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Intro

H3A: Human Heredity and Health in Africa

Key components of H3Africa

Advancing genomics research in Africa

• > 20 research projects and collaborative centres

• Training projects

• Biorepositories

• Pan-African Bioinformatics Network for H3Africa

Significant collaborative work – harmonisation, projects.
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AWI-Gen

Given as an example project.

AWI-Gen Project
Genetic & environmental factors in cardio-metabolic disorders in African populations –
hub at Wits

• DPHRU, Wits, Soweto

• Wits Agincourt Research Unit

• Dikgale HDSS, University of Limpopo

• APHRC, Nairobi, Kenya

• Navrongo Health Research Centre, Ghana

• CRUN, Nanoro, Burkina Faso

Data to be collected

12000 participants in all – data collected at site

• Extensive personal histories

• Measured, weighed, scanned, blood, urine samples

• DNA extracted, genotyped

Genome-wide association test: relating genotype data to the phenotype data

2



Ch
an
ne
l.f
ro
m
Fi
le
Pa
irs

ifE
m
pt
y

m
ap

se
pa
ra
te

ph
as
e

ra
w
_c
h

ge
tD
up
lic
at
eM
ar
ke
rs

bi
m
_c
h

in
M
D
5

in
pm
d5
ch

pr
od
uc
eR
ep
or
ts

co
nfi
gfi
le

m
ap

du
pl
ic
at
es
_c
h

ph
as
e

re
pm
d5

m
ap

re
m
ov
eD
up
lic
at
eS
N
Ps

id
en
tif
yI
nd
iv
D
isc
Se
xi
nf
o

se
x_
ch
ec
k_
ch

ca
lc
ul
at
eS
am
pl
eM
iss
in
g

m
iss
in
g_
ch

ca
lc
ul
at
eS
am
pl
eH
et
ro
zy
go
sit
y

he
t_
ch

cr
os
s

ib
d_
pr
un
e_
ch

ph
as
e

re
m
ov
e_
in
ds
_c
h

ph
as
e

ph
as
e
fa
ile
d_
se
x_
ch
ec
k

ph
as
e

ph
as
e

pl
ot
1_
ch
_m
iss

ph
as
e

m
iss
in
g2
_c
h

ph
as
e

m
iss
_h
et
_c
h

pl
ot
1_
ch
_h
et

he
te
ro
_c
he
ck
_c
h

m
ap

m
ap

m
ap

m
ap

m
ap

ge
ne
ra
te
M
iss
H
et
Pl
ot

fin
dR
el
at
ed
In
di
v

ge
tB
ad
In
di
vs
_M
iss
in
g_
H
et

ph
as
e

pa
irs

m
ap

ph
as
e

fa
ile
d_
m
iss
_h
et

ph
as
e

ou
tfn
am
em
ap

m
ap

ld
re
g_
ch

pr
un
eF
or
IB
D

so
rt_
ib
d_
ch

re
la
te
d_
in
di
vs

ph
as
e

ou
tfn
am
e m
ap

re
m
ov
eQ
CI
nd
iv
s

ca
lc
ul
at
eM
af

cl
ea
n0
0_
ch
1

ca
lc
ul
at
eS
np
M
iss
in
gn
es
s

cl
ea
n0
0_
ch
2

ca
lc
ul
at
eS
np
Sk
ew
St
at
us

cl
ea
n0
0_
ch
3

ph
as
e

cl
ea
n0
0_
ch
4

ge
ne
ra
te
M
af
Pl
ot

m
af
_p
lo
t_
ch

ge
ne
ra
te
Sn
pM
iss
in
gn
es
sP
lo
t

cl
ea
n_
lm
iss
_p
lo
t_
ch

ge
ne
ra
te
In
di
vM
iss
in
gn
es
sP
lo
t

cl
ea
n_
im
iss
_p
lo
t_
ch

ge
ne
ra
te
D
iff
er
en
tia
lM
iss
in
gn
es
sP
lo
t

cl
ea
n_
di
ff_
m
iss
_p
lo
t_
ch
1

fin
dS
np
Ex
tre
m
eD
iff
er
en
tia
lM
iss
in
gn
es
s

cl
ea
n_
di
ff_
m
iss
_c
h2

fin
dH
W
Eo
fS
N
Ps

hw
e_
sc
or
es
_c
h

m
ap

ph
as
e

of
na
m
e

m
ap

ph
as
e

ou
tp
ut

ph
as
e

ou
tp
ut

m
ap

m
ap

ph
as
e

ou
tp
ut

ba
d_
sn
ps
_c
h

ph
as
e

fa
ile
d

ge
ne
ra
te
H
w
eP
lo
t

un
af
f_
hw
e

m
ap

m
ap

ph
as
e

ou
tp
ut

m
ap

re
m
ov
eQ
CP
ha
se
1

co
m
pP
CApc
a_
ch ou
tM
D
5

ou
tm
d5
_c
h

dr
aw
PC
Apc
ar
es

ph
as
e

or
ep
m
d5

m
ap

rv
er
sio
n

ph
as
e

O
U
TP
U
T

m
ap

sta
rt

Why a pipeline?

• large data set

• data can be sliced in many ways

• different phenotypes

• quality control crucial

• needs to be reproducible

• needs to be portable

• under tight deadlines

Why pipelines?
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• Many scientific applications are complex – so complex to

– install

– run

• Computationally expensive

• Must be reproducible

– run with different parameters

– so that other people can reproduce

• Must be portable

Primary goals:

• managing complexity in the environment

• managing complexity of the workflow

Also:

• exploiting heterogeneous environments

building laptop-to-HPC, desktop to cloud
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H3ABioNet

Pan-African Bioinformatics Network for H3Africa

H3ABioNet created by NIH in 2012 to complement H3Africa research projects:

• bioinformatics key for the projects

• bioinformatics capacity in Africa sparse

Goals:

• Support H3A projects

• Build capacity in bioinformatics

• > 30 nodes in 15 African countries; US partner

• Central node at UCT – Overall PI, Nicola Mulder

pursuing genomics-based, disease-ori-
ented projects and creating or expanding
infrastructure for genomic medicine re-
search. One of the key areas identified
was the need to develop the infrastruc-
ture that would enable scientists in
Africa to handle large data sets and
increase the capacity to analyze them.
This infrastructure includes the bioin-
formatics network, H3ABioNet, which
forms the backbone of the H3Africa
initiative.

Results and Discussion

Establishment of H3ABioNet
Prior to H3ABioNet, bioinformatics
groups on the continent were active,
but expertise was relatively sparse and
mostly localized in South Africa. Found-
ed in 2004, the African Society for Bioin-
formatics and Computational Biology
(ASBCB) was the first continent-wide
network of researchers in the field of bio-
informatics; it is now a regional network
affiliated with the International Society
of Computational Biology (ISCB). A
formal organization to develop African
bioinformatics based on a system of col-
laborating nodes, ABioNet (African Bioinformatics Network), was
proposed at aWHO-supportedmeeting in Abuja in 2008.Without
follow-up funding, however, the development of ABioNet was
stifled until recently, when the announcement of the H3Africa
initiative provided the springboard for the establishment of
H3ABioNet. The network, which is run from a central node at
theUniversityofCapeTown, consists ofmore than30nodes across
15 African countries (see http://www.h3abionet.org/home/
consortiumfor complete list) (Fig. 1)withonepartner in theUnited
States (USA) and one in theUnitedKingdom (UK). The institutions
range in their current capacity from full nodes with a track record
in bioinformatics research, training, and support; through associ-
ate nodes with some bioinformatics activities; to development
nodes with little or no bioinformatics capacity. Altogether, the
network funds more than 40 staff and students and includes
more than 80 additional members who contribute to H3ABioNet
activities. The nodes collectively provide excellent expertise in dif-
ferent areas of bioinformatics including functional genomics, hu-
man population genetics, GWAS and NGS analysis, microbiome
analysis, SNP linked protein structure analysis, and biomedical
and clinical data storage and management.

The mandate of H3ABioNet (http://www.h3abionet.org/)
is to develop and roll out a coordinated bioinformatics research
infrastructure that is tightly coupled to a sophisticated pan-
African bioinformatics training program. In modern genome se-
quence analysis, analytical tools are moving to where the high
dimensional data are stored, so the expertise for genome data
manipulation and analysis in Africa are being developed at the
source of these data. The network seeks to exploit the develop-
ment and implementation of best practices in genome bioin-
formatics in local centers while keeping an eye on the rapidly
evolving field through collaboration with centers of expertise in

the United States (Harvard University and University of Illinois)
and elsewhere.

H3ABioNet faces a number of high priority challenges that
need to be overcome to enable genomics research and competi-
tiveness on the continent. These include, but are not limited to,
poor internet connectivity for communication, data access, trans-
fer and remote computing; lack of significant computing infra-
structure for data storage and processing; lack of bioinformatics
skills in clinical genetics andgenomics teamsperforminggenomics
research; and disparate pockets of bioinformatics expertise across
the continent. Some of the major objectives of H3ABioNet are
thus to develop human resources through the training of bioinfor-
maticians and researchers in computational techniques and to
develop a robust continent-wide research infrastructure that pro-
vides access to bioinformatics tools, computing resources, and
technical and data management expertise. The network activities
are being achieved through dedicated working groups and task
forces comprising representatives from multiple countries. Full
nodes, including those situated abroad, are helping to build capac-
ity in the less resourced nodes, thus, ensuring the transfer and dis-
seminationof knowledge and skillswithinAfrica.Also, somenodes
have alreadyor plan to set up their ownbioinformatics centers ded-
icated to training and research in bioinformatics. An example is the
Moroccan Center of Bioinformatics, which was launched in
Tangier in September 2015 with the support of H3ABioNet.

Building computing infrastructure
Analysis andmanagement of large data sets requires computing re-
sources and internet bandwidth, both of which can be limiting
in Africa. An infrastructure working group developed a set of spec-
ifications required for different types of genomic data analyses,

Figure 1. Map of Africa showing the distribution of nodes in the H3ABioNet network. The dot on the
right is for Mauritius, and two additional sites not shown include one in the USA and one in the UK.

H3ABioNet bioinformatics network

Genome Research 273
www.genome.org

 Cold Spring Harbor Laboratory Press on February 14, 2016 - Published by genome.cshlp.orgDownloaded from 

Overall goal: improve capacity through training and infrastructure development

• Education & Training

• Pipelines and Computing

• Tools and Webservices

• Health Informatics

• Database and resources
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1 Overview

H3A BioNet Pipelines Project

1. Strategic decision by BioNet to explore

• “cloud computing”

• build skills in pipelines

2. Needs of H3A partners

3. BioNet partners at the University of Illinois/NCSA

4. Work at Wits from 2014-2016

Overview of project

• Launched in May 2016

• Involved about 30 people from over 10 institutions, led by Sumir Panji.

• Identified key people, planning stared

• Ran 5-day “Cloud Hackathon” at the University of Pretoria in August 2016

• Pipelines published, paper written

Goals

1. Develop production-quality pipelines for key workflows

• Direct support for stated needs

• Position BioNet strategically

2. Develop human capacity for building pipelines

3. Explore different technologies
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Constraints

1. Must be highly portable, scalable

• Ideally laptop to CHPC

• Support cloud environments

2. Must have skills within the network : both workflow and technology

3. Limited resources : start with focus and explore other technologies and workflows
later

Technology solutions

• Containers

• Worfklow languages

2 Containers

Containerisation

Abstraction from the environment

• “Escaping dependancy hell”

Challenges

Environment complex and heteroegeneous

• Individual pieces of software are complex, may have specific library,
OS requirements

• Requirements may conflict with our environment

e.g. smc requires a library which requires LIBC 2.14. We run 2.12 –
can’t upgrade

• Multiple packages even more complex

Requirements may conflict with each other
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Containerisation

“Light-weight virtualisation” – kernel provides support for containers

• Can run jobs/systems in containers

• resource isolation and management

• CPU, memory

• file system

• namespace

Several examples: Docker, Singularity, Shifter, rkt
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Figure 1. A graphical representation of how bare metal, virtualisation (KVM), and
containerisation (Docker) works. To run a service on a baremetal machine, we need the kernel,
userland (libraries that interact with the kernel), and the software we want to run. When we
create a virtual machine, we need to virtualise all of this. Using containers, we only need to
virtualise the userland and software as the containers’ userland interacts with the host kernel.

2. Virtualisation
Virtualisation has been widely adopted by business to enable multiple operating systems, often
of di↵ering types (e.g. Linux / Windows), to leverage a single piece of hardware. This has
led to large scale reduction of hardware both in terms of servers but also in the connecting
infrastructure needed to support such hardware; monitors, keyboards, racks, air-conditioning
to name but a few. The ability to run many virtual machines on a single host is attractive in
business to save money through hardware but also savings in software purchases. The rapid
provisioning of machines due to the removal of the need to buy a physical machine for each
operating system instance is also very attractive.

KVM is one of the leading Opensource virtualisation solutions; the hypervisor comes in the
form of a service installed on a standard linux installation. This allows for the virtualisation of
hardware, and the freedom to use any operating system as the guest.

3. Containerisation
Traditional virtualisation and paravirtualisation requires the whole operating system and
hardware to be virtualised. Using containers, individual applications can be separated from each
other and “virtual machines” can be created but without the overhead of traditional setups.

Containers allow the running of individual applications and their dependencies. These, in
the case of docker, then run on top of the docker services. Only the userland and applications
are virtualised which allows significant overhead savings. This is detailed in Figure 1. As only
userland and applications are virtualised, an operating system that requires a di↵erent kernel
type such as MS Windows or GNU Hurd cannot be containerised on a Linux host.

For this analysis we use Docker which is the leading containerisation solution on Linux.

4. The testing environment
Our setup consists of two compute nodes running Scientfic Linux 6. These are of identical
specification, both having 16 core Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz CPUs, with
64 GB RAM and a 1TB Western Digital Sata Hard drive.

Configuring the compute nodes to act as a KVM hyper-visor was relativly trivial. The
standard KVM packages were installed from the repositories. A single virtual machine utilising
all available resources was created using virt-manager.

Configuring the compute node to act as a Docker host took a little more work. As it was non
trivial to mount CVMFS inside the container, CVMFS was mounted on the host machine and

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022028 doi:10.1088/1742-6596/664/2/022028
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Docker

Best known containerisation software

• Linux

• macOS

• Windows 10 Pro, Enterprise, Education + HyperV

containerd

runC

Docker

Building and deploying

Several ways of creating Docker images

Can build and deploy from services such as

• DockerHub

• quay.io
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Typical use for scientific application

Host computer

Container image

install application

Typical use for scientific application

Host computer

Input

Container image

Typical use for scientific application
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Container

Host computer

Input

Container image

Typical use for scientific application

Output

Host computer

Input

Container image

Container

Typical use for scientific application
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Output

Host computer

Input

Container image

Containers for workflows
Each step in workflow has its own container – abstracts the environment

• Choose right OS for each application

• Only need to install dependancies for that application

• Highly portable : install once, deploy everywhere

Workflow languages

Managing complex workflows

Workflow

Challenges

Scientific applications require

• Multiple data files

• Multiple programs

• Perhaps different parameters

• Want to exploit parallelism
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General purpose languages not well suited

• Too low a level of abstraction

• Does not separate workflow from application

• Not reproducible

• Lack of portability – how to exploit parallelism

Workflow languages

Designed to coordinate work rather than doing the work

• Long history

• many different languages and systems available

• hard problem . . .

Examples:

• Galaxy!!

• Taverna, Snakemake, Ruffus, BPipe, JDL, Amazon SWF

Common Workflow Language

Language specification rather than a tool – several tools support it.

• Community-driven, Multi-vendor

13



• Supports Docker, parallelism

• Language based on YAML

• Extensible

Came out of the bioinformatics community (BOSC) but general pur-
poses

• has buy in from major players

class commandLineTool

inputs:

fastqFile:

type: File

inputBinding:

position: 1

baseCommand: [ fastqc, "--outdir", "res" , "--extract" ]

outputs:

zippedFile:

type: File

outputBinding:

glob: "*.zip"

report:

type: Directory

outputBinding:

glob: "res"

Nextflow

Developed by the Comparative Bioinformatics group at the Barcelona Center for Ge-
nomic Regulation (CRG)

• General purpose worflow system

• DSL based on Groovy

• Portable

• Scalable

• Very easy to install

• Supports Docker

• Supports a range of scheduling systems, cloud

14
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process fastQCDo {

input:

file input from input_ch

output:

file "ids" into id_ch

file "$input" into orig_ch

script:

"fastqc --outdir $output --extract $input

}

Running workflow

nextflow run myexample.nf

nextflow run myexample.nf -resume

nextflow run myexample.nf -profile docker

nextflow run myexample.nf -profile pbs

What we did

Identified four workflows, two workflow technologies

Nextflow GWAS Imputation
CWL NGS data Metagenomics
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Status of project

• Developed skills in pipeline creation

• Still work in progress but should be finalised soon

– github.com/h3abionet/h3agwas

– github.com/h3abionet/chipimputation

– github.com/h3abionet/h3abionet16S

– github.com/h3abionet/h3agtk

Workflows very portable

Used

• local computer (with or without Docker)

• local cluster (with or without Docker)

• Amazon EC2 AMI

• Docker Swarm

• OpenNebula (NCSA, ARC)

Experiences with the workflow languages
Both Nextflow and CWL worked well

• Both have responsive communities

• ?? Nextflow has an easier learning curve

• ?? When we started Nextlow was maturer – but very significant momentum behind
CWL.

• ?? CWL may have an advantage in packaging workflows

Process

Successful training

• Experience in how to run hackathons

• Developing pipelines
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Future work

1. Extend, maintain

2. Rigorous comparison

3. Look at other systems, e.g., JMS
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