reason given for why data collected for large-

scale projects such as the Blue/Human Brain Project or Allen Institute should be collected

vertically within a single institute (Markram, 2006; Lein et al., 2007; Kandel et al., 2013)).

Thus any effort to draw inferences from the results collected across investigators will have

to account for these investigator-level sources of variability. Though there are no simple or

definitive answers for how to address these issues of investigator-level variability, potential

solutions include working towards standardizing electrophysiological data collection and

reporting practices.

1.1.7 Thesis outline

In the remainder of this thesis, I investigate the form and function of neuron diversity

using novel methodological approaches. Specifically, in Chapter 2 I describe methods

and analyses for understanding the role of electrophyisological variability within a neuron

type. In Chapter 3, I discuss methods towards building a database of basic electrophys-
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iological properties across mammalian neuron types by extracting this information using

semi-automated text-mining from the existing research literature. Chapter 4 then shows

novel analyses and utilizations of this database of electrophysiological properties. Lastly, in

Chapter 5 I summarize the major work described in this dissertation and discuss potential

future work.
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Chapter 2

Intermediate intrinsic diversity

enhances neural population coding

2.1 Chapter Summary

In this chapter, I develop and apply analyses towards understanding the role of neuronal

within-type variability among olfactory bulb mitral cells (MCs). When working with in

vitro data collected by Krishnan Padmanabhan, a post-doc in the lab, I applied statistical

generalized linear models (GLMs) towards describing how spikes evoked in MCs result from

dynamic stimuli injected as current into MC cell bodies. Though MC input-output transfer

functions are quite complex and vary considerably across MCs, the GLM models could

sufficiently capture this richness and variability among neurons. Importantly, these models

gave me the ability to easily quantify how any two MCs differ in their intrinsic biophysics

by simply comparing their GLM model parameters. Using this statistical framework, I

then used stimulus decoding methods to investigate the computational role of neuronal

variability. I constructed many populations of MCs, which vary in their level of cell-to-cell

variability, and asked how well each population can encode a shared stimulus. I found that

MC populations which best encode stimuli are those with balance neuronal variability with
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neuronal redundancy.

In performing this work, I learned that though neuronal biophysical properties are quite

complex, a sufficiently rich and flexible statistical model, fit with an appropriate amount

of data, can often sufficiently capture the underlying neural complexity.

This chapter has been published in its entirety in Tripathy et al. (2013).

2.2 Abstract

Cell-to-cell variability in molecular, genetic and physiological features is increasingly rec-

ognized as a critical feature of complex biological systems, including the brain. While such

variability has potential advantages in robustness and reliability, how and why biological

circuits assemble heterogeneous cells into functional groups is poorly understood. Here,

we develop novel analytic approaches towards answering how neuron-level variation in in-

trinsic biophysical properties of olfactory bulb mitral cells (MCs) influences population

coding of fluctuating stimuli. We capture the intrinsic diversity of recorded populations of

neurons through a statistical approach based on generalized linear models. These models

are flexible enough to predict the diverse responses of individual neurons yet provide a

common reference frame for comparing one neuron to the next. We then use Bayesian

stimulus decoding to ask how effectively different populations of MCs, varying in their

diversity, encode a common stimulus. We show that a key advantage provided by physi-

ological levels of intrinsic diversity is more efficient and robust encoding of stimuli by the

population as a whole. However, we find that the populations that best encode stimulus

features are not simply the most heterogeneous, but those that balance diversity with the

benefits of neural similarity.
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2.3 Introduction

Biological systems including brains must function efficiently under many constraints, in-

cluding constraints on the numbers of individual neurons dedicated to a given task. Brain

function therefore depends on an appropriate division of labor, with specific neurons dedi-

cated to different functions. For example, different types of retinal ganglion cells represent

visual information at different time scales (Puchalla et al., 2005), and distinct classes of

cortical interneurons play diverse roles in coordinating network activity (Moore et al.,

2010). Whereas attempts to understand how distinct classes of cells encode information

have proven successful (Puchalla et al., 2005), the importance of within-type variability

remains poorly understood (Altschuler and Wu, 2010; Marder and Taylor, 2011) though

has recently become a topic of great interest (Angelo and Margrie, 2011; Padmanabhan

and Urban, 2010).

Though neuron-to-neuron variability is often viewed as an epiphenomenon of biological

imprecision (Altschuler and Wu, 2010; Marder and Taylor, 2011), having neurons of the

same type that respond to different stimulus features may improve stimulus encoding. This

variability may be leveraged to improve functions such as stimulus encoding if heteroge-

neous output of neurons of a single type is collectively used for population coding. Such

populations of neurons could efficiently represent complex stimuli by collectively covering

the relevant stimulus space (Marsat and Maler, 2010; Puchalla et al., 2005; Schneider and

Woolley, 2010). Network interactions could further increase the efficiency of information

transmission by decorrelating neural responses and reducing the redundancy between their

outputs (Giridhar et al., 2011; Schneidman et al., 2003; Tkacik et al., 2010). In contrast,

eliminating redundancy (also referred to as biological degeneracy) may make stimulus cod-

ing less robust to noise or to damage (Azouz and Gray, 1999), thus we hypothesized that

an optimal coding strategy would require balancing diversity with feature similarity or

overlap.
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While theorists have previously explored this issue (Stocks, 2000; Tkacik et al., 2010),

analysis of the function of the diversity of real populations of neurons requires overcoming

methodological hurdles associated with studying cell-to-cell variability (Altschuler and Wu,

2010; Marder and Taylor, 2011). Cell-level differences (that are typically averaged away)

must be captured and quantified. Once these differences have been quantified, one must

compare the functional output of populations differing in their variability. In the context of

neural coding these issues translate to answering the questions: What properties of neurons

determine their response to stimuli? How are these properties distributed? And how do

these distributions of properties influence the encoding of stimuli by populations? While

previous experimental approaches have identified neuron diversity using standard receptive

field analyses, these typically do not describe the full complexity of neural responses to

stimuli (Pillow et al., 2008; Butts et al., 2007; Slee et al., 2005) nor do they allow the source

of the response heterogeneity to be identified as either synaptic or intrinsic. Additionally,

simplistic readouts of population spiking output may underestimate the richness of the

underlying neural code (Narayanan et al., 2005; Marsat and Maler, 2010; Puchalla et al.,

2005; Schneider and Woolley, 2010). Our approach allows the influence of intrinsic diversity

to be isolated from synaptic differences and captures the full potential of these diverse

populations for stimulus encoding.

Specifically, we developed measures of neuronal population diversity based on statistical

generalized linear models (Kass and Ventura, 2001; Pillow et al., 2008) that accurately

reproduce the responses of recorded individual olfactory bulb mitral cells (MCs). These

cells have been shown to express significant biophysical variability from neuron-to-neuron

(Angelo and Margrie, 2011; Padmanabhan and Urban, 2010). We then used the framework

of model-based stimulus decoding (Pillow et al., 2008, 2010) to compare how populations

varying in their diversity optimally encode varieties of stimuli. This approach enables us to

determine whether specific advantages arise from the intrinsic diversity of these neurons,
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and how MC populations balance the competing benefits of diversity and feature similarity.

2.4 Results

2.4.1 Statistical neuron models capture mitral cell response di-

versity.

We generated models of individual MCs from data collected during in vitro whole-cell

recordings in which somatic current injection of broad-band filtered noise (Padmanabhan

and Urban, 2010) evoked action potential trains (2.1; n = 44 neurons). Synaptic trans-

mission was blocked pharmacologically, so that differences in the cells’ spiking responses

reflected only differences in their intrinsic firing properties (e.g. due to biophysical con-

ductances and/or morphology). Each neuron’s spiking response to input current was fit

by a generalized linear model (GLM). GLMs extend stimulus-based reverse correlation or

linear-nonlinear-Poisson (LNP) models (Warland et al., 1997; Slee et al., 2005) by includ-

ing terms that describe how a neuron’s spike probability is modulated via its previous

spikes (Kass and Ventura, 2001; Pillow et al., 2008). Here each GLM had a constant (bias)

term to match baseline firing, a linear stimulus filter determining the neuron’s stimulus

preference, and a spike history function capturing the neuron’s refractory and bursting

properties.

This approach captures the spiking responses of neurons without explicitly modeling the

many ion channels expressed by individual cells (Angelo and Margrie, 2011; Padmanabhan

and Urban, 2010; Marder and Taylor, 2011). Furthermore, GLMs modeled MC activity

better than a simpler model that did not include spike history effects (LNP; 2.1 and 2.5),

indicating that post-spike refractory and bursting effects substantially contribute to action

potential generation in these neurons. Since the parameters of the GLM model emergent

physiological features of the recorded neurons, comparing GLM parameters across neurons
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Figure 2.1: Simple models capture mitral cell stimulus-evoked responses and intrinsic diversity. (A) Mitral cell (MC) intrinsic
properties are probed using filtered broadband stimuli (1st row) injected somatically to evoke changes in membrane voltage
(2nd row). Spike rasters (3rd row; black) and PSTH (4th row; black) for repeated stimulus presentations (n = 40 trials) show
that this MC spikes to the stimulus with temporal jitter and displays a coarse stimulus preference. Model neuron rasters (3rd
row, red) and PSTH (4th row, red) show that the model accurately predicts MC activity on novel stimuli. (B) Same as A but
for a different neuron. (C) Structure of the generalized linear model (GLM) neuron. Model parameters describe a temporal
stimulus filter, a post-spike filter, and a constant bias term. An exponential nonlinearity defines an instantaneous spike-rate
and is used to draw noisy spikes. (D) GLM models accurately predict 86 +/- 11 % (mean +/- s.e.m.) of stimulus-evoked
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fits were better than LNP models. (E-F) Model parameters for all MCs. Each line corresponds to parameters for a unique
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less (greater) than 1 indicate a decreased (increased) spike probability. (G) Bias terms also show considerable variation.
Same y-axis as F.
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illustrates the diversity among MCs. For example, the diversity reflected in post-spike

(i.e. spike-history) filters potentially corresponds to a recently characterized variability in

the rebound depolarization current of these neurons recorded in vivo (Angelo and Margrie,

2011). Furthermore, the interaction of each MC’s GLM parameters defines how it responds

to stimuli and dictates the complex stimulus features that each neuron best encodes. We

note that the efficacy of the GLM approach in capturing MC responses was not specific to

the precise stimulus statistics delivered to the neurons here (2.6).

2.4.2 Diversity enables efficient stimulus representation.

Because the GLM approach captures the intrinsic diversity across MCs, different model

MCs generate unique spike trains when presented the same dynamic stimulus (2.2 and 2.7).

We utilized this model-based approach to ask which features of these individual neurons

influence the amount of information about the stimulus that each neuron captures (2.2).

Quantifying the quality of stimulus representation using information theoretic methods

(Pillow et al., 2008, 2010), we found that neuron information rates were strongly correlated

with firing rate (r = .87), in line with previous findings (Borst and Haag, 2001). However,

we note that we found examples of neurons that had identical firing rates and yet differed

almost two-fold in their information rates, suggesting the importance of additional factors

other than firing rate governing the amount of transmitted information. For example,

neurons whose spike times were reliable across stimulus repeats and whose spikes were

strongly stimulus driven (i.e. minimal contributions from bias or spike-history terms) were

more informative per spike (2.2 and 2.7). We note that the large range and diversity of firing

rates observed among the MCs here is concordant with those found in vivo (Shusterman

et al., 2011).

We extended this information-based framework to examine how populations of recorded

MCs encode a common stimulus, considering two broad possibilities. First, stimuli might
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more redundant than heterogeneous pairs (Het; p = 2.5*10-16, Wilcoxon, n = 44 and 946 pairs, respectively).
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be best encoded by groups of highly similar neurons, suggesting that averaging across the

population of recorded neurons can compensate for unreliable spiking in any single neuron

(Schneider and Woolley, 2010). Alternatively, stimuli might be best encoded by groups of

heterogeneous neurons, suggesting that maximizing the representation of temporal features

of the stimuli is important (Atick and Redlich, 1993; Tkacik et al., 2010). We specifically

chose to study how diverse groups collectively represent an identical stimulus to mimic

features of the olfactory bulb, where 25-50 sister MCs projecting to the same glomerulus

(Padmanabhan and Urban, 2010) each receive highly correlated stimulus- and respiration-

driven synaptic input (Schoppa and Westbrook, 2001; Shusterman et al., 2011; Spors et al.,

2006; Friedrich, 2006; Verhagen et al., 2007).

We created populations of uncoupled virtual mitral cells by randomly selecting groups

of model neurons (i.e. fit from the recorded MCs). Spiking responses in these virtual

populations were then simulated using the GLM models, enabling us to probe ensemble

responses to many more stimuli than could be delivered during experimental recordings.

The neurons in these synthetic populations varied in the diversity of their GLM parameters,

allowing us to determine how neuronal diversity influences the encoding of fluctuating

stimuli. To this end, we used Bayesian model-based decoding, which optimally reconstructs

the input to a population (i.e. its “perceived stimulus”) given its ensemble response (Pillow

et al., 2008, 2010). This approach solves the high-dimensional problem of interpreting

dynamic population responses (Schneidman et al., 2003; Pillow et al., 2010) without making

undue simplifications or assumptions about the nature of the neural code (Narayanan et al.,

2005; Schneider and Woolley, 2010). However, we note that we could have instead focused

on alternative metrics of population output instead of stimulus representation efficacy.

We first employed the analysis described above on populations consisting of pairs of

simulated neurons. Homogeneous pairs, composed of two copies of the same model neuron

(with identical stimulus filtering properties), encoded 73 +/- 11 % more informative about
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the stimulus than a single neuron copy alone (2.8). In other words, because spiking is a

stochastic process, decoding is improved by considering multiple spike trains from identical

model neurons. This allows for averaging out the effect of any single neuron’s noise. Next,

we considered both homogeneous and heterogeneous pairs of neurons, and quantified the

informational redundancy of these pairs. This method compares the information of the

pair relative to the sum of each neuron’s information independently (Schneidman et al.,

2003), and gives an indication of the efficiency of information representation by the pop-

ulation. For example, do neurons together represent information redundantly (i.e. both

neurons communicate identical or partially overlapping messages)? Or do they instead

represent information synergistically (i.e. both neurons communicate more information to-

gether than both individually)? While we found that most homogeneous and heterogeneous

populations represented information redundantly (2.2), homogeneous pairs were twice as

redundant as heterogeneous pairs (16% versus 8% informational redundancy). Given that

these neurons do not directly communicate, we note that the appearance of synergism

among neurons pairs here is somewhat surprising and is likely due to limitations in our

ability to estimate information rates among low firing rate neurons (see Section 2.6 for

further explanation). Nonetheless, these results demonstrate that while pooling responses

over multiple neurons even multiple copies of the same neuron is beneficial, the hetero-

geneity in intrinsic properties in actual mitral cells is beneficial for efficiently representing

sensory information.

2.4.3 Intrinsic diversity enables populations to generalize across

stimulus types.

We next investigated the effect of diversity on stimulus coding in larger neuronal pop-

ulations. In 2.3 we plot actual and reconstructed stimuli for two example populations:

the first, a homogeneous group composed of five copies of the highest firing rate, most
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informative neuron from 2.2C; the second, a population composed of neurons with diverse

parameters (Fig. 3D). Both populations encode stimuli composed of high frequencies with

high fidelity (2.3A); however, the diverse population is more effective in representing lower

frequency stimuli (2.3E) than the homogeneous one (2.3B,C). Thus though the diverse

population has 45% fewer spikes than the homogeneous one, the diverse population better

utilizes its allocation of five neurons by representing more of the relevant stimulus space

with its (temporal) receptive fields.
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Figure 2.3: Populations composed of diverse neurons effectively encode stimuli with very different frequency spectra. (A-C)
Example stimulus (top; black), rasters (bottom), and reconstructions (top) for a homogeneous population composed of 5
copies of the most informative neuron (pop 1, red) and a heterogeneous population composed of 5 neurons with diverse
properties (pop 2, green) for 3 stimuli with different power spectra: Stimulus 1, gaussian white noise (GWN) convolved
with an alpha function with τ = 3 ms (A); Stimulus 2, GWN with alpha function with τ = 10 ms (B); Stimulus 3,
Ornstein-Uhlenbeck process with τ = 40 ms (C). Note that while both populations can represent the stimulus in A well,
only population 2, the diverse population, can also represent the lower frequency stimuli in B and C. (D) Neuron GLM
parameters for the populations in A-C. Top row indicates parameters for population 1 and bottom row for population 2
(green shades indicate different neurons). (E) Power spectra for the 3 stimuli in A-C (dotted, solid, dashed respectively).
(F and G) Relative rankings of stimulus reconstruction accuracy (rmse) for all homogeneous (hom-, red) and 200 randomly
sampled heterogeneous populations (het-, green) for stimuli 1 versus 2 (F) or 1 versus 3 (G). Populations in top right of
graph indicate those which represent both stimuli accurately. Asterisks indicate populations highlighted in A-C. Note that
hom- populations are among the bottom populations and are further from the unity line than het- populations. (H) Average
rank of het- and hom- populations across 8 spectrally unique stimuli (see Methods). Het- populations are consistently ranked
higher (more accurate) than hom- ones (p = .002, paired Wilcoxon). (I) Plot of generalizability, defined as the correlation of
population ranks on stimulus pairs, for hom- and het- populations across all pairs of 8 stimulus types. Each dot corresponds
to the generalizability between a pair of stimulus types (n = 28 total pairs). Het- populations are significantly more likely
than hom- to generalize to novel kinds of stimuli (p = 1.5*10-4, paired Wilcoxon).
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To extend this analysis we compared how 250 populations of randomly chosen five-

neuron ensembles encoded stimuli with different frequency spectra (e.g. 1/fα noise with

differing values of α, white noise, etc, n= 8 stimuli total, shown in 2.9). These stimuli

were chosen to cover a wide range of input frequencies including the range of frequencies

these neurons likely receive in vivo (Khan et al., 2012; Spors et al., 2006). We created

homogeneous populations, each consisting of five copies of a single MC, and heterogeneous

populations generated by randomly selecting five MCs from the recorded set with replace-

ment. To compare population responses across stimulus spectra, we ranked the populations

in order of increasing average reconstruction error for each kind of stimulus and compared

ranks across different stimuli. Across pairs of stimulus types population ranks were corre-

lated (2.3F, G, r = .80, .71 respectively), meaning that those populations that represent

one stimulus well also represent other kinds of stimuli well (termed generalizability). Het-

erogeneous populations were better than homogeneous ones not just at encoding stimuli

on average (2.3H), but also at generalizing across different stimuli (specific examples in

2.3F,G; summary in 2.3I). Thus the observed intrinsic diversity helps encode many kinds

of stimuli, conferring representational robustness to MC populations.

2.4.4 Populations optimized for specific stimuli combine diver-

sity with homogeneity.

Thus far, we have only considered sampling neurons randomly according to a particular

rule (homogeneously versus heterogeneously). We next attempted to construct more opti-

mal groups of neurons for encoding specific stimulus types. We liken this scenario to that

of sister MCs associated with a single glomerulus, which receive inputs with a specific tem-

poral structure (Carey and Wachowiak, 2011; Shusterman et al., 2011) based on olfactory

receptor neuron (ORN) odorant binding kinetics, which differ across glomeruli and ORN

subtypes (Nagel and Wilson, 2011). Would the best population for a given stimulus be
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more diverse than selecting MCs at random from the physiologically-based set? Or would

the best population be more homogeneous than random, perhaps allowing the responses

of unreliable neurons to be improved upon by selecting neurons coding for redundant (i.e.

degenerate) stimulus features? To answer these questions, we implemented a greedy search

algorithm (Russell and Norvig, 2009) to build the best population of model MCs to encode

a given stimulus by iteratively adding neurons one at a time such that the added neuron

maximized the ability of the entire population to represent the stimulus (2.4A). While not

guaranteed to find the global optimum, it is an efficient and intuitive method of finding

neuron groups more informative than those generated through random sampling.

Visualizing the makeup of these greedy-search selected populations using dimension-

ality reduction (2.10) reveals that they reflect a balance between diversity - consisting of

neurons with different properties - and homogeneity - often including multiple copies of se-

lected neurons (2.4B,C and 2.11). Additionally, the stimulus type dictates the selection of

specific neurons and the chosen level of population diversity. For example, the population

selected to best encode a white noise stimulus (2.4C) was composed primarily of similar

neurons with high firing rates whereas diversity in neuron properties was more important

for encoding a more naturalistic stimulus with both rapidly and slowly-varying temporal

components (2.4B). Using the greedy search algorithm to select populations for each of

the 8 stimulus types, we quantified the diversity of these populations and of randomly

sampled heterogeneous and homogeneous populations (2.4D). Surprisingly, greedy-search

populations were on average 25% less diverse than heterogeneous ones when considering

either stimulus filter and post-spike parameters. Furthermore, quantifying population di-

versity for MC groups selected to best encode different stimulus types reveals that they

have varying levels of diversity (2.4E and 2.12), suggesting that population diversity should

be preferentially tuned to the afferent stimulus distribution.

To ensure that the previous findings are not solely the result of the greedy selection
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Figure 2.4: Populations optimized for stimulus representation combine homogeneity with diversity. (A) Cartoon of greedy-
search algorithm to estimate the population which best represents a particular type of stimulus. Neurons were iteratively
added, one at a time, to the current population of neurons such that the neuron chosen maximized the population’s recon-
struction accuracy. To allow for homogeneity, neurons could be added more than once (e.g. two red neurons). (B and C)
Visualization of the population selected to best represent a white noise stimulus (B) or a low frequency stimulus (C). Graphs
show neurons (as dots) projected into a 2-dimensional space using principal component analysis (PCs). Population sizes vary
from n = 1 to n = 10, numbers next to dots correspond to algorithm iteration step when each neuron was added. Note
that certain neurons are chosen multiple times and that stimulus type dictates the selected population diversity. (D) GLM
parameter diversity of the greedy-search selected populations (blue) averaged over 8 different choices of stimulus spectra
relative to homogeneous (red) and randomly sampled heterogeneous populations (green), n = 10 neurons per population.
Asterisks indicate where greedy-search populations are significantly less diverse than heterogeneous (p < .05) and population
diversity has been normalized to that of randomly sampled heterogeneous. Error bars indicate s.e.m (blue) and interquartile
range (green). (E) Greedy-search population diversity for specific stimulus types. Colors indicate different stimulus types
corresponding to inset power spectrum (magenta, stimulus as in B; cyan, OU process with τ = 10ms; black, stimulus as in C),
open circles indicate multiple runs of the greedy search algorithm (n = 10 per stimulus type), asterisks indicate significant
differences in population diversity between stimulus types. (F) Population decoding error as a function of stimulus filter
diversity for 200 randomly sampled populations (dots, n = 5 neurons per population) for stimulus 1 and 2 as in Fig. 3 (i, ii,
respectively). Least-squares fits using a 2nd-order polynomial (blue) show that on average there is an intermediate level of
stimulus filter diversity where decoding error is minimized (regression p-value < .01). (G) Cartoon showing that population
diversity should be preferentially selected with respect to the specific incoming stimulus distribution.
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process, we performed additional simulations by randomly constructing populations with

differing amounts of diversity and examining the relationship between population diversity

and decoding accuracy. As predicted from the greedy search results, we found evidence

for a U-shaped relationship between decoding accuracy and population diversity (2.4F

and 2.13), indicating that neural coding is optimized at intermediate levels of diversity.

However, population size is also a relevant factor in the importance of population diversity,

with diversity being more important to smaller populations than larger ones (2.14). This

suggests that heterogeneity will be more important to populations in which the number of

neurons devoted to representing a stimulus is relatively small. Furthermore, we found the

benefit of neural variability to not be solely dependent upon a single GLM filter dimension

(2.15), like the stimulus filter or bias term.

2.5 Discussion

Here we apply the framework of generalized linear models to study how cell-to-cell dif-

ferences in intrinsic properties of olfactory bulb mitral cells influence stimulus encoding.

To our knowledge this is the first application of this approach to quantifying cell-to-cell

heterogeneity or population complexity. The statistical modeling approach that we have

used accurately captures the neuronal properties determining spiking while avoiding over-

fitting. It also avoids making specific but difficult-to-verify claims about channel densities

or properties that can arise from under-constrained Hodgkin-Huxley models (Bhalla and

Bower, 1993). We show that diverse populations offer the advantages of more efficient en-

coding (defined in terms of information per cell or information per spike) and more robust

coding of different kinds of stimuli, such as stimuli with wide ranges of spectral properties.

This is because neurons encoding partially overlapping (i.e. degenerate) stimulus features

can work together to overcome neural spike-generation noise and also encode more stimulus

features together than separate. We also show that populations selected to best represent
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stimuli with specific spectral properties have differing amounts of diversity, suggesting that

population diversity should be selectively chosen with respect to the precise stimulus to

be enocded. While variants of this framework have been used to model neural responses

previously (including in single neuron modeling competitions (Gerstner and Naud, 2009;

Jolivet et al., 2008)) this is the first use of this framework for describing the systematic

biological differences among neurons and their impact on population coding. Given the

generality of this framework, we believe that this methodology can similarly be extended

to describe electrophysiological differences across neuron types and to develop hypotheses

about the distinct roles of different neuron types throughout the brain.

One of the key advantages of this approach is that it allows us to use Bayesian stimulus

decoding to ask how neuron-to-neuron differences in stimulus filtering and post-spike prop-

erties influence population coding of arbitrary stimuli. Bayesian decoding is advantageous

because it offers an optimal, best-case view of neural encoding, making few assumptions

that risk underestimating the complexity of the neural code (Pillow et al., 2008, 2010).

While we explored the relationship between stimulus encoding in diverse and homogeneous

populations in a previous study (Padmanabhan and Urban, 2010), performing stimulus re-

construction here allows the identification of the relative importance of variation in specific

features of the sets of recorded neurons. This approach also allows us to investigate stim-

ulus encoding in a more general context by simulating responses to arbitrary stimuli. An

obvious advantage of simulation approaches is that we are not limited to only analyzing

data that we are able to collect during recordings.

Our results make specific, testable predictions on the role of MC intrinsic diversity for

encoding olfactory information. First, we show that when populations need to represent

a variety of stimulus types, then intrinsic diversity facilitates generalizing representations

across stimulus types. Secondly, when populations need to represent a single kind of

stimulus and are allowed to selectively choose their level of variability, populations choose
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a balance between complete homogeneity and diversity. That is, homogenizing the input

received by a population of neurons should lead the population to be less diverse. This

in silico finding is intriguing because it is consistent with recent experimental findings

showing that sister MCs, receiving primary olfactory inputs from the same glomerulus and

olfactory receptor subtype, are biophysically more similar to one another than sampling

MCs at random (Angelo and Margrie, 2011). Furthermore, our work makes the additional

hypothesis that the level of diversity across sister MCs should be adaptive with respect to

the unique stimulus distribution that these neurons receive from their olfactory receptor

subtype (Carey and Wachowiak, 2011; Nagel and Wilson, 2011). Therefore we predict

that the levels of MC intrinsic diversity between sister MCs should be empirically different

across glomeruli (2.4G).

We note that we made multiple assumptions here for the sake of computational tractabil-

ity. Because our focus was to study the functional role of MC intrinsic diversity, we chose

not to include any of the effects of neural connections like synapses between neurons in

our experiments and simulations. Given that the olfactory bulb possesses extensive lateral

circuitry (Giridhar et al., 2011) which has been shown to also diversify MC responses (Are-

vian et al., 2008; Dhawale et al., 2010), we expect that bulbar circuit activity will work

in conjunction with intrinsic diversity in vivo to further diversify MC responses. Further-

more, when decoding we took the perspective that the best populations were those which

resulted in the most faithful reconstruction of the stimulus. However, the biological solu-

tion dictating the actual amount of diversity may use alternative criteria for optimality.

For example, in vivo, olfactory bulb MCs may seek to represent only odor-specific stim-

ulus components or may try to maximize stimulus representation while also minimizing

the number of spikes used to transmit the information (Weber et al., 2012). We chose

to avoid assumptions about which features of ORN input are most important for MCs to

represent and rather to take the agnostic view that MCs should try to represent the stim-
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ulus in its entirety. Our approach, however, can readily be adapted to tasks that require

representation of specific stimulus components. While these assumptions likely affect the

quantitative details of our results, like specifying of the precise balance between diversity

and feature similarity, our general finding that a precise stimulus-specific balance exists

nevertheless likely holds.

We believe that our results generalize to other neural systems because this circuit

motif in which multiple neurons receive highly correlated inputs occurs throughout the

brain, including neocortex (Poulet and Petersen, 2008). Thus we predict that the observed

degree of neuronal intrinsic variability plays a substantial role in tuning the output diversity

(or redundancy) in these neurons’ spiking responses and in improving stimulus encoding.

Furthermore, our findings may in part explain the substantial informational redundancy

found in neural populations throughout the brain (Puchalla et al., 2005; Schneider and

Woolley, 2010). Given that the optimal networks here are neither maximally diverse nor

maximally homogeneous, these results suggest similar design principles for other systems.

By mixing diversity with neural feature similarity, complex systems can simultaneously

maintain efficient functioning while remaining robust to uncertain events.

2.6 Materials and Methods

2.6.1 Neuron Recordings

Whole cell patch clamp recordings of mitral cells were obtained in vitro from mouse ol-

factory bulb slices using methods described previously (Padmanabhan and Urban, 2010).

Mitral cells were identified under infrared differential inter¬ference contrast optics on the

basis of their laminar position in the olfactory bulb and their morphology. All experiments

were performed at 35 °C in standard Ringer’s solution with excitatory (25 µM AP5 and

10 µM CNQX) and inhibitory (10 µM bicuculline) synaptic activity blocked.
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Current-clamp recordings were performed while injecting neurons with a filtered white

noise current stimulus. Noise traces were generated by convolving a 2.5-s white noise

current with an alpha function of the form t ∗ exp(−t/τ), where τ = 3ms. We chose this

spectral structure as it generates reliable spiking in these neurons and corresponds to the

time-scale of fast synapses afferent to MCs (Galán et al., 2008). Each neuron received one of

a small number of stimuli generated via this method (most neurons received 1 of 3 stimulus

templates) and was presented 40 stimulus repeats. The amplitude (variance) of the noise

used was between 5% and 40% of the direct current (100-800 pA, σ = 20-80 pA) offset

for each cell, with the majority of cells receiving 10-20% of the DC offset. The variance of

the noise was selected as previously described (Galán et al., 2008), to induce reliable firing

with¬out large input fluctuations. For all recordings, a 25 or 50 pA hyperpolarizing pulse

was injected before stimuli were delivered to measure input resistance and membrane time

constant, allowing us to track the stability of recordings over multiple trials. Only neurons

whose firing patterns were stable across trials and fired a sufficient number of spikes in each

trial (>5 Hz) were used in this study. Upon stimulation most neurons usually underwent

a brief non-spiking adaptation period (111 +/- 14 ms) which was assessed visually and

excluded from the analysis.

2.6.2 Model fitting

GLM models were fit and simulated using code provided by Jonathan Pillow (Pillow et al.,

2008). Models consisted of a temporal stimulus filter k, a post-spike history filter h,and a

constant bias term b. Stimulus and history filters were each represented using 10 spline-like

cosine basis functions spaced logarithmically in time. The conditional intensity function of

each neuron was modeled as λ(t) = exp(kx+ hr + b), where x denotes the stimulus and r

is the recorded spike response of the neuron. Before fitting, stimuli were down-sampled to

1KHz and standardized by subtracting the DC component and dividing by the amplitude

35



of the stimulus noise. LNP models were fit using the spike triggered average stimulus as

the linear filter and estimating the spike rate nonlinearity using 60 independent histogram

bins.

Models were trained using all of the trials from the first 90% of the stimulus presentation

and validated using the remaining 10%. Specifically, we validated the fit of our models

by comparing real and model peri-stimulus time histograms (PSTHs) computed from the

test stimulus set (i.e. stimuli not used in the training of the model). We simulated model

spike trains using the GLM to probabilistically generate spikes elicited by the test stimulus.

PSTHs were computed by summing spikes across trials and smoothing with a Gaussian

filter of width σ = 2 ms. The similarity between real and model PSTHs was reported

using Pearson’s correlation coefficient. For visualization, MC rasters were randomized

across trials.

To assess whether the GLM fitting procedure could also fit neuron responses to multiple

stimulus types, we performed an additional set of experiments on mitral cells (n = 5

neurons) where each neuron was stimulated with both a high and low frequency stimulus

(white noise convolved with an alpha function with τ = 3ms and τ = 10ms, respectively).

We found that the GLM modeling procedure could sufficiently fit neuron responses to each

of these stimulus types, indicating that the fitting procedure is not specific to the particular

stimulus type used to generate stimulus evoked responses in this study (2.6).

2.6.3 Computation of neuronal statistics using GLM models.

We were interested in computing neuronal statistics like average firing rates and trial-

to-trial reliability from the fitted GLM models. We computed these by simulating long

experiments (2 minutes) of continuous stimulation and computing desired statistics based

on these responses. We computed neuron reliability by stimulating each model neuron

with multiple trials (n = 50) of the same stimulus and calculating reliability as the average
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zero-lag correlation across trials using a bin size of 5ms.

To calculate to what extent neurons were driven by intrinsic (history plus bias) versus

stimulus components (2.7B), we used the model to simulate spike trains while storing the

stimulus and intrinsic currents which generated the spike trains. Here the stimulus driven

component consists of the convolution of neuron’s stimulus filter with the input stimulus

whereas the intrinsic component is defined as the bias term plus convolution of neuron’s

spike train with its post-spike filter. We calculated the ratio of intrinsic to stimulus inputs

as < [stim]+ > / < [intrinsic]+ > where [x]+ indicates selection of positive values of the

currents and < x > indicates the mean.

2.6.4 Stimuli generation for simulations.

We generated zero-mean Gaussian stimuli x with a defined temporal correlation structure

and length n by first generating a signal autocorrelogram with the desired spectral struc-

ture. This autocorrelogram was used to define a Toeplitz n ∗ n covariance matrix C where

the elements of C indicate the pairwise correlations between points of x. Correlated stim-

uli were then generated using the Cholesky decomposition to find a matrix L such that

C = L ∗ LT , then multiplying L with a series of uncorrelated normal random variables of

length n.

Here we chose 8 broadly different stimuli statistics: 3 stimuli generated via convolving

white noise with an alpha function defined as t ∗ exp(−t/τ), where τ = 3, 5, 10ms; 3

Ornstein-Uhlenbeck processes with τ = 10, 20, 40ms, which have flat followed by 1/f 2-like

frequency profiles; a pure white noise stimulus, with cutoff at 500 Hz; lastly, a naturalistic

stimulus generated by combining an 8 Hz oscillatory stimulus with an Ornstein-Uhlenbeck

process with τ = 10ms (displayed in 2.9).
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2.6.5 Decoding

Decoding. We decoded the population spiking responses using the maximum a pos-

teriori (MAP) estimator (Pillow et al., 2010), which finds the most probable stimulus

given a particular population spike response. Stimuli x (typically of length .5 s, with

sampling rate 1KHz) were decoded from simulated spike responses r by computing the

mode of the posterior distribution, argmax
x

p(x|r), where p(x|r) ∝ (r|x)p(x) via Bayes’

rule. Here p(r|x) is the likelihood of a response given a stimulus and is given by the

set of uncoupled neuron encoding models and p(x) is a multivariate Gaussian prior spec-

ifying the specific stimulus autocorrelation structure (with covariance matrix, C, used

to generate stimuli). Specifically, stimuli were decoded utilizing a recently described

method(Pillow et al., 2010) which takes advantage of a convenient Gaussian approximation

on the posterior distribution p(x|r) and its log-concavity to exactly compute the maxi-

mum (i.e. the mode) of the posterior distribution via numerical optimization techniques.

This method also provides an estimate of the uncertainty of the stimulus representation

(2.8F,G). Matlab code for decoding and all other methods related to the simulation and

analysis of spike trains generated from GLM models (detailed below) can be found at

https://github.com/stripathy/mitral_cell_diversity.

2.6.6 Mutual information calculation

Mutual information calculation. We calculated the mutual information (Pillow et al., 2010)

of the population response r about the stimulus x as I(x; r) = H(x)−H(x|r). H(x) denotes

the entropy of the stimulus and is defined by the multivariate Gaussian stimulus prior p(x)

and H(x|r) denotes the conditional entropy of the stimulus given the response and is

estimated by approximating the posterior distribution p(x | r) as a multivariate Gaussian

N(xmap, C) where the covariance matrix, C, is computed as a by-product of our decoding

method. Here we utilize the fact that the entropy of a Gaussian with covariance matrix
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C is ln
√

((2πe)n|C|), where |x| denotes matrix determinant and n is the dimension of the

stimulus. Estimates of I(x; r) were obtained by averaging H(x|r) over responses elicited

to multiple stimuli realizations (n = 50). Importantly, because this method estimates the

entropy of the posterior distribution, it generally provides a better estimate of the mutual

information than the commonly used lower-bound estimate of I(x; r) obtained via the

optimal linear estimator (Warland et al., 1997), especially when the neurons are non-linear

and not well described by an LNP model.

We computed a normalized measure of the redundancy or synergy (Schneidman et al.,

2003) of a pair of neurons a; b relative to each of the neurons independently as (I(x; a) +

I(x; b) − I(x; a, b))/I(x; a, b) . Positive values indicate informational redundancy while

negative values indicate synergy.

To elaborate on our finding of synergistic pairs of neurons (2.2F), we note that due

to computational constraints we can only decode stimuli of relatively short lengths (.5

seconds). Therefore we will tend to underestimate the information rates of neurons which

fire at low firing rates. For example, when performing stimulus decoding to calculate the

information rate of a single neuron with a very low firing rate, it may fire zero spikes during

the time interval and thus encode no stimulus information. However, when considering two

such neurons, the two will be much more likely to fire at least one spike between them, and

thus encode some nonzero stimulus information. In this example, the case of a two-neuron

pair would appear synergistic relative to a single neuron alone. Therefore, if we could

simulate arbitrarily long stimulus presentations we would expect this apparent synergy

effect to disappear.

2.6.7 Calculating population stimulus generalization.

Calculating population stimulus generalization. To calculate how well heterogeneous and

homogeneous populations generalized across stimuli of differing types, we computed the
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generalizability for each population type. Here generalizability is defined as corr(ranks)stim1, ranksstim2),

or the correlation between population ranks on pairs of stimulus types.

2.6.8 GLM dimensionality reduction.

We chose to reduce the dimensionality of the space defined by neuronal GLM parame-

ters using principal component analysis (Fig. S5) for visualization and further analysis.

Principle components (PCs) were generated by first concatenating waveforms of stimulus,

post-spike, and bias components across all neurons and standardizing before performing

PCA. Post-spike and bias terms were transformed to units of log(Gain) before concatenat-

ing. The first 10 ms of post-spike filters were removed and not included in analysis.

2.6.9 Computing population diversity.

We calculated population diversity as the mean Euclidean distance of GLM parameters

computed between all pairs of neurons in a population. We excluded the first 10 ms of

the post-spike filters across neurons as most neurons were refractory during this period.

The average diversity of heterogeneous populations was computed by averaging over 50,000

randomly sampled populations. When reporting the uncertainty in the diversity of ran-

domly sampled populations (2.4D), we chose to show a measure of the population variance

(interquartile range) as opposed to standard errors.

We sampled populations that varied greatly in their amount of diversity (from low to

high; 2.4F and 2.13, 2.14) through implementing stratified sampling where we first sampled

2 million 5-neuron populations and then further sub-sampled this set to pick populations

that varied uniformly in their diversity.
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2.6.10 Eliminating diversity in a single GLM dimension

We constructed populations which had diversity eliminated along a single GLM dimension

(stimulus, post-spike or bias) by modifying the neuron model parameters from the ones

based on the recorded neurons (2.15). For example, to sample neurons where diversity in

the stimulus filter had been eliminated, we set the stimulus filter for all neurons that of the

mean stimulus filter computed over all neurons. We further ensured that mean of the firing

rates across neurons were similar between the original and diversity-reduced populations.

2.7 Supplemental Figures

−40 −20 0

−0.5

0

0.5

1

Time (ms)

S
ti

m
 u

n
it

s 
(a

.u
.)

0 20 40 60
0.1

1

10

100

Time (ms)

G
a

in

−40 −20 0

−0.5

0

0.5

1

Time (ms)

S
ti

m
 u

n
it

s 
(a

.u
.)

−4 −2 0 2 4
0

50

100

150

200

STA projection (a.u.)

F
ir

in
g

 r
a

te
 (

H
z)

2.3 2.5
0

100

200

Time (s)

F
ir

in
g

 r
a

te
 (

H
z)

−40 −20 0

−0.5

0

0.5

1

Time (ms)

S
ti

m
 u

n
it

s 
(a

.u
.)

0 20 40 60
0.1

1

10

100

Time (ms)

G
a

in

−40 −20 0

−0.5

0

0.5

1

Time (ms)

S
ti

m
 u

n
it

s 
(a

.u
.)

−4 −2 0 2 4
0

50

100

150

STA projection (a.u.)

F
ir

in
g

 r
a

te
 (

H
z)

2.3 2.5
0

100

200

Time (s)

F
ir

in
g

 r
a

te
 (

H
z)

M
C

G
L

M
L

N
P

Post−spike !lterStimulus !lter

STA Nonlinearity

Bias
M

C
G

L
M

Post−spike !lterStimulus !lter

STA Nonlinearity

Bias

L
N

P
CA

B

FD

E

Figure 2.5: Comparison of GLM and LNP model parameters and prediction accuracy. (A) GLM parameters (red) and spike
triggered average current (STA, leftmost panel, blue) for the neuron in Figure 1A. (B) LNP parameters for same neuron.
(C) Experimental MC, GLM, and LNP rasters (top) and PSTH (bottom). Note that GLM spikes replicate the MC more
precisely than the LNP model. (D-F) Same as A-C but for in neuron Figure 1B.
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Figure 2.8: Two copies of the same neuron are more informative than a single neuron alone. (A) Stimulus-response mutual
information for single neurons (thick line) and populations of two copies of the same cell (thin line). In all cases, two neurons
convey more information than a single neuron alone. (B) Informational redundancy of homogeneous pairs versus single neuron
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fire relatively periodically. (D and E) Example stimulus and reconstructions for neurons 35 and 18. Note that for neuron
35, an unreliable neuron, there is an improved stimulus representation when another copy of 35 is added; this is effect is
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Figure 2.9: Examples of the 8 stimulus statistics used in this study. (A) White noise convolved with alpha function with
τ = 3 ms. (B) White noise convolved with alpha function with τ = 10 ms. (C) Ornstein-Ulhenbeck process with τ =
10 ms. (D) Pure white noise stimulus (max frequency = 500 Hz). (E) Ornstein-Ulhenbeck process with τ = 20 ms. (F)
Ornstein-Ulhenbeck process with τ = 40 ms. (G) White noise convolved with alpha function with τ = 5 ms. (H) Naturalistic
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Figure 2.10: Decomposition of neuronal GLM parameter space into a small number of principal components. (A) GLM
parameters for an example 5-neuron population (colors) and mean GLM parameters across all neurons (black). (B) Percent
variance explained for each subsequent principle component (PC). The first 3 principal components explain 85% of variance
among GLM parameters. (C) Visualization of the first 3 PCs computed from GLM parameters. (D and E) Projection of
neurons (dots) into space defined by PCs 1 and 2 (D) or PCs 1 and 3 (E). This analysis plots neurons such that those with
similar GLM parameters are plotted close to one another. The computed PCs largely reflect differences among post-spike
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stimulus filters (relative to the mean across neurons) and longer refractory periods with less of a tendency to burst 20-40 ms
following a spike and vice versa for positive PC1. Neurons with high PC2 tend to have high baseline excitability, very short
refractory periods and increased amplitude stimulus filters relative to the mean.
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Figure 2.11: Selection of homogeneous neurons during greedy search does not preferentially occur after coding improvements
have saturated. (A) (i) Detailed analysis of neurons added and their selected position during greedy search algorithm. Neuron
population selected to best encode a white noise stimulus. (ii) Decoding error as a function of population size during greedy
search optimization procedure. Colored asterisks indicate whether neuron added at nth iteration is a homogeneous neuron
(red, i.e. a copy of selected neuron is already in the population) or heterogeneous (green). Same population as shown in
i. (iii) Same data as ii, plotted as iterative improvement in decoding error when adding an additional neuron, broken down
by if neuron added is a homogeneous neuron (red) or heterogeneous neuron (green). There is no significant difference (p >
.05) in decoding error improvement between homogeneous and heterogeneous groups. (B and C) Same as A, but for a low
frequency stimulus (B, white noise convolved with alpha function with τ = 10 ms) or a high frequency stimulus (C, white
noise convolved with alpha function with τ = 3 ms).
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Figure 2.13: Evidence for a U-shaped relationship between population diversity and decoding error. (A and B) Decoding error
for 5-neuron populations (black dots) as a function of population diversity along stimulus filters (i), post-spike filters (ii), and
bias parameters (iii) for stimulus 1 (A, as in Figure 3A) or stimulus 2 (B, as in Figure 3B). For each i-iii, 200 heterogeneous
populations were drawn such that populations of varying diversity (from super-diverse through sub-diverse) were sampled
with equal probability (see Methods, n = 5 neurons per population). Blue line shows fit of a quadratic polynomial, used
to test for expected U-shaped relationship. In all cases, the regression coefficient associated with the quadratic term of the
polynomial fit was positive and significant (p < .01), except for Aii and Bii, indicating that reconstruction error is minimized
at an intermediate values of stimulus filter and bias diversity. The reason why there does not appear to be a concave-up
U-shaped relationship for post-spike filters is due to sampling confounds: low post-spike diversity populations tend to have
higher firing rates than high post-spike diversity populations. (C) Same as A, but showing U-curves averaged across each
of the 8 stimuli. In this case, the decoding error was first normalized to z-scores before performing the regression, allowing
comparison across stimuli.
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Figure 2.15: Benefit of neuron variability does not depend on a single GLM model dimension. (A) Example 5-neuron
populations where population variability in a single GLM dimension (stimulus, post-spike, bias) has been eliminated (top,
middle, bottom rows respectively). (B) Mean information rates for heterogeneous, homogeneous, and stimulus, post-spike,
and bias reduced diversity populations. Information rates computed relative to heterogeneous populations (n = 5 neurons
per population, 200 populations per condition, stimulus is high frequency stimulus, white noise convolved with alpha function
with τ = 3 ms). None of the reduced diversity populations were significantly different from random heterogeneous populations
(p > .05, Wilcoxon, N.S.) indicating that the coding benefits of diversity do not rely upon a single GLM dimension. This
figure suggests that the representational advantage of neuron variability is not specifically tied to any one of the three GLM
dimensions.
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Chapter 3

NeuroElectro: A Window to the

World’s Neurophysiology Data

3.1 Chapter Summary

In this chapter, I extend my study of neuron diversity of mitral cells as discussed in Chapter

2 to biophysical diversity of neuron types throughout the nervous system. Specifically, I

describe building a database of basic electrophysiological properties on the majority of

mammalian neuron types. Specifically, I focus on methods and strategies that I developed

for obtaining this information from the existing research literature using a combination

of automated text-mining and manual curation. I also describe the database and web

interface developed for the storage and visualization of the electrophysiology dataset. The

electrophysiology dataset produced from this work is then subsequently analyzed in chapter

4.

This chapter describes work that will be submitted for publication following the thesis

defense. This work was undertaken primarily by myself; with contributions and extensive

guidance from Rick Gerkin, a former post-doc in the lab and collaborator, who helped

develop the relational database and built the hosting web server; and minor contributions
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from Judith Savitskaya, a former undergraduate in the lab, who helped construct the

electrophysiology ontology.

3.2 Abstract

The behavior of neural circuits is determined largely by the electrophysiological properties

of their neurons. Understanding the roles and relationships of these properties requires the

ability to first identify and catalog them. However, information about such properties is

largely locked away in decades of closed access journal articles with heterogeneous conven-

tions for reporting results, making it difficult to utilize the underlying data. We solve this

problem with the NeuroElectro project: a Python library, RESTful API, and web applica-

tion (at http://neuroelectro.org) for the extraction, visualization, and summarization

of data concerning neurons’ electrophysiological properties as found in this literature. Infor-

mation is organized both by neuron type (using neuron definitions provided by NeuroLex)

and by electrophysiological property (using a newly developed neurophysiology ontology).

We describe the techniques and challenges associated with the automated extraction of

tabular electrophysiological data and methodological metadata from journal articles. We

further discuss strategies for how to best combine and organize data across these heteroge-

neous sources. NeuroElectro is a valuable resource for experimental physiologists looking

to supplement their own data, for computational modelers looking to constrain their model

parameters, and for theoreticians searching for undiscovered relationships among neurons

and their properties.

3.3 Related Work

As discussed in Section 1.1.5, neurophysiology lacks a centralized resource where basic phys-

iological measurements across both neuron types and studies are accessible for reference
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and subsequent meta-analyses. This is in contrast to neuroanatomical connectivity, where

information on connectivity between different brain regions has been compiled by experts

at the Brain Architecture Management System project (BAMS) across hundreds of publi-

cations Bota et al. (2005). Parallel to this effort is the WhiteText Project, which addresses

a complementary goal by algorithmically mining brain region connectivity statements from

journal abstracts using biomedical natural language processing (bioNLP) methods (French

et al., 2009, 2012). Similarly, in the domain of neuroimaging, the NeuroSynth Project

has mined fMRI-based brain activation maps from published x,y,z coordinate data tables

from thousands of neuroimaging publications (Yarkoni et al., 2011). These literature-based

methods differ from projects such as NeuroMorpho.org (Parekh and Ascoli, 2013), which

obtains neuron morphological reconstructions directly from investigators.

These projects are logically divided according to their methods for obtaining the source

data: through the use of manual methods like expert curation or user contributions versus

automated methods such as text-mining. Notably, these approaches differ in their scale and

accuracy; while algorithmic methods can “scale-up” and be applied to arbitrary numbers

of publications, they typically have a lower accuracy relative to human-curated content

(French et al., 2009). This lower accuracy is often attributed to the rich lexical complexity

of biomedical texts which often require considerable context and background knowledge

to understand and parse (Dickman, 2003). Given these competing constraints of scale

versus accuracy, a challenge has been developing approaches for obtaining neuroscience

information that can effectively scale while remaining accurate.

Here, we built a custom infrastructure framework for extracting electrophysiological

measurements for specific neuron types from published neurophysiology articles. These

measurements included properties such as input resistance and resting membrane poten-

tial, as well as associated metadata (i.e., article-specific methodological details). Our

methods combine algorithmic literature text-mining, drawing from the approach used by
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NeuroSynth (Yarkoni et al., 2011) where neurophysiological measurements are primarily ex-

tracted from data tables, and manual curation, leveraging the background knowledge of do-

main experts. The resulting neurophysiology database, named NeuroElectro, can be inter-

actively viewed and explored through a public web interface at http://neuroelectro.org.

3.4 Electrophysiological database construction

 RS Cell FS Cell 
RMP (mV) -65 +/- 2 -70 +/- 1 
AP threshold (mV) -45 +/- 1 -50 +/- 1 
Tau (ms)  20 +/- 5  45 +/- 9 

 

1. Download full texts of relevant articles

Search J. Neurosci. website for 
articles containing “neuron” and 

“resting membrane potential” 
and pub_date > 1997

Unique clustering of A-type potassium channels on 
di�erent cell types of the main olfactory bulb.
PMID:18371079
Kollo M, Holderith N, Antal M, Nusser Z.
Theoretical and functional studies predicted a highly non-uniform distribution of voltage-gated ion channels 
on the neuronal surface. This was con�rmed by recent immunolocalization experiments for Na+, Ca2+, 
hyperpolarization activated mixed cation and K+ channels. These experiments also indicated that some K+ 
channels were clustered in synaptic or non-synaptic membrane specializations. Here we analysed the 
subcellular distribution of Kv4.2 and Kv4.3 subunits in the rat main olfactory bulb at high resolution to address 
whether clustering characterizes their distribution, and whether they are concentrated in synaptic or 
non-synaptic junctions. The cell surface distribution of the Kv4.2 and Kv4.3 subunits is highly non-uniform. 
Strong Kv4.2 subunit-immunopositive clusters were detected in intercellular junctions made by mitral, external 
tufted and granule cells (GCs). We also found Kv4.3 subunit-immunopositive clusters in periglomerular (PGC), 
deep short-axon and GCs. In the juxtaglomerular region some calretinin-immunopositive glial cells enwrap 
neighboring PGC somata in a cap-like manner. Kv4.3 subunit clusters are present in the cap membrane that 
directly contacts the PGC, but not the one that faces the neuropil. In membrane specializations established by 
members of the same cell type, K+ channels are enriched in both membranes, whereas specializations 
between di�erent cell types contain a high density of channels asymmetrically. None of the K+ channel-rich 

Novel subcellular distribution pattern of A-type K+ 
channels on neuronal surface.
PMID:18371079
Kollo M, Holderith N, Antal M, Nusser Z.
Theoretical and functional studies predicted a highly non-uniform distribution of voltage-gated ion channels 
on the neuronal surface. This was con�rmed by recent immunolocalization experiments for Na+, Ca2+, 
hyperpolarization activated mixed cation and K+ channels. These experiments also indicated that some K+ 
channels were clustered in synaptic or non-synaptic membrane specializations. Here we analysed the 
subcellular distribution of Kv4.2 and Kv4.3 subunits in the rat main olfactory bulb at high resolution to address 
whether clustering characterizes their distribution, and whether they are concentrated in synaptic or 
non-synaptic junctions. The cell surface distribution of the Kv4.2 and Kv4.3 subunits is highly non-uniform. 
Strong Kv4.2 subunit-immunopositive clusters were detected in intercellular junctions made by mitral, external 
tufted and granule cells (GCs). We also found Kv4.3 subunit-immunopositive clusters in periglomerular (PGC), 
deep short-axon and GCs. In the juxtaglomerular region some calretinin-immunopositive glial cells enwrap 
neighboring PGC somata in a cap-like manner. Kv4.3 subunit clusters are present in the cap membrane that 
directly contacts the PGC, but not the one that faces the neuropil. In membrane specializations established by 
members of the same cell type, K+ channels are enriched in both membranes, whereas specializations 
between di�erent cell types contain a high density of channels asymmetrically. None of the K+ channel-rich 

2. Find articles containing data tables

Look for data tables by 
�nding full texts 
containing html 

<table> tags

3. Map concepts and extract values from data table
1. Electrophysiology concept mapping

“RMP (mV)” -> resting membrane potential
(fuzzy-string matching against electrophysi-

ology property synonym lists)

2. Neuron concept mapping
“RS Cell”-> Neocortex pyramidal cell layer 

2-3
(usually done manually, new neuron types 

added when necessary)

3. Data value mapping
“-65+/-2”-> mean: -65

error: 2

4. Manual validation of concept 
mapping and data extraction

5. Addition of extracted data to Neuro-
Electro database

Figure 3.1: Illustration of text-mining workflow

3.4.1 Article identification

We obtained electrophysiological data from 15 neuroscience specific journals, which include:

Journal of Neuroscience, Journal of Neurophysiology, and Journal of Physiology, European

Journal of Neuroscience, Neuroscience, and Neuron (among others). We selected these
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because 1) information on neuronal intrinsic physiology is often published in these articles;

and 2) these articles often contain basic information on neuron electrophysiology that may

not be explicitly published within other “higher-impact” journals.

In order to apply our text-mining methods to these articles, we first obtained ap-

proximately 92,000 full texts of articles directly from publisher websites. We identified

potential articles that were likely to contain information relevant to neuron biophysics

using the native search functions provided within the journal websites and only down-

loaded articles containing terms such as “input resistance” or “resting membrane po-

tential”. This pre-selection step prevented us from accessing articles that were irrel-

evant to our project, such as those on neuroimaging or neuroanatomical connectivity.

Upon identifying candidate articles, we then downloaded the full text of each potentially-

relevant article as HTML (or XML in the case of articles downloaded from the pub-

lisher Elsevier’s text-mining API, which we then converted to HTML). We chose to work

with HTML as opposed to PDF because HTML provides a machine-readable structured

markup of the article’s content, allowing us to easily identify relevant elements with

the article – such as data tables and the methods section – using HTML-parsing algo-

rithms (here we used the Beautiful Soup HTML-processing library implemented in Python:

http://www.crummy.com/software/BeautifulSoup/bs4/doc/). Furthermore, because

HTML is a single standard used by every publisher, we could write relatively generic

HTML-processing algorithms applicable to content published across journals. However,

our focus on using HTML limits us to relatively newer articles - typically those published

after 1997 - because before this time most publications are only available as scanned PDF

files.

We stored the text of each article in our database, and mapped each article to its

corresponding entry in PubMed http://www.ncbi.nlm.nih.gov. Thus we could use

PubMed-specific tools such as PubMed’s numeric identifier system (i.e. 8-digit PubMed
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IDs) as publisher-independent unique identifiers for each article within our database. The

use of PubMed also gives us access to PubMed’s excellent API (i.e., PubMed eutils,

http://www.ncbi.nlm.nih.gov/books/NBK25500/), which provides the ability to query

each article’s MeSH terms (MEdical Subject Headings) and returns basic methodological

information such as animal species and strain.

3.4.2 Electrophysiological property identification

Rationale for focusing on electrophysiological property extraction from data

tables

In order to algorithmically extract information on neuron electrophysiology from these

articles, we needed to first specify the data types of interest. Our preference was to

obtain as much detailed information about neuron electrophysiology as possible: ideally raw

data corresponding to recorded neuronal membrane voltage traces. In mining information

from articles, we were presented with a few options (illustrated in Fig. 3.2), including

extraction from: 1) the text of the article; 2) the figures of the article; or 3) data tables

presented within the article. Given our preference to obtain data in their most raw form,

we considered extraction of data from figures, e.g. scatter plots. However, converting

article figure content, presented as an image, and digitizing it into something that can be

further analyzed presents multiple challenges. Techniques and tools exist to digitize and

parse figures, however substantial amounts of manual effort are required to employ them

correctly.

Given the difficulty in automatically extracting raw voltage traces from figures, we

instead focused on obtaining information about basic neuronal electrophysiological prop-

erties, such as input resistances and resting membrane potentials. Though this information

is occasionally presented within the text of the article, these are often presented in com-

plex sentence structures that are difficult to algorithmically parse. Therefore, we instead
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“Mean input resistance (Rn) was higher in 
spontaneously active cells than that in 
quiescent GFP+ cells (973 vs. 523 MΩ, 

respectively, P < 0.05).”

Ex
tr

ac
tin

g 
ra

w
 tr

ac
es

Semantic extraction from sentences

Extraction from data tables
 RS Cell FS Cell 
RMP (mV) -65 +/- 2 -70 +/- 1 
AP threshold (mV) -45 +/- 1 -50 +/- 1 
Tau (ms)  20 +/- 5  45 +/- 9 

 

Figure 3.2: Illustration of the sources within an article containing information relevant to neuron electrophysiology. We
chose to focus on data extraction from data tables.

chose to extract basic physiological information from data tables published within articles.

This decision was primarily motivated by the relative ease in extracting information from

structured data tables (Yarkoni et al., 2011). However, not all articles on neuronal elec-

trophysiology contain data tables that succinctly present electrophysiological data; by our

estimates only 5-10% of such articles contain data tables, which admittedly greatly limits

the information that we can extract employing these methods.

Extracting information on electrophysiological properties

In extracting electrophysiological data, as mentioned in Section 1.1.2, we utilized the fact

that there are sets of common, informal protocols that are applied to most neurons dur-

ing intracellular recordings (Connors et al., 1982). For example, it is common to note

each neuron’s resting membrane potential when whole-cell access is achieved; to apply hy-

perpolarizing current injections for measurement of input resistance and membrane time

constant; and to apply depolarizing current steps to evoke action potentials (spikes) and

enable measurement of spiking characteristics like current and voltage threshold, spike

width, and spike amplitude.

We developed an electrophysiological lexicon comprising 28 measurements that we

found to be commonly reported in the literature (largely based on definitions found in
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(Toledo-Rodriguez et al., 2004)). To account for subtle differences in terminology that

authors use to refer to the same electrophysiological concept (e.g. resting membrane po-

tential is often referred to as “rmp” as well as “Vrest”), we also identified a common list of

synonyms to map to each concept. Together, these electrophysiological concepts and their

synonyms define a formal ontology for electrophysiological concepts (Table 3.1).

To identify data corresponding to electrophysiological properties reported within a data

table, we developed algorithms to search data table header elements and assess whether

these elements corresponded to any of the electrophysiological concept synonyms in our

ontology. We first identified table header elements by searching for table elements com-

posed primarily of non-numeric characters. For each putative header element, we then used

fuzzy string matching algorithms (implemented using the fuzzywuzzy library in Python:

https://github.com/seatgeek/fuzzywuzzy), to assess the textual match between the

header element and each of the electrophysiological synonyms. The fuzzy string match-

ing algorithms employed leverage and combine a number of metrics, including assessing

whether the pair of character strings: completely match; partially match; have substrings

which completely or partially match; and have partially matching substrings, but which

differ in substring order. If the table header and electrophysiological synonym match was

higher than a specified value, the table header (as well as corresponding row or column of

numeric values) was automatically indicated as corresponding to the electrophysiological

concept.

We then manually corrected cases where these algorithms misassigned an electrophys-

iological concept. For example, a common algorithmic mis-assignment was the case when

an author used the string “EPSP amplitude” to refer to the electrophysiological concept

excitatory post-synaptic potential amplitude; in these cases, our algorithms incorrectly

mapped this string to “spike amplitude” because the former concept is not in our current

ontology. Quantifying the accuracy of electrophysiological identification in a subset of ar-
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Figure 3.3: Example data table illustrating mark-up and annotation of entities. Markups in red and pink indicate electro-
physiological and neuron type concepts and yellow indicates extracted data measurements. Example data table from Pasquale
et al. (1997). Note that here the textual string “+/+” refers to the wild-type condition.

ticles which we manually validated through expert curation (335 articles total), we found

that electrophysiological concepts were identified correctly with no supervision in 70% of

cases (901 of 1292 total).

Accounting for differences in electrophysiological definitions across investiga-

tors

By focusing on textually matching the electrophysiological terms in each table to a list of

electrophysiological concepts, we are implicitly assuming that electrophysiological proper-

ties are measured in the same way by authors across different articles. For example, the

most common way that electrophysiologists use to measure a neuron’s spike amplitude is

to record from the neuron in current-clamp and then apply depolarizing currents at or near

the neuron’s rheobase to evoke spikes. Spike amplitude is then most commonly measured

by calculating the difference between the neuron’s voltage at spike threshold and spike peak

for the first evoked spike (Toledo-Rodriguez et al., 2004). However, authors can also use

different experimental protocols to measure the spike amplitude, like evoking spikes using

current steps much greater than rheobase current (“protocol differences”). Additionally,

the spike amplitude itself can be calculated in different ways, such as using the neuron’s

resting membrane potential as the baseline instead of the spike threshold (“calculation dif-

ferences”). Furthermore, the value of spike amplitude that an author reports will also be

affected by specific experimental conditions such as the animal species or age (“condition
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differences”).

When manually curating the text-mined content for the most commonly reported elec-

trophysiological properties (resting membrane potential, input resistance, membrane time

constant, spike half-width, spike amplitude, and spike threshold), we took care to account

for and remove cases where the author had calculated an electrophysiological measurement

using an inconsistent methodology (e.g., protocol or calculation differences). However we

note that we could not identify all of these cases (in particular for spike amplitude, input

resistance, and membrane time constant), in part because occasionally authors did not

explicitly define how electrophysiological properties were calculated within their article.

We note that in cases where we pool measurements which are measured using inconsistent

protocols or calculations, this will tend to add noise and unexplained variance to our data

set. Given these measurement inconsistencies, we provide our recommendations for how

these electrophysiological properties should be reported in future investigations via our

electrophysiology ontology (Table 3.1).

3.4.3 Neuron type identification

Using neuron types defined by NeuroLex

To extract physiological information specific to individual neuron types, we had to identify

which neuron types were recorded in each article. However, in many cases uniquely iden-

tifying the neuron type(s) recorded in any given study and mapping these to a canonical

“neuron type” is difficult. This difficulty arises in part because as mentioned in Section

1.1.4, investigators use different criteria for classifying neurons, including electrophysiolog-

ical, morphological, or molecular characteristics (Ascoli et al., 2008).

We chose to use the externally sourced list of approximately 250 expert-defined neuron

types and definitions provided by NeuroLex http://neurolex.org; (Larson and Mar-

tone, 2013; Hamilton et al., 2012)). Thus we did not have to perform the laborious task
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of defining each of the neuron types found in the brain and instead could rely on the col-

lective expertise provided by this community-generated resource. NeuroLex also provides

synonyms for each neuron type, which we utilized to identify the neuron type(s) in each

article. In cases where a neuron type was investigated in the literature across multiple

articles but not indexed within NeuroLex (e.g. cerebellar nucleus neurons), we manually

added this neuron type to our database’s listing of neuron types and provided this neuron

type to the NeuroLex neuron curators for incorporation (Larson and Martone, 2013). Our

specific criteria for identifying each of the neuron types reflected in the database are given

in Table 3.3.

Identifying specific mentions of neuron types within an article

Because of the complexity in unambiguously identifying neuron types, we primarily used

manual methods to map the neuron types mentioned in each article to canonical neuron

types. To aid the manual process of selecting neuron types, we used text-mining algorithms

to provide a first-pass “best guess” of the most likely neuron type. Specifically, we used

a bag-of-words approach (Aldous, 1985) on the article full text (i.e. ignoring the serial

structure of the words in the document and looking only at the frequency of occurrence of

each word within the document) and compared the word-frequency histogram to the listing

of neuron synonyms provided by NeuroLex, ranking all neuron types by their likelihood

of being considered within that article. We found that this simple bag-of-words approach

was often sufficient to identify the neuron types associated within each article. Quantifying

this method against the articles that we manually curated, we found that this approach

accurately identified the neuron recorded from in each publication with an accuracy of 30%

(120 of 399 total) and up to 55% when defining success as the studied neuron appearing

as one of the top three neuron types suggested by the bag-of-words method.

The relatively low accuracy of this approach suggests considerable room for improve-
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ment. For example, we note this approach was particularly ineffective when the neuron

type investigated within an article was not already described in NeuroLex or when the

neuron had an insufficient listing of associated common synonyms. Moreover, we did not

consider the incorporation of common neuron type acronyms here (e.g., that olfactory

bulb mitral cells are commonly referred to as “MCs”); doing so would likely would increase

the accuracy of this approach in future iterations. We mapped whole rows or columns of

a data table to specific neuron types, and also manually identified the rows or columns

of such tables corresponding to data collected during normotypic or “control” conditions,

where applicable. We note that our current neuron identification pipeline requires multiple

manual steps, which limits the scalability of the current approach.

3.4.4 Extraction of electrophysiological data values

After identifying specific electrophysiological properties and neuron types reported in a

data table (corresponding to row or column table headers), we then algorithmically ex-

tracted the data corresponding to the table intersection of these (Fig. 3.3). We developed

custom string regular expressions (Thompson, 1968) to parse the string corresponding to

the numeric data. Specifically, we found that data strings were often of the form: “XX

+/- YY (ZZ)”, where XX, YY, and ZZ refer to the mean, error term (either standard error

of the mean or standard deviation, which we do not currently disambiguate but will do in

future work), and sample size (i.e. the “n”) respectively. Often the number of replicates

or error measurement were not reported or were reported in alternative ways within the

table. When designing our processing algorithms, we parsed data strings from right to left:

first searching for data entities contained within parentheses, then for entities contained

to the right of the +/- term, and finally the remaining term which we assumed to refer to

the mean term. We also found that occasionally data were reported as “XX (LL - HH)” –

where LL and HH indicate the lower and upper limits of a data range – and accounted for
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Figure 3.4: Example of human validation annotation process. All textual elements of table are enhanced using HTML and
javascript to allow for assignment of neuron or electrophysiological concepts using drop down menus. Example data table
from Pasquale et al. (1997).

these cases similarly.

We used regular expressions to identify entities such as digits, decimal signs, parenthe-

ses, and +/- signs. We then converted the individual data elements which were encoded as

textual strings of digits to double precision decimal entities before storing these into our

database. Our focus here was primarily on parsing the data mean value, but we also ex-

tracted and stored the error term and sample size where possible. Using these methods, we

were able to extract 2344 electrophysiological values from 98 distinct neuron types within

335 articles.

3.4.5 Manual validation of automated data extraction

Following these automated concept identification and data extraction steps, we manually

validated associated concepts and fixed incorrect concept mappings as necessary. We devel-

oped custom-HTML and javascript code to allow human users to graphically interact with

downloaded HTML data tables and semantically annotate or “mark-up” entities within

the table (Fig. 3.4). This code allows for textual based elements of the HTML table to be

annotated using drop down menus and text fields.
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3.4.6 Metadata identification

We identified information on article-specific experimental conditions like animal species

or recording temperature by extracting this information – primarilty from each article’s

materials and methods section – using related semi-automated methodology. For each

article, we found the methods section by developing custom HTML tag filters for each

journal. For each metadata entity we wished to extract (species, animal strain, electrode

type, preparation type, junction potential correction, animal age, recording temperature),

we devised custom text searching methods to identify these based on combining regular

expressions (Thompson, 1968) with PubMed MeSH terms (Table 3.2). In other words,

rather than taking a machine-learning based approach and training classifiers (Mccallum,

2002; French et al., 2009), we took a rule-based approach and developed custom rules

for identifying metadata entities. For example, to identify whether the electrode’s liquid

junction potential was corrected for in the study (Neher, 1992), we searched for whether

the character string “junction potential” was mentioned within the methods section and if

so, whether the sentence or phrase containing the term was explicitly negated (indicating

that the junction potential was not corrected for). To identify distinct sentences, we used

natural language processing tools provided within the Natural Language Tool Kit in Python

(Bird et al., 2009).

Following automated identification of article metadata, we manually checked each ar-

ticle to ascertain that algorithmically-tagged metadata was identified correctly and, as

before, we corrected misidentified content as necessary through the use of custom HTML

forms. We found that the mean accuracy of algorithmic metadata assignment was approx-

imately 50% (Fig. 3.5) and was typically lower for identifying continuous metadata (e.g.,

animal age or recording temperature) relative to nominal metadata such as species and

electrode type.
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Figure 3.5: Accuracy of metadata assignment using automated methods alone.

3.4.7 Object models and relational database

We stored extracted data and metadata using a relational database implemented in MySQL

(http://dev.mysql.com/doc/refman/5.6/en/) built from a Python Django object model

(https://www.djangoproject.com/). The object model contains classes for a number of

fields, including article full texts, electrophysiological properties, neuron types, synonyms,

electrophysiological data values, and experimental metadata (among others; shown in Fig.

3.6). A useful feature of the relational nature of the database is that it enables linking

between classes (e.g., representing that articles are written by authors who in turn can

write multiple articles). This linking feature facilitates efficient and arbitrary querying of

data; for example, querying for known electrophysiological data on olfactory bulb mitral

cells recorded in vitro and published between the dates 2000 and 2004.

3.4.8 Web application

The primary results of the NeuroElectro database are viewable at www.neuroelectro.org

where the data can be interactively explored. Furthermore, full API access to the electro-
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Figure 3.6: Illustration of NeuroElectro relational database schema
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physiological data is described at www.neuroelectro.org/api/docs/. The web interface

is organized around neuron types and electrophysiological properties. For example, each

neuron type has its own webpage where extracted data corresponding to specific electro-

physiological properties is graphically and interactively displayed. Users can thus visualize

the mean and variability of electrophysiological values across papers, view references, and

easily navigate to primary data from specific papers. Furthermore, users can view elec-

trophysiological data across all of the neuron types in the database - putting phenotypic

properties of a given neuron type into the larger context of other neuron types located

throughout the nervous system.

The web application also contains preliminary features to allow website visitors to

contribute to the NeuroElectro resource. For example, users can suggest articles which

contain neurophysiological data which are not already in the database. Furthermore, we

invite visitors to become “expert curators” for neurons of interest. In the future, we plan

to build functionality that will allow investigators to upload raw and summary data, such

as recorded voltage and current traces.

3.5 Discussion

3.5.1 Summary

We have developed, applied, and validated a methodology for extracting – from existing

literature on cellular neurophysiology – measurements of basic biophysical properties from

diverse neuron types throughout the nervous system. Currently, the NeuroElectro database

contains 2344 manually curated electrophysiological measurements from 98 neuron types

from 335 publications. Of these electrophysiological measurements, 2176 were obtained

from 279 publications using the semi-automated approach described here. In addition,

we machine-extracted and manually validated 1667 methodological conditions from these
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publications.

3.5.2 Specific benefits provided by the semi-automated approach

One of the key advantages of the approach described here is that the automated pipeline

adequately identifies publications which are likely to contain content relevant to our do-

main area (i.e., machine-readable measurements of neuronal biophysics). Thus a human

needs only to manually curate the content first identified by the algorithms as being likely

relevant, instead of having to identify the relevant content de novo. Moreover, the auto-

mated identification of neuron types in articles allows us to target manual curation effort

to publications likely to contain data from specific neuron types, such as neurons that are

currently underrepresented in the database.

Given our laboratory’s focus on olfactory circuits (as illustrated in Chapter 2), we

conducted a natural experiment to compare the efficacy of biophysical property extraction

using these semi-automated methods versus traditional methods which do not make use of

algorithmic text-mining pre-processing. In a seven-hour curation session, a member of our

laboratory identified 91 electrophysiological measurements in 35 articles from 7 olfactory

bulb neuron types using only prior knowledge on which articles were likely to contain

such information. In a comparable seven-hour curation session using our semi-automated

methods, a single curator identified 551 electrophysiological measurements from 70 articles

across 40 neuron types throughout the nervous system.

3.5.3 Scalability of current approach

We note that multiple steps in our approach require manual intervention by a expert curator

for electrophysiological measurements to be extracted with a negligible error rate. Namely,

an expert curator needs to specify which neuron types are recorded from in each article

and where data from the normotypic or “control” states of these neurons are textually
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referenced within a data table. Moreover, given the current accuracy of the unsurpervised

algorithmic assignment of electrophysiological concepts and experimental metadata (70%

and 50% respectively), these also need to be manually validated and corrected as required

by an expert. Because of the necessity of these manual steps for accurate data extraction,

the scalability of our current approach is limited by our ability to manually curate this

information. Despite this bottleneck, our total pipeline is still much faster and more

effective than a purely manual one.

3.5.4 Extensions and improvements to the current semi-automated

algorithms

We feel that among the most beneficial improvements to our current approach would be

improving the accuracy of neuron type identification. Given the relative unspecificity of

the current bag-of-words approach, a bioNLP classifier-based approach may prove more

effective (Mccallum, 2002). Specifically, we propose adapting the methodology used by the

WhiteText project for tagging brain regions mentioned in literature (French et al., 2009;

French and Pavlidis, 2012) and first identifying spans of text likely to pertain to a neuron

type before mapping these spans to a individual neuron type within the neuron ontology.

Moreover, such an approach could easily incorporate techniques for expanding acronyms

and abbreviations for neuron types (Okazaki and Ananiadou, 2006).

The approach described here is highly effective for extracting biophysical measurements

presented within machine-readable data tables which are published within journal articles.

However, the current requirement that these data tables exist in a machine parse-able

format, such as HTML or XML, limits this approach from being directly applied to older

manuscripts, which are only available as scanned images. However, existing approaches,

such as optical character recognition technology (OCR) may be applied toward this problem

(Ramakrishnan et al., 2012).
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A more pressing issue with the current approach is its focus on extraction from data

tables. While the approach is highly effective on data tables, the majority of neurophysiol-

ogy publications do not summarize electrophysiological data within a published data table

(approximately 5-10% of articles contain data tables). Instead, this information is usually

presented within article text or within figure images. While automatically extracting mea-

surements from figure images will likely prove challenging, we feel that our methods can be

easily adapted to operate on article text, perhaps using a similar bioNLP classifier-based

approach as suggested for neuron type identification. Furthermore, experimentalists who

would like their data to be easily curated should consider using data tables within future

publications.

3.6 Supplemental Tables
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Table 3.1: Ontology describing electrophysiological properties Should also contain Neuroelectro Ids

Electrophysiological term Definition (most common) units (standard)
spike threshold Voltage at which AP is initiated (as measured by looking at the rate of rise of Vm) mV
AHP duration Time to the maximal afterhyperpolarization following an AP ms
membrane time constant Time constant for the membrane to repolarize after a small hyperpolarizing current injection of fixed amplitude and duration ms
FI slope The slope of the current-discharge relationship from discharge threshold Hz/nA
access resistance Sum of the electrode resistance and the resistance at the electrode-cell junction
sag ratio Ratio between exponentially extrapolated voltage and steady-state voltage
cell capacitance Neuron capacitance, typically measured by dividing membrane time constant by membrane resistance pF
resting membrane potential Membrane potential at the onset of whole-cell recording mV
input resistance Input resistance at steady-state (steady-state of voltage response to current injection) MΩ
spike width Duration of AP, not explictly refered to as half-width ms
slow afterhyperpolarization duration Duration from first AP onset to minimum voltage, explictly refered to as slow ms
fast afterhyperpolarization duration Duration from first AP onset to minimum voltage, explictly refered to as fast ms
ADP duration Duration from first AP onset to maximum ADP ms
spike overshoot Difference between the peak of the action potential and 0 mV mV
cell diameter Diameter of the cell soma µm
rheobase Current threshold to discharge APs during a ramp depolarization. Minimum current required to fire an action potential. pA
cell surface area Cross-sectional area of the cell µm2̂
spike half-width Average time for first AP half amp to the same voltage during offset ms
spike amplitude Average amplitude of the first AP (measured from AP threshold to AP peak) mV
Spontaneous firing rate AP discharge rate in the absence of current injection or a stimulus Hz
firing frequency AP discharge rate Hz
AHP amplitude Amplitude from first AP onset to minimum voltage, not explicitly fast or slow mV
slow afterhyperpolarization amplitude Amplitude from first AP onset to minimum voltage, explictly refered to as slow mV
fast afterhyperpolarization amplitude Amplitude from first AP onset to minimum voltage, explictly refered to as fast mV
ADP amplitude Amplitude from first AP onset to maximum voltage, typically more depolarized that the resting membrane potential mV
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Table 3.2: Table of metadata attributes and values and summary of how values are extracted

Metadata Concept Values Accuracy (%) Extraction method Regular Expresssion MeSH Term
Species 61 MeSH Term only

Rats Rats
Mice Mice

Guinea Pigs Guinea Pigs
Electrode Type 54 MeSH Term + Regex

Patch-clamp "whole cell" or "patch clamp" Patch-Clamp Techniques
sharp "sharp electrode"

Animal Strain 56 MeSH Term only
Fischer 344 Rats, Inbred F344
Long-Evans Rats, Long-Evans

Sprague-Dawley Rats, Sprague-Dawley
Wistar Rats, Wistar
C57BL Mice, Inbred C57BL

BALB C Mice, Inbred BALB C
Prep Type 56 MeSH Term + Regex

in vitro "slice" or "in vitro"
in vivo "in vivo"

cell culture "culture" Cell Culture Techniques
model "model" Computer Simulation

Junction Potential 78 Regex
Not Corrected "not. . . junction potential" or "no ...junction potential"

Corrected "junction potential"

Recording Temperature 35 Regex
Continuous value Find digits near "record ... °C" or "experiment . . . °C"

Room temperature "record. . . room temperature" or "experiment . . . room temperature"

Animal Age 11 Regex
Continuous value Find digits near: "P#-#" or "P#-P#" or "day old" or "age. . . week"
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Table 3.3: Neuron type defining criteria and NeuroLex and NeuroElectro IDs

Neuron Type Defining Criteria NeuroElectro Link NeuroElectro ID NeuroLex ID
Abducens nucleus motor neuron All motoneurons in the abducens nucleus http://neuroelectro.org/neuron/1/ 1 nlx_16848

Amygdala basolateral nucleus pyramidal neuron Pyramidal or principal cells in the BLA http://neuroelectro.org/neuron/2/ 2 nifext_152
Amygdala corticomedial nucleus pyramidal cell Pyramidal cells in the cortical amygdala http://neuroelectro.org/neuron/3/ 3 nifext_151

Amygdaloid nucleus paracapsular intercalated cell All neurons found in the Amygdaloid nucleus paracapsular intercalated nucleus http://neuroelectro.org/neuron/4/ 4 nlx_cell_100202
Basalis nucleus cholinergic neuron Cholingergic neurons found in the nucleus basalis http://neuroelectro.org/neuron/14/ 14 nlx_cell_20090203

BNST beaded neuron BNST neuron, explicitly referred to as not a projection neuron http://neuroelectro.org/neuron/6/ 6 BAMSC995
BNST common spiny neuron BNST neuron, projection neuron http://neuroelectro.org/neuron/7/ 7 BAMSC991

Cerebellar nucleus cell Any neuron found in any of the cerebellar nuclei http://neuroelectro.org/neuron/208/ 208 nlx_151895
Cerebellum Golgi cell Explicitly referred to as Golgi cell in the cerebellum http://neuroelectro.org/neuron/16/ 16 sao1415726815

Cerebellum granule cell Explicitly referred to as granule cell in the cerebellum http://neuroelectro.org/neuron/21/ 21 nifext_128
Cerebellum Purkinje cell Explicitly referred to as Purkinje cell in the cerebellum http://neuroelectro.org/neuron/18/ 18 sao471801888
Cochlea hair cell inner Inner hair cell in the cochlea http://neuroelectro.org/neuron/27/ 27 sao429277527

Cochlear nucleus (dorsal) cartwheel cell Explicitly referred to as cartwheel cell http://neuroelectro.org/neuron/29/ 29 nifext_76
Cochlear nucleus (dorsal) pyramidal neuron Explicitly referred to as pyramidal cell in DCN http://neuroelectro.org/neuron/34/ 34 nifext_74

Cochlear nucleus (ventral) bushy cell Explicitly referred to as bushy cell http://neuroelectro.org/neuron/37/ 37 nlx_cell_20081201
Cochlear nucleus (ventral) multipolar T cell Explicitly referred to as T cell http://neuroelectro.org/neuron/38/ 38 nifext_68

Cochlear nucleus (ventral) octopus cell Explicitly referred to as octopus cell http://neuroelectro.org/neuron/40/ 40 nifext_72
Dentate gyrus basket cell Basket cells found in the dentate gyrus or hilar region http://neuroelectro.org/neuron/65/ 65 nlx_cell_100201
Dentate gyrus granule cell Granule cells in the dentate gyrus http://neuroelectro.org/neuron/66/ 66 nlx_anat_1008005

Dentate gyrus hilar cell Interneurons found in the hilus http://neuroelectro.org/neuron/67/ 67 nlx_cell_20090727
Dentate gyrus mossy cell Mossy cells found in the dentate gyrus or hilus http://neuroelectro.org/neuron/68/ 68 nlx_22799

Dorsal motor nucleus of vagus motor neuron Any neuron found in the dorsal motor nucleus of vagus http://neuroelectro.org/neuron/71/ 71 nlx_38336
Dorsal root ganglion cell Any neuron explicitly referred to as DRG neurons, all sizes http://neuroelectro.org/neuron/72/ 72 nifext_84

DRG temperature cell Any neuron explicitly referred to as temperature senstive DRG neurons http://neuroelectro.org/neuron/57/ 57 nifext_90
Entorhinal cortex layer IV neuron layer IV neuron in entorhinal cortex http://neuroelectro.org/neuron/222/ 222 nlx_cell_20090310

Globus pallidus principal cell Any neuron in the globus pallidus http://neuroelectro.org/neuron/78/ 78 nifext_149
Hippocampus CA1 basket cell Explicitly referred to as basket cell, PV+ cell, or FS cell in CA1 http://neuroelectro.org/neuron/82/ 82 nlx_cell_091205
Hippocampus CA1 ivy neuron Explicitly referred to as ivy cell in CA1 http://neuroelectro.org/neuron/210/ 210 nlx_35220

Hippocampus CA1 neurogliaform cell Explicitly referred to as neurogliaform cell in CA1 http://neuroelectro.org/neuron/83/ 83 nifext_60
Hippocampus CA1 oriens lacunosum moleculare neuron Explicitly referred to as OLM cell in CA1 http://neuroelectro.org/neuron/84/ 84 nlx_cell_091206

Hippocampus CA1 pyramidal cell Explicitly referred to as pyramidal cell in CA1 http://neuroelectro.org/neuron/85/ 85 sao830368389
Hippocampus CA1 radiatum giant cell Explicitly referred to as radiatum giant cell in CA1 http://neuroelectro.org/neuron/226/ 226

Hippocampus CA3 basket cell Explicitly referred to as basket cell, PV+ cell, or FS cell in CA3 http://neuroelectro.org/neuron/230/ 230 nlx_cell_091213
Hippocampus CA3 lacunosum moleculare neuron Explicitly referred to as OLM cell in CA3 http://neuroelectro.org/neuron/229/ 229 nlx_cell_091216

Hippocampus CA3 pyramidal cell Explicitly referred to as pyramidal cell in CA3 http://neuroelectro.org/neuron/89/ 89 nlx_36816
Hippocampus CA3 stratum radiatum giant cell Explicitly referred to as radiatum giant cell in CA3 http://neuroelectro.org/neuron/232/ 232

Hippocampus CA3 trilaminar neuron Explicitly referred to as trilaminar cell in CA3 http://neuroelectro.org/neuron/231/ 231
Hypoglossal nucleus motor neuron Any motor neuron found in the hypoglossal nucleus http://neuroelectro.org/neuron/91/ 91 nlx_cell_100311

Hypothalamus oxytocin neuroendocrine magnocellular cell Any magnocellular neurosecretory cell in the hypothalamus or supraoptic nucleus http://neuroelectro.org/neuron/92/ 92 nlx_416
Inferior colliculus neuron Any neuron in the inferior colliculus http://neuroelectro.org/neuron/207/ 207 nlx_152522

Inferior olive neuron Any neuron in the inferior olive http://neuroelectro.org/neuron/219/ 219
Lateral amygdala projection neuron A projection or pyramidal neuron in the lateral amygdala; not in the BLA http://neuroelectro.org/neuron/211/ 211

Locus coeruleus NA neuron Any noradrenergic neuron in the locus coeruleus http://neuroelectro.org/neuron/94/ 94 nlx_cell_20090202
Medial entorhinal cortex layer II stellate cell Medial entorhinal cortex layer II stellate cell http://neuroelectro.org/neuron/206/ 206 nlx_36209

Medial entorhinal cortex layer III pyramidal cell Medial entorhinal cortex layer III pyramidal cell http://neuroelectro.org/neuron/218/ 218
Medial Nucleus of Trapezoid Body neuron Any neuron found in the MNTB http://neuroelectro.org/neuron/214/ 214 nifext_79

Medial vestibular nucleus neuron Any MVN neuron http://neuroelectro.org/neuron/223/ 223
Neocortex basket cell Explicitly referred to as basket cell, PV+ cell, or FS cell in any layer or subregion of neocortex http://neuroelectro.org/neuron/99/ 99 nifext_56

Neocortex bipolar neuron Explicitly referred to as bipolar cell in any layer or subregion of neocortex http://neuroelectro.org/neuron/101/ 101 sao436474611
Neocortex chandelier cell Explicitly referred to as chandelier cell in any layer or subregion of neocortex http://neuroelectro.org/neuron/104/ 104 nifext_57

Neocortex layer 4 stellate cell Any excitatory cell in layer 4 of the neocortex; usually stellate cells in primary sensory areas http://neuroelectro.org/neuron/107/ 107 nifext_53
Neocortex Martinotti cell Explicitly referred to as Martinotti cell or somatostatin positive or Low-threshold spiking cell in neocortex http://neuroelectro.org/neuron/98/ 98 nifext_55

Neocortex other cell Any cell in neocortex that could not be classified to an existing neuron type http://neuroelectro.org/neuron/109/ 109 nifext_49
Neocortex pyramidal cell layer 2-3 Pyramidal cells of layer 2/3 of the neocortex; usually referred to as regular spiking cells http://neuroelectro.org/neuron/110/ 110 nifext_49
Neocortex pyramidal cell layer 5-6 Pyramidal cells of layer 5/6 of the neocortex; occassionally referred to as "deep" cells http://neuroelectro.org/neuron/111/ 111 nifext_50

Neostriatum cholinergic cell Any cholinergic positive cell in the striatum http://neuroelectro.org/neuron/115/ 115 sao1866881837
Neostriatum gabaergic interneuron Explicitly referred to as gabaergic cell, PV+ cell, or FS cell in striatum http://neuroelectro.org/neuron/209/ 209 nifext_143
Neostriatum medium spiny neuron Explicitly referred to as MSNs in striatum http://neuroelectro.org/neuron/117/ 117 nifext_141

Neostriatum SOM/NOS cell Somatostatin/NOS positive striatum cell http://neuroelectro.org/neuron/113/ 113 nifext_144
Neostriatum TH+ cell Tyrosine hydroxylase positive cell in striatum http://neuroelectro.org/neuron/114/ 114

Nucleus accumbens core neuron Explicitly found in the nucleus accumbens core (usually MSNs) http://neuroelectro.org/neuron/228/ 228 nlx_151892
Nucleus accumbens medium spiny neuron Any MSN found in the nucleus accumbens http://neuroelectro.org/neuron/220/ 220

Nucleus accumbens shell neuron Explicitly found in the nucleus accumbens shell (usually MSNs) http://neuroelectro.org/neuron/227/ 227 nlx_151893
Nucleus ambiguus motor neuron Motor neuron found in the nucleus ambiguus http://neuroelectro.org/neuron/120/ 120 nlx_53276

Nucleus of the solitary tract principal cell Projection neurons found in the nucleus of the solitary tract http://neuroelectro.org/neuron/122/ 122 nifext_100
Olfactory bulb (main) Blanes cell Large neurons found in the olfactory bulb granule cell layer, usually referred to as Blanes cells or deep short-axon cells http://neuroelectro.org/neuron/127/ 127 nifext_124

Olfactory bulb (main) external tufted cell Referred to as external tufted cells, any excitatory neurons with a cell body in the glomerular layer http://neuroelectro.org/neuron/132/ 132 nlx_82555
Olfactory bulb (main) granule cell Granule cells found in the main olfactory bulb http://neuroelectro.org/neuron/128/ 128 nlx_407
Olfactory bulb (main) mitral cell Cells in the mitral cell layer of the olfactory bulb http://neuroelectro.org/neuron/129/ 129 nlx_anat_100201

Olfactory bulb (main) periglomerular cell Referred to as external tufted cells, any excitatory neurons with a cell body in the glomerular layer http://neuroelectro.org/neuron/130/ 130 nlx_cell_091202
Olfactory bulb (main) tufted cell (middle) Referred to as middle tufted cells in main olfactory bulb http://neuroelectro.org/neuron/131/ 131 nifext_121

Olfactory cortex pyramidal cell Explicitly referred to as pyramidal cells in the olfactory cortex http://neuroelectro.org/neuron/135/ 135 nifext_139
Olfactory cortex semilunar cell Explicitly referred to as semilunar cells in the olfactory cortex http://neuroelectro.org/neuron/136/ 136 nlx_cell_091005

Paraventricular hypothalamic nucleus neurons Any neuron in the paraventricular hypothalamic nucleus neurons http://neuroelectro.org/neuron/217/ 217
Parvicellular reticular nucleus interneuron Any interneuron in the Parvicellular reticular nucleus http://neuroelectro.org/neuron/216/ 216

Spinal cord intermediate horn motor neuron sympathetic Sympathetic motor neuron in spinal cord http://neuroelectro.org/neuron/165/ 165 nifext_109
Spinal cord ventral horn interneuron IA IA interneuron in spinal cord http://neuroelectro.org/neuron/169/ 169 nifext_110
Spinal cord ventral horn interneuron II II interneuron in spinal cord http://neuroelectro.org/neuron/171/ 171 nifext_112

Spinal cord ventral horn interneuron V2 V2 interneuron in spinal cord http://neuroelectro.org/neuron/175/ 175 nlx_cell_100207
Spinal cord ventral horn motor neuron alpha Alpha motor neuron in spinal cord http://neuroelectro.org/neuron/177/ 177 sao1154704263

Subiculum pyramidal cell Any pyramidal cell (all subtypes) in the subiculum http://neuroelectro.org/neuron/182/ 182 nlx_anat_1008012
Substantia nigra pars compacta dopaminergic cell Substantia nigra pars compacta dopaminergic cell http://neuroelectro.org/neuron/183/ 183 nifext_145

Substantia nigra pars reticulata interneuron GABA Substantia nigra pars reticulata cell, ocassional referred to as projection neurons http://neuroelectro.org/neuron/184/ 184 nifext_147
Subthalamic nucleus neuron Any neuron in the subthalamic nucleus http://neuroelectro.org/neuron/233/ 233 nlx_149137

Superior colliculus superficial layer neuron Any neuron in superficial layers of the superior colliculus http://neuroelectro.org/neuron/221/ 221 BAMSC1123
Suprachiasmatic nucleus neuron Any neuron in the suprachiasmatic nucleus http://neuroelectro.org/neuron/213/ 213 nlx_151894

Supratrigeminal nucleus interneuron Interneurons in the supratrigeminal nucleus http://neuroelectro.org/neuron/215/ 215
Thalamic reticular nucleus cell Neurons in the thalamic reticuluar nucleus http://neuroelectro.org/neuron/190/ 190 nifext_45

Thalamus parafascicular nucleus neuron Neurons in the thalamic parafascicular nucleus http://neuroelectro.org/neuron/212/ 212
Thalamus relay cell Neurons in the thalamus, not in the reticular or parafascicular nucleus, usually LGN or MGN or cortical projection neurons http://neuroelectro.org/neuron/194/ 194 nlx_cell_20081203

Trigeminal nucleus motor neuron Motor neurons in the trigeminal nucleus http://neuroelectro.org/neuron/199/ 199 nlx_44081
Trigeminal nucleus principal cell Principal cells in the trigeminal nucleus, not referred to as motor neurons http://neuroelectro.org/neuron/200/ 200 nifext_96
Trochlear nucleus motoneurons Motor neurons in the trochlear nucleus http://neuroelectro.org/neuron/225/ 225 nlx_70345

Ventral tegmental area dopamine neuron Any dopaminergic neuron found in the VTA http://neuroelectro.org/neuron/203/ 203 nlx_cell_20090305
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Chapter 4

A literature-based brain-wide

analysis of the electrophysiological

diversity of mammalian neurons

4.1 Chapter Summary

In this chapter, I analyze the NeuroElectro database that was constructed in Chapter 3.

Specifically, I describe analyses I have performed towards understanding the electrophysio-

logical diversity of neuron types throughout the brain. Because the NeuroElectro database

is constructed from data published across hundreds of papers, I found that I needed to

account for the fact that these data were collected under different experimental conditions.

Using simple regression models, I was able to systematically account for a large fraction

of across-experiment measurement variability. I then further analyzed the dataset for the

presence of unknown relationships among neuron types on the basis of differences in basic

electrophysiological properties. By analyzing neuron types, I show that 1) much of the bio-

physical differences among neurons is explained by neuron size (i.e. small neurons versus

large neurons) and 2) there are approximately 7 functionally-distinct neuron "super-classes"
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based on electrophysiological differences. Moreover, I show that these super-classes also

correlate with corresponding gene expression differences observed in these neurons.

This chapter describes work that will be submitted for publication shortly following the

thesis defense. This work was primarily completed by myself, with substantial intellectual

contributions from Nathan Urban, Rick Gerkin, and Shawn Burton. I am also very grateful

to Shawn and Matt Geramita in particular, for collecting electrophysiological data to help

validate data contained within the NeuroElectro database.

4.2 Abstract

For decades, electrophysiologists have recorded and characterized the biophysical properties

of a rich diversity of neuron types. This diversity of neuron types is critical for generating

functionally important patterns of brain activity and implementing neural computations.

Identifying specific roles for these neuron types, or even determining what these types

are remains challenging, however, because the vast collection of electrophysiological data

remains scattered throughout the literature. Here, we describe the creation of an expansive

and interactive public collection of electrophysiological properties, NeuroElectro, available

at www.neuroelectro.org. NeuroElectro was initially populated through text-mining and

manual curation and contains information about biophysical properties (such as resting

membrane potential and input resistance) of 98 neuron types as reported in 326 studies

published between 1984 and 2013. Capitalizing on the statistical power offered by this

unprecedented collection of electrophysiological data, we show that knowledge of a few key

experimental conditions (e.g., recording temperature and animal age) accounts for a large

fraction of the variability in values reported across studies. After adjusting for differences

in experimental conditions, we find that neurons across the brain can be divided among ∼7

fundamental biophysical types, each with a corresponding functional role. These∼7 "super-

classes" of neurons align well with previous classification schemes based on neurochemical
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and morphological properties. Finally, we take initial steps toward understanding the

mechanistic origins of biophysical diversity by integrating NeuroElectro with a brain-wide

gene expression dataset.

4.3 Introduction

Electrophysiologists have recorded and published vast amounts of quantitative data about

the biophysical properties of neurons across many years of studies. Compared to other

fields, however, little progress has been made in compiling and cross-analyzing this data,

let alone collecting or depositing measurements or raw traces (Akil et al., 2011). Thus,

for example, it is difficult to determine whether a Purkinje cell responds more like a CA1

pyramidal cell or a cortical basket cell without first collecting new data, even though thou-

sands of recordings have been made from these cell types across hundreds of laboratories.

By analogy to genetics, imagine if genes needed to be re-sequenced every time an inves-

tigator wanted to examine their homology. The lack of a centralized collection of neuron

biophysical properties is thus a barrier to comparison and generalization of results across

neuron types, and routinely leads to unnecessary replication of experiments and the overall

slowing of progress (Akil et al., 2011). Moreover, recent proposals for large scale electro-

physiological analyses across brain areas (Human/Blue Brain Project (Markram, 2006);

BRAIN initiative (Alivisatos et al., 2012; Insel et al., 2013)) will require such a repository

if the data are to be effectively shared and used by the community.

Our specific goals in building a structured repository of neuron biophysical properties

are threefold. First, to generate a data-driven "parts list" of the brain, providing scientists

efficient access to available data on the properties of different neurons types. Currently,

these data are impossible to obtain without substantial effort and expertise. Use of such

a parts list will further help standardize both the characterization of new neuron types

and the comparison of properties between control and manipulated animals. Second, to
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aid in the discovery of new knowledge that is, like "buried treasure", available in the vast

neuroscience literature but largely inaccessible because it is not compiled, organized, and

searchable. With such a resource a scientist can rapidly and efficiently generate or test

hypotheses that may have otherwise gone unnoticed (Akil et al., 2011; Voytek and Voytek,

2012). Third, to encourage and enable scientists to "share data", as well as to link their

data to existing and emerging resources as they are generated (e.g., the Allen Brain Atlas

(Lein et al., 2007)). These linkages will enhance the utility of each individual electrophys-

iological study and thereby further accelerate discovery in the field. A database of neuron

biophysical properties and the linkages that it supports are particularly important given

that large scale efforts to map neuronal activity across the brain are in their early stages

(Insel et al., 2013; Kandel et al., 2013).

Here, we describe the construction and validation of a public database that aggregates

information on key biophysical properties and the experimental conditions under which

they were collected for the majority of mammalian neurons in the brain. Our methods

use a combination of automated text-mining (French et al., 2009; Ambert and Cohen,

2012) and expert manual curation to extract relevant information from the existing lit-

erature. After populating the database, we assess how certain experimental conditions

systematically influence electrophysiological measurements across neuron types. We then

explore the emergence of both intuitive and unexpected groups of neuron types according

to commonalities in their biophysical properties.

Though NeuroElectro is not yet comprehensive, the framework provides a shared infras-

tructure for data that can be used to facilitate comparison of neuron types across studies

and laboratories. Clearly, NeuroElectro will become more useful as more data are included,

but we demonstrate that powerful inferences can be generated even in its current state.

Just as the GenBank database (Benson et al., 2013) and BLAST algorithm (Altschul et al.,

1990) have enabled biologists to infer protein function and binding patterns from compar-
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isons of genetic sequences (Zhou, 2004; Flower and Attwood, 2004; Bairoch and Apweiler,

2000), we envision the development of analogous tools that enable electrophysiologists to

compare neurons on the basis of their biophysical properties and infer shared computa-

tional function. These features would complement existing resources, such as NeuronDB

and CellPropDB, which allow similar searching of neuron types based on specified shared

physiological features such as somatodendritic ionic current distributions (Crasto et al.,

2007). Critically, extension of such tools will also facilitate the linkage of electrophysio-

logical data with neuron morphology (Parekh and Ascoli, 2013) and gene expression (Lein

et al., 2007; Wichterle et al., 2013) to further our understanding of the fundamental link

between neuronal biophysical properties and computational roles.

4.4 Results

4.4.1 Generating a brain-wide database of neuronal biophysical

properties

The utility of comparing electrophysiological data across neuron types increases with the

amount of data considered. As much of this electrophysiological data already exists within

the literature, we chose to "mine" the data from the text of published papers. While

forgoing the difficulties of recording from multiple neuron types and brain areas, a data-

mining approach is not without its own challenges, such as accounting for inconsistencies

in published neuron naming schemes (Ascoli et al., 2008) and experimental conditions.

However, many of these limitations can be overcome by capitalizing on the redundancy

of published values and the presence of informal community-based reporting standards

(Ascoli et al., 2008; Toledo-Rodriguez et al., 2004), providing a unified dataset of sufficient

quality for use in subsequent meta-analyses.

As described in detail in Chapter 3, from approximately 92,000 published articles from
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15 journals containing electrophysiological data, we mined information on basic biophysical

properties (e.g., resting membrane potential and input resistance) of 98 distinct types of

normotypic (i.e., "wild-type") neurons (based on definitions from http://neurolex.org;

(Johnston and Wu, 1995; Hille, 2001; Shepherd, 2003; Stuart et al., 2007; Hamilton et al.,

2012; Larson and Martone, 2013)) from 328 articles. Our mining strategy follows a two

stage process (Fig. 4.1A; detailed in Section 4.7). Briefly, we first examined the text of

articles from neuroscience-specific journals (e.g., the Journal of Neuroscience, the Journal

of Neurophysiology, etc.) and developed automated text-mining algorithms (French et al.,

2009; Ambert and Cohen, 2012) to extract content related to biophysical properties and

experimental conditions. We focused on developing algorithms for extracting data from

formatted data tables because this increased the reliability with which we could extract

relevant data (Dickman, 2003; Yarkoni et al., 2011). Algorithms focused on data within text

and figures will be considered in future work. Next, we manually curated the automatically

extracted data, taking care to fix incorrectly identified content such as mislabeled neuron

types. Given the text mining approach that we used, manual curation was still necessary,

with 66% of electrophysiological concepts (1397 of 2102 total) and 30% of neuron type

mentions (120 of 399 total) identified correctly using automated methods alone.

A sample of the resulting data is shown in Fig. 4.1 and the dataset in its entirety

can be interactively explored and downloaded through our web interface at http://

neuroelectro.org. The sample data in Fig. 4.1 reflects known features of these neurons;

for example, cortical basket cells have narrow action potentials (Markram et al., 2004)

and striatal medium spiny neurons rest at hyperpolarized potentials (Kreitzer, 2009). The

composition of the entire NeuroElectro dataset also reflects biases in the literature: CA1

pyramidal cells and cortical neurons are among the best studied neurons, while most neuron

types are characterized by 5 or fewer articles (Supp. Fig. 4.7A). Additionally, authors are

more likely to report only a subset of specific properties within an article, such as resting
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Membrane and synaptic properties of mitral cells in 
slices of rat olfactory bulb.

Chen WR, Shepherd GM.

We have investigated the membrane properties and excitatory synaptic transmission of mitral cells in a slice 
preparation of rat olfactory bulb. In response to intracellular injection of depolarizing current, most mitral cells 
showed several distinct membrane properties: (1) delayed onset of �ring (suggesting the presence of a type of 
potassium A current); (2) subthreshold oscillation of the membrane potential; and (3) repetitive �ring of 
clustered action potentials during prolonged threshold stimulation. Olfactory nerve (ON) stimulation evoked a 
long-lasting EPSP in most of the mitral cells. This long EPSP was completely blocked by combined application of 
NMDA and non-NMDA receptor antagonists (20 microM CNQX and 100 microM APV), con�rming that glutamate 
is the neurotransmitter at the synapses from ON to mitral cells. The ON-evoked EPSP was preceded by a prespike, 
which was resistant to membrane potential hyperpolarization at the soma. This fast prepotential may be 
indicative of an active response in the primary dendritic tufts of the mitral cells. Stimulation of the lateral 
olfactory tract evoked an antidromic pulse followed by a short EPSP, which could also be elicited independently 
of an antidromic spike in the recorded cell. Since the asymmetrical synapses so far observed on the mitral cells 
are all form the ON, this antidromically evoked EPSP may re�ect self-excitation of a mitral cell by glutamate 
released from its own dendrites by antidromic impulse invasion, or/and lateral excitation by neighboring 
invaded dendrites.

Electrophysiological studies

CA1 pyramidal cell

Semi-automated property
extraction

Vrest
IR
sag ratio
APhalf-width

−66.2 ± 1.1 mV
55.4 ± 3.7 MΩ
0.79 ± 0.01

0.95 ± 0.03 ms 

Strain
Animal Age
Rec. Temp
...

Wistar
14 - 63 days
35.0 ± 2.0°C

...

Electrophysiological values

Experimental metadata

Dopamine receptor activation is required for 
corticostriatal spike-timing-dependent plasticity.

Pawlak V; Kerr JN 

Action potentials are the end product of synaptic integration, a process in�uenced by resting and active 
neuronal membrane properties. Diversity in these properties contributes to specialized mechanisms of synaptic 
integration and action potential �ring, which are likely to be of functional signi�cance within neural circuits. In 
the hippocampus, the majority of subicular pyramidal neurons �re high-frequency bursts of action potentials, 
whereas CA1 pyramidal neurons exhibit regular spiking behavior when subjected to direct somatic current 
injection. Using patch-clamp recordings from morphologically identi�ed neurons in hippocampal slices, we 
analyzed and compared the resting and active membrane properties of pyramidal neurons in the subiculum and 
CA1 regions of the hippocampus. In response to direct somatic current injection, three subicular �ring types 
were identi�ed (regular spiking, weak bursting, and strong bursting), while all CA1 neurons were regular spiking. 
Within subiculum strong bursting neurons were found preferentially further away from the CA1 subregion. 
Input resistance (R(N)), membrane time constant (tau(m)), and depolarizing "sag" in response to hyperpolarizing 
current pulses were similar in all subicular neurons, while R(N) and tau(m) were signi�cantly larger in CA1 
neurons. The �rst spike of all subicular neurons exhibited similar action potential properties; CA1 action 
potentials exhibited faster rising rates, greater amplitudes, and wider half-widths than subicular action 
potentials. Therefore both the resting and active properties of CA1 pyramidal neurons are distinct from those of 
subicular neurons, which form a related class of neurons, di�ering in their propensity to burst. We also found that 
both regular spiking subicular and CA1 neurons could be transformed into a burst �ring mode by application of 
a low concentration of 4-aminopyridine, suggesting that in both hippocampal sub�elds, �ring properties are 
regulated by a slowly inactivating, D-type potassium current. The ability of all subicular pyramidal neurons to 
burst strengthens the notion that they form a single neuronal class, sharing a burst generating mechanism that 
is stronger in some cells than others.

Resting and active properties of pyramidal neurons in 
subiculum and CA1 of rat hippocampus.

Sta� NP, Jung HY, Thiagarajan T, Yao M, Spruston N.

Action potentials are the end product of synaptic integration, a process in�uenced by resting and active 
neuronal membrane properties. Diversity in these properties contributes to specialized mechanisms of synaptic 
integration and action potential �ring, which are likely to be of functional signi�cance within neural circuits. In 
the hippocampus, the majority of subicular pyramidal neurons �re high-frequency bursts of action potentials, 
whereas CA1 pyramidal neurons exhibit regular spiking behavior when subjected to direct somatic current 
injection. Using patch-clamp recordings from morphologically identi�ed neurons in hippocampal slices, we 
analyzed and compared the resting and active membrane properties of pyramidal neurons in the subiculum and 
CA1 regions of the hippocampus. In response to direct somatic current injection, three subicular �ring types 
were identi�ed (regular spiking, weak bursting, and strong bursting), while all CA1 neurons were regular spiking. 
Within subiculum strong bursting neurons were found preferentially further away from the CA1 subregion. 
Input resistance (R(N)), membrane time constant (tau(m)), and depolarizing "sag" in response to hyperpolarizing 
current pulses were similar in all subicular neurons, while R(N) and tau(m) were signi�cantly larger in CA1 
neurons. The �rst spike of all subicular neurons exhibited similar action potential properties; CA1 action 
potentials exhibited faster rising rates, greater amplitudes, and wider half-widths than subicular action 
potentials. Therefore both the resting and active properties of CA1 pyramidal neurons are distinct from those of 
subicular neurons, which form a related class of neurons, di�ering in their propensity to burst. We also found that 
both regular spiking subicular and CA1 neurons could be transformed into a burst �ring mode by application of 
a low concentration of 4-aminopyridine, suggesting that in both hippocampal sub�elds, �ring properties are 
regulated by a slowly inactivating, D-type potassium current. The ability of all subicular pyramidal neurons to 
burst strengthens the notion that they form a single neuronal class, sharing a burst generating mechanism that 
is stronger in some cells than others.
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Figure 4.1: Schematic of NeuroElectro database construction and example electrophysiological measurements. A) Semi-
automated text-mining algorithms were developed and applied to neurophysiology journal articles to extract neuron-specific
electrophysiological measurements and corresponding experimental metadata. B-G) Example electrophysiological measure-
ments extracted from the research literature for cerebellar Purkinje cells, CA1 pyramidal cells, cortical basket cells, ventral
tegmental area dopaminergic cells, and striatal medium spiny neurons (abbreviated as Purk; CA1, pyr; Ctx, bskt; VTA, DA;
and Str, MSN respectively). Each circle denotes the value of the mean electrophysiological measurement reported within an
article.
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membrane potential and input resistances (Supp. Fig. 4.7B). Moreover, more sparsely re-

ported properties, such as action potential (spike) afterhyperpolarization amplitude, tend

to be calculated in different ways across articles. In light of these reporting confounds,

we have focused our current analyses on six commonly and reliably reported biophysical

properties: resting membrane potential, input resistance, membrane time constant, spike

half-width, spike amplitude, and spike threshold (abbreviated as Vrest, Rinput, τm, APhw,

APamp, APthr, respectively).

4.4.2 Experimental metadata helps explain the observed vari-

ance among electrophysiological measurements

Our literature-based approach relies on pooling information across multiple articles, which

has the inherent advantage of distilling the "consensus" view of several expert investigators.

However, data collected by different investigators under different experimental conditions

may not be directly comparable. For example, input resistances tend to decrease as an-

imals age (e.g., see (Zhu, 2000; Okaty et al., 2009; Kinnischtzke et al., 2012)), thereby

rendering data that include animals of different ages more variable. Because our data

are randomly sampled from the literature, these relationships between experimental con-

ditions (the "metadata") and electrophysiological measurements (the "data") should also

be reflected within our dataset (e.g., Fig. 4.2B). By annotating each electrophysiological

measurement in our database with a corresponding set of experimental metadata (using

methods section text-mining and manual curation as described in Chapter 3; Fig. 4.2A),

we were able to address the following three questions. First, can experimental metadata

be used to reduce the variability of data reported across studies? Second, what is the

influence of specific experimental conditions (e.g., recording temperature and electrode

type) on measurements of biophysical properties? Third, what is the residual variability

in reported values after differences in several experimental conditions have been accounted

82



for?

We used linear regression models to characterize the relationship between electrophys-

iological measurements and experimental metadata. We first asked to what extent the

variability observed among electrophysiological measurements could be explained by neu-

ron type alone (i.e., how consistent are measurements of the same neuron type from study

to study). We found that Vrest was reported fairly consistently (Fig. 4.2C; adj. R2 =

0.6; i.e. 60% of the variability in Vrest across cells was explained by cell type). However,

most properties, such as τm and APthr, had measurements which differed greatly across

studies recording from the same neuron type (adj. R2 < 0.25). Thus, there exists a high

degree of "noise" or variance unexplained by neuron type in the literature among these

electrophysiological data.

We found in many cases, however, that experimental metadata could significantly ex-

plain the variability in reported electrophysiological data (Figs. 4.2D-F, summary in G).

For example, knowing whether neurons were recorded using patch versus sharp electrodes

explained a substantial fraction of the observed variance in Rinput, with sharp electrodes

yielding on average 100 MΩ lower Rinput than patch electrodes (Fig. 4.2D). Thus, the

dataset inherently reflects a historical controversy of the late 20th century when the patch-

clamp technique was first introduced and large discrepancies were observed in Rinput mea-

surements made with patch vs. sharp electrodes. Consistent with our dataset, sharp elec-

trode recordings were found to systematically underestimate Rinput (Spruston and John-

ston, 1992; Staley et al., 1992). Moreover, the dataset quantitatively reflects a number of

other qualitatively known relationships between experimental conditions and electrophys-

iological measurements, such as an inverse correlation between animal age and τm (Fig.

4.2E) and a correlation between APthr and liquid junction potential correction (Fig. 4.2F).

Collectively, integrating experimental metadata with neuron type accounted for consid-

erably more measurement variability than neuron type alone (Fig. 4.2C; details in Section
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Figure 4.2: Experimental metadata helps explain variability in reported electrophysiological data across studies. A) His-
tograms of the observation frequencies of different kinds of experimental metadata. B) Example data showing how measured
values of Rinput varies as a function of recording electrode type and animal age. C) Variance explained by statistical models
for each electrophysiological property when only neuron type information is used (black) and when neuron type plus all
metadata attributes are used (red). Error bars indicate standard deviations, computed from 90% bootstrap resamplings of
the entire dataset. D-F) Example relationships between specific metadata predictors and variation in electrophysiological
properties. Dots show electrophysiological measurements after accounting for neuron type specific differences. Panel F refers
to correction of junction potential ("jxn"). G) Influence of individual metadata predictors in helping explain variance in
specific electrophysiological properties. Heatmap values indicate relative improvement over the model that includes neuron
type information only. Circles indicate where regression model including metadata attribute was statistically more predictive
than model with neuron type information alone (p < 0.05; ANOVA). H) Example electrophysiological data before (black)
and after using statistical models to adjust for differences in metadata among electrophysiological measurements (red). After
adjustment of electrophysiological measurements for metadata differences, values become less variable and less skewed.
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4.7). Thus, we used our regression models to statistically adjust each electrophysiologi-

cal measurement (e.g., Fig. 4.2H) to help account for systematic differences in recording

practices across neuron types and to improve subsequent between-neuron comparisons.

As a caveat, we note that there still exists a substantial amount of variance in reported

electrophysiological measurements even after integrating the experimental metadata. This

variance likely reflects: (1) within-type neuronal variation (e.g., Padmanabhan and Urban

(2010); Angelo et al. (2012), as described in Chapter 2); (2) additional experimental con-

ditions not taken into consideration (e.g., recording solution contents); and (3) differences

in analysis methods across investigators. Because of these confounding factors, the ability

of experimental metadata to account for electrophysiological data variability reported here

should thus be viewed as a lower-bound, and should improve as more data are included.

Given the potential sensitivity of this analysis to the size of the data set being used,

we next asked whether small reductions in the dataset substantially altered our metadata

adjustments. In other words, how crucial is a large database of biophysical properties

to understanding the systematic relationship between experimental conditions and elec-

trophysiological measurements? To answer this, we examined how the regression results

changed after randomly subsampling a portion of the dataset. We found that the statis-

tical regression algorithms could typically tolerate a loss of 20-50% of the total dataset

without a corresponding loss in the predictive ability of metadata for explaining variability

in electrophysiological measurements (Supp. Fig. 4.10). Thus, only with a dataset of

sufficient size (practically exceeding >100 examples across multiple neuron types), such as

that contained within NeuroElectro, can we quantitatively learn systematic relationships

between experimental conditions and electrophysiological measurements.
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4.4.3 Targeted recordings yield measurements consistent with

the NeuroElectro dataset

Thus far, we have demonstrated that our text-mined dataset is internally consistent and,

through inclusion of experimental metadata, reflects heuristic knowledge of the field. To

more explicitly examine the validity of our dataset, we next performed a series of targeted

recordings from a subset of the best-studied neuron types, including hippocampal CA1

pyramidal cells (Fig. 4.3A), layer 5-6 neocortical pyramidal cells (Fig. 4.3B), main olfactory

bulb mitral cells (Fig. 4.3C), and neocortical basket cells (Fig. 4.3D). After adjusting the

text-mined dataset to reflect the recording conditions used in our laboratory (details in

Section 4.7), we observed close agreement between the NeuroElectro dataset and each of

the neuron types and biophysical properties that we recorded (Fig. 4.3E). We further note

that this close agreement even extended to specific properties for which only 2-3 values were

present in the database (e.g., mitral cell APamp). We thus conclude that the text-mined

data and metadata populating NeuroElectro accurately reflects the electrophysiological

properties of real neurons across the brain.

4.4.4 Investigating brain-wide correlations among biophysical prop-

erties

We next performed a series of analyses on our validated brain-wide electrophysiology

dataset with the goal of gaining insights into the relationships between biophysical prop-

erties and diverse neuron types. We first looked for correlations between biophysical prop-

erties. Though several studies have previously examined this topic (Padmanabhan and

Urban, 2010; Aizenman et al., 2003; Toledo-Rodriguez et al., 2004), they were typically

focused on one or a small number of neuron types from a single brain region. In contrast,

we now ask whether electrophysiological relationships hold across a large number of the
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Figure 4.3: Validation of NeuroElectro database measurements with collection of raw data. A) Representative targeted
recording of a hippocampal CA1 pyramidal cell, showing anatomical position and morphological reconstruction (left), response
to hyperpolarizing and depolarizing rheobase and suprathreshold step current injections (middle), and action potential
waveform (right). Anatomical scalebar: 200 µm. B-D) Same as A for: layer 5-6 neocortical pyramidal cell (B), main
olfactory bulb mitral cell (C), and neocortical basket cell (D). E) Summary of targeted in vitro recordings and comparison
to text-mined, metadata-adjusted values from NeuroElectro. Abbreviations: dorsal (D), posterior (P), medial (M), anterior
(A).

neuron types in the brain.

We observed a number of significant correlations among neuron-averaged electrophys-

iogical properties (examples in Figs. 4.4A,B; summary in C). These observations included

intuitive correlations expected a priori, such as a positive correlation between Rinput and

τm. However, we also observed correlations more difficult to explain via first principles

of neural biophysics, including a positive relationship between Rinput and APamp and a

positive relationship between Vrest and APhw.

Using dimensionality reduction (via a probabilistic form of principal component analy-
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Figure 4.4: Exploring pairwise correlations of electrophysiological properties. A,B) Example data showing pairwise correla-
tions among electrophysiological properties. Each data point corresponds to measurements from a single neuron type (after
averaging observations collected across multiple studies and adjusting for experimental condition differences). C) Correlation
matrix of electrophysiological properties (Spearman’s correlation). Circles indicate where correlation of electrophysiological
properties was statistically significant (p<0.05). D) Variance explained across principal components of electrophysiological
correlation matrix. Inset shows the coefficients corresponding to the first principal component, defining the dimension of
maximal variation among neuronal electrophysiological measurements. E) Projection of neuron types onto space defined by
first two principal components. Only neurons with electrophysiological measurements defined by at least 4 articles (total)
plotted for visual clarity. Note that the first principal component qualitatively reflects differences in neuron electrotonic size.
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sis, pPCA, to account for missing electrophysiological measurements; see Section 4.7), we

found that a single principal component could explain 50% of the variance in the pooled

dataset (Fig. 4.4D). This principal component qualitatively reflects the difference between

electrotonically large and small neurons (Fig. 4.4E), where large neurons (like Purkinje

cells and cortical projection neurons) tend to be correlated with low Rinput and tall, nar-

row spikes relative to more compact neurons (like cerebellar and olfactory bulb granule

cells). The ability of this principal component to account for such a large fraction of the

total variance indicates that correlations in biophysical properties across the majority of

neurons in the brain are substantial and that electrophysiological properties are highly

predictive and correlated with one another. This finding further suggests that subsequent

analyses of biophysical properties may be facilitated by considering such approaches for

dimensionality reduction. In other words, a scientist may need to only measure only 2 of

these 6 biophysical properties to be able to infer the other 4 properties (and perhaps even

additional properties, such as spike train burst phenotypes).

4.4.5 Biophysical similarity identifies approximately 7 neuron

super-classes

We next investigated whether we could use our dataset to identify known and unknown

similarities between distinct neuron types on the basis of their biophysical properties. For

example, just as fast spiking interneurons populate multiple brain areas (e.g., neocortex

and hippocampus (Markram et al., 2004; Martina et al., 1998)), are there other sets of

neurons that share physiological properties and potential computational functions?

We performed a hierarchical clustering analysis of the neuron types within our dataset,

where for each pair of neurons we assessed their similarity by comparing the set of 6 basic

biophysical properties defined above. Here, we chose to be agnostic about the relative

importance of each biophysical property (e.g., (Toledo-Rodriguez et al., 2004; Druckmann
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et al., 2012)) and weighted properties based solely on their variance across studies (e.g.,

see: Fig. 4.2C). We further mitigated measurement noise by focusing on neurons defined

by at least 3 different articles and with no more than 2 of the 6 biophysical properties

missing (as in Fig. 4.4D, we used pPCA to account for unobserved values when missing).

The results of our clustering analysis are displayed in Fig. 4.5 (see Supp. Fig. 4.11B

for a full distance matrix of neuron type biophysical similarity). To assess the statistical

significance of each dendrogram subtree (i.e., how strongly each subtree was supported by

the data), we used the procedure of bootstrap resampling from phylogenetics (Felsenstein,

2004; Suzuki and Shimodaira, 2006) to assess the probability of observing each subtree

across multiple resamplings of the data matrix shown in Fig. 4.5. Here, in each bootstrap

sample, the data matrix is resampled by randomly sampling columns corresponding to

individual biophysical properties with replacement (per the convention in phylogenetics

(Felsenstein, 2004); see Section 4.7 for additional details).

We note that several previously established neuron classes emerged from this analysis,

validating our unbiased clustering approach. For example, we observed two distinct clusters

composed of large glutamatergic projection neurons defined by low Rinput and high APamp.

These two clusters differed in their Vrest and τm; with neurons such as olfactory bulb

mitral cells and CA3 pyramidal cells resting more depolarized relative to deep layer cortical

neurons or CA1 pyramidal cells. Likewise, GABAergic fast-spiking basket cells from the

neocortex and hippocampus were also closely clustered, providing further validation of this

approach.

At least 4 novel statistically significant neuron super classes also emerged from our

clustering analysis. First, we observed a cluster composed of smaller projection neurons

defined by very hyperpolarized Vrest, including glutamatergic layer 2/3 neocortical pyrami-

dal cells and dentate gyrus granule cells and GABAergic medium spiny neurons from the

dorsal and ventral striatum. Intriguingly, a number of these neurons are hypothesized to

90



3 2 1 0

100
18

95
9

6

69
4

82
25

99
7

97
14

100
10

95
8

41
3

29
1

20
2

20
1

64
1

67
2

Inferior colliculus neuron 
Olfactory bulb (main) Blanes cell 
Dentate gyrus hilar cell 
Neocortex Martinotti cell 
Olfactory bulb (main) external tufted cell 
Cerebellar nucleus cell 
Hippocampus CA3 pyramidal cell 
Olfactory bulb (main) mitral cell 
Thalamus relay cell 
Medial vestibular nucleus neuron 
Thalamic reticular nucleus cell 
Cerebellum granule cell 
Basalis nucleus cholinergic neuron 
Dorsal motor nucleus of vagus motor neuron 
Locus coeruleus NA neuron 
Suprachiasmatic nucleus neuron 
Ventral tegmental area DA neuron 
Paraventricular hypothalamic nucleus neuron 
Nucleus of the solitary tract principal cell 
Substantia nigra pars compacta DA cell 
Thalamus parafascicular nucleus neuron 
Olfactory bulb (main) granule cell 
Cerebellum Purkinje cell 
Inferior olive neuron 
Dentate gyrus basket cell 
Hippocampus CA1 basket cell 
Neocortex basket cell 
Neocortex pyramidal cell layer 5−6 
Subiculum pyramidal cell 
Amygdala basolateral pyramidal neuron 
Hippocampus CA1 pyramidal cell 
Hypoglossal nucleus motor neuron 
Neostriatum medium spiny neuron 
Nucleus accumbens medium spiny neuron 
Neocortex pyramidal cell layer 2−3 
Dentate gyrus granule cell 
Neocortex layer 4 stellate cell 

99

210-1-2
Biophysical values (normalized)

 

 

 V
re

stτ m

 A
P

am
p

 A
P

hw
 A

P
th

r

 R
in

pu
t

AU p-value (%)
Bootstrap prob (%)

Subtree statistics

Biophysical distance
(Euclidean)

89
62

99
58

94
5597

44

92
28

84
21

91
26

79
3

96
48

98
56

87
2691

20

100
88

96
6696

37

100
27

83
50

96
40

91
38

92
22

MSNs + small 
projection
neurons 

Fast-spiking
basket cells

High Rinput

broad spiking
neurons

Large Glu
projection

neurons

Large Glu
projection

neurons

Low-threshold/
persistently
�ring cells

Small narrow-
spiking cells

Neuron types Super-classes

Figure 4.5: Hierarchical clustering of neuron types on the basis of biophysical similarity. Neuron types sorted in order of
biophysical similarity (similiarity indicated by levels of dendrogram; dendrogram linkages computed using Ward’s method and
Euclidean distances). Heatmap values indicate observed neuron-specific electrophysiological measurements, red (blue) values
indicate large (small) values relative to mean across neuron types. Statistical consistency of dendrogram subtrees calculated
via bootstrap resampling (green values indicate percentage of bootstrap resamples containing subtree; red values indicate
approximately unbiased (AU) p-values; p-values and bootstrap percentages rounded to nearest integer for visualization;
n = 10, 000 bootstrap resamples). Dendrogram subtrees with AU p-value greater than p > 95% are grouped into neuron
super-classes indicated by text coloring (and are otherwise black). Only neuron types with measurements defined by at least
3 articles and with no more than 2 (of the 6 total) biophysical properties not observed were used in this analysis (probabilistic
PCA used to impute unobserved measurements).
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represent information sparsely in cell assemblies and exhibit up- and downstates (Kreitzer,

2009; Larimer and Strowbridge, 2010; Barth and Poulet, 2012). Second, we observed a

large cluster of high Rinput, large APhw neurons with depolarized Vrest and APthr composed

of neurons from the substantia nigra, ventral tegmental area, hypothalamus, and brainstem

(Fig. 4.5). While markedly diverse in their combined neurochemistry (including dopamin-

ergic, GABAergic, and peptidergic neurotransmitters), many of these these neuron types

nevertheless exhibit similar activity patterns comprised of spontaneous "pacemaker"-like

firing rates (Stern, 2001; Tateno and Robinson, 2011), an emergent property predicted by

their distinctively depolarized Vrest (Fig. 4.5). Third, we observed a cluster of neurons

containing olfactory bulb Blanes cells, dentate gyrus hilar cells, and neocortical Martinotti

cells that were uniquely defined by a depolarized Vrest and low APthr. Consistent with their

low effective spiking threshold, these neurons are known to act as "first-responders" within

their larger circuit and regulate the overall excitability of other neurons (Pressler and

Strowbridge, 2006; Larimer and Strowbridge, 2010; Fanselow and Connors, 2010). Lastly,

we observed a high Rinput cluster composed of cerebellar granule cells and neurons from

the medial vestibular and thalamic reticular nuclei that shares features similar to basket

cells, namely short APhw and depolarized APthr.

Additionally, we note that across the entire dataset, we observed a qualitative corre-

spondence between biophysical similarity and gross anatomical position (e.g., hindbrain

neurons were generally more similar to one another than to neocortical neurons), suggest-

ing that shared precursor lineage yields similar biophysical properties (Gage, 2000; Ohtsuki

et al., 2012). In total, clustering of brain-wide neurons by just 6 biophysical properties thus

revealed several novel insights about biophysical similarities and possible computational

roles. We note that this biophysical parameter based-approach for clustering neuron types

differs from alternative grouping methods, such as those based on somatodendritic distri-

bution of ionic conductances and morphological properties(Migliore and Shepherd, 2002,
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2005). To elaborate, we find that the major dimensions along which neurons vary here are

based on neuronal electronic size and membrane depolarization at rest whereas Migliore

and Shepherd (2005) found that neurons primarily varied based on dendrite thickness and

presence or absence of dendritic back propagating action potentials. This indicates that,

in contrast to BLAST searches in GenBank across a unidimensional inventory of sequence

similarly (Altschul et al., 1990; Benson et al., 2013), searches across neurons are across a

multidimensional inventory which can yield different shared motifs. A future challenge will

be to incorporate these and other approaches into a consensus multidimensional represen-

tation of neuron diversity.

4.4.6 Differences in gene expression predict differences in bio-

physical properties

In our final experiments, we sought to better understand the mechanistic origin of these

∼7 neuronal super-classes and, more generally, the biophysical differences across brain-

wide neurons. To do so, we took advantage of a publicly available gene expression dataset

provided by the Allen Brain Atlas (Lein et al., 2007) to test how biophysical differences cor-

relate with transcriptional differences. Such an analysis may allow us to understand which

of the ∼20,000 genes in the genome are responsible for specific biophysical differences

among neurons. Furthermore, this "genome-wide" approach to understanding the basis of

diverse biophysical phenotypes could complement existing single-gene or single-current ap-

proaches provided by targeted gene-knockouts and channel-specific pharmacology (Coetzee

et al., 1999).

At present, there are not brain-wide gene expression datasets at the resolution of indi-

vidual neuron types. However, the Allen Brain Atlas does contain data on the expression of

most genes in the genome and a number of non-coding RNAs at the resolution of individual

brain regions and often within individual cellular lamina (Fig. 4.6A). Thus, for brain re-

93



gions and cellular lamina composed of relatively homogeneous populations of neuron types,

we were able to extract gene expression data for individual neuron types. For brain regions

containing a heterogeneous population of neuron types, we considered only the most com-

mon neuron type. For example, because layer 2/3 of the neocortex is composed of ∼80%

pyramidal cells (Douglas and Martin, 2004), we tested the gene expression data of layer

2/3 as a potential predictor for the biophysical properties of layer 2/3 pyramidal cells, but

did not examine other neocortical cells such as basket cells. While yielding only an approx-

imation of neuron type-specific gene expression, this approach nevertheless makes possible

the best comprehensive analysis of brain-wide electrophysiological and transcriptional data

until datasets at higher cellular resolution become available. Consequently, the following

results identify a lower bound on the predictive relationship between genome-wide gene

expression and biophysical properties.

To quantify the relationship between biophysical and transcriptional differences, we

first calculated the pairwise differences among neuron types based on electrophysiological

differences reported in NeuroElectro (Fig. 4.6C) and based on trascriptional differences

among voltage-gated ion channel genes (Fig. 4.6D). We then compared the collection of

resulting pairwise differences to determine how well gene expression differences predict

biophysical differences. We note that a perfect match between these sets of pairwise differ-

ences is not expected for several reasons. For example, in addition to the limited resolution

of our transcriptional dataset, differences in mRNA measurements do not directly reflect

differences in protein abundance (Miller et al., 2011; Coetzee et al., 1999). Further, bio-

physical properties may be influenced by combinatorial patterns of ion channel expression

(Prinz et al., 2004; Marder and Taylor, 2011), in addition to different cell morphologies

(Mainen and Sejnowski, 1996). Despite these caveats, however, we observed a surpris-

ing degree of correlation between brain-wide biophysical differences and voltage-gated ion

channel expression differences (Pearson’s r = 0.36; p < 6× 10−5, Mantel’s Test).
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Figure 4.6: Correlation of differences in neuronal electrophysiology with differences in gene expression. A) Illustration
of mapping between neuron types and the brain regions (from the Allen Institute mouse brain atlas) in which they are
contained. B) Example Allen Institute in situ hybridization experiments showing the gene expression profiles of Shank3,
Kcnma1 (KCa1.1), and Pvalb (parvalbumin). C) Distance matrix of electrophysiological differences among neuron types
for neurons which could be uniquely mapped to a corresponding brain region in the Allen Institute atlas. Heatmap values
indicate electrophysiological similarity; blue (red) indicates similarity (dissimilarity). D) Same as C, but computed for gene
expression differences when considering the set of genes coding for voltage-gated ion channels. Brain regions corresponding
to neuron types sorted as in C. E) Correlation of distance matrices defined by electrophysiological differences and gene
expression differences, when considering different sets of genes defined by Gene Ontology functional categories.
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We then repeated this analysis using other gene classes defined by the Gene Ontol-

ogy project (Ashburner et al., 2000), such as transcription factors, synaptic scaffolding

proteins, etc., to determine if other genes less intuitive than voltage-gated ion channels

underlie brain-wide biophysical differences. Select examples from this analysis are shown

in Fig. 4.6E, while the full analysis and summary of the top 100 predictive gene classes

are provided in Supp. Fig. 4.12 and Supp. Table 4.1, respectively. As expected, classes

of genes with minimal expression in the brain demonstrated low levels of correlation with

neuronal biophysical differences (Fig. 4.6E). Such gene classes included olfactory receptor

genes (which are primarily expressed in the nasal epithelium (Buck and Axel, 1991)) and

a class of ∼3,000 genes and non-coding RNAs assessed by the Allen Institute to exhibit

negligible expression in the brain (Lein et al., 2007). In contrast, gene classes known to

underpin electrophysiological properties, such as ion transporters and voltage-gated ion

channels genes (Toledo-Rodriguez et al., 2004), were among the classes mostly strongly

correlated with biophysical differences. Surprisingly, other gene classes not known to di-

rectly underpin electrophysiological properties, including a number of synapse-specific and

neurotransmitter receptor gene classes, also exhibited high levels of correlation with neu-

ronal biophysical differences (Supp. Fig. 4.12; Supp. Table 4.1). These findings motivate

more direct investigation of the relationship between these surprisingly predictive gene

classes and basic biophysical properties.

4.5 Discussion

We have created a database, NeuroElectro, that compiles the results of a large number

of electrophysiological publications to help gain insight into the brain’s "parts list". We

believe that NeuroElectro will accelerate, through the discovery of "buried treasure" in

the literature, the elucidation of both the mechanistic bases and functional consequences

of neuron-to-neuron biophysical differences and similarities. NeuroElectro also provides
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a framework for data sharing, and will thus facilitate large-scale efforts to understand

neuronal properties and brain function, such as the US federal BRAIN initiative (Alivisatos

et al., 2012; Insel et al., 2013) and the EU Human/Blue Brain Project (Markram, 2006).

Critically, NeuroElectro is readily expandable, even with electrophysiologists continuing

their current practices of data collection and reporting. That is, NeuroElectro does not

impose any top-down requirements on how data are collected, analyzed, or reported. In

this way, we see NeuroElectro as standing as a community-based alternative or complement

to large-scale single-institute efforts to determine the properties of all neuron types in the

brain (e.g., the Human/Blue Brain Project (Markram, 2006)).

4.5.1 Summary

Obtaining a full understanding of the biophysical diversity of neuron types across the brain

will require a comprehensive collection of electrophysiological data. Here, we have taken

the first steps toward this goal by using semi-automated text-mining algorithms to link

neuron types with electrophysiological data scattered throughout the vast neuroscience

literature. The resulting centralized database of neuron-specific electrophysiological data

is now publicly available through an interactive web-interface at neuroelectro.org.

The utility of the raw data aggregated in this database is limited by the variability in

reported values across studies. However, the statistical power harbored in this unprece-

dented collection of electrophysiological data enabled us to learn systematic relationships

between experimental conditions and biophysical properties. With this knowledge, we

were able to adjust data values mined across multiple studies to account for differences in

basic experimental conditions, yielding a unified dataset amenable to brain-wide compar-

isons. The rest of the current study was devoted to exploring a subset of these brain-wide

comparisons.

We observed that, across the brain, neuronal biophysical properties exhibit several intu-
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itive relationships, such as a positive correlation between APthr and APamp, as well as more

unintuitive relationships, such as a positive correlation between Vrest and APhw. Further,

by comparing biophysical properties between neuron types, we uncovered several known

and unknown "super-classes" of neuron types projected to exhibit similar functionality. For

example, we identified a class of hippocampal and olfactory bulb neuron types capable of

persistent bistable activity – an emergent property attributable, in part, to a uniquely de-

polarized Vrest, hyperpolarized APthr, and relatively low Rinput. Lastly, we quantified the

relationship between electrophysiological and transcriptional differences across numerous

gene classes, providing a mechanistic basis for the biophysical divergence of distinct neuron

types across the brain.

4.5.2 Strengths and weaknesses of our literature-based text-mining

approach

As described in Chapter 3, the use of text-mining algorithms (Ambert and Cohen, 2012)

greatly facilitated our ability to aggregate electrophysiological data across a large number

of neuron types into NeuroElectro. These algorithms provide an efficient, first-pass scan

of the literature by identifying putatively relevant articles and tagging electrophysiological

concepts and entities within those articles via simple text-matching rules. Importantly,

such text-mining algorithms greatly augment the ability of human experts to quickly an-

notate articles for neuron type-specific electrophysiological information. That is, for a

human expert, validating the findings of such text-mining algorithms is more efficient than

manually locating and identifying those results de novo.

However, our text-mining approach comes with a number of potential confounds that

are not typically present when investigators record data within their own laboratory. Fore-

most, we are only able to extract data which investigators choose to include in a machine-

readable format in published articles. Moreover, because there are not community-adopted
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standards for how electrophysiological measurements should be determined, the meaning

of a term like "spike amplitude" may differ from article to article. Where possible, we have

attempted to manually account for these cases by excluding or normalizing measurements

which were calculated in distinct ways or reported in distinct units (e.g., Rinput measured

in GΩ vs. MΩ).

In addition to these potential confounds, our text-mining approach also introduces

subtle biases into our dataset. Our text-mining algorithms require articles to be formatted

as HTML; thus, we cannot currently mine articles published before ∼1997 because they

are typically only available as scanned PDFs. Further, we primarily focused our efforts

on extracting electrophysiological data from formatted data tables (e.g., of 2,253 total

validated measurements, 93% come from data tables). This greatly limits the amount of

extractable information – by our estimates, ∼10% of relevant articles contain information

in a structured data table. However, semi-automated extraction from tables is substantially

more accurate than from article text or figures (Dickman, 2003). Moreover, our analyses

demonstrate that we have extracted sufficient data to support each of our main results

(Supp. Fig. 4.10). Each of these limitations could be overcome in subsequent efforts,

however, through: 1) improved methods for data extraction from text and figures, 2) by

increasing manual curation efforts over a larger team of human experts, and 3) by obtaining

and automatically processing raw data from investigators, such as voltage traces collected

in a standardized format.

Additionally, our text-mining approach requires mapping of each extracted datum

to a canonical neuron type. Because investigators use multiple criteria for classifying

neurons (Ascoli et al., 2008), we chose to use the community-generated expert-defined

list of neurons provided by NeuroLex (http://neurolex.org/wiki/Vertebrate_Neuron_

overview, (Hamilton et al., 2012; Larson and Martone, 2013)). While these definitions

currently "lump" rather than "split" neuron types (e.g., "neocortex layer 5/6 pyramidal
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neuron"), these definitions will evolve as community input accumulates. Accordingly, we

have built the mapping of data to neuron type in NeuroElectro to be highly flexible (as

described in Chapter 3, allowing NeuroElectro to similarly evolve to match updates in

neuron type definitions.

4.5.3 The utility of a public brain-wide database of electrophys-

iological properties

In its current form, the NeuroElectro project can provide to the community a number of

distinct functions: a valuable resource for experimental physiologists looking for references

to compare their data with existing data; a repository for computational modelers looking

for parameters to help constrain their models; and a knowledgebase for theoreticians search-

ing for undiscovered relationships among neurons and their properties. It also presents a

useful way of surveying the literature containing such descriptions of neuronal properties

and can serve a pedagogical role in the training of scientists new to electrophysiology and

in exposing the general public to the rich diversity of neurons.

Moving forward, we plan to extend the NeuroElectro database and expand upon the

available analysis functionalities provided via the public web interface. Specifically, we

intend to further mine the research literature and accurately capture a greater number of

electrophysiological measurements and include data collected from neuron types recorded

under non-normotypic conditions (e.g., under pharmacological manipulation or from ge-

netically modified animals). Moreover, we plan to engage the research community for aid

in curating the machine-mined content and allow researchers to upload and share existing

datasets. Given these expanded data, we intend to enhance the existing web interface with

additional features, such as making data sortable by experimental conditions or neurolog-

ical disease states and allowing for clustering of neuron types based on arbitrary sets of

physiological features.
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In the longer term, our vision is to develop NeuroElectro into a resource much like

the genetics tools GenBank and BLAST (Altschul et al., 1990; Benson et al., 2013) and

allow searching for neuron types on the basis of biophysical similarity. For example, a user

could enter a data-based query like recorded voltage traces or summary measurements from

a little-studied neuron type and be returned a list of biophysically similar neuron types

plus associated references. Thus by studying these better-characterized neurons, the user

could gain insights into potential computational roles or channel mechanisms underlying

her neuron.

Furthermore, through integrating NeuroElectro with other databases, such as on gene

transcription (Lein et al., 2007; Wichterle et al., 2013), computational models (Migliore

et al., 2003), or morphology (Parekh and Ascoli, 2013), these tools could help investiga-

tors infer how the expression of particular genes or the presence of specific morphological

features gives rise a neuron’s unique biophysical phenotype. We feel that this approach,

which explicitly links together the work of the community of investigators, increases the

reach and impact of any one publication and has the potential to greatly increase the rate

of progress in the field. While there is much to be done for this vision to be realized, as

our dataset grows in quantity and quality we believe that the utility of NeuroElectro will

lead physiologists to wonder how they worked without it.
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4.7 Methods

4.7.1 Electrophysiological database construction: Overview

We built a custom infrastructure framework for extracting from neuron type-specific elec-

trophysiological measurements, such as Rinput and APhw, as well as associated metadata

(Figure 4.1 as described in Chapter 3).

4.7.2 Data analysis

Metadata incorporation

To account for the fact that the data were collected under different experimental conditions,

we considered the influence of specific metadata attributes which we obtained from the

article’s methods section through text mining and manual curation. Specifically, we con-

sidered the effect of: animal species, animal strain (here we distinguished between strains

of rats but not different genetic strains of mice), electrode type (sharp versus patch-clamp),

preparation type (in vitro, in vivo, cell culture), junction potential correction (explicitly

corrected, explicitly not corrected, not reported in manuscript), animal age (in days; where

animal weight was reported instead of animal age, we manually converted weights reported
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in grams to age in days using weight to age conversion tables provided by animal vendors,

e.g., http://www.criver.com/ and http://www.harlan.com/), and recording tempera-

ture (we assigned reports of "room temperature" recordings to 22℃ and in vivo recordings

to 37℃). For the purposes of statistical adjustment of metadata (described below), where

metadata attributes were not reported or were unidentifiable within an article (which were

rare for these attributes), we used mean (or mode) imputation for continuous (or categor-

ical) metadata attributes (Little and Rubin, 2002).

We used statistical models to account for the influence between experimental metadata

and measured electrophysiological values. Specifically, we modeled the relationship between

electrophysiological measurements and experimental metadata as ~y = βX where ~y denotes

the vector of electrophysiological measurements corresponding to a single property across

all articles (e.g. Vrest); X denotes the regressor matrix where rows denote the metadata at-

tributes associated with a single measurement yi, e.g. ~xi = [xNeuronType,i, xSpecies,i, xStrain,i, ...];

and β are the regression coefficients denoting the relative contribution of each metadata

attribute. We log10 transformed measurements of Rinput, τm, APhw, and animal age to nor-

malize values because these varied across multiple orders of magnitude and/or to enforce

that these values remain strictly positive.

When combining the influence of multiple metadata attributes into a single regression

model (Fig. 4.2D), we wished to use powerful and flexible models to capture the relation-

ship between metadata and measurement variance while also mitigating the tendency of

more complex statistical models to overfit the data. Thus when fitting statistical models,

we used stepwise regression methods (implemented as LinearModel.stepwise in MATLAB)

to add model terms one-by-one and added terms until either the model’s AIC or BIC was

optimized (Mitchell, 1997). Furthermore, for each electrophysiological property, we selected

the potential model complexity from a set of candidate models (i.e. models that included

terms for only: constant, linear, purely quadratic, interaction, interaction + quadratic)
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and whether to use either AIC or BIC, two examples of penalized information criteria used

to optimize the tradeoff between model fit and complexity, as a model stopping criteria.

We selected model complexity and stopping criterion using 10-fold cross-validation and

minimizing the sum of squared errors on out of sample data (Supp. Fig. 4.9).

We found that for all electrophysiological properties BIC was chosen as the optimal

stopping criterion as opposed to the less conservative AIC measure. Furthermore, usually

linear-only models were chosen after cross-validation (a notable exception is spike threshold,

where a purely quadratic model had the optimal predictive power). We note that because

simple linear-only models were chosen via cross-validation here suggests that we may not

have a sufficient amount of electrophysiological measurements and experimental metadata

to fit more complex models, such as those that consider interactions between experimental

metadata attributes. For example, though evidence suggests that the age dependence of

input resistance varies across different types of neurons (e.g., see: (Zhu, 2000; Kinnischtzke

et al., 2012)), our statistical models were not able to uncover this relationship following

cross-validation. Thus the R2 values shown in Fig. 4.2C should perhaps be treated as a

lower-bound. In reporting the variance explained by different models, we used adj. R2 to

compare between models differing in their number of parameters.

After fitting metadata regression models for each electrophysiological property, we then

adjusted each electrophysiological measurement to its predicted value had it been measured

in an environment described by the population mean metadata value (or mode for cate-

gorical metadata attributes). For example, since the majority of data were recorded using

patch-clamp electrodes, we then adjusted measurements made using sharp electrodes to

their predicted value had they been recorded using patch-clamp electrodes.

To assess the robustness of the fit of the regression models, we reran the regression

analysis on different versions of the dataset where the data were randomly subsampled.

Here, we note that in each of these runs of subsampled datasets, we did not rerun the
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cross-validation procedure to pick between AIC or BIC or model complexity for purposes

of computational tractability.

Electrophysiology property correlation and Neuron type similarity analysis

For analysis of electrophysiological and neuronal correlations, we first pooled data by av-

eraging measurements collected within the same neuron type. We then identified each

neuron type with its vector of electrophysiological measurements. We quantified correla-

tions between pairs of electrophysiological properties using Spearman’s correlation, which

assesses the rank-correlation and allows for detection of relationships that are monotonic

but not necessarily linear.

To quantify how much variance across electrophysiological properties could be explained

by subsequent principal components (PCs), we needed to first account for missing measure-

ments within our dataset. For example, some neurons did not have a reported measurement

for τm or APthresh within our dataset. To address this issue of missing data (Little and

Rubin, 2002), we used pPCA, a modification of traditional PCA that is robust to missing

data. To further mitigate the problem of missing data, in this analysis we only considered

neuron types that were defined by at least 3 different articles and with no more than 2 of

the 6 total electrophysiological properties missing; after this filtering step, less than 10%

of total electrophysiological observations were missing.

To quantify the electrophysiological similarity of neuron types, we calculated the pair-

wise Euclidean distances between pairs of neuron types defined by the vector of 6 elec-

trophysiological properties and used a dendrogram analysis to sort neuron types on the

basis of electrophysiological similarity. Missing or unobserved electrophysiological measure-

ments were imputed using pPCA. The dendrogram, D, denoting the hierarchical similarity

among neuron types was constructed using linkages computed byWard’s minimum variance

method. We used multiscale bootstrap resampling to assess the statistical significance of
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subtrees of D using the pvclust package in the language R (Suzuki and Shimodaira, 2006).

The pvclust multiscale bootstrap resampling algorithm is sketched as follows: specif-

ically, given an n × p data matrix M (here, n refers to neuron types and p refers to the

6 electrophysiological properties), pvclust first generates a number of bootstrapped ver-

sions of M through randomly sampling columns from M with replacement (here, 10000

bootstrap samples were used). For each bootstrapped data matrix, Mi, a dendrogram

Di was generated through hierarchical clustering. Next, for each subtree in the original

dendrogram D, the analysis assesses how often the same subtree appears across the boot-

strapped dendrograms D1:10000 (this is referred to as the bootstrap probability in Figure

4.5). Here, subtree equality is defined by subtrees that share identical tree topology and

neuron membership but does not assess equality of branch lengths. Lastly, because the

bootstrap probability is known to be a downwardly biased measure for determining subtree

probability (Felsenstein, 2004), pvclust corrects for this downward bias by performing the

entire bootstrap procedure multiple times at a number of scales by resampling M to have

differing numbers of columns (here, we use 3 through 9 columns in M). This allows for

the bootstrap probability to be corrected, yielding the approximately unbiased p-value for

each subtree (referred to as the AU p-value in Figure 4.5).

4.7.3 Gene expression analysis

We obtained a dataset on genome-wide whole brain gene expression from the Allen Insti-

tute for Brain Science (http://brain-map.org). Specifically, using the Allen Institutes’s

public API (http://help.brain-map.org/display/mousebrain/API), we obtained the

institutes’s dataset on brain-wide gene expression as measured in the adult mouse brain

through series of in situ hybridization (ISH) experiments (Lein et al., 2007). Though

this data comes from whole-brain assays of gene expression (as opposed to being at the

resolution of individual neuron types), this whole-brain data has been registered to a com-
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mon neuroanatomical atlas via image processing algorithms, allowing for the average gene

expression of individual brain regions and cellular lamina to be quantified. Thus we ob-

tained these brain region averaged datasets corresponding to each gene and ISH experiment

(∼20,000 unique genes and mRNA probes; ∼26,000 total ISH experiments). We note that

we only obtained data corresponding to genes and mRNA probes which passed internal

quality controls. We further note that we chose to use the adult mouse gene expression

dataset (Lein et al., 2007) as opposed to the developing mouse dataset because of the higher

anatomical resolution of the adult atlas relative to the developing mouse atlases (Henry

and Hohmann, 2012). Since the Allen Institute dataset provides an estimate of average

gene expression at the resolution of brain regions and cell lamina whereas the NeuroElec-

tro dataset provides electrophysiological information at the resolution of neuron types we

mapped NeuroElectro neuron types to Allen Institute brain regions (Fig. 4.6). This allows

us to approximate neuron type gene expression with brain region gene expression.

In analyzing this data, we used the expression energy measure of regional gene expres-

sion and used a log2 transform to normalize this data. We then a performed Euclidean

distance analysis, where for every pair of brain regions we asked how similar these regions

were based on their patterns of gene expression (i.e. analogous to our analysis of neuron

type similarity based on electrophysiological properties). We performed this analysis using

different classes of genes (composed of at least 10 genes), e.g. classes corresponding to ion

channels or and transcription factors, using the Gene Ontology (Ashburner et al., 2000).

Our analysis yielded a distance matrix defined by neuron types on the basis of elec-

trophysiological properties and a distance matrix defined by brain regions on the basis of

gene expression similarity. To quantify the degree of similarity between these two matrices,

i.e. the correspondence between similarity based on genes and similarity based on electro-

physiological properties we calculated the Pearson correlation coefficient between the two

distance matrices (French et al., 2011). Here, we only considered the upper diagonal ele-
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ments. We statistically quantified the significance of this correlation using a Mantel’s test,

a special permutation test for assessing similarity of pairs of distance matrices (Mantel,

1967).

4.7.4 Electrophysiology

Animals

Hippocampal CA1 recordings were conducted using postnatal day (P)15-16 M72-GFP

mice (Potter et al., 2001). Layer 5/6 neocortical pyramidal cell recordings were conducted

using P16-18 M72-GFP and Thy1-YFP-G mice (Feng et al., 2000). Main olfactory bulb

mitral cell recordings were conducted using P15-18 M72-GFP, Thy1-YFP-G, and C57BL/6

mice. Neocortical basket cell recordings were conducted using a P26 parvalbumin reporter

mouse, resulting from a cross between Pvalb-2A-Cre (Allen Institute for Brain Science)

and Ai3 (Madisen et al., 2010) lines. A total of 9 mice of both sexes were used in this

study. All experiments were completed in compliance with the guidelines established by

the Institutional Animal Care and Use Committee of Carnegie Mellon University.

Slice preparation

Mice were anesthetized with isoflurane and decapitated into ice-cold oxygenated dissection

solution containing (in mM): 125 NaCl, 25 glucose, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4,

3 MgCl2, 1 CaCl2. Brains were rapidly isolated and acute slices (310 µm thick) prepared

using a vibratome (5000mz-2; Campden). Slices recovered for 30 min in ∼37℃ oxygenated

Ringer’s solution that was identical to the dissection solution except for lower Mg2+ con-

centrations (1 mM MgCl2) and higher Ca2+ concentrations (2 mM CaCl2). Slices were

then stored in room temperature oxygenated Ringer’s solution until recording. Parasagit-

tal slices were used for hippocampal recordings. Parasagittal and coronal slices were used

for cortical recordings. Horizontal slices were used for olfactory bulb recordings.
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Recording

Slices were continuously superfused with 37℃ oxygenated Ringer’s solution during record-

ing. Cells were visualized using infrared differential interference contrast video microscopy.

Hippocampal CA1 pyramidal cells and layer 5/6 neocortical pyramidal cells were identified

by their large soma size and pyramidal shape, and soma position within their respective

cell body layers. Neocortical basket cells were identified by expression of YFP fluores-

cence. Main olfactory bulb mitral cells were identified by their large cell body size and

position within the mitral cell layer. Whole cell recordings were made using electrodes

(final electrode resistance: 5.8±1.1 MΩ, µ ± σ) filled with (in mM): 120 K-gluconate, 2

KCl, 10 HEPES, 10 Na-phosphocreatine, 4 Mg-ATP, 0.3 Na3GTP, 0.2 EGTA, 0-0.25 Alexa

Fluor 594 (Life Technologies), and 0.2% Neurobiotin (Vector Labs). Cell morphology was

reconstructed under a 100X oil-immersion objective with Neurolucida (MBF Bioscience).

No cells included in this dataset exhibited gross morphological truncations. Mitral cells

were recorded in the presence of CNQX (10 µM), DL-APV (50 µM), and Gabazine (10

µM) to limit the influence of spontaneous synaptic long-lasting depolarizations on mea-

surement of biophysical properties (Carlson et al., 2000). Data were low-pass filtered at 4

kHz and digitized as 10 kHz using a MultiClamp 700A amplifier (Molecular Devices) and

an ITC-18 acquisition board (Instrutech) controlled by custom software written in IGOR

Pro (WaveMetrics). The MultiClamp Pipette Offset operation was used to correct for liq-

uid junction potentials before each recording, and solutions were not changed during the

course of the recording. Pipette capacitance was neutralized and series resistance (13.4±2.7

MΩ, µ± σ; range: 8.4-19.6 MΩ) was compensated using the MultiClamp Bridge Balance

operation and frequently checked for stability during recordings. After determination of

each cell’s native Vrest, current was injected to normalize Vrest to -65, -70, -58, and -70 mV

for hippocampal CA1 pyramidal cells, layer 5/6 neocortical pyramidal cells, main olfactory

bulb mitral cells, and neocortical basket cells, respectively, before determination of other
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biophysical properties.

Analysis

Vrest was determined immediately after cell break in. τm was calculated from a single-

exponential fit to the initial membrane potential response to a hyperpolarizing step cur-

rent injection. Rinput was calculated as the slope of the relationship between a series of

hyperpolarizing step current amplitudes and the steady-state response of the membrane

potential to injections of those step currents. To determine action potential properties

of each neuron, a series of 2 s-long depolarizing step currents was injected into the neu-

ron. The first action potential evoked by the weakest suprathreshold step current (i.e.,

the rheobase input) was used to determine the action potential properties of the neuron.

APthr was calculated as the first point where the membrane potential derivative exceeded

20 mV/ms. APamp was measured from the point of threshold crossing to the peak voltage

reached during the action potential. This amplitude was then used to determine APhw,

calculated as the full action potential width at half maximum amplitude of the action

potential.
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Figure 4.11: Electrophysiological distance matrix of neuron types based on pairwise electrophysiological differences.
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Table 4.1: Top 100 gene ontology gene classes which are most correlated with biophysical differences among neuron types.

Index Ephys-gene correlation Gene ontology class name GO ID number genes
1 0.49913799 negative regulation of oligodendrocyte differentiation 48715 12
2 0.465501172 N-methyl-D-aspartate selective glutamate receptor complex 17146 10
3 0.43893821 establishment of nucleus localization 40023 11
4 0.430445672 regulation of synaptic plasticity 48167 100
5 0.429507439 Rac GTPase binding 48365 23
6 0.426569184 angiotensin receptor binding 31701 11
7 0.425357171 centrosome localization 51642 11
8 0.425252725 type 1 angiotensin receptor binding 31702 10
9 0.421952244 ionotropic glutamate receptor activity 4970 18
10 0.420095334 adipose tissue development 60612 18
11 0.419403771 MAP kinase phosphatase activity 33549 12
12 0.418074423 negative regulation of glial cell differentiation 45686 25
13 0.4180122 Cul3-RING ubiquitin ligase complex 31463 16
14 0.415132168 inactivation of MAPK activity 188 16
15 0.413957933 MAP kinase tyrosine/serine/threonine phosphatase activity 17017 11
16 0.413684152 extracellular-glutamate-gated ion channel activity 5234 17
17 0.410591229 regulation of neuronal synaptic plasticity 48168 46
18 0.409591218 regulation of cation channel activity 2001257 33
19 0.40871743 regulation of transmembrane transporter activity 22898 84
20 0.408706763 positive regulation of cardiac muscle hypertrophy 10613 15
21 0.408657874 regulation of synaptic transmission 50804 211
22 0.404242269 negative regulation of Notch signaling pathway 45746 15
23 0.403316481 neuron-neuron synaptic transmission 7270 50
24 0.401273347 postsynaptic membrane 45211 186
25 0.398605318 dendritic shaft 43198 43
26 0.398037756 negative regulation of ERK1 and ERK2 cascade 70373 28
27 0.392499028 synaptic membrane 97060 217
28 0.392125246 protein phosphatase inhibitor activity 4864 27
29 0.392103023 voltage-gated potassium channel activity 5249 74
30 0.392064356 dendrite 30425 395
31 0.391245681 regulation of ion transmembrane transporter activity 32412 78
32 0.390407449 phosphatase inhibitor activity 19212 30
33 0.390274114 regulation of long-term neuronal synaptic plasticity 48169 31
34 0.389991889 potassium channel complex 34705 52
35 0.388479872 sphingolipid biosynthetic process 30148 31
36 0.386626963 negative regulation of neural precursor cell proliferation 2000178 18
37 0.384949166 regulation of excitatory postsynaptic membrane potential 60079 41
38 0.384322048 voltage-gated potassium channel complex 8076 51
39 0.383579373 protein phosphatase binding 19903 81
40 0.380887788 PDZ domain binding 30165 102
41 0.379858443 dendritic spine 43197 155
42 0.379858443 neuron spine 44309 155
43 0.379840665 postsynaptic density 14069 108
44 0.379840665 dendritic spine head 44327 108
45 0.379188658 oligodendrocyte development 14003 26
46 0.378447761 ionotropic glutamate receptor signaling pathway 35235 23
47 0.377697086 regulation of dendrite morphogenesis 48814 47
48 0.37710019 sarcoplasm 16528 57
49 0.376053512 activation of NF-kappaB-inducing kinase activity 7250 15
50 0.375533061 protein tyrosine/serine/threonine phosphatase activity 8138 35
51 0.375398393 synaptic vesicle exocytosis 16079 21
52 0.374822387 peripheral nervous system development 7422 54
53 0.374474383 behavior 7610 428
54 0.373927266 potassium ion transmembrane transport 71805 83
55 0.373815709 voltage-gated cation channel activity 22843 121
56 0.373746375 potassium channel activity 5267 110
57 0.373672152 extracellular ligand-gated ion channel activity 5230 65
58 0.373276592 regulation of platelet-derived growth factor receptor signaling pathway 10640 11
59 0.372561473 delayed rectifier potassium channel activity 5251 28
60 0.372336137 learning or memory 7611 164
61 0.370890788 cognition 50890 176
62 0.370736119 reproductive behavior 19098 76
63 0.370348115 musculoskeletal movement 50881 22
64 0.369982778 regulation of postsynaptic membrane potential 60078 47
65 0.369639218 cellular response to vascular endothelial growth factor stimulus 35924 22
66 0.369554773 Ras protein signal transduction 7265 83
67 0.369360104 locomotory behavior 7626 164
68 0.369302326 regulation of potassium ion transmembrane transport 1901379 11
69 0.368227647 NIK/NF-kappaB cascade 38061 16
70 0.36711519 calcium ion transmembrane transporter activity 15085 104
71 0.36710319 sarcoplasmic reticulum 16529 49
72 0.366877854 positive regulation of erythrocyte differentiation 45648 16
73 0.366801853 regulation of ion transmembrane transport 34765 231
74 0.366092512 positive regulation of glucose import 46326 29
75 0.365892065 regulation of astrocyte differentiation 48710 25
76 0.365037834 potassium ion transmembrane transporter activity 15079 127
77 0.364975611 cation:cation antiporter activity 15491 19
78 0.364756497 cardiac muscle hypertrophy 3300 17
79 0.363903599 peptide hormone processing 16486 14
80 0.363194258 positive regulation of nitric-oxide synthase activity 51000 11
81 0.363005367 synapse 45202 545
82 0.362675141 vesicle targeting 6903 13
83 0.361875132 positive regulation of RNA splicing 33120 12
84 0.361502683 actin filament-based movement 30048 29
85 0.361490683 ion gated channel activity 22839 273
86 0.360955122 mitochondrial fragmentation involved in apoptotic process 43653 10
87 0.360580451 negative regulation of systemic arterial blood pressure 3085 13
88 0.359844443 Rho protein signal transduction 7266 38
89 0.359615996 synaptic vesicle transport 48489 53
90 0.359559551 barbed-end actin filament capping 51016 10
91 0.359378215 regulation of dendrite development 50773 73
92 0.358277759 protein deubiquitination 16579 54
93 0.358185313 muscle hypertrophy 14896 19
94 0.357846643 chemical homeostasis within a tissue 48875 14
95 0.357739086 voltage-gated ion channel activity 5244 166
96 0.357172857 positive regulation of ion transmembrane transporter activity 32414 26
97 0.356244847 muscle system process 3012 137
98 0.355997733 ionotropic glutamate receptor complex 8328 43
99 0.354981278 costamere 43034 15
100 0.354719497 positive regulation of astrocyte differentiation 48711 10
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Chapter 5

Conclusions and Future work

In this concluding chapter I review the main methodological and scientific contributions

of this dissertation, and discuss future work that will help develop the ideas explored here

even further. Specifically, I revisit and address the 3 motivating questions of this thesis:

1. How do neurons transform their inputs to outputs? How should this transformation

be described?

2. How should electrophysiological differences among neurons be quantified?

3. How should researchers communicate results on the electrophysiological findings from

neurons?

5.1 Summary

As a computational neuroscientist in an experimental laboratory studying neural circuits,

my primary contribution was to develop methodologies and approaches for better under-

standing the extent, scale, and computational significance of neuronal biophysical diver-

sity. These contributions came in two areas - understanding the consequences of cell-to-cell

variability and in creating and analyzing the most comprehensive database of neurophysi-

ological properties ever known.
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Specifically, in my first project studying the biophysical variability of olfactory bulb mi-

tral cells (MCs, described in Chapter 2), I developed and applied generalized linear models

(GLMs) to help describe and quantify the complex biophysical profiles and input/output

functions of single MCs. These models facilitate comparisons between neurons and pro-

vide an intuition for how neurons differ among functionally relevant dimensions, such as

in their refractory or burst responses following a spike. Moreover, these models provide

a computational framework for studying neuronal intrinsic biophysics using "single-cell"

approaches, which treat individual neurons as unique (as opposed to the common practice

of "lumping" neurons into types and subtypes). Using GLMs, I showed that MCs differ in

their stimulus preferences, threshold responses, and in their post-spike behavior, varying

from tonic to burst firing. Moreover, there did not appear to be distinct subtypes of MCs

but instead varied continuously as a population between these phenotypes.

A key advantage to using GLMs for describing the intrinsic biophysics of single neurons

is that the GLMs allowed us to use stimulus decoding methods to study how biophysical

properties observed in single neurons and across groups of neurons influence computational

function. Thus we could ask how groups of MCs, which differed in their biophysical

variability from one group to the next, encoded common afferent stimuli. This methodology

allowed us to make predictions on the optimal structure and variability of MC populations

from the standpoint of stimulus representation. I found that variability among simulated

sister mitral cells (mitral cells which receive primary inputs from a single glomerulus and

the same olfactory receptor neuron subtype) allows the population of mitral cells to better

and more efficiently represent afferent input into the population. Specifically, when the

computational objective is to represent stimuli of a single type (e.g., with the same spectral

structure like from a single ORN subtype), I found that the optimal population should be

neither maximally diverse nor homogeneous. In summary, the GLM methodology presents

a very general approach for capturing neuronal biophysics and linking specific biophysical
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phenotypes to computational roles, which could in principle be applied to many other

neuron types.

After studying the detailed properties of olfactory bulb mitral cells, I became inter-

ested in extending this approach to other neuron types. Just as I had studied how mitral

cells differ from one another, I wanted to know how mitral cells as a group differed from

neurons elsewhere throughout the brain. Moreover, I wished to address this question us-

ing approaches that would best make use of data that had already been collected across

decades of neurophysiological investigation, as opposed to collecting data anew within our

lab. Thus I became interested in the prospect of "mining" information on the biophysical

properties of different neuron types directly from the research literature.

I developed and applied methods for extracting from the cellular neurophysiology re-

search literature measurements of basic biophysical properties across the major neuron

types in the mammalian nervous system (described in Chapter 3). Unlike the single-cell

high resolution voltage traces and spike train data from the earlier mitral cell project,

the data I could most reliably extract were investigator-reported measurements that sum-

marized the average properties of a number of recorded neurons of the same type. In

extracting this data, I found the need to further develop additional tools and resources,

such as an ontology describing basic electrophysiological properties as well as methods for

extracting experimental conditions in which experiments were conducted (i.e. experimen-

tal metadata). Moreover, in developing the database, because of its size and complexity

I incurred substantial challenges in even navigating and visualizing the dataset. Thus, I

built a web interface for the data, neuroelectro.org, and specifically developed features

to allow interactive exploration of the dataset, such as visualizing electrophysiological mea-

surements and publications corresponding to a specific neuron type. Realizing that this

resource could be of use to the greater community, we decided from an early stage to make

the web interface and corresponding data publicly available on the Internet.
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Having compiled this unprecedented dataset of biophysical properties of 98 neuron

types from 326 publications (using automated methods to sort through over 92,000 articles

from 15 journals), I wanted to analyze the NeuroElectro dataset in similar ways to my

earlier analysis of mitral cell biophysical variability; namely, I wished to better understand

neuron type biophysical diversity. For example, do neuron types throughout the brain vary

continuously in their biophysical properties or are there distinct categories or clusters of

biophysically-related neuron types?

Analyzing the pooled NeuroElectro dataset presented unique challenges; for example,

unlike the mitral cell dataset, the NeuroElectro data were collected by hundreds of inves-

tigators who in turn use diverse experimental methodologies and preparations. Thus if

two neuron types differed in their biophysical measurements, I could not attribute whether

these were due to real differences between these neurons or were simply due to how the ex-

periments were conducted. This would be especially problematic if investigators studying

specific types of neurons systematically use different experimental conditions. By utiliz-

ing the experimental metadata I had collected from each publication, I developed and fit

multivariate linear regression models which accounted for the influence of experimental

conditions on biophysical measurements. I found that knowledge of specific experimental

conditions was significantly predictive of the observed variance among electrophysiological

measurements collected across different publications. Moreover, the resulting regression

models were consistent with known relationships between neuronal biophysics and exper-

imental conditions, for example, that sharp electrode recordings underestimate measure-

ments of input resistance relative to patch clamp electrodes (Spruston and Johnston, 1992;

Staley et al., 1992).

Another methodological issue with the NeuroElectro dataset was its piecemeal nature,

since I could only reliably extract measurements that authors explicitly chose to include

in a formatted data table. Thus I was faced with a "missing data" problem: how could I
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analyze across publications and neuron types with incomplete datasets? Namely, standard

techniques like dimensionality reduction using principle component analysis and hierarchi-

cal clustering usually require that there are no missing or unobserved measurements. My

approach to this problem was to pool data across publications corresponding to the same

neuron type and then use imputation to fill in missing values based on the existing data

and the overall correlation structure of biophysical properties.

Having normalized the dataset of biophysical properties across neuron types, I could

then study similarities among neuron types on the basis of their biophysical properties. I

found that biophysical properties are very correlated with one another and that the pri-

mary axis of neuron diversity is qualitatively related to neuronal electrotonic size. Further

analyzing neuron differences, I compared neuron types based on their vector of basic bio-

physical properties and sorted them hierarchically based on biophysical similarity. Utilizing

methods for comparing and quantifying hierarchies from phylogentic analysis (Felsenstein,

2004), I found that the neuron types fit into one of approximately 7 neuron super-classes

including large glutamatergic projection neurons and a class of neurons defined by high

input resistances and depolarized membrane potentials and diverse neurochemical release.

Interestingly, these neuron super-classes differ from previous classifications based on soma-

todendritic distribution of ion channel currents (Migliore and Shepherd, 2002, 2005).

Beyond this descriptive analysis of biophysical diversity, I wished to better understand

the mechanistic basis of neuronal biophysical diversity. Through mapping neuron types in

NeuroElectro (i.e., neurons defined by NeuroLex (Shepherd, 2003; Larson and Martone,

2013)) to brain regions in the Allen Institute mouse brain atlas (Lein et al., 2007), I could

use the Allen Institute’s genome-wide transcription datasets as an approximate estimate

for neuron type-specific gene expression. Thus I could search for classes of genes whose

expression highly correlated with neuronal biophysical differences. I found that the genes

that were expected to be significantly correlated with neuronal biophysics, such as genes
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encoding voltage-gated ion channels and ion transporters, were among the most predictive

gene classes. However, I also observed additional highly-predictive gene classes which we

did not expect a priori, such as NMDA receptor coding genes, genes known to regulate

synaptic plasticity, and genes which regulate oligodendrocite differentiation. These unex-

pected gene classes are exciting because they present novel hypotheses which can be tested

empirically in future experiments.

To summarize NeuroElectro, I view the resource and methodology as a novel approach

for explicitly bridging results across the numerous subfields of cellular neurophysiology.

Beyond its role as an index for helping physiologists locate references on specific neuron

types or providing data and parameters to computational modelers, I believe that the

power of NeuroElectro is in tying many results together and subsequently using the sum

total to help generate hypotheses and drive novel experiments.

5.2 Limitations of current approaches and discussion

of potential solutions

Many of the scientific results from Chapter 2 on the computational implications of mitral

cell diversity rely on the assumption that GLMs sufficiently model the response properties

of individual MCs. While GLMs adequately capture many features of MC activity, one

feature the GLMs insufficiently model is temporally precise and reliable trial-to-trial MC

spiking evoked across multiple trials of the same "frozen noise" stimulus. In ongoing work,

I have been collaborating with Wanjie Wang, a CMU statistics PhD student, to adapt the

GLM models to better capture this important facet of MC activity. Moreover, another

important question with the GLM approach is its generality: are the recovered parameters

stable over the course of the experiment? do they generalize from in vitro to in vivo? These

questions are important and need to be further explored before the GLM methodology can
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be expanded into other contexts.

As described in Chapters 3 and 4, one of the main limitations of the NeuroElectro

project is that the data are collected across a number of investigators in the absence of

formally-defined standards for data collection and reporting (however, there are informal

standards such as the Petilla terminology (Ascoli et al., 2008)). For example, neuronal

properties such as action potential amplitude tend to be collected and calculated using

different methods by investigators. Thus when measurements collected using inconsistent

methodologies are mined into the NeuroElectro database but have not been appropriately

flagged by a human curator, these measurements will tend to add unexplained variance or

"noise" into the pooled dataset. This issue of reconciling multiple investigator methodolo-

gies is a common challenge faced by all literature-based approaches, such as NeuroSynth

and WhiteText (Yarkoni et al., 2011; French et al., 2012). While I feel that one compo-

nent to the solution for this problem is further metadata extraction (e.g., keeping track

of how specific properties are calculated within each article), I feel that a complementary

approach is to spark a greater conversation about data standards and collection practices

within the larger community. To this end, I have been working with collaborators from

Elsevier Research Data Services (http://researchdata.elsevier.com/) and scientific

reproducibility experts (Vasilevsky et al., 2013) on improved methods for tracking data

and metadata in cellular neurophyisology.

5.3 Future Work

Moving forward, my goal is to work towards integrating the two somewhat disparate

projects of the my thesis: the first, a high-resolution description and functional analy-

sis of the intrinsic variability inherent to a single neuron type; the second, a low-resolution

analysis of neuron diversity across the major neuron types throughout the brain. Specif-

ically, since the mitral cell project was conducted within a single lab, we could optimize
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experimental design, data collection, and analysis for making specific hypotheses on the

optimal structure of biophysical variability among mitral cells. Contrastingly, for my sec-

ond project where I developed and populated the NeuroElectro database from existing

literature, for technical reasons I was limited in data access because I could only collect

coarse descriptions of neuronal biophysics and confirm them in a few specific cases. For

example, given that I was relying on literature-published values as the source of data, I

could only extract parameters such as neuronal resting membrane potentials and input

resistances as opposed to richer descriptions of neuronal activity like voltage traces and

spike trains. Thus my subsequent analyses of brain-wide neuronal intrinsic diversity are

likely limited by the relatively low-resolution of the collected data.

In the future, my goal is to see these two approaches begin to merge. Specifically,

through my role as the creator and administrator of NeuroElectro, I am in a unique position

to make suggestions to the greater community for how neurophysiological data should be

collected and stored. For example, if investigators wished to voluntarily upload and share

their raw data through NeuroElectro, I could make suggestions for what kinds of data

would be preferred for optimal utility and visibility. Moreover, I could ensure that the

uploaded data be amenable for fitting general and powerful computational neuron models,

like the GLMs I employed for studying mitral cell variability. Thus, as I asked how mitral

cell biophysics influence stimulus encoding, one could use these submitted data to construct

models to ask how the biophysical properties of diverse neuron types influence stimulus

coding.

Furthermore, there is increasing interest in producing a comprehensive catalog of the

neuron types throughout the brain. For example, the first goal of the NIH portion of the US

federal BRAIN initiative for fiscal year 2014 is to "generate a census of cell types" (www.nih.

gov/science/brain/ACD_BRAIN_interimreport_executivesummary.htm). Though it is

presently unclear what constitutes such a census, NeuroElectro in its current state arguably
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makes considerable progress towards such a goal. Moreover, such a census will likely bridge

multiple aspects of neuron physiology to include information on gene expression patterns,

intrinsic biophysics, morphology, and connectivity. As NeuroElectro makes explicit connec-

tions with additional modalities (as illustrated in Chapter 4 for gene expression), the power

of the resource to drive additional hypotheses should only increase. For example, my cur-

rent efforts include integrating links to and from NeuroElectro with existing resources such

as NeuronDB (Crasto et al., 2007) and NeuroLex (Larson and Martone, 2013) and allowing

dynamic query of NeuroElectro data via an API (http://neuroelectro.org/api/docs/).

Additionally, NeuroElectro at present only contains information about neuron types in their

control or unperturbed states. Given the involvement of specific neuron types in neurolog-

ical disorders (Marín, 2012) or in active versus passive mental states (Gentet et al., 2010,

2012), cataloging how neuronal properties change in these perturbed states will become

critical for understanding the functional roles of diverse neurons.
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