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Supplementary analyses for Pepper, Bateson and Nettle ‘Telomeres as integrative markers of 

exposure to stress and adversity: A systematic review and meta-analysis’ 

 

1. Background to the supplementary analyses 

Certain statistical analyses used to detect outliers and publication bias cannot be straightforwardly 

applied to our dataset due to its multilevel structure (multiple studies each contribute multiple non-

independent associations). The statistical methods required (using ‘metaplus’ and ‘weightr’ packages 

in R) are not currently implemented for this kind of data structure. One possibility would be to 

ignore the multilevel structure for these particular analyses. However, in our view this would be 

misleading, since most of the variation in our dataset resides at the between-study level; the 

multiple associations from the same study are generally highly correlated with one another (ρ = 0.87 

for the simplest main analysis). Thus, to treat each association as statistically independent would be 

to pseudo-replicate the information from certain studies many times. In a simple meta-analytic 

model with no moderators, the central estimate of association is r = -0.15 (95% CI -0.18 to -0.11) 

when the multilevel structure is properly accounted for, but r = -0.09 (95% CI -0.10 – -0.07) if the 

multilevel structure is ignored and a simple random effects model is fitted. The reason for this 

attenuation of association strength is that studies that contribute more associations to the dataset 

also contribute associations that are closer to zero on average (correlation between number of 

associations reported and the absolute value of the mean correlation coefficient reported, r136 = -

0.27, p < 0.01). Thus, treating each of their data points as independent increases the influence of 

weak or null associations on the overall estimate.  

An alternative approach that we use here is to create a ‘flat’ version of the dataset, in which one of 

the reported associations is chosen at random for each of the 138 studies. This produces a dataset 

with no multilevel structure, suitable for use with R packages ‘metaplus’ and ‘weightr’. Given that 

the multiple associations from the same study tend to be similar to one another, a simple random 

effects model of the ‘flat’ dataset leads to inferences that are broadly similar to the multilevel model 

of the full dataset. For example, figure S1 shows the central estimate of association between 

exposures and telomeres from the main multilevel model, and from ten runs of the ‘flat’ sampling 

procedure. The similarity suggests that, where it is not possible to use the full dataset, analyses of a 

‘flat’ sample are fairly informative.  
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Figure S1. Central estimates of association between exposures and telomere measures for the 

main dataset analysed with a multilevel model, for ten runs of the ‘flat’ sampling procedure (see 

text), and for a model of the full dataset that ignores the multilevel structure and treats every 

association as independent. 

  

2. Analysis of outliers 

The standard random-effects model in meta-analysis assumes that the study-level random effects 

are Normally distributed. In practice, however, there may be a subset of outlier studies that depart 

from the central association more extremely than this. The R package ‘metaplus’ allows for the 

detection of the existence of such outliers. It fits a model in which the random effects are assumed 

to be drawn from a mixture of two distributions, one distribution for typical studies, and another, 

with a larger dispersion, for outlier studies (Beath, 2016). The fit of this mixture model can then be 

compared to the standard random-effects model: if there are studies that are marked outliers, the 

Bayesian Information Criterion (BIC) will be lower for the mixture model than the standard model. 

The studies most likely to belong to the outlier distribution can also be identified. We fit the mixture 

model, and a standard random-effects model, in ten ‘flat’ samples of the dataset (see section 1). 

Note that this procedure has limitations: a study all of whose associations are extreme will 

consistently be identified as an outlier, but a study reporting many associations only one of which is 

extreme will not. This should be borne in mind in what follows. 

The fit for the mixture model was better than the standard model in all ten samples (mean BIC, 

mixture model: -24.33; standard model: -7.34). Within the mixture model, the estimated dispersion 

of true effects was much larger for the studies assigned to the outlier set than for the rest of the 

studies (mean τ, outliers: 0.35, typical: 0.07). The mean central estimate of association between 

exposures and telomeres for the mixture model was r = -0.09, somewhat weaker than the estimate 

from the standard model of r = -0.15. Thus, this analysis suggests that there is a set of outlier studies 
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with atypically strong associations, whose aggregate effect is to make the negative correlation 

between exposures and telomeres appear stronger than the remaining studies would.  

We examined which studies were assigned an average posterior probability of 0.9 or more of 

belonging to the outlier set (table S1). The 12 studies identified as outliers tended to be small-n 

(median n 91), and mostly reported strong negative associations between exposures and TL (10/12; 

the remaining two reported stronger-than-expected associations in the opposite direction). Four 

studies of diabetes appeared on this list, suggesting that diabetes may have genuinely stronger 

associations with telomere length than other categories of exposure do. Two substantial studies of 

sleep apnea also appeared on the list, though their findings were in opposite directions to one 

another, one of children suggesting longer telomere length in sleep apnea, and one in adults 

suggesting shorter telomere length in sleep apnea. Many of the remaining studies in table S1 had 

such small samples that the extreme results might simply reflect sampling variability.  
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Table S1. Studies assigned to the outlier set in the mixture-model analysis with an average posterior 

probability of 0.9 or greater. Note that only the first author is shown in the ‘Study’ column; for full 

study titles, please see processed data file in the online data archive.   

Study  Broad category N Comments 

Adaikalakoteswari (2005) Disease 80 Small study of type-2 diabetes, strong 
negative association of TL with disease 
status (patients shorter TL) 

Castaldo (2013) Disease 37 Small study on Friedrich’s ataxia, strong 
negative correlation of TL with duration 
of disease (longer duration shorter TL) 

Defelice (2012) Environmental hazard 50 Small study, very strong negative 
association of TL with proximity to toxic 
waste sites (closer to pollution shorter TL) 

Gardner (2005) Disease 70 Small longitudinal study of type-2 
diabetes, strong association between 
change in insulin resistance and change in 
TL (greater rise in insulin resistance, 
greater TL attrition) 

Hudson (2011) Disease 208 Study of Parkinson’s disease; substantial 
association between white blood cell TL 
and disease status in opposite direction 
to expectation (patients longer TL) 

Kim (2010) Disease 213 Study of obstructive sleep apnea in 
children; substantial association between 
TL and sleep apnea severity in opposite 
direction to expectation (worse severity 
longer TL)  

Krishna (2015) Psychosocial 33 Small study of yoga practitioners; very 
large TL difference between practitioners 
(longer TL) and controls (shorter TL). NB. 
These results would be less extraordinary, 
though still unusually strong, if what are 
described as standard deviations in table 
1 of the paper were actually standard 
errors. 

Ma (2013) Disease 102 Study of diabetes; strong negative 
associations between disease status and 
TL (patients shorter TL) 

Marchetto (2016) Psychosocial 24 Small study of prenatal stress and TL in 
newborn babies; strong negative 
association between maternal stress and 
TL in newborns (higher maternal stress 
shorter newborn TL) 

Monickaraj (2012) Disease 290 Study of type-2 diabetes, strong negative 
association between disease status and 
TL (patients shorter TL) 

Savolainen (2014b) Disease 1948 Large study of sleep apnea; substantial 
negative correlation between disease 
status and TL (patients shorter TL) 

Snetselaar (2015) Disease 532 Study of interstitial lung disease, strong 
negative associations between disease 
status and TL (patients shorter TL) 
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3. Further analyses of publication bias 

The model of Vevea and Hedges (1995) allows for assessment of, and correction for, different types 

of publication bias. The model simultaneously estimates the relative probability of observation of 

associations that lie within specified p-value bands (such as p < 0.05 versus p >= 0.05), as well as the 

overall meta-analytic association adjusted for the differential probability of observation of 

associations in the given bands. The model is implemented in R package ‘weightr’. We produced 10 

‘flat’ samples of our dataset (see section 1), and fitted a standard random-effects model, plus the 

Vevea and Hedges model, specifying the following p-value regions: significant association (p < 0.05) 

in the opposite direction to the hypothesis that stress and adversity shorten telomeres; non-

significant trend against the hypothesis; significant trend in the direction of the hypothesis; and 

significant association (p < 0.05) in the direction of the hypothesis. The mean unadjusted association 

was r = -0.15, as expected, but the mean after adjustment for publication bias was r = -0.03. Thus, 

this analysis supports the suggestion we make in the main paper that there may be publication bias, 

and that it may lead to an inflated estimate of the strength of the negative association between 

exposures and telomere measures.  

The mean relative probabilities of observation were 8.37 for a non-significant trend against the 

hypothesis; 21.25 for a non-significant trend in the direction of the hypothesis; and 12.94 for 

significant association in support of the hypothesis. These numbers are relative to a significant 

association contrary to the hypothesis. That is, 12.94 indicates that a significant association in the 

direction of the hypothesis is 12.94 more times more likely to be published, and hence appear in the 

dataset, than a significant association contrary to the hypothesis. The fact that all the numbers are 

greater than 1 suggests that every other type of result is more likely to be published than a 

significant finding that stress and adversity are associated with longer telomeres. In small samples, 

such associations should be found from time to time, because the true associations are weak, and 

precision of measurement is low. It is possible that researchers dismiss them as implausible or 

anomalous when they are found, and this explains their rarity in the dataset. This analysis suggests 

that the publication bias issue in this literature is not so much differential suppression of non-

significant results (after all, the category with the highest relative probability of observation is 

actually non-significant trends in the direction of the hypothesis), but differential suppression of 

results that go significantly contrary to expectation.  

Figure S2 visualizes this pattern. It repeats figure 1b of the main paper, but with points coloured by 

whether the original authors reported the associations as significant or not. As can be seen, there 

are plenty of non-significant associations, especially where their direction is as expected. However, 

there is a marked paucity of significant associations in the positive direction, even though the very 

broad width of the triangle where n is small suggests that these ought to exist.  
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Figure S2. Funnel plot of sample size against observed correlation between telomere 

measure and exposure variable, with associations coloured to indicate whether the original 

authors reported them as significant or not.  

 

References 

Beath, K. J. (2016). metaplus: An R package for the analysis of robust meta-analysis and meta-
regression. The R Journal, 8, 5–16. 

Vevea, J. L., & Hedges, L. V. (1995). A general linear model for estimating effect size in the presence 
of publication bias. Psychometrika, 60, 419–435. http://doi.org/10.1007/BF02294384 

 


