Supporting Information ## Perovskite Single-Crystal Micro-Arrays for Efficient Photovoltaic Devices Jiang Wu, † Fengjun Ye, † Wenqiang Yang, † Zhaojian Xu, † Deying Luo, † Rui Su, † Yifei Zhang, † Rui Zhu, $*^{\dagger,\ddagger,\$}$ Qihuang $Gong^{\dagger,\ddagger,\$}$ [†]State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China [‡]Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China §Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China * E-mail: iamzhurui@pku.edu.cn **Figure S1.** Fabrication process of solar cells based on patterned CH₃NH₃PbBr₃ single-crystal micro-array. (a) Fabrication of compact TiO₂ electron-transporting layer. (b) Fabrication of patterned CH₃NH₃PbBr₃ single-crystal micro-arrays through the ORAP process. (See Fig. 1 and Fig. 2 in the maintext.) (c) Fabrication of OTS blocking layer according to literature^[S1]. The substrates with partially covered CH₃NH₃PbBr₃ single-crystal micro-arrays were immersed in toluene kept in a petri dish. Octadecyl-trichloro silane (10 μL mL⁻¹ of toluene) was then added to the toluene solution. After 10 min of incubation at room temperature, the substrates were rinsed with toluene followed by drying at 60 °C on a hotplate. (d) Spiro-OMeTAD spin-coating. (e) Au thermal evaporation. **Figure S2.** Performance statistics for the devices with (50 devices) and without (20 devices) the blocking layer. ## **REFERENCES** [S1] Hörantner, M. T.; Nayak, P. K.; Mukhopadhyay, S.; Wojciechowski, K.; Beck, C.; McMeekin, D.; Kamino, B.; Eperon, G. E.; Snaith, H. J., Shunt-Blocking Layers for Semitransparent Perovskite Solar Cells. *Adv. Mater. Interfaces* **2016**, *3*, 1500837.