Supplemental Information

Redox Signaling by Reactive Electrophiles and Oxidants

Saba Parvez^{§,†,¶}, Marcus J. C. Long^{†,¶}, Jesse R. Poganik^{‡,†}, and Yimon Aye^{‡,*}

[‡]École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland [§]Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA [†]Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA [†]Equal contributions

Correspondence: <u>ya222@cornell.edu</u> (Y.A.)

Protein ^b	Method used ^c	k _{inact} /K _i	k inact	IC 50 or <i>K</i> i	Residue(s) modified	Reference(s)
20 S proteasome	Inhibition kinetics	Not reported	Not reported	Chymotrypsin, 50% inhibition after 1-2 min; 20 µM HNE. Trypsin, 50% inhibition after 100-200 min; 20 µM HNE. Postglutamyl low 20% inhibition after 250 min; 20 µM HNE. Crosslinking occurs over 30 min.	Not reported	(1)
Actin	MS	Not reported	Not reported	Not reported	C374; C257	(2)
β-actin (ACTB)	MS; anti-HNE western blot	Not reported	Not reported	Not reported	H40	(3)
α-actinin-1 (ACTN1)	MS	Not reported	Not reported	Not reported	C480	(3)
α-actinin-4 (ACTN4)	MS	Not reported	Not reported	Not reported	C499	(3)
Adenine nucleotide translocator (ANT)	Inhibition kinetics (mitochondria isolated from mice)	Not reported	Not reported	700 μM (37 °C)	Not reported	(4)
Adenylyl cyclase associated protein 1 (CAP1)	MS; anti-HNE western blot	Not reported	Not reported	Not reported	C93	(3)
Adipocyte fatty acid binding protein (FABP4)	MS; x-ray crystallography, mouse protein; one covalent	Not reported	Not reported	50% labeling after 10 mins with 0.5 mM HNE (<i>R</i> or <i>S</i> enantiomer or racemic mixture)	C117 (for covalent adduct); GSTa4 shown to be reduced in obese	(5,6)

	adduct and one low occupancy non-covalent structure disclosed (all on mouse protein)				tissue	
Adipocyte fatty acid binding protein (FABP4)		Not reported	Not reported	Not reported	C117 (for covalent adduct)	
ADP- ribosyltransferase (ART)	Inhibition kinetics	Not reported	Not reported	$K_{\rm i} = 4 \mu { m M}$ (Dickinson plot)	Not reported	(7)
Alcohol dehydrogenase (ADH)	Anti-HNE western blot; MS; inhibition assay; proteasomal stability assay (protein isolated from equine liver)	Not reported	Not reported	Not saturated at 200 µM HNE after 16 h; no effect on activity; bell-shaped effect on proteasomal stability	C46; C111 (involved in chelating zinc in active site)	(8)
Amyloid beta (Aβ)	Gel shift assay (Peptide containing residues 1-40 of Aβ)	Not reported	Not reported	Complex gel shift pattern around 50 µM protein and 50-500 µM HNE	Not explicitly reported, but the peptide investigated contains only one cysteine	(9)
Apolipoprotein B (APOB)	Gel shift assay; APOB degradation by macrophages	Not reported	Not reported	Gel shift observed upon treatment with 6 mM HNE; degradation by macrophages suppressed by ~50% upon treatment with 8 mM HNE	Not reported	(10)

ATPase sarcoplasmic/end oplasmic reticulum Ca ²⁺ transporting 1 (ATP2A1 or SERCA1a)	Activity assay; MS; anti-HNE western blot; ABPP with FITC (S/ER vesicles isolated from rabbits)	Not reported	Not reported	Not reported	C471; C525; C561; C614; C636; C670; C674 or C675; K515	(11)
Carbonic anhydrase (CA)	ABPP; HPLC shift; activity assay; anti-HNE western blot	Not reported	Not reported	30% loss of activity upon treatment of enzyme with 1 mM HNE	Not reported	(3,12)
Cardiac Mitochondrial NADP ⁺ -isocitrate Dehydrogenase (mNADP ⁺ - ICDH)	Inhibition kinetics; anti- HNE western blot (Rat hearts and isolated mitochondria)	Not reported	Not reported	IC ₅₀ ~ 20 μ M (10 min treatment)	Not reported	(13)
Cathepsin B (CTSB)	Inhibition assay; anti-HNE western blot; MS (mouse macrophages)	Not reported	Not reported	IC ₅₀ ~15-25 μM (3 h treatment)	C229 (active site); H150	(14)
Cofilin 1 (COF1)	MS	Not reported	Not reported	Not reported	C139	(3)
Creatine kinase B (CKB)	Inhibition assay; MS	Not reported	Not reported	IC ₅₀ ~ 50 μ M based on activity (2h treatment of 10 μ M enzyme; possibly limited by enzyme) IC ₅₀ ~ 10-30 μ M based on C283 modification	C283 (10 µM HNE treatment) H7; H26; C141; C145; C254; C283 (30 µM HNE treatment) Many other modifications	(15)

Cytochrome C (CYCS)	MS (Protein isolated from equine heart)	Not reported	Not reported	Not reported	found at higher treatment concentrations K5; K7; K8; K25; K27; H33; R38; K39; K55; K60; K72; K73; K79; K86; K87; K88; K99	(16,17)
Cytochrome <i>c</i> oxidase (COX)	Inhibition kinetics [Isolated rat mitochondria, ref. (18); rat liver mitochondria, ref. (19)]	$k_{obs} =$ 0.001 s ⁻¹ for inhibition [10 μ M HNE treatment, ref. (18)]	Not reported	 IC₅₀ ~ 8 mM [10 min treatment of mitochondrial fractions, ref. (18)] IC₅₀ ~ 180 μM [1 or 2 h treatment of isolated protein or mitochondria, respectively, ref. (19)] 	Not reported	(18,19)
D-3- phosphoglycerate dehydrogenase (SERA)	MS	Not reported	Not reported	Not reported	C369	(3)
Dynein light chain Tetex-type 3 (DYLT3)	MS	Not reported	Not reported	Not reported	H7	(3)
Elastin (ELN)	Anti-HNE western blot; activity assay	Not reported	Not reported	IC ₅₀ ~ 60 μ M based on activity (24 h treatment) IC ₅₀ ~ 10 μ M based on western blot	Not reported	(20)

				(48 h treatment)		
α-enolase (ENO1)	Anti-HNE western blot	Not reported	Not reported	Little quantitative information given	Not reported	(3,21)
Epithelial fatty acid binding protein (E-FABP)	Anti-HNE western blot; MS	Not reported	Not reported	Not reported	C120; C127; K115	(22)
Eukaryotic elongation factor 2 (eEF-2)	ABPP; anti-HNE western blot [rats and rat liver homogenates, ref. (23)]	Not reported	Not reported	$IC_{50} \sim 75 \ \mu M$	C41	(23-25)
F-actin capping protein (CAPZB)	MS	Not reported	Not reported	Not reported	C93	(3)
Fructosamine 3 kinase-related protein (FN3KRP)	ABPP	Not reported	Not reported	IC ₅₀ ~60 μM	C24	(24,25)
Fructose- bisphosphate aldolase A (ALDOA)	MS	Not reported	Not reported	Not reported	H246	(3)
Glucose-6- phosphate dehydrogenase (G6PD)	Inhibition kinetics	Not reported	Not reported	$K_i = 1.5 \text{ mM}$ (noncompetitive inhibition)	K205	(26)
Glutamate transporter (GLT-1)	Anti-HNE western blot; activity assay (rat astrocytes)	Not reported	Not reported	IC ₅₀ ~ 10–15 μ M (3–5 h treatment)	Not reported	(27)
Glutathione peroxidase	Inhibition kinetics	Not reported	Not reported	$IC_{50} = 0.12 \text{ mM}$ (30 min treatment)	Not reported	(28)

(GPX)						
Glutathione reductase (GSR)	Inhibition kinetics	<i>k_{inact}</i> and <i>K</i> _i likely uncoupled	2.2×10^{-4} s ⁻¹	$K_{\rm i} = 0.5 \ \mu { m M}$	Not reported	(29)
Glutathione S- transferase α1 (GSTA1)	MS	Not reported	Not reported	Rate of disappearance of unadducted species ~ 0.17 h ⁻¹	Not reported	(30)
Glutathione S- transferase π1 (GSTP1)	MS; activity assay	Not reported	Not reported	Rate of disappearance of unadducted species ~ 0.31 h ⁻¹	K30; K55; K103; K128; C48; C102	(30,31)
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)	Inhibition kinetics	$3 \text{ M}^{-1} \text{s}^{-1}$	Not reported	IC ₅₀ ~ 20 μ M (3h treatment)	Not reported	(32,33)
Heat shock protein 70 (HSP70)	Streptavidin-HRP detection of HNE-alkyne modified protein [yeast Ssa1, ref. (34)]; inhibition assay; anti-HNE western blot; MS	Not reported	Not reported	IC ₅₀ ~ 400-500 μ M [1 h treatment, ref. (34)] No labeling saturation at 100 μ M [16 h treatment of 1.6 μ M protein, ref. (35)]	C303 [ref. (34)] C267 [ref. (35)]	(34,35)
Heat shock protein 90 (HSP90)	Inhibition kinetics	Not reported	Not reported	IC ₅₀ = 45 μ M (40 min treatment) IC ₅₀ = 45 μ M (30 min treatment) IC ₅₀ = 40 μ M (20 min treatment)	C572	(3,36)
Heme oxygenase 2 (HMOX2)	ABPP	Not reported	Not reported	IC ₅₀ ~ 2 μM	C282	(24)

Human serum	MS	$k_{\rm obs}$ for	Not	Not reported	H67; H105; K199;	(37,38)
albumin		H242, 3–8	reported	±	K233; H242;	
(HSA)		h^{-1} ; k_{obs} of			H247; H288;	
		other			H367; H510	
		residues at			,	
		least 1				
		order				
		magnitude				
		slower				
		[5 µM				
		HSA				
		treated				
		with 3.2				
		mM HNE,				
		ref. (37)]				
		$k_{\rm obs}$ for				
		H105,				
		$0.027 \pm 0.$				
		004				
		$M^{-1}s^{-1};$				
		H367,				
		$0.025 \pm 0.$				
		00				
		$M^{-1} s^{-1};$				
		H67,				
		$0.088 \pm 0.$				
		009				
		$M^{-1}s^{-1};$				
		H510,				
		$0.083 \pm 0.$				
		$004 \text{ M}^{-1} \text{ s}^{-1}$				
		1;				

IkB kinase (IKK)	Activity assay; gel shift assay	H242/247 and H288, ~ 0.2 ± 0.1 M ⁻¹ s ⁻¹ ; K199, ~ 0.2 ± 0.1 M ⁻¹ s ⁻¹ [15 μ M HSA treated with 1.5 mM HNE, ref. (38)] Not reported	Not reported	Labeling observed 30-60 µM HNE	Not reported	(39)
	ger sinit assay	reported	reported	 (10 min treatment) 30 µM HNE-treated and imunoprecipitated IKK was not active (30 min treatment) 		
Leucine-rich repeat-containing protein 59 (LRC59)	MS	Not reported	Not reported	Not reported	H294	(3)
Liver microsomal cytochrome P450	Activity assay; tritium-labeled HNE incorporation into microsomes (mouse liver)	Not reported	Not reported	IC ₅₀ ~ 250-500 μM for degradation (60 min treatment) IC ₅₀ ~ 1 mM for tritiated HNE incorporation into microsomes	Not reported	(40)
Matrix metalloprotease	MS	Not reported	Not reported	~20 min to reach 50% occupancy	H340/343; H251	(41)

13 (MMP13)				(200 µM HNE treatment)		
Mitogen- activated protein kinase 1 (MAPK1 aka ERK2)	Anti-HNE western blot	Not reported	Not reported	IC ₅₀ ~ 5 μ M (4 h treatment; some crosslinking observed at 100 μ M HNE treatment)	H178; C63; H230	(42)
Na ⁺ -K ⁺ -ATPase	Inhibition kinetics	Not reported	Not reported	$IC_{50} = 120 \ \mu M$ (30 min treatment)	Not reported	(43)
NADPH oxidase 2 (NOX2)	Labeling by HNE-alkyne biotin pulldown and western blot	Not reported	Not reported	Not reported	Not reported	(44)
Peroxiredoxin 6 (PRDX6)	MS; ABPP; Inhibition kinetics <i>in vitro</i>	Not reported	Not reported	350 µM	C91 [refs. (3,45,46)] C47 [ref. (46)]	(3,45,46)
Phosphatase and tensin homolog (PTEN)	Activity assay; anti-HNE western blot; MS	Not reported	Not reported	IC ₅₀ ~ 2 μ M for activity inhibition (30 min treatment)	Not reported	(47)
Plasminogen activator inhibitor 1 RNA-binding protein (PAIR)	MS	Not reported	Not reported	Not reported	C11	(3)
Protein arginine methyltransferase 1 (PRMT1)	ABPP, activity assay	Not reported	Not reported	IC ₅₀ < 25 μM for both labeling and activity inhibition (30 min treatment)	C101	(48)
Protein disulfide isomerase (PDI)	Inhibition kinetics	Not reported	Not reported	IC ₅₀ ~ 30 μM (30 min treatment)	Not reported	(3,49,50)
Protein kinase C β	Activity assay (rat hepatocytes)	Not reported	Not reported	IC ₅₀ ~ 4 μM (15 min treatment)	Not reported	(51)

(PRKCB)						
Protein kinase M2 (PKM2)	Activity assay; labeling by HNE- alkyne biotin pulldown and western blot	Not reported	Not reported	IC ₅₀ ~ 40 μ M for activity inhibition IC ₅₀ ~ 20 μ M for labeling	C49; H272; C424; H439; K256	(52)
RAC-β serine/threonine- protein kinase (Akt2)	Inhibition kinetics; Anti- HNE western blot; MS	Not reported	Not reported	IC ₅₀ ~ 40 μ M for labeling IC ₅₀ ~ 30 μ M for activity inhibition	H196; H267; C311	(53)
Reticulon-4 (RTN4)	ABPP	Not reported	Not reported	IC ₅₀ ~ 75 μM	C1101	(24,25)
Rhodopsin (RHO)	MS	Not reported	Not reported	Not reported	Not reported	(54)
Ro ribonucleoprotein	Anti-HNE western blot and antigen generation	Not reported	Not reported	Not reported	Not reported	(55)
SAM domain and HD domain binding protein (MOP-5)	MS	Not reported	Not reported	Not reported	C522	(3)
Signal recognition particle 9 kDa protein (SRP09)	MS	Not reported	Not reported	Not reported	C48	(3)
Sirtuin 3 (SIRT3)	Anti-HNE western blot; activity assay	Not reported	Not reported	 25% decrease in activity upon treatment with 100 μM HNE (30 min treatment) 	C280; H354	(56)
α- and β-spectrin	Anti-HNE	Not	Not	Labeling saturation reached	Not reported	(57)

(SPTA1 and SPTB)	western blot	reported	reported	between 5-10 min upon 0.1 mM HNE treatment		
Sterile α motif and leucine zipper containing kinase AZK (ZAK)	ABPP; inhibition kinetics	Not reported	Not reported	$IC_{50} \sim 15 \ \mu M \ [ref. (24)]$ $IC_{50} < 10 \ \mu M \ [15 \ min \ on ice, 15 \ min \ reaction-ref. (25)]$	C22	(24,25)
Superoxide dismutase (Cu, Zn, and Mn)	Gel shift assay and amino acid analysis	Not reported	Not reported	< 50% saturation obtained upon treatment with 2.5 mM HNE (6h treatment); no change in activity under these conditions	Lysines and histidines likely labeled, although not linked to function	(58)
Thioredoxin (TXN)	MS; Inhibition kinetics	Not reported	Not reported	Not reported	C32; C35	(59)
Thioredoxin reductase 1 (TXNRD1)	MS; activity assay; inhibition kinetics	Not reported	Not reported	$IC_{50} = 3.8 \ \mu M$ (2h treatment)	C496; U497	(59)
Transient receptor potential cation channel subfamily V member 1 (TRPV1)	Anti-HNE western blot	Not reported	Not reported	Not reported	C621	(60)
Tubulin	Anti-HNE western blot; MS; activity assay [Bovine brain tubulin, ref. (61); 3T3 mouse fibroblasts, ref (62)]	Not reported	Not reported	IC ₅₀ ~ 100-500 μM for polymerization inhibition (5 min treatment; possibly limited by protein concentration)	C295 [ref. (3)] C347, C376, C308 [ref. (61)]	(3,61,62)
Vimentin	MS; anti-HNE	Not	Not	Not reported	C328	(3)

(VIME)	western blot	reported	reported			
Voltage- dependent anion- selective channel protein 2 (VDAC2)	MS; ABPP	Not reported	Not reported	IC ₅₀ ~5 μM	C47 [ref. (3)] C210 [ref. (24)]	(3,24)

^aReferences are given in the last column. In cases where multiple sources reported different data for the same parameter(s), the particular reference is indicated next to the data point.

^bHuman gene name in brackets where specified in the original report. ^cWhere the human protein was not used, the species is indicated.

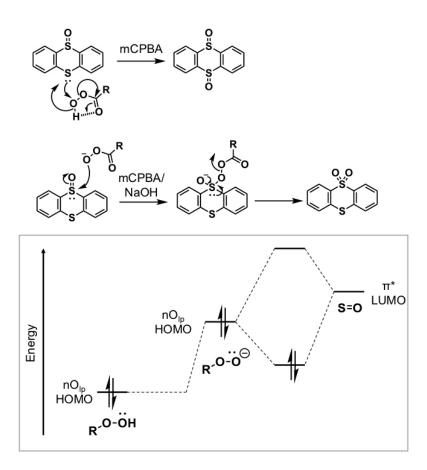


Figure S1: In thianthrene-5-oxide, a substrate bearing both a thioether and a sulfoxide, electrophilic oxidants such as mCPBA selectively oxidize the thioether whereas nucleophilic oxidants (e.g. mCPBA/NaOH) selectively oxidize the sulfoxide. This selectivity is explained by frontier-molecular orbital interactions (*inset*). The lone pairs on sulfur of the thioether (HOMO) are lower in energy and best matched to overlap with the LUMO of the protonated peracid. The lone pairs on the deprotonated peracid (nO_{1p} : non-bonding lone pairs on oxygen), however, are raised in energy (HOMO) and best matched to overlap with the π^* of sulfoxide. For clarity, only the interaction with the sulfoxide π^* is shown.

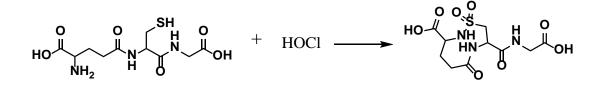


Figure S2: Oxidation of GSH by HOCl yields glutathione sulfonamide.

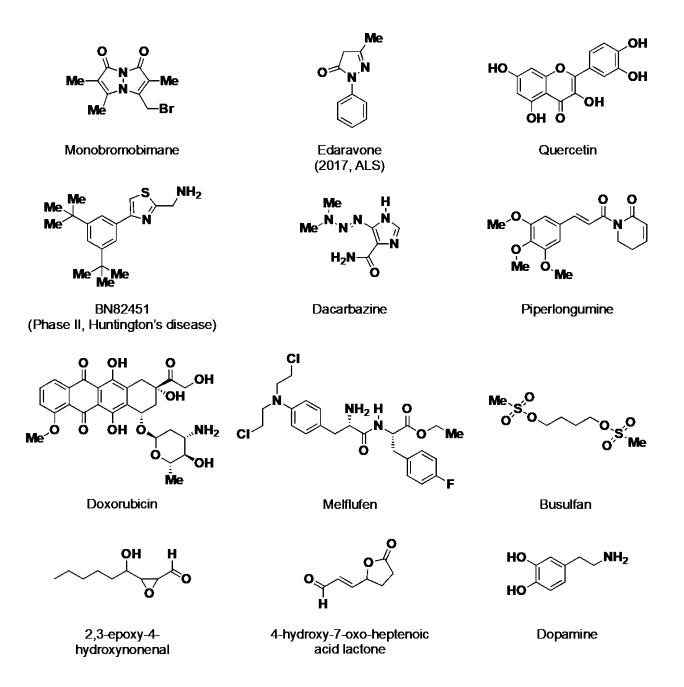


Figure S3: Structures of other various compounds discussed in the review (in cases where the compounds are used therapeutically, either the year of FDA approval or the clinical trial stage reached is given in brackets). ALS, amyotrophic lateral sclerosis.

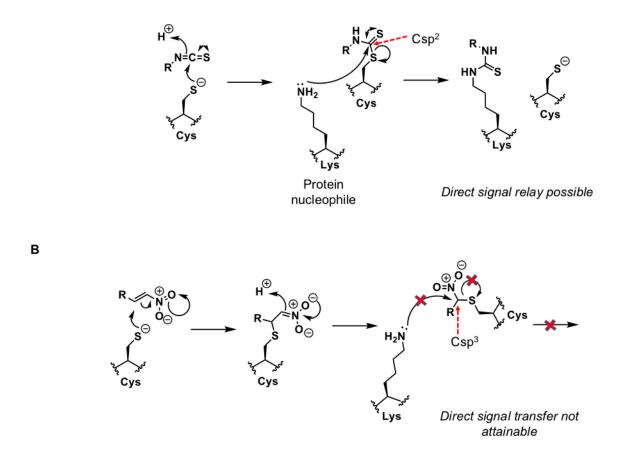


Figure S4: (A) Cysteine adducts to isothiocyanates (ITCs) are reversible. The sp²-hybridized carbon of the thiourea can undergo nucleophilic attack by a protein nucleophile (e.g. lysine), resulting in a tetrahedral intermediate. Subsequent cysteine thiolate departure results in signal transfer. (B) Cysteine adducts to nitroolefins are not directly transferable. Nucleophilic attack on the sp³-hybridized carbon is not a viable route to cleave the carbon-thiolate bond as a means to directly transfer the signal to the proximal lysine residue.

Supplemental References

- (1) Ferrington, D. A.; Kapphahn, R. J. Catalytic Site-Specific Inhibition of the 20S Proteasome by 4-Hydroxynonenal *FEBS Lett.* **2004**, *578*, 217-223.
- (2) Aldini, G.; Dalle-Donne, I.; Vistoli, G.; Maffei Facino, R.; Carini, M. Covalent Modification of Actin by 4-Hydroxy-trans-2-nonenal (HNE): LC-ESI-MS/MS Evidence for Cys374 Michael Adduction *J. Mass Spectrom.* **2005**, *40*, 946-954.
- Chavez, J.; Chung, W.-G.; Miranda, C. L.; Singhal, M.; Stevens, J. F.; Maier, C. S. Site-Specific Protein Adducts Of 4-Hydroxy-2(E)-nonenal in Human THP-1 Monocytic Cells: Protein Carbonylation is Diminished by Ascorbic Acid *Chem. Res. Toxicol.* 2010, 23, 37-47.
- (4) Chen, J. J.; Bertrand, H.; Yu, B. P. Inhibition of Adenine Nucleotide Translocator by Lipid Peroxidation Products *Free Radical Biol. Med.* **1995**, *19*, 583-590.
- (5) Grimsrud, P. A.; Picklo, M. J.; Griffin, T. J.; Bernlohr, D. A. Carbonylation of Adipose Proteins in Obesity and Insulin Resistance: Identification of Adipocyte Fatty Acid-Binding Protein as a Cellular Target of 4-Hydroxynonenal *Mol. Cell. Proteomics* 2007, 6, 624-637.
- Hellberg, K.; Grimsrud, P. A.; Kruse, A. C.; Banaszak, L. J.; Ohlendorf, D. H.; Bernlohr, D. A. X-ray Crystallographic Analysis of Adipocyte Fatty Acid Binding Protein (aP2) Modified with 4-Hydroxy-2-nonenal *Protein Sci.* 2010, *19*, 1480-1489.
- (7) Ullrich, O.; Siems, W. G.; Lehmann, K.; Huser, H.; Ehrilch, W.; Grune, T. Inhibition of Poly(ADP-Ribose) Formation by 4-Hydroxynonenal in Primary Cultures of Rabbit Synovial Fibroblasts *Biochem. J.* **1996**, *315*, 705-708.
- (8) Carbone, D. L.; Doorn, J. A.; Petersen, D. R. 4-Hydroxynonenal Regulates 26S Proteasomal Degradation of Alcohol Dehydrogenase *Free Radical Biol. Med.* 2004, *37*, 1430-1439.
- (9) Shringarpure, R.; Grune, T.; Sitte, N.; Davies, K. J. A. 4-Hydroxynonenal-Modified Amyloid-β Peptide Inhibits the Proteasome: Possible Importance in Alzheimer's Disease *Cell. Mol. Life Sci.* 2000, 57, 1802-1809.
- (10) Hoff, H. F.; O'neil, J. Structural and Functional Changes in LDL after Modification with both 4-Hydroxynonenal and Malondialdehyde *J. Lipid Res.* **1993**, *34*, 1209-1218.
- (11) Hortigón-Vinagre, M. P.; Chardonnet, S.; Montigny, C.; Gutiérrez-Martín, Y.; Champeil,
 P.; Henao, F. Inhibition by 4-Hydroxynonenal (HNE) of Ca2+ Transport by SERCA1a:
 Low Concentrations of HNE Open Protein-Mediated Leaks in the Membrane *Free Radical Biol. Med.* 2011, 50, 1700-1713.
- (12) Uchida, K.; Hasui, Y.; Osawa, T. Covalent Attachment of 4-Hydroxy-2-nonenal to Erythrocyte Proteins *J. Biochem.* **1997**, *122*, 1246-1251.
- Benderdour, M.; Charron, G.; Deblois, D.; Comte, B.; Des Rosiers, C. Cardiac Mitochondrial NADP+-Isocitrate Dehydrogenase is Inactivated Through 4-Hydroxynonenal Adduct Formation: An Event that Precedes Hypertrophy Development *J. Biol. Chem.* 2003, 278, 45154-45159.
- (14) Crabb, J. W.; O'neil, J.; Miyagi, M.; West, K.; Hoff, H. F. Hydroxynonenal Inactivates Cathepsin B by Forming Michael Adducts with Active Site Residues *Protein Sci.* 2002, *11*, 831-840.
- (15) Eliuk, S. M.; Renfrow, M. B.; Shonsey, E. M.; Barnes, S.; Kim, H. Active Site Modifications of the Brain Isoform of Creatine Kinase by 4-Hydroxy-2-nonenal Correlate

with Reduced Enzyme Activity: Mapping of Modified Sites by Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry *Chem. Res. Toxicol.* **2007**, *20*, 1260-1268.

- (16) Tang, X.; Sayre, L. M.; Tochtrop, G. P. A Mass Spectrometric Analysis of 4-Hydroxy-2-(E)-Nonenal Modification of Cytochrome C J. Mass Spectrom. 2011, 46, 290-297.
- Isom, A. L.; Barnes, S.; Wilson, L.; Kirk, M.; Coward, L.; Darley-Usmar, V.
 Modification of Cytochrome c by 4-Hydroxy- 2-nonenal: Evidence for Histidine, Lysine, and Arginine-Aldehyde Adducts *J. Am. Soc. Mass Spectrom.* 2004, *15*, 1136-1147.
- (18) Kaplan, P.; Tatarkova, Z.; Racay, P.; Lehotsky, J.; Pavlikova, M.; Dobrota, D. Oxidative Modifications of Cardiac Mitochondria and Inhibition of Cytochrome C Oxidase Activity by 4-Hydroxynonenal *Redox Rep.* **2007**, *12*, 211-218.
- (19) Chen, J.; Schenker, S.; Frosto, T. A.; Henderson, G. I. Inhibition of Cytochrome C Oxidase Activity by 4-Hydroxynonenal (HNE): Role of HNE Adduct Formation with the Enzyme Subunits *Biochim. Biophys. Acta* **1998**, *1380*, 336-344.
- (20) Larroque-Cardoso, P.; Camare, C.; Nadal-Wollbold, F.; Grazide, M. H.; Pucelle, M.; Garoby-Salom, S.; Bogdanowicz, P.; Josse, G.; Schmitt, A. M.; Uchida, K.et al. Elastin Modification by 4-Hydroxynonenal in Hairless Mice Exposed to UV-A. Role in Photoaging and Actinic Elastosis *J. Invest. Dermatol.* **2015**, *135*, 1873-1881.
- (21) Gentile, F.; Pizzimenti, S.; Arcaro, A.; Pettazzoni, P.; Minelli, R.; D'angelo, D.; Mamone, G.; Ferranti, P.; Toaldo, C.; Cetrangolo, G.et al. Exposure of HL-60 Human Leukaemic Cells to 4-Hydroxynonenal Promotes the Formation of Adduct(s) with Alpha-Enolase Devoid of Plasminogen Binding Activity *Biochem. J.* 2009, 422, 285-294.
- (22) Bennaars-Eiden, A.; Higgins, L.; Hertzel, A. V.; Kapphahn, R. J.; Ferrington, D. A.; Bernlohr, D. A. Covalent Modification of Epithelial Fatty Acid-Binding Protein by 4-Hydroxynonenal in Vitro and in Vivo. Evidence for a Role in Antioxidant Biology *J. Biol. Chem.* **2002**, *277*, 50693-50702.
- (23) Arguelles, S.; Machado, A.; Ayala, A. Adduct Formation of 4-Hydroxynonenal and Malondialdehyde with Elongation Factor-2 In Vitro and In Vivo *Free Radical Biol. Med.* 2009, 47, 324-330.
- (24) Chen, Y.; Liu, Y.; Lan, T.; Qin, W.; Zhu, Y.; Qin, K.; Gao, J.; Wang, H.; Hou, X.; Chen, N.et al. Quantitative Profiling of Protein Carbonylations in Ferroptosis by an Aniline-Derived Probe *J. Am. Chem. Soc.* **2018**, *140*, 4712-4720.
- (25) Wang, C.; Weerapana, E.; Blewett, M. M.; Cravatt, B. F. A Chemoproteomic Platform to Quantitatively Map Targets of Lipid-Derived Electrophiles *Nat. Methods* 2014, *11*, 79-85.
- (26) Szweda, L. I.; Uchida, K.; Tsai, L.; Stadtman, E. R. Inactivation of Glucose-6-Phosphate Dehydrogenase by 4-Hydroxy-2-nonenal. Selective Modification of an Active-Site Lysine *J. Biol. Chem.* **1993**, *268*, 3342-3347.
- (27) Blanc, E. M.; Keller, J. N.; Fernandez, S.; Mattson, M. P. 4-Hydroxynonenal, a Lipid Peroxidation Product, Impairs Glutamate Transport in Cortical Astrocytes *Glia* **1998**, *22*, 149-160.
- (28) Bosch-Morell, F.; Flohé, L.; Marín, N.; Romero, F. J. 4-Hydroxynonenal Inhibits Glutathione Peroxidase: Protection by Glutathione *Free Radical Biol. Med.* **1999**, *26*, 1383-1387.
- (29) Vander Jagt, D. L.; Hunsaker, L. A.; Vander Jagt, T. J.; Gomez, M. S.; Gonzales, D. M.; Deck, L. M.; Royer, R. E. Inactivation of Glutathione Reductase by 4-Hydroxynonenal and Other Endogenous Aldehydes *Biochem. Pharmacol.* **1997**, *53*, 1133-1140.

- Shireman, L. M.; Kripps, K. A.; Balogh, L. M.; Conner, K. P.; Whittington, D.; Atkins, W. M. Glutathione Transferase A4-4 Resists Adduction by 4-Hydroxynonenal *Arch. Biochem. Biophys.* 2010, 504, 182-189.
- (31) Van Iersel, M. L. P. S.; Ploemen, J.-P. H. T. M.; Lo Bello, M.; Federici, G.; Van Bladeren, P. J. Interactions of α , β -Unsaturated Aldehydes and Ketones with Human Glutathione S-Transferase P1-1 *Chem.-Biol. Interact.* **1997**, *108*, 67-78.
- (32) Tsuchiya, Y.; Yamaguchi, M.; Chikuma, T.; Hojo, H. Degradation of Glyceraldehyde-3-Phosphate Dehydrogenase Triggered by 4-Hydroxy-2-nonenal and 4-Hydroxy-2-hexenal *Arch. Biochem. Biophys.* **2005**, *438*, 217-222.
- (33) Hiratsuka, A.; Hiirose, K.; Saito, H.; Watabe, T. 4-Hydroxy-2(E)-nonenal Enantiomers:
 (S)-Selective Inactivation of Glyceraldehyde-3-Phosphate Dehydrogenase and Detoxification by Rat Glutathione S-Transferase A4-4 *Biochem. J.* 2000, *349*, 729-735.
- (34) Wang, Y.; Gibney, P. A.; West, J. D.; Morano, K. A. The Yeast Hsp70 Ssa1 is a Sensor for Activation of the Heat Shock Response by Thiol-Reactive Compounds *Mol. Biol. Cell* 2012, 23, 3290-3298.
- (35) Carbone, D. L.; Doorn, J. A.; Kiebler, Z.; Sampey, B. P.; Petersen, D. R. Inhibition of Hsp72-Mediated Protein Refolding by 4-Hydroxy-2-Nonenal *Chem. Res. Toxicol.* **2004**, *17*, 1459-1467.
- (36) Carbone, D. L.; Doorn, J. A.; Kiebler, Z.; Ickes, B. R.; Petersen, D. R. Modification of Heat Shock Protein 90 by 4-Hydroxynonenal in a Rat Model of Chronic Alcoholic Liver Disease *J. Pharmacol. Exp. Ther.* **2005**, *315*, 8-15.
- (37) Szapacs, M. E.; Riggins, J. N.; Zimmerman, L. J.; Liebler, D. C. Covalent Adduction of Human Serum Albumin by 4-Hydroxy-2-nonenal: Kinetic Analysis of Competing Alkylation Reactions *Biochemistry* **2006**, *45*, 10521-10528.
- (38) Liu, Q.; Simpson, D. C.; Gronert, S. The Reactivity of Human Serum Albumin Toward Trans-4-Hydroxy-2-nonenal *J. Mass Spectrom.* **2012**, *47*, 411-424.
- (39) Ji, C.; Kozak, K. R.; Marnett, L. J. IkB Kinase, a Molecular Target for Inhibition by 4-Hydroxy-2-Nonenal *J. Biol. Chem.* **2001**, *276*, 18223-18228.
- (40) Lame, M. W.; Segall, H. J. In Vitro Effects of Trans-4-Hydroxynonenals on Mouse Liver Cytochrome p-450 *Chem.-Biol. Interact.* **1987**, *62*, 59-74.
- (41) Golizeh, M.; Abusarah, J.; Benderdour, M.; Sleno, L. Covalent Binding of 4-Hydroxynonenal to Matrix Metalloproteinase 13 Studied by Liquid Chromatography-Mass Spectrometry *Chem. Res. Toxicol.* **2014**, *27*, 1556-1565.
- (42) Sampey, B. P.; Carbone, D. L.; Doorn, J. A.; Drechsel, D. A.; Petersen, D. R. 4-Hydroxy-2-nonenal Adduction of Extracellular Signal-Regulated Kinase (Erk) and the Inhibition of Hepatocyte Erk-Est-Like Protein-1-Activating Protein-1 Signal Transduction *Mol. Pharmacol.* 2007, *71*, 871-883.
- (43) Siems, W. G.; Hapner, S. J.; Van Kuijk, F. J. G. M. 4-Hydroxynonenal Inhibits Na+-K+-ATPase *Free Radical Biol. Med.* **1996**, *20*, 215-223.
- (44) Siems, W. G.; Capuozzò, E.; Verginelli, D.; Salerno, C.; Crifo, C.; Grune, T. Inhibition of NADPH Oxidase-Mediated Superoxide Radical Formation in PMA-Stimulated Human Neutrophils by 4-Hydroxynonenal– Binding to -SH and -NH2 Groups *Free Radic. Res.* 1997, 27, 353-358.
- (45) Roede, J. R.; Carbone, D. L.; Doorn, J. A.; Kirichenko, O. V.; Reigan, P.; Petersen, D. R. In Vitro and in Silico Characterization of Peroxiredoxin 6 Modified by 4-Hydroxynonenal and 4-Oxononenal *Chem. Res. Toxicol.* 2008, *21*, 2289-2299.

- (46) Chen, Y.; Cong, Y.; Quan, B.; Lan, T.; Chu, X.; Ye, Z.; Hou, X.; Wang, C. Chemoproteomic Profiling of Targets of Lipid-Derived Electrophiles by Bioorthogonal Aminooxy Probe *Redox Biol.* 2017, *12*, 712-718.
- (47) Shearn, C. T.; Smathers, R. L.; Stewart, B. J.; Fritz, K. S.; Galligan, J. J.; Hail, N., Jr.; Petersen, D. R. Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN) Inhibition by 4-Hydroxynonenal Leads to Increased Akt Activation in Hepatocytes *Mol. Pharmacol.* 2011, 79, 941-952.
- (48) Weerapana, E.; Wang, C.; Simon, G. M.; Richter, F.; Khare, S.; Dillon, M. B.; Bachovchin, D. A.; Mowen, K.; Baker, D.; Cravatt, B. F. Quantitative reactivity profiling predicts functional cysteines in proteomes *Nature* **2010**, *468*, 790-795.
- (49) Liu, X.-W.; Sok, D.-E. Inactivation of Protein Disulfide Isomerase by Alkylators Including Unsaturated Aldehydes at Low Physiological pHs *Biol. Chem.* 2004, 385, 633-637.
- (50) Carbone, D. L.; Doorn, J. A.; Kiebler, Z.; Petersen, D. R. Cysteine Modification by Lipid Peroxidation Products Inhibits Protein Disulfide Isomerase *Chem. Res. Toxicol.* **2005**, *18*, 1324-1331.
- (51) Chiarpotto, E.; Domenicotti, C.; Paola, D.; Vitali, A.; Nitti, M.; Pronzato, M. A.; Biasi, F.; Cottalasso, D.; Marinari, U. M.; Dragonetti, A.et al. Regulation of Rat Hepatocyte Protein Kinase Cb Isoenzymes by the Lipid Peroxidation Product 4-Hydroxy-2,3-Nonenal: A Signaling Pathway to Modulate Vesiculartransport Of Glycoproteins *Hepatology* **1999**, *29*, 1565-1572.
- (52) Camarillo, J. M.; Ullery, J. C.; Rose, K. L.; Marnett, L. J. Electrophilic Modification Of PKM2 by 4-Hydroxynonenal And 4-Oxononenal Results in Protein Cross-Linking and Kinase Inhibition *Chem. Res. Toxicol.* **2017**, *30*, 635-641.
- (53) Shearn, C. T.; Fritz, K. S.; Reigan, P.; Petersen, D. R. Modification of Akt2 by 4-Hydroxynonenal Inhibits Insulin-Dependent Akt Signaling in HepG2 Cells *Biochemistry* 2011, 50, 3984-3996.
- (54) Van Kuijk, F. J. G. M. 4-Hydroxynonenal Interaction with Rhodopsin *Biochem. Biophys. Res. Commun.* **1997**, *230*, 275-279.
- (55) Scofield, R. H.; Kurien, B. T.; Ganick, S.; Mcclain, M. T.; Pye, Q.; James, J. A.; Schneider, R. I.; Broyles, R. H.; Bachmann, M.; Hensley, K. Modification of Lupus-Associated 60-Kda Ro Protein with the Lipid Oxidation Product 4-Hydroxy-2-nonenal Increases Antigenicity and Facilitates Epitope Spreading *Free Radical Biol. Med.* 2005, 38, 719-728.
- (56) Fritz, K. S.; Galligan, J. J.; Smathers, R. L.; Roede, J. R.; Shearn, C. T.; Reigan, P.; Petersen, D. R. 4-Hydroxynonenal Inhibits SIRT3 via Thiol-Specific Modification *Chem. Res. Toxicol.* **2011**, *24*, 651-662.
- (57) Arashiki, N.; Otsuka, Y.; Ito, D.; Yang, M.; Komatsu, T.; Sato, K.; Inaba, M. The Covalent Modification of Spectrin in Red Cell Membranes by the Lipid Peroxidation Product 4-Hydroxy-2-nonenal *Biochem. Biophys. Res. Commun.* **2010**, *391*, 1543-1547.
- (58) Pedrajas, J. R.; Gavilanes, F.; López-Barea, J.; Peinado, J. Incubation of Superoxide Dismutase with Malondialdehyde and 4-Hydroxy-2-Nonenal Forms New Active Isoforms and Adducts. An Evaluation of Xenobiotics in Fish *Chem.-Biol. Interact.* 1998, 116, 1-17.
- (59) Fang, J.; Holmgren, A. Inhibition of Thioredoxin and Thioredoxin Reductase by 4-Hydroxy-2-nonenal in Vitro and in Vivo J. Am. Chem. Soc. **2006**, *128*, 1879-1885.

- (60) Dellostritto, D. J.; Sinharoy, P.; Connell, P. J.; Fahmy, J. N.; Cappelli, H. C.; Thodeti, C. K.; Geldenhuys, W. J.; Damron, D. S.; Bratz, I. N. 4-Hydroxynonenal Dependent Alteration tf TRPV1-Mediated Coronary Microvascular Signaling *Free Radical Biol. Med.* 2016, *101*, 10-19.
- (61) Stewart, B. J.; Doorn, J. A.; Petersen, D. R. Residue-Specific Adduction of Tubulin by 4-Hydroxynonenal and 4-Oxononenal Causes Cross-Linking and Inhibits Polymerization *Chem. Res. Toxicol.* **2007**, *20*, 1111-1119.
- (62) Olivero, A.; Miglietta, A.; Gadoni, E.; Gabriel, L. 4-Hydroxynonenal Interacts with Tubulin by Reacting with its Functional -SH Groups *Cell Biochem. Funct.* **1990**, *8*, 99-105.