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B. MATERIAL AND METHODS 

 

Quantification of response variables 

Energy storage compounds 

The pooled sample of animals per replicate of a clonal line-by-treatment combination was 

homogenized with a pestle in PBS buffer (Phosphate-Buffered Saline, 50 mM, pH: 7.4, 50 

µl/animal) and centrifuged for 8 min at 13000 rpm and 4°C. All response variables were measured 

on the resulting supernatant using a Tecan plate reader, set at the appropriate wave length. 

 After a 5 minute incubation (25 °C) with the Bradford Reagens (Sigma-Aldrich B6916, 

[1]), total protein content was measured (at 595 nm) in quadruplicate and the means per pooled 

sample were used for the statistical analyses. Total protein concentration was expressed in µg per 

µg dry mass of the set of animals that were homogenized.  

 
 To quantity total fat content we followed the protocol of Bligh & Dyer ([2]). H2SO4 (100%) 

was added to the homogenate, which was left to incubate at 150 °C (20 min.). After cooling down, 

total fat content was assessed in technical triplicate by measuring absorbance at 340 nm. Fat 

concentration was calculated based on a standard curve of glyceryl tripalmitate and expressed as 

µg per µg dry mass. 

 Total sugar content (glucose + glycogen) was measured following the protocol described 

in Stoks et al. ([3]) using a glucose oxidase kit (MAK097-1KT, Sigma Aldrich). We first added an 
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amyloglucosidase solution (Sigma A7420) to the homogenate, which was then left to incubate at 

37 °C for (30 min.). In a next step a glucose reagent was added to the same sample and left to 

incubate at 30 °C for 20 min. Absorbance was measured at 340 nm. To distinguish glycogen from 

glucose components, the second step was repeated on a new subsample of the homogenate, after 

which the resulting concentration was subtracted from the first measurement (i.e. (glucose + 

glycogen) – glucose). Total sugars (glucose + glycogen) was used as response variable in the 

statistical analysis. 

Antioxidant defense  

The activity of superoxide dismutase (SOD), catalase (CAT), two known key antioxidant enzymes 

in insects and invertebrates [4], and gluthation-S-transferase (GST), a secondary anti-oxidative 

enzyme which protects against oxidizing and toxic substances by detoxifying ROS-damaged 

cellular components was measured as an estimate of antioxidant defense. 

 SOD activity was quantified using the protocol of De Block & Stoks ([5]), based on the 

SOD assay kit WST (Fluka, Buchs, Austria). WST working solution was mixed with enzyme 

working solution and the homogenate of the sample. After incubation (20 min. at 37 °C), 

absorbance was measured at 450 nm. SOD acitivity is defined as the percentage inhibition of the 

reduction reaction of WST-1 with superoxide anion and is standardized per µg protein. 

 CAT activity was measured following De Block & Stoks ([5]); after a homogenate dilution 

with PBS (16 times), 100 µl of 20 mM H2O2 was added (to 20 µl of the diluted sample and 80 µl 

PBS (100 mM, pH 7.4)). CAT activity was then quantified as the degradation rate of H2O2 with 

absorbance being measured (duplicate measurements) every 30 seconds (12 readings) at 240 nm. 
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Using the slope of the linear part of the reaction curve, CAT activity was calculated as the amount 

of H2O2 decomposition per minute and per µg protein. 

 GST activity was quantified based on the protocol of McLoughlin et al. ([6]). 5 µl of sample 

was added to 195 µl of substrate solution (2  mM glutathione (GSH) solution, and 1 mM 1-chloro-

2,4-dinitrobenzene (CDNB) solution). The filled 96 well microtiter plate (suited for UV-spectrum)  

was pre-incubated for three minutes at 30 °C, after which absorbance was read in duplicate at 340 

nm every 30 seconds for 10 min at 30 °C. GST activity was calculated based on the slope of the 

linear part of the reaction plot, as the amount of GS-DNB formed per minute and per µg protein. 

Oxidative damage  

 A HPLC-based TBARS essay was conducted to measure malondialdehyde (MDA) levels 

[7], a byproduct of lipid peroxidation. Sample preparation was done as in Debecker et al. ([8]): 50 

µl of homogenate sample was mixed with an equal amount of  thiobarbituric acid (TBA; 0.4% (40 

mg TBA in 10 ml 0.2 M HCl)). After a 1-hour incubation at 90 °C, 165 µl butanol (100%) was 

added to the sample, which was mixed and centrifuged (3 min., 4 °C, 13000 rpm). 50 µl of this 

supernatant was then injected in an HPLC/UV-Vis system with a 10 µl loop on a C18 column (250 

x 4.6 x 5 µm; chromatogram measurements at 535 nm). MDA concentrations were expressed as 

nmol MDA per µg dry mass. Total fat content was used as a covariate in the statistical analysis. 

Statistical analysis 

MANOVA and linear mixed-effect models 

To test for differentiation in physiological traits between urban and rural Daphnia (categorical), 

and between animals reared at 20 °C and 24 °C (categorical), we first performed a MANOVA, 

followed by separate linear mixed-effect models on all response variables scaled to a mean of 0 
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and standard deviation of 1. Fixed factors were urbanization, temperature treatment, and their 

interaction term. A random error term for ‘Clone’ (i.e. genotypic identity of each line; see Table 

S1 of Supplementary Information A) nested in population was added. Pillai’s trace test statistic 

was extracted using the ‘car’ package [9]. Next, we ran separate linear mixed-effect models (‘lme4’ 

package, [9]) for each of the seven response traits (same model structure; fixed effects: urbanization 

level, temperature treatment, and urbanization x temperature treatment; random effects: clone, 

nested in population, and population, nested in urbanization class). F-test statistics were computed 

using the ‘car’ package [9].  F-tests, were fitted with the restricted maximum likelihood ratio; 

degrees of freedom were corrected using the Kenward-Roger approximation. To assess a possible 

effect of clonal identity (implying genetic variation for a certain trait within populations and thus 

evolutionary potential), we refitted each linear mixed-effect models without this random factor and 

performed a model comparison (likelihood ratio test with χ2 distribution; p-values were halved 

according to 1-tailed testing).    

 Assumptions of normality and homogeneity of variances were checked for each model 

visually (by plotting model residual histograms, QQ-plots, and residual vs. fitted values) and tested 

for by performing Shapiro-Wilk’s test of normality on model residuals and Levene’s test for 

homogeneity of variance on each variable (using either treatment or urbanization as a grouping 

factor). All model assumptions were met except for MDA, which was log-transformed to better 

meet residual normality.  

Structural equation modelling  

First we assessed trait covariation patterns in life history traits and physiology traits separately. In 

a last SEM analysis we assessed the possible presence of an overarching POLS by integrating both 
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life history and physiological traits. For each SEM [10], we compared four alternative models with 

different combinations of factor loadings (i.e. path coefficients) constrained to be equal vs. freely 

varying across all urbanization x temperature groups (i.e. urban-20 °C, rural-20 °C, urban-24 °C, 

rural-24 °C; Table S2, Supplementary Information A): (I) loadings were constrained to be equal 

across temperature treatment and urbanization level, (II) loadings were constrained to be equal 

across temperature treatments only, (III) loadings were constrained to be equal across urbanization 

level only, and (IV) loadings are all free (Table S2). For example, if a model with loadings 

constraint across temperature treatments  (model II) is regarded the most appropriate model 

explaining the trait covariation patterns, it in essence indicates trait covariation patterns are the 

same in animals reared at 20 or 24 °C, but are different for urban vs. rural populations. This thus 

means urbanization (i.e. evolutionary processes) shapes trait covariation patterns, given that rural 

and urban populations are characterized by different factor loadings and consequently different 

trait covariation patterns. If a model with loadings constraint across urbanization level is the most 

appropriate (model III), it indicates trait covariation patterns are similar between urban and rural 

populations, but different when comparing animals reared at 20 °C vs. 24 °C. In case model 

selection leads to model IV being the best fit, indicated by factor loadings freely varying across all 

urbanization x temperature treatment groups, trait covariation patterns differ between urban 

animals reared at 20 °C, urban animals reared at 24 °C, rural animals reared at 20 °C, and rural 

animals reared at 24 °C. In the last case, both urban background (evolution/genetic differentiation) 

and temperature treatment (plasticity to warming), impact trait covariation patterns. 

 Based on AIC scores the most appropriate model was chosen. In case AIC < 2, we 

assessed model weights (W) and evidence ratios (E.R.) [11,12] to validate model choice. W 

characterizes the probability the evaluated model is the most appropriate, given the set of models 
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tested. E.R. is calculated by dividing the model weight of the best model (lowest AIC) by the weight 

of the evaluated model and thus represents the likelihood of the best model compared to the 

evaluated model. 

 In case models II, III, or IV were selected as best model (i.e. a non-fully restricted model), 

group differences of interest were compared by comparing factor loadings (significance, direction, 

and size) using the method of Zar [13]. Path coefficients of two contrasted groups were subtracted 

from each other and divided by the pooled standard error, after which values were evaluated as t-

values and significances were assessed. P values were corrected for multiple testing using 

Bonferroni corrections (paths significantly differing - p < 0.05 - between groups of interest will be 

indicated with a †). 
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