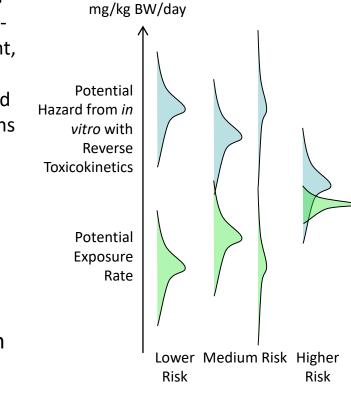
ORCID: 0000-0002-4024-534X

Consensus Exposure Predictions with the SEEM Framework John Wambaugh, Woody Setzer, Kristin Isaacs, Risa Sayre, Katherine Phillips

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

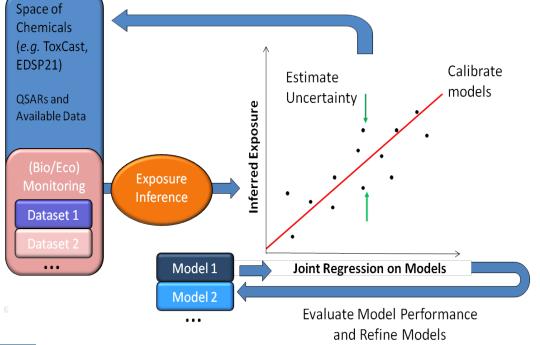


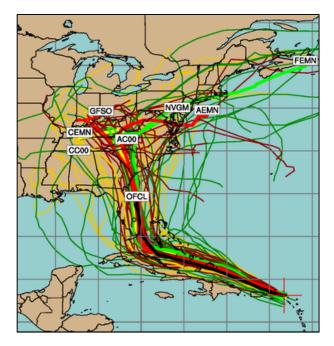
Using 21st Century Science to Improve Risk-Related Evaluations

• January, 2017 U.S. National Academies of Science report:

"Translation of high-throughput data into risk-based rankings is an important application of exposure data for chemical prioritysetting. Recent advances in high-throughput toxicity assessment, notably the ToxCast and Tox21 programs... and in highthroughput computational exposure assessment... have enabled first-tier risk-based rankings of chemicals on the basis of margins of exposure"

- **Tox21/ToxCast**: Examining thousands of chemicals using in vitro assays that test parent chemical in concentration response
- **ExpoCast**: Tentative exposure predictions for daily human exposure rates (mg/kg/day)


What is acceptable uncertainty?


2 of 12 Office of Research and Development

Consensus Exposure Predictions with the SEEM Framework

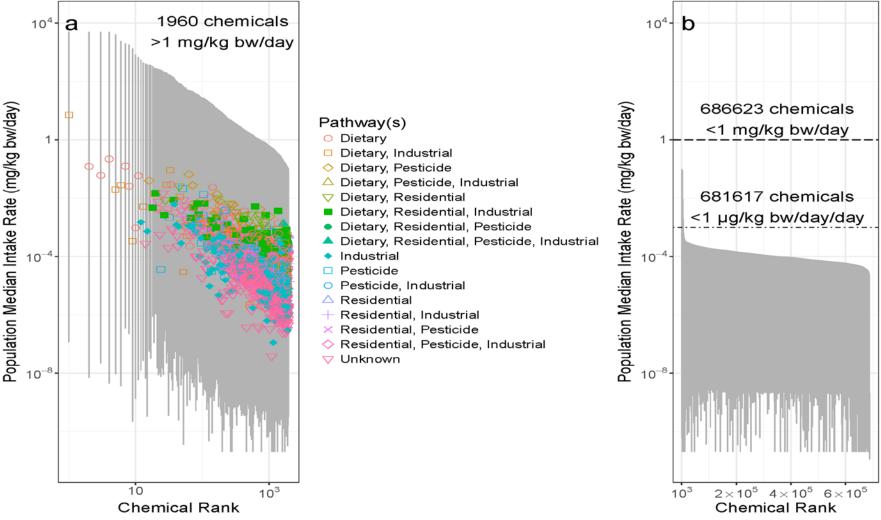
- Different exposure models incorporate knowledge, assumptions, and data (Macleod, et al., 2010)
- We incorporate multiple models into consensus predictions for 1000s of chemicals within the Systematic Empirical Evaluation of Models (SEEM) framework (Wambaugh et al., 2013, 2014)
- We evaluate/calibrate predictions with available monitoring data
- Error in predictions for chemicals with data is applied as uncertainty to chemicals without data

Integrating Multiple Models

Collaboration on High Throughput Consumer Exposure Predictions

Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Arnot Research & Consultin

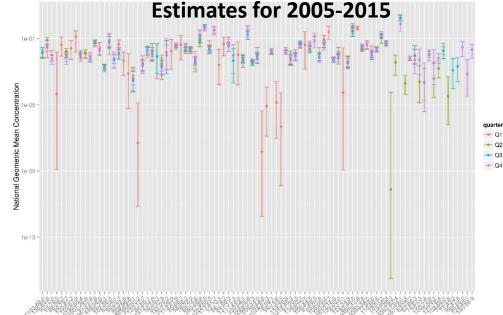

4 of 12

r	Predictor	Reference(s)	Chemicals Predicted	Pathways
C	EPA Inventory Update Reporting and Chemical Data Reporting (CDR) (2015)	US EPA (2018)	7856	All
versity of CHIGAN	Stockholm Convention of Banned Persistent Organic Pollutants (2017)	Lallas (2001)	248	Far-Field Industrial and Pesticide
	EPA Pesticide Reregistration Eligibility Documents (REDs) Exposure Assessments (Through 2015)	Wetmore et al. (2012, 2015)	239	Far-Field Pesticide
DAVIS OF CALIFORNIA	United Nations Environment Program and Society for Environmental Toxicology and Chemistry toxicity model (USETox) Industrial Scenario (2.0)	Fantke et al. (2011, 2012, 2016)	940	Dietary
UNIVERSITY OF	USETox Pesticide Scenario (2.0)	Rosenbaum et al. (2008)	8167	Far-Field Industrial
ARLINGTON Danmarks	Risk Assessment IDentification And Ranking (RAIDAR) Far-Field (2.02)	Arnot et al. (2008)	8167	Far-Field Pesticide
Tekniske Universitet	EPA Stochastic Human Exposure Dose Simulator High Throughput (SHEDS-HT) Near-Field Direct (2017)	Isaacs (2017)	7511	Far-Field Industrial and Pesticide
	SHEDS-HT Near-field Indirect (2017)	Isaacs (2017)	1119	Residential (Near-Field)
	Fugacity-based INdoor Exposure (FINE) (2017)	Bennett et al. (2004), Shin et al. (2012)	645	Residential
	RAIDAR-ICE Near-Field (0.803)	Arnot et al., (2014), Zhang et al. (2014)	1221	Residential
	USETox Residential Scenario (2.0)	Jolliet et al. (2015), Huang et al. (2016,2017)	615	Residential
	USETox Dietary Scenario (2.0)	Jolliet et al. (2015), Huang et al. (2016), Ernstoff et al. (2017)	8167	Residential

High Throughput Consumer Exposure Predictions

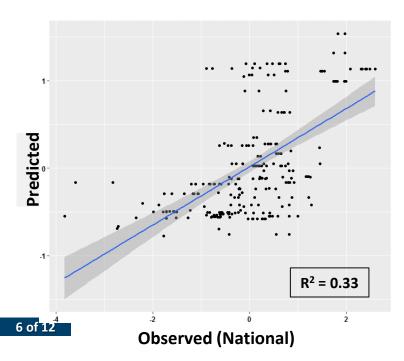
95% confident that median population intake would be <1 μ g/kg bw/day for thousands of chemicals

SEEM Analysis for Ecological Exposure


Surface Water Sampling Sites

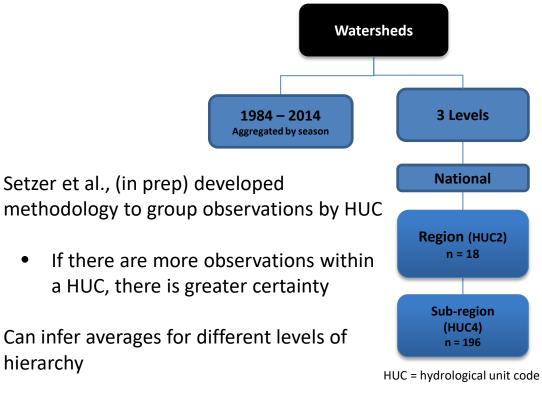
> 600,000 surface water sites in lower 48

> 700 individual chemicals


GPS, date, and time stamps LOD indication

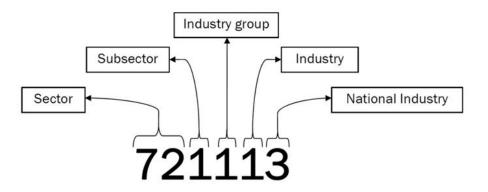
Setzer et al. National Geometric Mean

A total of 279 datasets (chemical X decade X quarter) for 86 chemicals.


Analysis by Parichehr Saranjampour

Hydrological Unit Codes

 Name
 Level
 Digits
 Average size (square miles)
 Number of HUs (approximate)
 Example name


e name Example code

Name	Level	Digits	Average size (square miles)	Number of HUs (approximate)	Example name	Example code (HUC)
Region	1	2	177,560	21	Pacific Northwest	17
Subregion	2	4	16,800	222	Lower Snake	1706
Basin	3	6	10,596	370	Lower Snake	170601
Subbasin	4	8	700	2,200	Imnaha River	17060102
Watershed	5	10	227 (40,000–250,000 acres)	22,000	Upper Imnaha River	1706010201
Subwatershed	6	12	40 (10,000-40,000 acres)	Canada de Maria de Maria	South Fork Imnaha River	170601020101

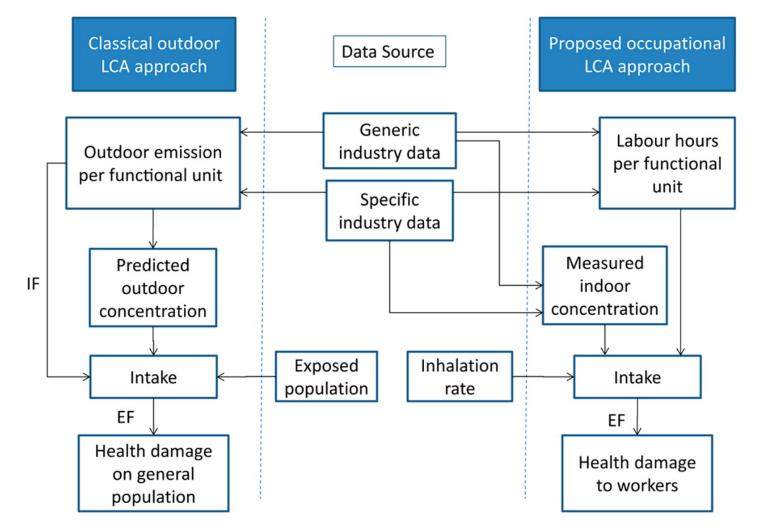
Occupational Exposure Database

- EPA has built a database of occupational chemical monitoring data from Occupational Safety and Health Administration (OSHA) and the EPA's Chemical Data Reporting (CDR)
- Samples are coded according to the North American Industry Classification System (NAICS) developed by Office of Management and Budget (OMB)
- 2,303,043 observations from OSHA
 - 1984-present
 - They include data on personal, area, and bulk samples for various airborne contaminants
 - 1140 different substances
 - 1040 different NAICS


NAICS Level	NAICS Code	Description
Sector	31–33	Manufacturing
Subsector	334	Computer and electronic product manufacturing
Industry group	3346	Manufacturing and reproduction of magnetic and optical media
Industry	33461	Manufacturing and reproduction of magnetic and optical media
U.S. Industry	334611	Reproduction of software

ChemSTEER: Chemical Screening Tool for Exposures and Environmental Releases

- ChemSTEER is an EPA model used to estimate workplace exposures and environmental releases for chemicals manufactured and used in industrial/commercial settings
- ChemSTEER is not intended to be a high throughput exposure model, but instead features menu-driven interfaces to allow users to "build" assessments
- Contains pre-defined, industry-specific generic scenarios scenarios which user may then customize
- ORD is working to create a high throughput version, which we can then evaluate with the available data


9 of 12

https://www.epa.gov/tsca-screening-tools/chemsteer-chemical-screening-tool-exposures-and-environmental-releases

Model for Predicted Intake from Occupational Exposure

10 of 12 Office of Research and Development

Kijko et al. (2015)

Proposed Occupational SEEM Analysis

- Model OSHA data to determine averages for different levels of NAICS (i.e., industries)
- Setzer et al. method will identify the level of granularity informed by the data
- Use the available average chemical measurements to evaluate models (ChemSTEER, Kijko, et al. 2015) and chemical properties (e.g., vapor pressure) for ability to predict
 - Develop calibrated predictive model and empirically estimate uncertainty
- Apply calibrated predictive model to those chemicals without monitoring data

- Models incorporate Knowledge, Assumptions and Data
- The trick is to know which model to use and when
- Rough exposure assessments may be potentially useful if the uncertainty can be quantified and is acceptable (i.e., "fit for purpose")
- EPA relies on the Systematic Empirical Evaluation of Models (SEEM) framework to develop consensus models
- Using SEEM, various predictors of exposure are combined according to calibrated weights reflecting estimates of their predictive ability based on monitoring data

Acknowledgements

Rapid Exposure and Dosimetry (RED) Project

NRMRL

NHEERL

Yirui Liang*

Linda Adams

Marina Evans

Mike Hughes

*Trainees

Xiaoyu Liu

NCCT Chris Grulke Greg Honda* **Richard Judson** Andrew McEachran* Robert Pearce* Ann Richard Risa Sayre* Woody Setzer **Rusty Thomas** John Wambaugh Antony Williams

NERL

Cody Addington* Craig Barber Namdi Brandon* Peter Egeghy Hongtai Huang* **Christopher Ecklund Brandall Ingle*** **Kristin Isaacs** Ashley Jackson* Jane Ellen Simmons Charles Lowe* Dawn Mills*

Seth Newton

Katherine Phillips Paul Price Jeanette Reves* Randolph Singh * Jon Sobus John Streicher* Mark Strynar Mike Tornero-Velez Elin Ulrich Dan Vallero **Barbara Wetmore**

Arnot Research and Consulting Jon Arnot Johnny Westgate **Battelle Memorial Institute** Anne Louise Sumner Anne Gregg **Chemical Computing Group Rocky Goldsmith** Cyprotex **Roger Dinallo Chris Strock** National Institute for Environmental Health Sciences (NIEHS) National **Toxicology Program** Mike Devito **Steve Ferguson** Nisha Sipes **Netherlands Organisation for Applied Scientific Research (TNO)** Sieto Bosgra **Research Triangle Institute Timothy Fennell ScitoVation Harvey Clewell Kamel Mansouri Chantel Nicolas Silent Spring Institute** Robin Dodson **Southwest Research Institute** Alice Yau **Kristin Favela** Summit Toxicology Lesa Aylward **Tox Strategies Caroline Ring University of California, Davis Deborah Bennett** Hyeong-Moo Shin **University of Michigan Olivier Jolliet University of North Carolina, Chapel** Hill Alex Tropsha

Lead CSS Matrix Interfaces: John Kenneke (NERL) John Cowden (NCCT)

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

- Arnot, Jon A., et al. "Screening level risk assessment model for chemical fate and effects in the environment." Environmental science & technology 40.7 (2006): 2316-2323.
- Rosenbaum, Ralph K., et al. "USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment." The International Journal of Life Cycle Assessment 13.7 (2008): 532.
- Isaacs, Kristin K., et al. "SHEDS-HT: an integrated probabilistic exposure model for prioritizing exposures to chemicals with near-field and dietary sources." Environmental science & technology 48.21 (2014): 12750-12759.
- Kijko, G., Margni, M., Partovi-Nia, V., Doudrich, G., & Jolliet, O. (2015). Impact of occupational exposure to chemicals in life cycle assessment: a novel characterization model based on measured concentrations and labor hours. Environmental science & technology, 49(14), 8741-8750.
- MacLeod M, Scheringer M, McKone TE, Hungerbuhler K. The state of multimedia mass-balance modeling in environmental science and decision-making.
- Wambaugh, John F., et al. "High-throughput models for exposure-based chemical prioritization in the ExpoCast project." Environmental science & technology 47.15 (2013): 8479-8488.
- Wambaugh, John F., et al. "High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals." *Env. science & technology* (2014).
- Wetmore, B. A., Wambaugh, J. F., Allen, B., Ferguson, S. S., Sochaski, M. A., Setzer, R. W., ... & LeCluyse, E. (2015). Incorporating high-throughput exposure predictions with dosimetry-adjusted in vitro bioactivity to inform chemical toxicity testing. Toxicological Sciences, 148(1), 121-136.