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Chapter 1

Introduction

In pattern recognition the standard approach is to encode each object by a fixed set of features.
For some applications this approach is very challenging. The object may be very complex, and to
extract a single feature vector from the object may be a very limited representation.
Take for instance the classification of an image. An image may contain several interesting sub
parts, or objects. To classify an image as ’contains a face’ or as ’does not contain a face’ one often
performs a (rough) segmentation or detection, and classifies each individual detection. When one
of the detections is classified as a face, the image is classified as ’contains a face’. In most cases
the classifier is trained on labeled detections, i.e. detections are manually classified as ’face’ or
’non-face’.
In multi-instance learning the task is to classify such compound objects, without relying on a
(manual) labeling of training segments. It is required that the classifier itself detects the ’face’
and ’non-face’ segments, without manual intervention. When the classifier is presented a new
image, the classifier has to classify all individual segments, and combine these outputs into a final
output for the image.
In the terminology of multi-instance learning, the compound object, or the image, is called a bag.
The compound object (for instance, image) contains several sub-parts (image regions) that are
called instances. All instances are assumed to be represented by a single feature vector (all with
the features). That means that each bag is represented by a set of feature vectors. Furthermore,
each bag has a label, ‘positive’ or ‘negative’. The labels of the instances are unknown. The task
of a multi-instance classifier is to find the bag label, based on the set of instance feature vectors.

dataset

labels
classifier instance combiner

bag vector classifier

bag kernel classifier

instance selection classifier

Figure 1.1: General overview of MIL classifiers.
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In Figure 1.1 a schematic overview of possible classifier configurations is shown. On the left we
start with a dataset, consisting of a large collection of instances (feature vectors) that are organised
in bags. For each of the bags one output label should be predicted. This is indicated by the column
on the right of the figure. Note that the height of the label matrix is less than the heigh of the
instance matrix; there are less bags than there are instances in the dataset.
Now fundamentally three, or four, different approaches can be taken. The first one, indicated in
the top of the figure, is to classify each instance individually by a standard classifier, and then
combine the instance outputs into an overall output for each bag. Any standard classifier can be
used, but the instance combiner should perform the hard task to combine the unreliable instance
output labels into a trustworthy bag label.
In the second and third approach the bags of instances are directly ‘reduced’ to a standard rep-
resentation. It could be a feature vector (characterizing some statistics on the bags) or a kernel
matrix (measuring the similarity between different bags). Any classifier can then be applied to
this bag representation.
Finally, in the last approach the informative instance(s) of each bag are selected. Given the
informative instances (and possibly removing or relabeling the uninformative ones), a standard
classifier is trained. This can be performed in an iterative fashion: the selection of the instances
is typically done based on the output of the classifier in a previous iteration.
In the coming chapters of this manual, realisations of these four different approaches will be given.

1.1 General remarks

For all functions in this toolbox some help is available. Just type

>> help genmil

to get information on the function genmil. An overview of the (most important) functions, see
the file Contents.m.
This toolbox is written to simplify my own work and experiments. It is not industrial-grade robust
software for critical applications. Please let me know if there are bugs or inconsistencies. If you
want to have additional classifiers implemented, please try to do it yourself, and send me the code,
then I can integrate it.
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Chapter 2

MIL tools

This MIL toolbox is an extension to Prtools, a Pattern Recognition toolbox for Matlab. So in
order to use the functionality of the MIL toolbox, you have to have Prtools. Furthermore, for
some evaluation procedures, in particular the Area under the ROC curve, the code of dd tools is
used. Dd tools is the Data Description toolbox, another extension to Prtools1.

2.1 The MIL dataset

To implement the multi-instance learning in Prtools, it is required that the standard dataset is
extended with an additional identifier that indicates to which bag an instance belongs.
While in the standard Prtools only a dataset and labels have to be given, for a multi-instance
dataset also bag identifiers have to be defined. With the use of the command genmil this can be
done:

>> dat = rand(20,2);

>> lab = genlab([10 10]); % label the first 10 objs 1, the rest 2

>> a = prdataset(dat,lab); % standard prtools dataset

>> bagid = genlab([5 5 5 5]);

>> a = genmil(dat,lab,bagid) % MIL dataset with 4 bags, 5 instances each

On the command line should appear:

20 by 2 dataset with 2 classes: [10 10]

The variable a now contains a dataset, where each instance is represented by a feature vector.
For each of the instances it is also know to which bag it belongs. To inspect how many bags are
present, use the command mildisp:

>> mildisp(a)

20 by 2 MIL dataset with 4 bags: [0 pos, 4 neg]

In this example we see that four bags have been found, zero positives and four negatives. In the
MIL toolbox it is typically assumed that the labels of the classes are positive and negative. In
Prtools you can change the names of the classes by using setlablist:

>> b = setlablist(a,{’positive’,’negative’});

>> mildisp(b)

20 by 2 MIL dataset with 4 bags: [2 pos, 2 neg]

Another way of doing this, is to use the function positive_class:

1Available at http://prlab.tudelft.nl/david-tax/dd_tools.html.
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>> b = positive_class(a,1);

>> mildisp(b)

20 by 2 MIL dataset with 4 bags: [2 pos, 2 neg]

Note that in this example each instance has its own label. This label is consistent with the bag
label. All instances in a positive bags have a positive label, and all instances in a negative bag
have a negative label. This does not always have to be the case. In the strict Multiple Instance
Learning setting, one single positive instance in a bag will make the whole bag positive. When all
instances are negative, the bag will be labeled positive.
This is shown in the next piece of code:

>> dat = rand(20,2);

>> lab = [1;2;2;2;2; 1;2;2;2;2; 2;2;2;2;2; 2;2;2;2;2];

>> baglab = genlab([5 5 5 5]);

>> a = genmil(dat,lab,baglab);

>> a = positive_class(a,1);

>> mildisp(a)

20 by 2 MIL dataset with 4 bags: [2 pos, 2 neg]

In the second line only two out of the 20 instances are labeled positive, and that resulted in two
positive bags.
The rule that defines how instance labels are propagated to bag labels, can be given with a forth
input argument of genmil. The possible combination rules are defined in milcombine, and the
default is ’presence’ (if there is one instance positive, the whole bag is positive). One can change
it to, for instance, a majority vote rule:

>> a = genmil(dat,lab,baglab,’majority’);

>> a = positive_class(a,1);

>> mildisp(a)

20 by 2 MIL dataset with 4 bags: [0 pos, 4 neg]

In our example it would mean that none of the bags will be positive anymore. For other combi-
nation rules, use help milcombine.
The MIL dataset that you just created, is a standard Prtools dataset, and therefore all Prtools
classifiers can use them. But they will only look at the instance labels, and the notion of the bags,
and bag labels is unknown to them. In order to use that, you need to use classifier from the MIL
toolbox.
Finally, there are a few functions to create artificial MIL datasets:
gendatmilc concept MIL problem
gendatmild difficult MIL problem
gendatmilg Gaussian MIL problem
gendatmilm Maron MIL problem
gendatmilr rotated distribution MIL problem
gendatmilw width distribution MIL problem

2.2 Working with bags of instances

When a multi-instance dataset is constructed, you can extract the individual bags and store it in
a cell array using:

>> [bags, baglab] = getbags(a);

The variable bags is a cell-array that contains in each cell an individual bag. Furthermore, in
baglab the label of each bag is returned. This bag label is derived from the labels of the instances
in this bag using the milcombine function.
In many learning situations you want to have the positive and negative bags split. In these
situation it may be useful to use positive_bags:
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>> [pos_bags, neg_bags] = getpositivebags(a);

To obtain the bag identifier, that is the bag number an instance belongs to, use getbagid.
If you want to split a MIL dataset into a training and a test set, you have to be careful not to
split a bag in two. To avoid that, the function gendatmil is created. Similarly, if you want to
randomize the order of the bags, use milrandomize.
Finally, when you want to combine two MIL datasets a1 and a2 into one, you cannot just con-
catenate them like b=[a1;a2] because bag labels can be confused. The bag called 1 from a1 can
then not be distinguished from bag 1 from a2. Therefore you have to use milmerge.

2.3 Training a classifier

Now we have data, and a way to split it in a training set and a test set, we can train a MIL
classifier. A typical script looks like:

>> a = gendatmilg([20 20]); % 20 positive and 20 negative bags

>> [x,z] = gendatmil(a,0.7); % use 70% for training

>> w = milboostc(x);

>> z*w*labeld

Note, that the labels that are returned on the last line, are the predicted labels for the test bags.
Therefore the number of predicted labels is less than the number of rows in z.
There are several MIL classifiers implemented, and they will be discussed in chapter 4.
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Chapter 3

Evaluation

3.1 Visual inspection, scatterplots and decision boundaries

To get a feeling or intuition of a dataset and a classifier, a scatterplot with a decision boundary
is often very insightful. For that, Prtools has the functions scatterd and plotc available. This
only works for 2-dimensional datasets and classifiers that work on 2-dimensional data.
For a MIL problem, there is the additional problem that instances are organized in bags, and
classifiers output bag labels. When the standard function scatterd is applied to a MIL dataset,
a scatterplot of the instances is shown, but it is unclear which instances belong to one bag. One
attempt to make that visible is to connect all instances of one bag with straight lines to a center.
This is implemented by scattermil:

>> a = gendatmilg([20 20]); % 20 positive and 20 negative bags

>> scattermil(a)

A similar problem appears when the decision boundary of a MIL classifier is requested: MIL
classifiers in principle deal with bags of instances, not with individual instances. In order to still
plot a decision boundary, it is assumed that all the 2-dimensional vectors are individual bags.
That means that all bags only contain a single instance. Because this may not be very realistic,
a warning is given when a MIL classifier is plotted using plotc:

>> scattermil(a)

>> w = milboostc(a);

>> plotc(w)

Warning: No bag identifiers present: each obj is a bag.

3.2 Classification error, ROC curve and crossvalidation

To get to the performance of a MIL classifier, the predictions of the classifier on bags should be
compared to the true labels of the bags. This can be done by the standard Prtools function testc:

>> a = gendatmilg([20 20]); % 20 positive and 20 negative bags

>> [x,z] = gendatmil(a,0.7); % use 70% for training

>> w = milboostc(x);

>> z*w*testc

When a MIL dataset is mapped through a MIL classifier, the resulting output dataset d = a*w

only contains the output per bag. For each bag dataset d contains one line, containing the posterior
probabilities per class (the positive and negative class). At this point dataset d is indistinguisable
from a normal Prtools dataset, and testc can directly be applied.
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For situations that the classes are very unbalanced, or you want to take a wide range of misclas-
sification costs into account, often Receiver Operating Characteristic (ROC) curves are used. For
the output of MIL classifiers the ROC curve can be computed like:

>> w = milboostc(x);

>> r = milroc(z*w)

This ROC curve r can then be used in plotroc and dd_auc. These two functions are available in
Dd tools, and they plot the ROC curve, and compute the Area under the ROC curve, respectively.
In practice, you are not interested in the performance on the training set, but you want to evaluate
it on independent test data. In order to make most use of the data, crossvalidation is used. For
MIL problems the data should be split according to the bags. This can be done using milcrossval.
The implementation is such that you, the user, still has to make a loop over de different folds. The
information which objects are used for testing in which fold, is stored in an additional variable (I
in the next example). A typical implementation looks like:

a = gendatmilg([50 50]); % get data

nrfolds = 10; % define nr. of folds

perf = zeros(nrfolds,1); % storage for results

I = nrfolds; % index variable for crossvalidation

for i=1:nrfolds

[x,z,I] = milcrossval(a,I); % split in train and test

w = milboostc(x); % train on train set

out = z*w; % get test output

perf(i) = dd_auc(out*milroc); % AUC performance

end
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Chapter 4

Classifiers

In Figure 1.1 an overview of MIL classification approaches is shown. The top row shows the ‘naive’
approach, where a standard classifier is directly trained on the individual instances. The next two
rows extract a bag-level representation, and use that as input for a standard classifier. The last
approach contain the ‘real’ MIL approaches, that typically involve a selection mechanism to select
the informative set of instances from each bag. For each of the approaches some classifiers are
present in the toolbox. They will be discussed in the coming sections.

4.1 Naive approach

In the construction of the MIL dataset, in principle each instance in a bag is labeled (see 2.1). Given
these labeled instances, a standard Prtools classifier can be trained. In order to get an output
label per bag, the instance predictions have to be combined. For this, the function milcombine

is defined. In order to train the sequence of Prtools classifier and combination rule, you can first
define an untrained mapping u. This untrained mapping can be trained in one step, and then
applied to new data:

u = loglc*milcombine; % untrained sequence of classifier and combiner

a = gendatmilg([50 150]); % some dataset

[x,z] = gendatmil(a,0.7); % split in train and test set

w = x*u; % train on train set

out = z*w; % evaluate on test set

out*labeld

The function milcombine defines how the bag label is derived from the instance predictions.
Several rules are defined (’presence’ is the default):
’presence’ indicate the presence of the positive class
’first’ just copy the first label
’majority’ take the majority class
’vote’ identical to ’majority’
’noisyor’ noisy OR
’sumlog’ take the sum of the log(p)’s (similar to the product comb.)
’average’ average the outcomes of the bag
’mean’ identical to ’average’
F=0.1 take the F-th quantile fraction of the positives

So, if we want to use the quadratic classifier, and want to get a positive bag when at least 10% of
the instances are classified as positive, you have to define the following mapping:

u = qdc*classc*milcombine([],0.1);

An all-in-one MIL classifier that does the same, is called simple_mil.
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4.2 Bag representations

There are several procedures defined to extract a feature vector from a bag of instances. The
first, straightforward way is to use milvector, where basic statistics are computed, as the mean
vector, the minimum and maximum feature values, the covariance matrix, or even the number of
instances in a bag.
This function is a mapping, so it can be combined with other mappings to form a sequence of
mappings. For instance, to compute the mean vector per bag, and train an LDA classifier on top
of that, you can define the mapping:

u = milvector([],’m’)*ldc;

A slightly more advanced approach to obtain a fixed-length vector representation of bags, is
by using a Bag of Words (BoW) approach. This approach originates from natural language
processing, where a document is represented by a vector of word counts. The word order is
therefore lost. To apply this approach to general MIL datasets, the collection of ‘words’ should
be defined first. In this toolbox, these ‘words’ are defined as the cluster centers obtained from a
mixture of Gaussians.1 Next, for each bag, the instances are assigned to the closest cluster center
(or, word). This results in a histogram over the word for each bag.
This procedure is implemented in bowm. The number of clusters, or words K should be defined
beforehand. Running this code:

K = 30;

u = bowm([],K)*ldc;

will result in an LDA trained on a K-dimensional dataset. Typically, a hard assignment is not very
good, and it is better to use the soft assignments:

u = bowm([],K,’soft’)*ldc;

An alternative way of representing a bag by a single vector, is by defining a kernel or similarity,
between bags. Several kernels are defined in the function milproxm. These kernels can then be
used in kernel machines, like a support vector classifier. For this the function sv_mil is defined:

C = 10; % tradeoff parameter in support vector classifier

u = scalem([],’variance’) * sv_mil([],C,milproxm([],’minmin’));

In this example, I used the ’minmin’ kernel, that computes all pairwise (euclidean) distances
between all instances of two kernels, and then uses the minimum distance. Because the euclidean
distance is sensitive to the scaling of the features, I first rescale the data such that all features
have a variance of 1. This is achieved by the mapping scalem in front of the sv_mil.
Other kernels are also implemented:

1The mixture of Gaussians implementation of Dd tools is used. You can download that from http://prlab.

tudelft.nl/david-tax/dd_tools.html .
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’minmin’ Minimum of minimum distances between inst.
’summin’ Sum of minimum distances between inst.
’meanmin’ Mean of minimum distances between inst.
’meanmean’ Mean of mean distances between inst.
’mahalanobis’ Mahalanobis distance between bags
’hausdorff’ (maximum) Hausdorff distance between bags
’emd’ Earth mover’s distance (requires emd_mex!)
’linass’ Linear Assignment distance
’miRBF’ MI-kernel by Gartner,Flach,Kowalczyk,Smola, basically just summing

the pairwise instance kernels (here we use the RBF by default)
’mmdiscr’ Maximum mean discrepancy, from Gretton, Borgwardt, Rasch,

Schoelkopf and Smola
’miGraph’ miGraph kernel. This requires two additional parameters in KPAR:

KPAR[1] indicates the threshold on the maximim distance between in-
stances (in order to allow an edge between the two instances), KPAR[2]
indicates the γ = 1/σ2 in the RBF kernel between instances.

’rwk’ Random Walk graph kernel. KPAR[1] is defined as in miGraph.
KPAR[2] indicates gamma in the RBF kernel between nodes. KPAR[3]
indicates λ in infinite sum over walks (0 < λ < 1).

’spk’ Shortest Path graph kernel. KPAR[1] is defined as in miGraph. KPAR[2]
and KPAR[3] indicate gamma parameters in the RBF kernels between
nodes and between edges. KPAR[4] indicates the trade-off between nodes
and edges.

4.3 MIL classifiers

The real MIL classifiers, that perform a selection of interesting instances from training bags, covers
a wide range of different classifiers. Below is a short list of implemented MIL classifiers:
apr_mil the very first MIL classifier, fitting an axis-parallel rectangular decision

boundary[DLLP97]
maxDD_mil maximum Diverse Density, fitting a concept in a probabilistic

way[MLP98]
emdd_mil EM version of maximum Diverse Density[ZG02]
misvm iterative SVM that selects a fraction of the most positive instances from

positive bags[ATH03]
spec_mil generalized version of misvm in which the SVM can be replace by any

classifier
milboostc Boosting approach to MIL[BDTB08]
miles the MILES classifier (Multiple Instance Learning via Embedded Instance

Selection) [CBW06]
The training and evaluation of these classifiers is identical to standard Prtools classifiers:

>> a = gendatmilg;

>> [x,z] = gendatmil(a,0.7);

>> u = scalem([],’variance’)*miles([],1,’r’,2);

>> w = x*u;

>> perf = dd_auc(z*w*milroc)

In this example I train a MILES classifier on 70% of the data. In the MILES classifier a radial
basis kernel is used, which depends on the euclidean distance between instances. Because the
euclidean distance is depending on the (relative) scales of the features, I rescale the feature space
before I train the MILES. This rescaling renormalizes the features such that each feature has a
variance of 1, and this is performed by scalem.
To find out what parameters to set, use the help-functionality.
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Chapter 5

Remarks, issues

5.1 Instance labels and bag labels

One of the potential advantages of MIL classifiers is, that they are not only capable of predicting
bag labels, but they may also be able to recover labels of instances. This holds particularly for the
‘real’ MIL classifiers, as mentioned in section 4.3. One way to get the instance labels back from a
MIL classifier, is to remove the bag information that is stored in the dataset. This can be done
by the function unmil.
In principle, the MIL classifier should complain that it cannot extract the bags. In most MIL
classifiers, fortunately, the evaluation is started by a call to genmil. This will test for the presence
of bags in the dataset. If bags are not defined, it will define each instance as an individual bag,
and a warning will be given:

>> a = gendatmilg;

>> w = milboostc;

>> b = unmil(a);

>> b*w*labeld

Warning: No bag identifiers present: each obj is a bag.

> In genmil at 65

In milboostc at 92

In prmap at 232

In prmapping.mtimes at 14

ans =

positive

negative

negative

...

5.2 Very large datasets and batches

Prtools has the feature that when very large datasets are used, this dataset can be processed in
batches. In particular for evaluating a classifier on large datasets, it can be trivially done, because
it is typically assumed that all data is iid sampled from some distribution. For MIL problems we
cannot sample instances at random, because they are organized in bags. This batch processing is
therefore not possible for MIL datasets, and should be shut off. This is done in all MIL classifiers
by defining inside each mapping:

w = setbatch(w,0);
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So if you have defined your own MIL classifier, and want to apply it to very large datasets, don’t
forget to unset the batch processing.
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