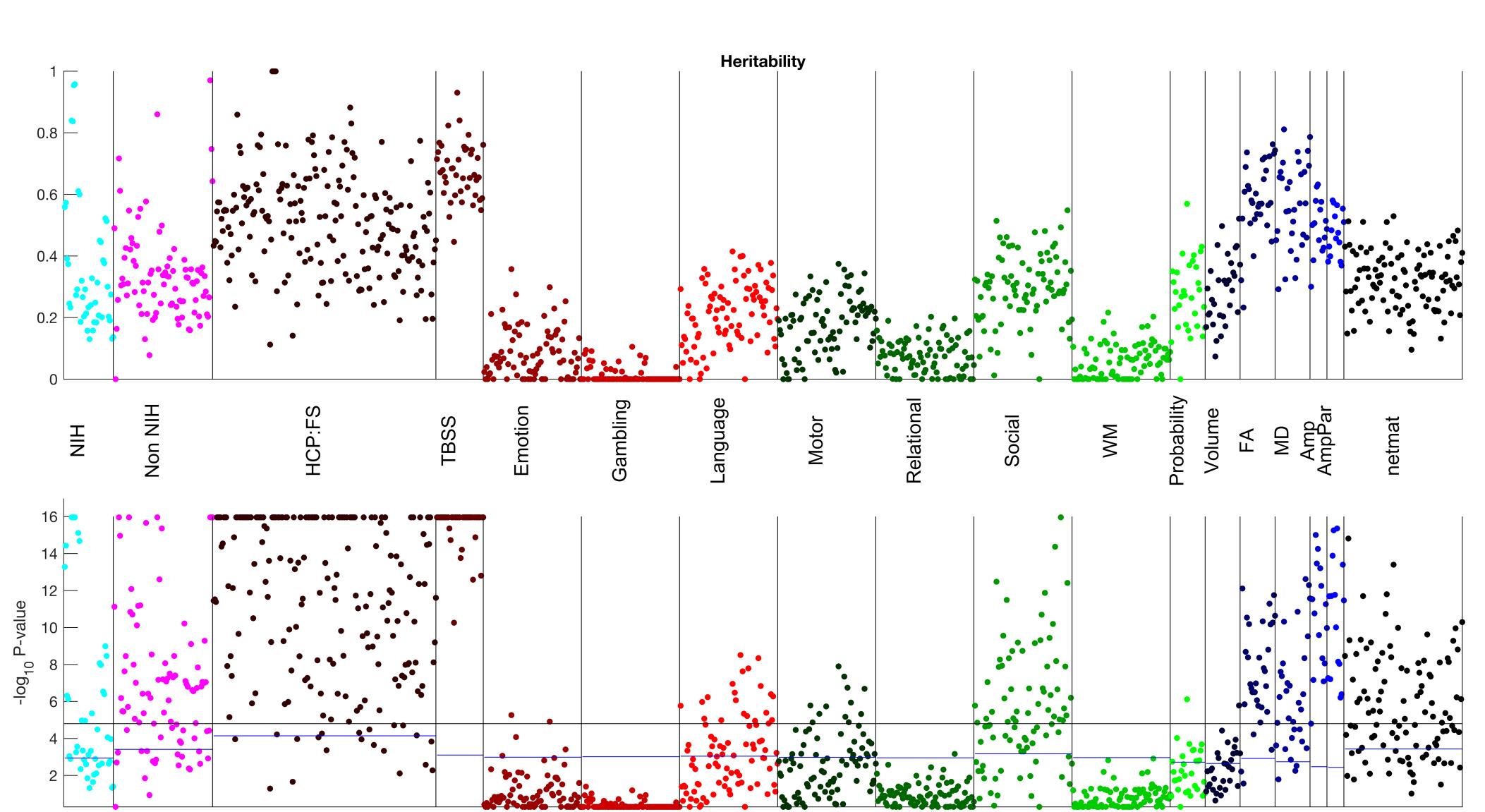
Genetics of the Young Adult Human Connectome Project

Ganjgahi H¹, Bijsterbosch J¹, Daw EW², Donohue B³, Fieremans E⁴, Glahn D⁵, Glasser M², Hordge M², Jbabdi S¹, Kochunov P³, Marchini J¹, Novikov D⁴, Smith S¹, Sotiropoulos S^{1,6}, Van Essen D², Veraart J⁴, Warrington S⁶, Winkler A⁷, and Nichols T¹

¹University of Oxford ²Washington University ³University of Maryland ⁴New York University ⁵Yale University ⁶Nottingham University ⁷National Institutes of Health

Introduction


The Young Adult Human Connectome Project (HCP) is a transformative project that includes cutting edge multimodal MRI imaging of structure, function, and connectivity. It enables investigation of the impact of environmental and genetic factors on human brain structure and function using state of the art neuroimaging, collected on a population of over 1000 subjects using an extended twin design. In addition to imaging data, detailed cognitive, health, lifestyle and mental health data were collected. All HCP data are publicly available, including genome-wide genotype data to be distributed through dbGAP. We present detailed genetic interrogation – heritability and genetic association – of HCP phenotypes.

Methods

Sample

The HCP is based on a population sample targeting families of

Results

twins born to Missouri residents from 1975 to 1991. The HCP recruited nuclear families with at least 4 offspring, with twin siblings aged 21-35 years. The extended twin design was selected to improve power to detect genetic associations, but the ethnically mixed sample presents a challenge for genetic association studies that can be confounded by samples with heterogeneous ancestry. **Genetics**

1142 subjects were genotyped using two chips, a custom Illumina 2.5 chip with 2.8m markers and the Neuro Consortium chip. 1,580,642 SNPs passed QC and were used for a 2-stage imputation using the Haplotype Reference Consortium panel (HRC), followed by additional SNPs from the the merged panel from the 1000 Genomes and UK10K projects, ultimately producing genotypes for 26,957,241 SNPs. Of these, 9,828,572 had minimum allele frequency >1% and imputation accuracy >0.3; these were used for GWAS with 766 subjects of European ancestry (CEU, based on PCA). Heritability was computed using genetics-confirmed twin and sibling information using all available subjects.

Imaging

Heritability was computed on a wide variety of imaging and nonimaging measures, and GWAS was performed for measures for which the majority of CEU samples (>600) were available but not for voxel/vertex-wise measures. (See Fig 1). **Modelling** Fig2a. Heritability of imaging measures, each color indicating a different imaging modality. Top figure shows heritability estimates and bottom figure plots uncorrected parametric P-values; horizontal lines represents permutation based FWE thresholds using 5000 permutations (blue: per modality FWE; black: full FWE). Phenotypes correspond to Freesurfer, TBSS, Social task, Netmat amplitude have the most significant and heritable findings.

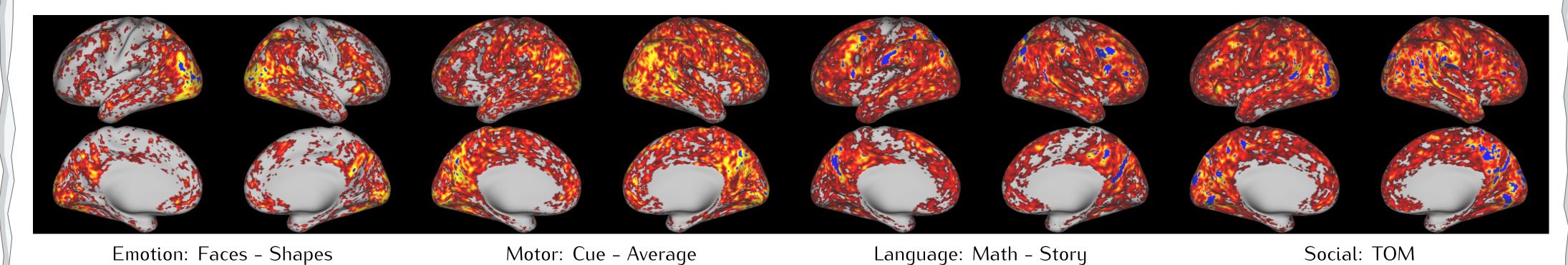


Fig 2b. Vertex-wise maps with any FWE-significant surface elements, among all 7 tfMRI contrasts, cortical thickness and myelin maps. Red shows non-zero heritability, blue indicates 5% FWE-significant heritability.

GWA and heritability analyses were performed using NINGA [1], a fast approximate method that accounts for kinship between individuals. In brief, the genetic relationship matrix is used to diagonalise the data and model, thus replacing a correlated-data problem with one that can be solved with weighted least squares; a score test allows fast estimation of heritability, which in turn allows valid estimation of association while accounting for heritability-induced dependence. This efficiency allows computation of familywise error (FWE) corrected thresholds via permutation accounting for dependence over SNPs and phenotypes. The phenotypes are transformed by inverse Gaussian transformation to ensure normality.

Modality	Phenotype	Parcellation	Sample Size	Dimension	Heritability	GWA	
	NIH Toolbox Behavioral Tests		907		Y	N	
behavior	Other behavioral tests (Non-NIH)		1187	278	Y	Ν	
		Desikan- Killiany + Destrieux					
		(L,R, L+R Hemisphere	1133				
	Freesurfer: Thick/Area/Vol	s) Glasser		976	Y	Y (718	
	Freesurfer: Area/Vol	Parcels	449	2x360	Y	N	
sMRI	Freesurfer: Thickness & Myelin (unsmoothed)		1094	2 x 59412	Y	N	
	NetMats d=15, Partial			15x14/2	Y	Y (653	
rfMRI	NetMats d=25, Partial			25x24/2	Y	N	
	NetMats d=50, Partial			50x49/2	Y	Ν	
	NetMats d=200, Partial			200x199/2	Y	N	
	Amplitude d=15, Partial (AmpPar)and Full Correlation(Amp) Amplitude d=25, Partial and Full		1003	15 x 2	Y	Y (653	
	(AmpPar)and Full Correlation(Amp) Amplitude d=50, Partial and Full			25 x 2	Y	Ν	
	(AmpPar)and Full Correlation(Amp) Amplitude d=200, Partial and Full			50 x 2	Y	Ν	
	(AmpPar)and Full Correlation(Amp)			200 x 2	Y	N	
	NetMats d=360, Partial	Glasser Parcels	449	360 x 359/2	Y	Ν	
	Emotion: Faces-Shapes		1044		Y	Y (686	
	Gambling: Punish-Reward		1082		Y	Y (705	
	Language: Math-Story	Desikan-	1049		Y	Y (688	
	Motor: Cue-Avg	Killiany Atlas	1080		Y	Y (702	
	Relational: Match-Rel	Killiany Alias	1040		Y	Y (683	
	Social: TOM		1049		Y	Y (690	
	Working Memory: 2BK-0BK		1080	7 x 87	Y	Y (705	
<u>tfMRI</u>	tfMRI: Vertex-wise, above contrasts			7 x 91282	Y	N	
		JHU Atlass. (L,R, L+R Hemisphere					
	TBSS: FA Tractography: FA & MD, volume,	s)	1052	63	Y	Y (686	
dMRI	mean path probability	AutoPtx	954	33 x 7	Y	Y (625	

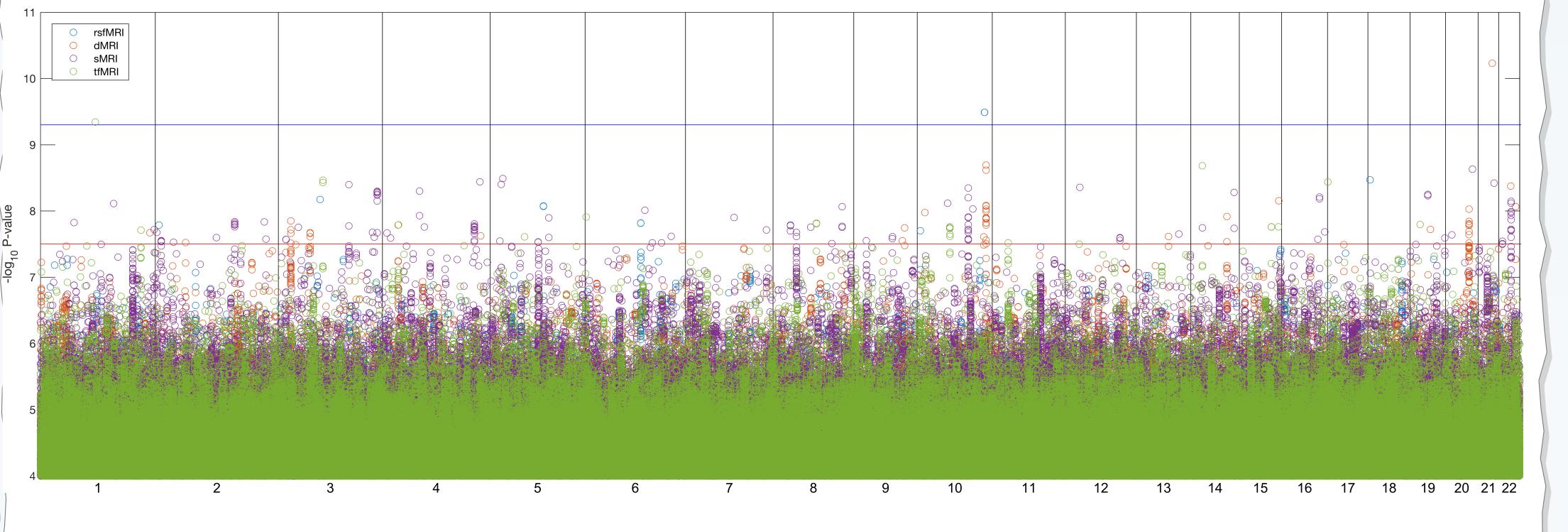


Fig2c. GWAS results for 2,014 phenotypes and all 9,828,572 SNPs where each dot represents maximum $-\log_{10}$ P-values per SNP between different imaging modalities. 294 SNPs passed the usual GWA P-value corrected for number of SNPs being tested. Top hits include associations for TBSS FA, Netmat edges and tfMRI activations. Among 19.8 billion tests, 3 passed the FWE threshold for all SNPs and ROIs. Upper (blue) line is 5% FWE threshold $-\log_{10}$ P threshold (9.4), and lower (red) threshold is usual GWA threshold of 7.5 $-\log_{10}$ P.

Modality	Phenotype	Associations	Max Parametric -log P-value		rsid	maf	Imputation	Parametric		Nearest Gene
rfMRI	Netmat edges	10	9.49	chr			•	Reg	Region on Interest	
IdMRI I	TBSS	10	10.30				Accuracy	-log P-values		
	Tractography	60	8.69							
	Thickness	62	8.63	24					TBSS: Right Sagittal	
	Area	93	8.40	21	rs757364414	0.13	0.69	10.23	Stratum FA	TTC3
	Volume	32	8.49	10						
tfMRI	Working Memo	10	8.44	10	rs10887069	0.23	0.78	9.49	Netmat edge 28	TACC2
	Gambling	8	9.34						Gambling: Left	
	Language	1	7.80	1	rs116662163	0.01	0.88	9.34	Inferior Temporal	AKNAD1,
	Social	4	7.90	1	13110002105		0.00		•	AL449266.1
	Relational	4	8.68						Gyrus	

Fig2d. Break down of 294 SNPs significant with conventional GWA threshold.

Fig2e. Details on three SNPs significant over all phenotypes and SNPs.

Conclusion

We have produced an initial view of the genetics of the Young Adult HCP. This includes the heritability estimation and inference for HCP phenotypes with high heritability for structural and diffusion brain measures. We demonstrated that NINGA can be used for heritability and GWA of high dimensional neuroimaging data while providing data-adaptive, permutation based FWE corrected thresholds. While the GWA results were limited in power we have found 294 associations significant at a conventional GWA threshold and 3 significant at a genome-phenome-wide FWE threshold.

References

1. H Ganjgahi et al, (2017). Fast and Powerful Genome Wide Association Analysis of Dense Genetic Data with High Dimensional Imaging Phenotypes. doi: https://doi.org/10.1101/179150

Fig 1. List of phenotypes in HCP that are used for heritability and GWA analyses. We have used age, age², sex, their interactions, BMI, Weight, Height, ICV, Acquisition, Modalityspecific head movement and 10 genotype principal components as nuisance covariates. Numbers in GWA column corresponds to the total GWA sample size in each modality. GWA was perfomed using genetic relationship matrix calculated from imputed SNPs.