Parsl. A Python-based Parallel Scripting Library

http://parsl-project.org

Yadu Babuji', Kyle Chard™, Ben Clifford’, lan Foster”™ Daniel S. Katz°, Lukasz Lacinski™,
Zhuozhao Li", Connor Pigg°, Michael Wilde*~, Anna Woodard’, Justin M. Wozniak’

"University of Chicago & Argonne National Laboratory; "Globus; ~Parallel Works

THE UNIVERSITY QOF

CHICAGO

Argon ne3

NATIONAL LABORATORY

I ILLINOIS

NCSA | National Center for
Supercomputing Applications

*National Center for Supercomputing Applications, University of lllinois at Urbana-Champaign

Goals

e Easy to write Python workflows that glue
together external programs and Python
functions

e Easy to run in parallel on diverse
resources

e Easy to install:

plp 1nstall parsl

e Open source (Apache 2.0 license)
e Open community

Scientific Workflows

HPC/HTC workflow

O(100K) drug

. X B |
O(10) proteins candidates S4thallgs 1M docking
tasks, hundreds

I of MD models to
find candidates
for experiments

aco o o\ H ch

@, [ty
. O Cl O (o} Hd' "OH N§|/N 5
‘ [Na*]‘ 5\/54
A

000000

Machine learning workflow

preprocess = : "
-, Q predict
— ' — a - :
=0-%- I
— -

Model applied to
O(Ms) of possible
materials

O(Ms) of data used
to train a model

Write once, run anywhere e

On clouds, clusters, supercomputers

Parsl scripts are independent of the execution environment.
A single script can be executed on one or more execution
resources without modifying the script.

Implicit dataflow
Apps execute concurrently while

respecting data dependencies

Parsl creates a dynamic graph of tasks and their data
dependencies. Tasks are only executed when their
dependencies are met.

J00EG0c0EAaE
CL D]]

raj_cosputer):

Scalable Jupyter notebooks
Easily manage execution across R —
distributed resources
Parsl| works seamlessly with Jupyter notebooks

allowing apps within a notebook to be executed SR
- § .."“ > oz;:”:‘)‘{:L “.“ '
In parallel and on remote resources. \L\ /{/

parsl file =
File (globus://EP/path/file)

Automated data movement

Implicit wide area staging
Parsl handles the complexity of ensuring data is in the right

T AN place at the right time for computation.

Interactive workflow

O(1M) cosmic ray lterative collection,
events curation, analysis,
' ' visualization

Parsl is supported by the National Science Foundation under awards 1550476, 1550475, 1550528, 1550562, 1550588

SITE (minBlocks=1, initBlocks=1,

Execution management | —
Handles failures and elasticity gg -~ T

Parsl uses checkpointing and automatic retries as
a resilience mechanism to handle failures.

Parsl apps can be containers in resource pools
that grow and shrink elasticity as needed.

capacity=fullll

Jinm

Configuration: Use arbitrary resource(s)

Comet config = Config(
executors=|
IPyParallelExecutor(
label="comet _ipp multinode’,
provider=SlurmProvider(
‘compute’

N1

parsl.load(Comet_config)

App definition: Run Python and bash apps

@bash_app
def generate(outputs=[]):
return a random number from 1 to 10
return "echo $(((RANDOM % 10) + 1)) &> {outputs[O]}"

@python_app
def total(inputs=[]):

total = ©
for i in inputs:
with open(i, 'r') as f:
total += sum([int(line) for line in f])
return total

Execution: Transparent parallelization based
on data dependencies

Create 5 files with random #s
output_files = []
for i in range (5):
output files.append(generate(outputs=['r%s.txt' % 1]))

Calculate the sum of the random numbers
t = total(inputs=[i.outputs[@] for i in output files])
print (t.result())

