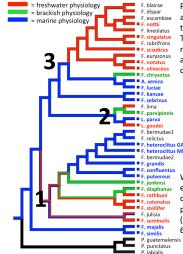
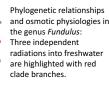
De novo assemblies, annotations, and gene expression profiling of gill epithelium from 16 species of *Fundulus* killifish in response to salinity change.

Lisa K. Johnson^{1,2,3*} and Andrew Whitehead³ ¹School of Veterinary Medicine, ² Molecular, Cellular, Integrative Physiology Graduate Group, ³ Department of Environmental Toxicology, University of California Davis

* Email: licohen@ucdavis.edu 🥣 @monsterbashseq

ABSTRACT:

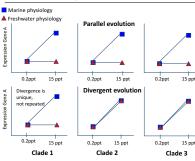

Estuaries are characterized by periodic fluxes in salinity. Many species of North American killifish (Fundulus) are estuarine specialists and harbor euryhaline phenotypes. Three clades within Fundulus independently radiated into freshwater environments and have lost their abilities to tolerate high salinity. We use Fundulus as a comparative model system for studying the physiological and genetic mechanisms that diverge between euryhaline and freshwater species. We examined 16 estuarine and freshwater species with representation from each of three clades. Fish from all species were acclimated to either brackish or fresh water then exposed to an acute brackish water challenge. Gill transcriptome data were collected. To enable multi-species comparisons, reference transcriptome assemblies were generated de novo for each species then used to analyze transcriptional responses to salinity change by clade and physiology. We find differences in the gene expression between euryhaline and freshwater species, some of which are shared across clades, implicating molecular mechanisms that contribute to divergent osmoregulatory physiologies.


OBJECTIVES:

To address comparative physiology questions across species using transcriptomics, specifically:

Is there evidence of parallel or divergent osmoregulatory evolution in this system?

- 1. Build reference transcriptomes and reproducible infrastructure for analyzing RNAseq data across multiple species
- 2. What are the "apples-to-apples" orthologous comparisons?
- 3. Test hypotheses for gene expression patterns across clades



Whitehead, A. 2010, The evolutionary radiation of diverse osmotolerant physiologies in killifish (Fundulus SP.). Evolution 64, 2070-2085.

TRANSCRIPTOME ASSEMBLIES:

Species	Native Physiology BW = Brackish Water FW = Freshwater M = Marine	Clade	N	Quality Trimmed (Q>2) Reads	% Kept After Diginorm	Trinity contigs	Annotated contigs	Unique gene Names	Fundulus heteroclitus (RefSeq) gene names	BUSCO Lineage Database Eukaryota Metazoa Actinopterygii	v3.0 used to evaluate the completeness of transcriptomes, indicated similar results across assemblies.
Adenia xenica	М	3	9	250,627,759	24.8	362,783	148,980	50,123	21,806	-	
Fundulus catanatus	FW	1	7	328,807,408	21.6	405,866	164,596	47,298	22,435	-	
Fundulus chrysotus	BW	3	8	258,850,289	25.6	396,400	155,206	46,327	22,455		
Fundulus diaphanus	BW	1	7	137,246,213	34	384,218	128,323	42,877	21,624		
Fundulus grandis	М	1	9	467,432,867	23.2	809,060	234,074	63,741	24,275		
Fundulus heteroclitus 1	М	1	9	319,925,008	24.8	592,419	188,268	54,653	22,849		
Fundulus heteroclitus 2	М	1	9	275,951,932	28.2	668,487	186,798	54,253	22,994		
Fundulus notatus	FW	3	9	349,630,701	21.6	416,299	167,061	46, <u>884</u>	22,530		
Fundulus nottii	FW	3	2	46,463,472	47	159,771	69,247	30,427	18,280		
Fundulus olivaceus	FW	3	8	202,133,952	27.8	350,265	134,207	42,194	21,600		
Fundulus parvapinis	BW	2	8	184,254,591	27.5	352,346	126,200	46,368	20,647		
Fundulus rathbuni	FW	1	9	348,759,075	22.7	501,222	176,367	48,801	22,718		
Fundulus sciadicus	FW	3	5	101,937,160	37.2	241,279	98,332	36,027	20,382		
Fundulus similis	М	1	9	207,444,577	30.5	520,319	154,675	48,509	22,338		
Fundulus zebrinus	М	3	4	98,327,251	36.6	266,978	102,046	37,405	20,439		
Lucania goodei	FW	2	9	219,175,639	28	385,476	138,485	46,599	22,631		
Lucania parva	М	2	9	255,219,214	25	409,543	145,529	46,914	22,601		

SUMMARY:

- 1. Reference de novo transcriptome assemblies and annotations for gill from 16 species of Fundulus killifish were generated and are available.
- 2. 53K genes x 16 species expression quantification table will be used for analysis of patterns across clades for the osmotic challenge experiment. 3. Reproducible, automated scripts are available to generate de novo transcriptome assemblies, annotations, and merge gene expression tables across species.

(Benchmarking Universal Single Copy Ortholog) Fundulus Multispecies Osmotic Transcriptome Sequencing Project

% Complete BUSCO

20 40 60 80 100

- (FMOTSP): http://doi.org/10.17605/OSF.IO/M4XEG Analysis scripts: https://github.com/ljcohen/RNAseq_15killifish
- Raw data: https://www.ncbi.nlm.nih.gov/bioproject/473009

ACKNOWLEDGEMENTS:

Reid Brennan performed the osmotic challenge experiment. Jen Roach prepared the RNAseg libraries. Thank you to Noah Reid and Titus Brown for guidance and assistance with data analysis. Thanks to the DIB lab and Whitehead lab members at UC Davis for helpful discussions.