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Introduction

Itis very useful to be able to simulate realistic data when developing and
assessing the performance of statistical methods. By using simulated
datathetruthisboth knownand controllable, whereasin real datait may
be neither. It is of course vital that the simulated data is similar enough
to the real data, where "similar enough" is defined with respect to the
statistical questions under consideration.

Current software for simulating whole genome bisulfite sequencing data,
such as Sherman, BSSim and DNemulator, focus on simulating data that
are usefulwhen comparing the performance of read mapping strategies.
The stochastic models used by these programs, which generally make
simplifying assumptions such as spatial-independence of methylation
events at nearby CpG sites and independence of reads, do not generate
appropriately realistic data for tasks such as comparing methods for
identifying differential methylation.

We are developing software to simulate whole genome bisulfite
sequencing data that captures the complex intra- and inter-sample
heterogeneity foundinreal studies of DNA methylation, with afocus on
CpG methylation. Some features of real data that we simulate include
the strong spatial dependence of methylation at nearby CpGs, regions
of hypo-, intermediate and hyper-methylation, and epipolymorphism.

This work is motivated by our desire to resolve some questions that
have arisen from our exploratory data analyses of tens of whole genome
bisulfite sequencing experiments. This software will also be useful
in developing and comparing statistical methods for analysing DNA
methylation data.

DNA methylation is a non-stationary process; both the average
methylation level and the variation in the methylation level vary as a
function of position in the genome. However, within smaller regions,
say within a CpG island or within a partially methylated domain, DNA
methylation is more "stable" or "similar" and may be approximated by
a locally stationary stochastic process.

Our basicideais to segment the genome into "regions of similarity" and
then simulate data using region-specific parameters. The algorithm is
sketched in Figure 1.

(1) Segment genome into “regions of similarity” (MethylSeekR)
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UMR = unmethylated region
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(2) For each region:simulate each haplotype from a Markov model
Transition matrices depend on distance between CpGs and the
type of region
Assign haplotype iin region r frequency g
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(3) Simulate read positions
Simulate reads for region r by sampling from i haplotype with
probability g,
Simulate sequencing error

Figure 1: Schematic of the simulation procedure (MySim).

Simulatation parameters were estimated from the ADS methylC-seq data
from Lister et al. Nature, 2011. Paired-end reads were simulated to an
average of 20x coverage.
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Figure 2: Distributions of summary statistics from the segmentation
process. The segmentation is based entirely on beta values and is done
using MethylSeekR.

Figures 3, 4, 5 and 6 show summary statistics computed on real
methylC-seq data (ADS), data simulated from an independence model
that is similar to that implemented in Sherman (Sherman) and data
simulated from the model described in the Methods (MySim).
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Figure 3: The distribution of beta values from MySim mimics that of real
data. The Sherman data does not capture the lowly methylated CGIs.
This can be improved by assigning different methylation levels to CGl and
non-CGl regions.

Correlations of pairs of 3 values
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Figure 4: The MySim data includes the spatial correlation of beta values
seen in real data. This is due to the Markovian spatial dependence
model in the MySim method. The Sherman data does not capture the
spatial correlations of beta values because each methylation event is
simulated independently.
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Figure 5: Within fragment comethylation is a measure of dependence
of methylation states within individual DNA fragments. A value of zero
corresponds to independence. The comethylation in the MySim data
is generally too high compared to the real data. The Sherman data has
more-or-less zero comethylation because each methylation event is
simulated independently.

_Within fragment comethylation
at neighbouring CpGs

.

ntile band
o

o

data

© g
| e = im

erman

N (g()o/o qua

dds ratio
(@)

log 0

O 20 100 150 200
Distance between CpGs (bp)
Figure 6:Similarto Figure 5 but with the addition of a band showing the 10"
and 90" percentiles of the comethylation distributions. The comethylation

of real data has less variability than the MySim data.

These are very preliminary results and there is much work to be done. In
particular, we wish to produce a more "locally stationary" segmentation
by refining the segmentation process and to improve the distributions of
within-fragment comethylation.

Further information

J flgsdh"areh Poster: http://bit.ly/ECD13_PH
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G ItH u b Software: www.github.com/PeteHaitch

Email: hickey@wehi.edu.au
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