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This document provides supplementary information to “Deterministic coupling of epitaxial semiconductor quantum dots 
to hyperbolic metamaterial, https://doi.org/10.1364/OPTICA.5.000832. In this document we provide detailed 
information about the optimal HMM-quantum dot distance,  PL spectra from various HMM structures with a fixed 
distance, dispersion curves of the HMM structures, and chemical etching. 
1. The optimal HMM-quantum dot (QD) distanceIn order to find the optimal distance between the QDs andHMM, we have prepared QD samples of different cappinglayer thickness by chemical wet etching: 7.0, 16.4, 27.7, 36.1nm, measured by atomic force microscope (AFM). After theetching, the 7.0 nm-distance QD sample shows a ~25 nmred-shift of the photoluminescence (PL) peak withsignificant PL intensity decrease, indicating strain relaxationaround the QDs (Fig. S1); strain relaxation causes a red-shiftof the PL peak in a compressively strained InAs QD.However, the 16.4, 27.7, and 36.1 nm-distance QD samplesshow comparable and strong PL intensity without PL peakshift, as compared to a 50 nm (no etching) distance sample,attesting no strain relaxation. The PL spectrum is measuredfrom the top with top-side excitation.

Fig. S1. PL spectra at 12 K from QD samples of various QD–HMM distance before HMM deposition. 

For HMM-coupled QD structures, 15 nm-thick Ag and 10 nm-thick Ge layers are alternatively deposited for 5 periods on the etched QD sample. The PL spectrum is obtained from the GaAs substrate side with substrate-side excitation at 850 nm, since high-k PL modes cannot escape the HMM. In this case, the 16.4 nm sample shows PL intensity decrease, compared to the 27.7 and 36.1 nm samples, but the peak position is the same as before, suggesting no strain relaxation (Fig. S2). The absence of peak shift indicates no strain relaxation for the 18.4 nm distance sample, even after HMM deposition. The reduction in PL intensity is caused by the stronger HMM coupling of QD emission: the forward propagating signal into the HMM increases due to the stronger QD–HMM coupling, resulting in reduced uncoupled (to the HMM) QD emission to the GaAs substrate.  

Fig. S2. PL spectra at 12 K from QD samples of various QD–HMM distance after HMM deposition. All the samples have the same HMM structure: five pairs of 15 nm Ag / 10 nm Ge layers. 
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nm Ge HMM sample than for the 30 nm one at 1030 nm. The 30 nm Ge sample has more modes within the ky limit and larger dk/dω, compared to the other two samples, providing the highest rate enhancement (PF) in accordance with the calculation and experimental result (Fig. 4). 
5. Chemical etching.Wet chemical etching of the GaAs capping layer is used tocontrol the distance between the HMM and QDs. For precisedistance control, we have used a slow etchant (etch rate: 0.4nm/s) mixed with H3PO4: H2O2: H2O = 1 : 4 : 490. Thetemperature of the etchant is controlled in a water bath setat 14 °C. Etching is performed 30 minutes after mixing thechemicals with stirring. After etching, the sample is rinsedsufficiently with de-ionized water. The etch depth isdetermined using AFM on a photoresist patterned sample.
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