
Supplementary material 

Proof of Result 1: The two budgets constraints, (8) and (9), are obviously binding. Hence, 

c
p
=B

0
−x and c

h
=F ( )x,ξ . A necessary condition for an interior solution is then  
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The right hand side decreases with respect to x
*
 and δ whereas the left hand side increases with 

x
*
 and does not depend on δ. We thus conclude that x

*
 always decreases with δ.□  

Proof of Result 2: The first order condition (11) characterizes x
*
 as a function of r. 

Differentiating condition (11) with respect to r leads to (we do not write the arguments):  
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Rearranging and using condition (11), we obtain:  
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The first term on the left hand side is positive and the right hand side decreases with x. Thanks to 

Result 1, this is sufficient to finish the proof. 


