Supplementary material

Proof of Result 1: The two budgets constraints, (8) and (9), are obviously binding. Hence, $c_{p}=B_{0}-x$ and $c_{h}=F(x, \xi)$. A necessary condition for an interior solution is then

$$
\begin{equation*}
\left(B_{0}-x^{*}\right)^{-r}=\frac{1}{1+\delta} E\left(F_{x}\left(x^{*}, \xi\right)\left(F\left(x^{*}, \xi\right)\right)^{-r}\right) \tag{11}
\end{equation*}
$$

The right hand side decreases with respect to x^{*} and δ whereas the left hand side increases with x^{*} and does not depend on δ. We thus conclude that x^{*} always decreases with δ.
Proof of Result 2: The first order condition (11) characterizes x^{*} as a function of r.
Differentiating condition (11) with respect to r leads to (we do not write the arguments):
$r\left(B_{0}-x^{*}\right)^{-r-1} \frac{\partial x^{*}}{\partial r}-\left(B_{0}-x^{*}\right)^{-r} \ln \left(B_{0}-x^{*}\right)$
$=\frac{1}{1+\delta} E\left(F_{x x} F^{-r_{-r}}\left(F_{x}\right)^{2} F^{-r-1}\right) \frac{\partial x^{*}}{\partial r}-\frac{1}{1+\delta} E\left(F_{x} F^{-r} \ln (F)\right)$.
Rearranging and using condition (11), we obtain:

$$
\left(r(1+\delta)\left(B_{0}-x^{*}\right)^{-r-1}+E\left(-F_{x x} F^{-r}+r\left(F_{x}\right)^{2} F^{-r-1}\right)\right) \frac{\partial x^{*}}{\partial r}=E\left(F_{x} F^{-r} \ln \left(\frac{B_{0}-x^{*}}{F}\right)\right)
$$

The first term on the left hand side is positive and the right hand side decreases with x. Thanks to Result 1, this is sufficient to finish the proof.

