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1. CALIBRATION OF THE SLM

In order to calibrate the modulation performance of the SLM,
we built a Michelson interferometer shown in Fig. S1. Com-
pared with our experimental setup shown in Fig. 1 in the main
manuscript, we remove the glass diffuser in this calibration
setup and place a reflecting mirror M2 to the left of the beam
splitter, creating the reference beam.

Fig. S1. The optical setup for calibrating the phase and inten-
sity modulation of SLM. SF: spatial filter; CL: collimating lens;
M1, M2: mirror; L1,L2: lens; POL: linear polarizer; BS: beam
splitter; SLM: spatial light modulator.

While calibrating the intensity modulation, we use a photon
diode sensor (Newport, 818-SL) as the detector. The mirror M2

is blocked so that the light being detected comes from the SLM
only. All the pixels of the SLM are driven by the same value
V (uniform) and the corresponding intensity values measured
by the photon diode are recorded. By changing V from 0 to
255 and repeating the measurement, we obtain the intensity
modulation curve as shown in Fig. S2, which is normalized
to the intensity values at V = 0. The intensity modulation of
the SLM follows a monotonic relationship with respect to the
assigned pixel value and a maximum intensity modulation ratio
of ∼ 17 can be achieved.

While calibrating the phase modulation, we use the CMOS
camera as the detector and the interferometer setup is used. All
the pixels of the SLM are driven by the same value V (uniform)
and the corresponding interference patterns are captured by
the CMOS camera. Let φ(V) denote the relative phase between
the light reflected by the uniform SLM when its pixels are all
driven with gray scale value V, relative to M2; and I0 denote
the intensity reflected by M2. In the uniform illumination case,
given M(V), which is the calibrated intensity modulation, the
intensity recorded by the CMOS should be of the form

I(V)

I0
= 1 + M(V) + 2

√
M(V) cos φ(V) (S1)

We arbitrarily assigned φ(0) = 0 radians. The phase modulation
curve is shown in Fig. S3. The phase depth is ∼ 0.6π.
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Fig. S2. Experimentally calibrated intensity modulation curve
with error bounds in the grayscale range of [0,255] for the
SLM.

Fig. S3. Experimentally calibrated phase modulation curve
with error bounds in the grayscale range of [0,255] for the
SLM.

2. ANALYSIS OF THE INFLUENCE OF PHASE MODULA-
TION

In this paper, we want the SLM to perform as a pure intensity
object. However, as we showed in the last section, due to the
optical anisotropy of the liquid crystal molecules, the SLM will
always perform a correlated phase modulation and the phase
depth is ∼ 0.6π for our experimental arrangement. In order to
analyze the influence of this phase modulation in the formation
of the speckle patterns, we carry out the following simulations.

For a randomly given image uploaded to the SLM, we sim-
ulate the corresponding speckle patterns on the CMOS camera
using equation (2) and (3) in the main manuscript for two cases:

(a): Assuming the SLM to perform both intensity and phase
modulation, which is the actual modulation in practice, i.e.
g(x, y) =

√
M [V(x, y)] exp{iP [V(x, y)]}. Here, V(x, y) is the

pixel size of the uploaded image, M(V) and P(V) are the inten-
sity modulation and phase modulation curves as shown in Fig.
S2 and Fig. S3, respectively.

(b): Assuming the SLM to perform intensity modulation only,
i.e. g(x, y) =

√
M [V(x, y)].

In our simulation, we set those parameters as: µ = 16µm,
σ0 = 5µm, σ = 4µm for the 600-grit diffuser and µ = 63µm,
σ0 = 14µm, σ = 15.75µm for the 220-grit diffuser. Other simula-
tion parameters are set to be the same as the actual experiment:
zd = 15mm, R = 12.7mm and λ = 632.8nm.

For the speckle patterns obtained in case (a) and (b), we also

compute their respective autocorrelation functions and take the
element-wise ratios between them. This process is repeated for
both diffusers and the corresponding results are shown in Fig.
S4 and S5.

Fig. S4. Analysis of the influence of phase modulation in the
formation of speckle patterns for 600-grit diffuser. (a) Input
image; (b) Simulated speckle pattern for the complex object;
(c) Autocorrelation of the speckle in (b); (d) Simulated speckle
pattern for the pure-intensity object; (e) Autocorrelation of the
speckle in (d); (f) Element-wise ratios between the autocorrela-
tions in (c) and (e).

Fig. S5. Analysis of the influence of phase modulation in the
formation of speckle patterns for 220-grit diffuser. (a) Input
image [1]; (b) Simulated speckle pattern for the complex object;
(c) Autocorrelation of the speckle in (b); (d) Simulated speckle
pattern for the pure-intensity object; (e) Autocorrelation of the
speckle in (d); (f) Element-wise ratios between the autocorrela-
tions in (c) and (e).

We find that for both diffusers, the speckle patterns obtained
in case (a) and (b) are qualitatively similar. Most importantly,
the autocorrelation ratio values are all ∼ 1 with a small standard
deviation, which indicates that the correlated phase modulation
will not change the statistics of the resulted speckle patterns.
To further demonstrate this point, we repeat this simulation
process for 10 times for both diffusers and plot the probability
histograms for the resulting autocorrelation ratios. The results
are shown in Fig. S6. As expected, the autocorrelation ratio
values are all ∼ 1. We also compute the mean values µr and
standard deviations σr for the two histograms: µr = 1.0009, σr =
0.0020 for the 600-grit diffuser and µr = 1.0005, σr = 0.0013 for
the 220-grit diffuser. Therefore, we conclude that the influence
of the correlated phase modulation can be neglected and we can
reasonably approximate the SLM as a pure intensity object.
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Fig. S6. Quantitative analysis of the influence of phase modu-
lation in the formation of speckle patterns. (a) 600-grit diffuser;
(b) 220-grit diffuser.

3. ADDITIONAL DETAILS OF THE IDIFFNET

As described in the main manuscript, we use densely connected
convolutional networks (DenseNets) to construct our IDiffNet.
Fig. S7 shows the detailed architectures of the different blocks
used in our IDiffNet. Each dense block consists of three com-
posite convolutional layers and each layer connects to every
other layer within the same block in a feed-forward fashion. The
growth rate k is set to be 12 and the initial number of filters is
set to be 16. Each composite convolutional layer is comprised of
three consecutive operations: batch normalization (BN), rectified
linear unit (ReLU) and dilated convolution (DiConv) with filter
size 5× 5 and dilation rate 2. We use dilated convolutions so
as to increase the receptive field of the convolution filters. The
downsampling transition block consists of an average pooling
operation with stride (2,2). As a result, the dimension of the
input to this block is reduced by a factor of 2 at the output. The
upsampling transition block increases the dimension of the in-
put by a factor of 2. This is achieved by the subpixel upscaling
operation [2]. The dense and downsampling transition block is
built by placing a downsampling transition block after a dense
block, while the dense and upsampling transition block is built
by placing a dense block after a upsampling transition block.

We used L2 regularization with weight decay of 1E− 4 in
all convolutional filters initialized with random numbers from
a Gaussian distribution. The same regularization was used in
batch normalization as well. A small dropout rate of 0.05 was
set to prevent overfitting. Because of GPU memory constraints,
our IDiffNet was trained with a mini-batch size 8 using ADAM
optimizer in Tensorflow. We started the training with a learning
rate of 0.001 and dropped it by a factor of 2 after every 5 epochs.
Additionally, we clipped the gradients at value 1 to stabilize the
training. The neural network was trained for 20 epochs with the
training samples being shuffled at every epoch.

4. RESOLUTION TEST FOR IDIFFNET TRAINED USING
NPCC AS LOSS FUNCTION

Here, we show the resolution test results of the IDiffNets trained
using NPCC as loss function. The diffuser used is 600-grit.

As shown in Fig. S8, the IDiffNet trained on MNIST database

Fig. S7. Detailed architectures of the different blocks in our
IDiffNet

Fig. S8. Experimental resolution test result for IDiffNet
trained on MNIST using NPCC as loss function. The diffuser
used is 600-grit. (a) Reconstructed dot pattern when D = 3
super-pixels. (b) 1D cross-section plot along the line indicated
by red arrows in (a). (c) Reconstructed fringe pattern when
D = 3 super-pixels. (d) Reconstructed dot pattern when D = 4
super-pixels. (e) 1D cross-section plot along the line indicated
by red arrows in (d). (f) Reconstructed fringe pattern when
D = 4 super-pixels.

is able to resolve two dots with spacing D = 4 super-pixels, but
fails to distinguish two dots with spacing D = 3 super-pixels.
Same spatial resolution is demonstrated using fringe patterns
as well, where nearby fringes with spacing D = 4 super-pixels
are resolved while fringes with spacing D = 3 super-pixels are
unable to be distinguished. In addition, we find that the re-
construction qualities of dot patterns are better than those of
the fringe patterns. This result is as expected since the MNIST
training database imposes a strong sparsity prior, making the
IDiffNet perform better on sparse test samples (dot patterns)
than other less sparse test samples (fringe patterns). Therefore,
dot patterns are more appropriate to be used to test the reso-
lution of IDiffNet trained on MNIST. For the IDiffNet trained
on ImageNet, its spatial resolution is the same as the MNIST
training case, which is demonstrated in Fig. S9. However, the
reconstruction qualities of fringe patterns are better than those of
the dot patterns since the ImageNet training database contains
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Fig. S9. Experimental resolution test result for IDiffNet
trained on ImageNet using NPCC as loss function. The dif-
fuser used is 600-grit. (a) Reconstructed dot pattern when
D = 3 super-pixels. (b) 1D cross-section plot along the line
indicated by red arrows in (a). (c) Reconstructed fringe pattern
when D = 3 super-pixels. (d) Reconstructed dot pattern when
D = 4 super-pixels. (e) 1D cross-section plot along the line
indicated by red arrows in (d). (f) Reconstructed fringe pattern
when D = 4 super-pixels.

more general images and no longer conform to the sparsity prior.
Hence, fringe patterns should be used to test the resolution of
IDiffNet trained on ImageNet. All the above observations are the
same as those in the MAE training case. Therefore, the choice of
loss function does not affect the spatial resolution of the trained
IDiffNet in the 600-grit diffuser case.

5. RESULTS OF 400-GRIT DIFFUSER

In this section, we summarize the results from the 400-grit dif-
fuser (OptoSigma, DFB1-30C02-400).

A. Simulated PSF
We first simulated the point spread function (PSF) of our imaging
system using Eqs.(2) and (3) in the main manuscript. The results
are shown in Fig.S10. For comparison, we also plot the cross-
sections of PSFs in the 600-grit and 220-grit case. Similar to the
220-grit diffuser case, the PSF for the 400-grit diffuser spreads
more widely than that of the 600-grit one. This indicates that the
400-grit diffuser also scatters the light strongly. As a result, we
expect that the raw image that we obtain through the 400-grit
diffuser should be a pure speckle with no discernible features .

Fig. S10. (a) PSF for the 400-grit diffuser. (b) Cross-section of
the PSFs alone the lines indicated by the red arrows.

B. Reconstruction

With the 400-grit diffuser inserted, we experimentally collected
the training data and test data. Then, we trained two IDiffNets
separately: (i) Trained on ImageNet using MAE as loss func-
tion; (ii) Trained on MNIST using NPCC as loss function. The
reconstruction results on the test data are shown in Fig. S11.

Fig. S11. Qualitative analysis of IDiffNets in 400-grit diffuser
case

Fig. S12. Experimental resolution test result for IDiffNet
trained on MNIST using NPCC as loss function. The diffuser
used is 400-grit. (a) Resolution test pattern when D = 16 super-
pixels. (b) Reconstructed test pattern when D = 16 super-pixels.
(c) Resolution test pattern when D = 17 super-pixels. (d) Re-
constructed test pattern when D = 17 super-pixels.

As expected, due to the strong scattering of the 400-grit dif-
fuser, the raw images that we obtained were all pure speckles,
which is the same as the 220-grit case. The reconstruction perfor-
mance is also the same as the 220-grit case, where the IDiffNet
trained on ImageNet is only able to recover the salient features
of the object, while the IDiffNet trained on MNIST using NPCC
loss function is able to achieve high quality reconstruction for
those sparse test objects.
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C. Resolution test
We also tested the spatial resolution of the IDiffNet in the 400-
grit diffuser case. The results are shown in Fig. S12. we can
find that the trained IDiffNet is able to resolve nearby dots with
spacing D = 17 super-pixels, but fails to distinguish two dots
with spacing D = 16 super-pixels. This result is again the same
as the 220-grit diffuser case.

Above all, since the the scattering strength of the 400-grit
diffuser is pretty close to that of the 220-grit diffuser (as shown
in Fig. S10(b)), the reconstruction performance of the trained
IDiffNets in these two case are also very similar.
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