
Parsl: A Python-based Parallel Scripting Library
http://parsl-project.org

Yadu Babuji*, Kyle Chard*⚑, Ben Clifford*, Ian Foster*⚑, Daniel S. Katz°, Lukasz Lacinski*⚑,
Zhuozhao Li*, Connor Pigg°, Michael Wilde*⚐, Anna Woodard*, Justin M. Wozniak*

*University of Chicago & Argonne National Laboratory; ⚑Globus; ⚐Parallel Works
°National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

Goals
● Easy to write Python workflows that glue

together external programs and Python
functions

● Easy to run in parallel on diverse
resources

● Easy to install:
pip install parsl

● Open source (Apache 2.0 license)
● Open community

Configuration: Use arbitrary resource(s)

App definition: Run Python and bash apps

Execution: Transparent parallelization based
on data dependencies

Automated data movement
Implicit wide area staging

Parsl handles the complexity of ensuring data is in the right
place at the right time for computation.

Implicit dataflow
Apps execute concurrently while

 respecting data dependencies
Parsl creates a dynamic graph of tasks and their data

dependencies. Tasks are only executed when their
dependencies are met.

Parsl is supported by the National Science Foundation under awards 1550476, 1550475, 1550528, 1550562, 1550588

Scientific Workflows

Write once, run anywhere
On clouds, clusters, supercomputers
Parsl scripts are independent of the execution environment.
A single script can be executed on one or more execution
resources without modifying the script.

Scalable Jupyter notebooks
Easily manage execution across
distributed resources
Parsl works seamlessly with Jupyter notebooks
allowing apps within a notebook to be executed
in parallel and on remote resources.

Execution management
Handles failures and elasticity
Parsl uses checkpointing and automatic retries as
a resilience mechanism to handle failures.
Parsl apps can be containers in resource pools
that grow and shrink elasticity as needed.

Interactive workflow

Machine learning workflow

HPC/HTC workflow

O(10) proteins X O(100K) drug
candidates =1M docking

tasks, hundreds
of MD models to
find candidates
for experiments

O(1M) cosmic ray
events

Iterative collection,
curation, analysis,
visualization

O(Ms) of data used
to train a model

Model applied to
O(Ms) of possible
materials

