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This supplementary document contains two Appendices. Appendix A provides several proofs

of results in the main paper. Appendix B includes some additional remarks.

A. PROOFS

A1. Proof of Theorem 2

We start by noting the skew-beta model density model:

d(u;F0, F ) = fB(u; γ, β)
{

1 +
∑
j

LP[j;FB, D]Tj(u;FB)
}
, for 0 < u < 1, (4.1)

where beta density and cdf with parameters γ and β are denoted by fB and FB, respectively;

Tj(u;FB) are called beta-LP polynomials Legj◦FB(u; γ, β). Here the sign ‘◦’ refers to the

usual composition of functions. The beta-LP polynomials satisfy the following orthonormal-

ity conditions:

EFB
[Tj(U ;FB)] = 0, and EFB

[Tj(U ;FB)Tk(U ;FB)] = δjk.

This implies that the LP-Fourier coefficients of (4.1) can now be expressed as

LP[j;FB, D] =

1∫
0

d(u;F0, F )

fB(u; γ, β)
Tj(u;FB) dFB(u; γ, β)

=

1∫
0

Tj(u;FB) dD(u;F0, F ) = ED[Tj(u;FB)]. (4.2)

Complete the proof by replacing the population D in (4.2) by its sample estimator D̃ to

compute LP[j;FB, D̃].
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A2. Proof of Theorem 3

We begin by recalling the definition of sample comparison density D̃l ≡ D(u;F0, F̃l) of the

l-th partitioned p-values:

D(u;F0, F̃l) = F̃l(Q(u;F0)) = n−1l

nl∑
i=1

I(uli ≤ u). (4.3)

Theorem 2 implies that the sample LP-Fourier coefficients for the l-th partition is given by

LP[j;FB, D̃l] = n−1l

nl∑
i=1

Legj◦FB(uli; γ, β), j = 1, . . . ,m. (4.4)

This ensures that the full-data sample LP-Fourier coefficients can be expressed as

LP[j;FB, D̃] = N−1
K∑
l=1

nl∑
i=1

Legj◦FB(uli; γ, β)

=
K∑
l=1

{
N−1

nl∑
i=1

Legj◦FB(uli; γ, β)
}
,

which by virtue of (4.3) and (4.4), can be rewritten as

LP[j;FB, D̃] =
K∑
l=1

πl LP[j;FB, D̃l],

where πl = nl/N . This proves the claim.

A3. Proof of Theorem 4

This is immediate from (2.7) and Theorem 3, as noted in (2.6).

A4. Proof of Theorem 5

The chisquare divergence between skew-G comparison density

d(u;G,F ) = g(u)
{

1 +
∑
j

LP[j;G,D]Tj(u;G)
}
,

and an arbitrary G over the unit interval is given by

χ2(D||G) =

1∫
0

[
d(u)

g(u)
− 1

]2
g(u) du =

1∫
0

{∑
j

LP[j;G,D]Tj(u;G)

}2

g(u) du. (4.5)
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Straightforward calculation shows (4.5) has the following analytic form:

∑
j

∣∣LP[j;G,D]
∣∣2 1∫

0

T 2
j (u;G) dG +

∑
j 6=k

LP[j;G,D] LP[k;G,D]

1∫
0

Tj(u;G)Tk(u;G) dG,

which completes the proof.

B. ADDITIONAL REMARKS

B1. Advantages of LP-skew Density Model. The reason for using LP-skew density

model (2.3) instead of classical kernel density estimate (KDE) is threefold:

• Statistical side: KDE for compact support [0, 1] is known to be a challenging problem

due to the “boundary effect,” Besides this, difficulty arises to accurately estimate the

highly dynamic tails near 0 and 1, such as shown in the bottom panel of Fig 2. As

noted in Mukhopadhyay (2016), the novelty of our approach lies in its unique ability to

“decouple” the density estimation problem into two separate modeling problems: the

tail part and the central part of the distribution. Keep in mind that tails (where the

signals hide) of d̂(u;F0, F ) are the most important part for multiple testing.

• Computational side: The brute-force application of KDE 1
Nh

∑K
l=1

∑nl

i=1K
(
u−uli

h

)
re-

quires O(N2) kernel evaluations and O(N2) multiplications and additions, making it

computationally impractical for large-N problems (even for a fixed-bandwidth case).

• Compressibility side: The skew-beta model encodes the shape of the density using few

LP-Fourier coefficients†. For example, in the Prostate cancer example, we were able to

compress the whole function into three coefficients. This compressive representation

is particularly attractive for designing memory-efficient big-data algorithms. Contrast

this with classical KDE approach, where storing the density estimate values at each

data point could be expensive, if not infeasible.

B2. On The Algorithm. The prescribed embarrassingly parallel inference algorithm:

†Note that, our specially designed LP-basis functions Tj(u;FB) are: (i) orthonormal basis with respect to
the measure FB , which guarantees parsimony of our density expansion, and (ii) robust in nature (as they are
polynomials of rank-transform FB(u; γ, β), thus can tackle highly-dynamic tails of the distribution without
falling prey to the spurious bumps.
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• Upgrades traditional raw-empirical multiple testing procedures to a more stable and

smooth-nonparametric versions.

• Performs smooth-BH filtering, by computing umax = supu

{
D̂(u)
u
≥ η

α

}
, which can be

done without any reference to the partitioned-pvalues once we have the D̂. Report

the cases with uli ≤ umax as interesting for l = 1, . . . , k. Contrast this with the

“naive” D̃(u) based BH procedure (2.1), which requires sorting of p-values to count

the empirical proportions. Also see Remark 1.

• Along the same line, one can also perform local-fdr analysis by evaluating d̂(uli;F0, F ) >

η/2α inside each partition, once we have d̂ (computed in a completely parallelized

manner with zero-communication between the nodes).

This again shows the usefulness of comparison-density-based functional reformulation of

multiple testing problems.

B3. Functional View of Multiple Testing. As noted in Mukhopadhyay (2016), the

notion of comparison distribution allows us to transform the simultaneous hypothesis testing

problem into a nonparametric function estimation problem. The transition from discrete

analysis and ranking of individual p-values to comparison density function estimation† is

necessary to develop the decentralized large-scale inference (DSLI) engine.

B4. Model Selection. For constructing skew-beta model it is important to properly

select the empirical LP-Fourier coefficients appearing in (4.1). Identify indices j for which

LP(j;FB;D) are significantly non-zero by using AIC model selection criterion applied to LP

means arranged in decreasing magnitude. Choose k to maximize AIC(k),

AIC(k) = sum of squares of first k sorted LP-means − 2k/N

This functionality was incorporated as an inbuilt mechanism for our decentralized algorithm.

From a theoretical perspective, the proposed AIC-based LP-Fourier coefficient selection cri-

terion can be shown to minimize the mean integrated squared error (Mukhopadhyay, 2017,

Sec. 2.4).

†This can also be viewed as going from large-N microscopic discrete model to a functional macroscopic
model that obeys the superposition principle (see Remark 4 of the main paper).
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B5. Same Covariates on Different Machines. Consider the case where we have same

covariates on different machines. Define x̄0 and x̄1 to be the global group-specific sample

means, which can be computed easily (in a parallelized manner):

x̄0 =
k∑

l=1

πl0x̄l0, and x̄1 =
k∑

l=1

πl1x̄l1,

where πl0 = nl0/N0, πl1 = nl1/N1, nl = nl0 + nl1, N0 =
∑k

l=1 nl0, and N1 =
∑k

l=1 nl1. Exact

similar process is also valid for the sample standard deviations S2
1 and S2

2 . This implies that

we can easily compute the full-data Z or t-statistics Z1, . . . , Zp and can perform multiple-

testing without any problem.

On the other hand, this paper addresses the challenging regime where a massive collection of

covariates are distributed over the machines, which needs a non-trivial solution and carries

more appeal than the ‘large-n small-p’ case, especially in the context of multiple testing.
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