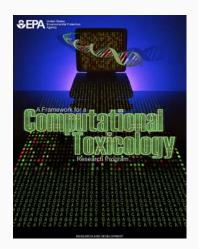
Development of a Tool for Integrating Traditional and New Approach Methodologies (NAMs) for Chemical Safety Decisions


Antony Williams, Richard Judson, Chris Grulke and Rusty Thomas National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC

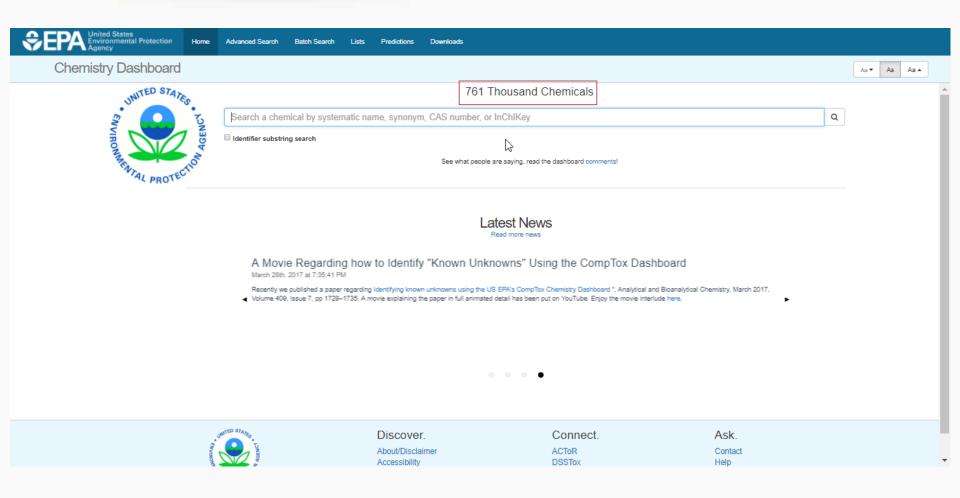
The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

March 2018 ACS Spring Meeting, New Orleans

National Center for Computational Toxicology

- National Center for Computational Toxicology (NCCT) established in 2005 to integrate:
 - High-throughput and high-content technologies
 - Molecular biology
 - Data mining and statistical modeling
 - Computational biology and chemistry
- Outputs: a lot of data, models, algorithms and software applications
- Open Data we want scientists to interrogate it, learn from it, develop understanding

• EPA must designate a set of high-priority chemicals for detailed risk assessment.


 NCCT is building a web-based tool as one approach to help guide that selection

The CompTox Dashboard

- NCCT has lots of data to build relevant tools and approaches. The source data are available via the CompTox Dashboard
- A publicly accessible website delivering access:
 - ~760,000 chemicals with related property data
 - Experimental and predicted physicochemical property data
 - Integration to "biological assay data" for 1000s of chemicals
 - Data regarding chemical exposure
 - Links to other agency websites and public data resources
 - "Literature" searches for chemicals using public resources
 - "Batch searching" for thousands of chemicals

CompTox Dashboard https://comptox.epa.gov/dashboard

Chemical Hazard Data

EPA United States Environmental Agency	I Protection Home	e Advanced Search	Batch Searc	sh Lists	Predictions	Downloads	5				Search All Da	lata Q
Chemistry Das	shboard EP4	AHFR						Submit Con	nment	Сору 🕶	Aa 🕶 🛛 Aa	Аз 🔺
Chemical Properties Env. Fa	ate/Transport Hazard	rd ADME (Beta)	Exposure	Bioassays	Similar Compo	ounds	Related Substance	es Synonyms	s Literati	ture Lin	nks Comme	ents
Exposure Limit	Download table a	as: TSV Excel			Human	n Eco						
Lethality Effect Level Point of Departure	Pi	Priority 🖶 🕴	Subtype	Risk Assessment Class		Units		Exposure Route Spe	ecies Su	Gubsource	Source	
Toxicity Value	+	8 NOEL	Cardiova	subchronic	5000.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (•
	+	8 NOEL	Endocrine	subchronic	5000.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (
	+	8 LOEL	Hematol	subchronic	2500.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (
	+	8 LOEL	Hepatic	subchronic	2500.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (
	+	8 NOEL	Immune	immunot	5000.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (
	+	8 NOEL	Renal	subchronic	5000.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (
	+	8 LOEL	Systemic	subchronic	2500.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (
	+	8 NOEL	Hematol	subchronic	1500.0	mg/kg-day	subchronic	oral	rabbit	Vaille et	PPRTV (
	+	8 NOEL	Systemic	subchronic	1500.0	mg/kg-day	subchronic	oral	rabbit	Vaille et	PPRTV (

In Vitro Bioassay Screening ToxCast and Tox21

6

Sources of Exposure to Chemicals

Product & Use Categories	osure	Bioassays	Similar Compounds	Related Substances	Synonyms	Literature	Links	Commer	nts
Chemical Weight Fraction		Pr	oduct & Use Categorie	es (PUCs) 🚯					
Chemical Functional Use		Categoriz PUC	ration type		nber of Unique Pr	roducts		*	*
Monitoring Data		PUC		208					1
		PUC		117					
Exposure Predictions		PUC		107					
		PUC		101					
Production Volume		PUC		90					
		PUC		89					-

- Use **available data** for *in vivo, in vitro*, exposure and chemical property data
- Develop scoring schemes to merge different types of data
- Develop methods to note or fill data gaps
- Make data, scores, prioritization ranking available in the web-based tool

Potential Data Sources

In Vivo Human Hazard:

- Mammalian toxicity studies guideline-like, use POD
- System-specific in vivo data (Cancer, developmental)
- Models (QSAR) to predict POD and organ-specific effects
- Genotoxicity
- In vitro-derived endocrine disruption and neurotoxicity models

In Vivo Eco Hazard

- Aquatic in vivo studies POD
- Models (QSAR) of POD

Potential Data Sources

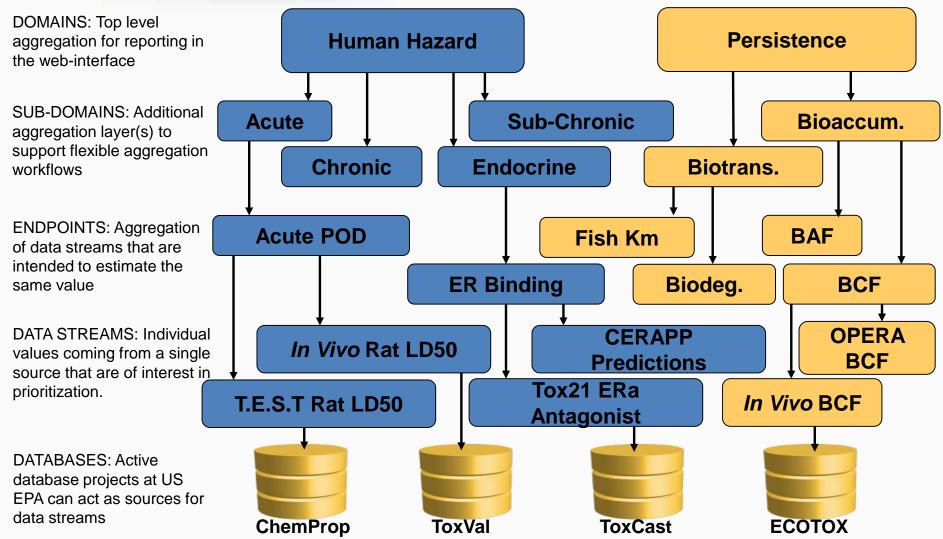
Human Exposure

- Data on production volume and releases
- Quantitative biomonitoring data
- Predictions of oral and inhalation exposure

Eco Exposure

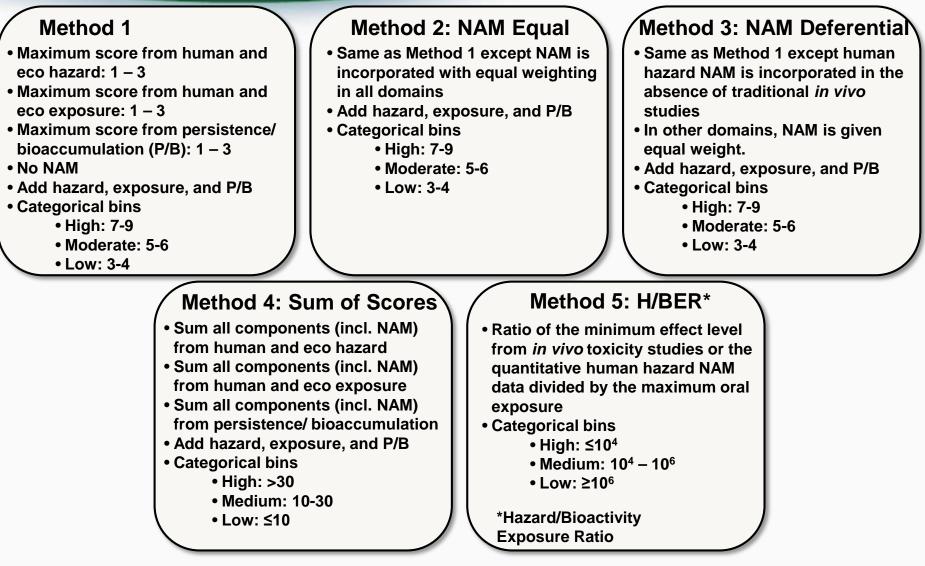
- Biomonitoring data
- Predictions of water concentrations

Physchem


• Persistence and Bioaccumulation models (OPERA)

Mansouri et al. J Cheminform (2018) 10:10 https://doi.org/10.1186/s13321-018-0263-1 Journal of Cheminformatics

Aggregating Data


Scoring approaches

- For each chemical, each domain receives a score of 1 (Low), 2 (Moderate), or 3 (High) concern
- Hazard score = maximum of human and eco hazard scores
- Exposure score = maximum of human and eco exposure scores
- **Total score** = hazard score + exposure score + physchem score
- If no data is available for a domain, it is given the "missing data score", currently 1 (Low)
- Scoring can include or exclude NAM

Implemented Scoring Methods

Overall Scoring Page

Phy	schem	ı Pri	oritization	
Show	25	~	entries	

Domain Help

Cutoffs

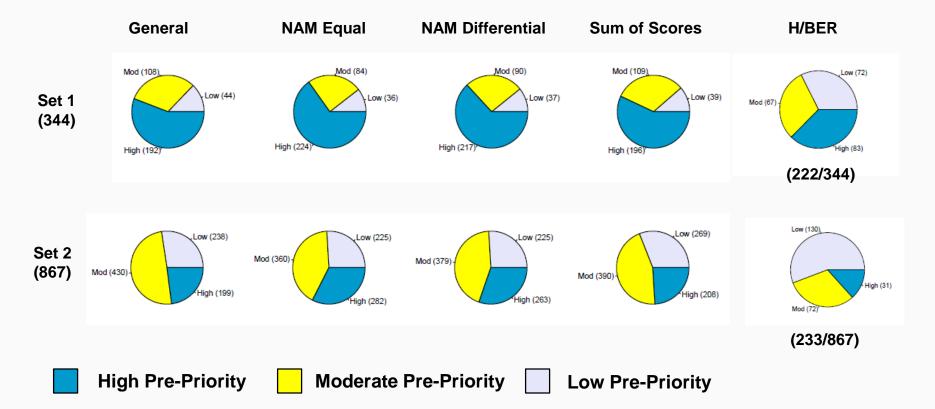
Human Hazard Prioritization

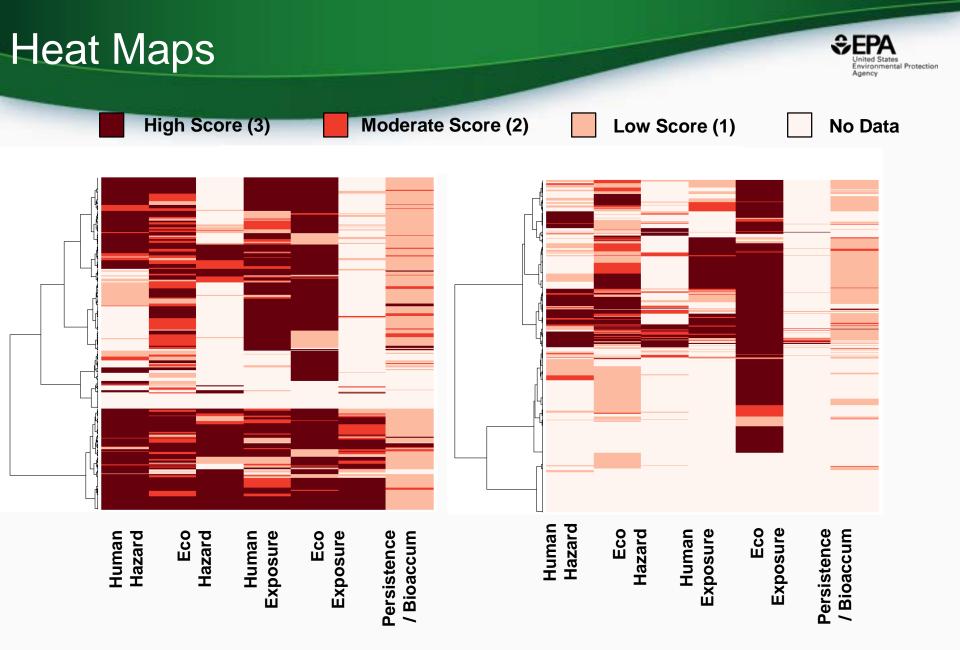
Eco Hazard Prioritization

Human Exposure Prioritization

Eco Exposure Prioritization

Overall Prioritization


Data Coverage Summary **Distribution Graphs**


Search:

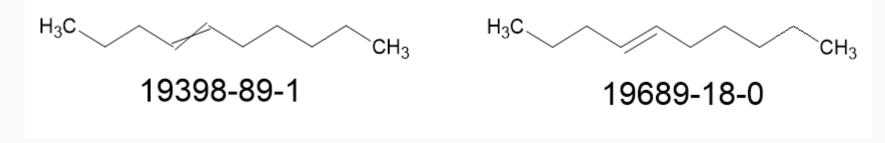
DSSTox_ID	CASRN	Name	Method 1 score	Method 1 bin	Method 2 score	Method 2 bin	Method 3 score	Method 3 bin	Method 4 score	● Method 4 bin
DTXSID124356	1234-56-7	Name1	5	Moderate (ExeHzeHzh)	6	Moderate (ExeHzeHzh)	6	Moderate (ExeHzeHzh)	25	Moderate (ExeHzeHzh)
DTXSID124357	1234-56-8	Name2	5	Moderate (PbExeHzeHzh)	7	High (PbExeHzeHzh)	7	High (PbExeHzeHzh)	24	Moderate (PbExeHzeHzh)
DTXSID124358	1234-56-9	Name3	I- 5	Moderate (ExeHzeHzh)	6	Moderate (ExeHzeHzh)	6	Moderate (ExeHzeHzh)	41	High (ExeHzeHzh)
DTXSID124359	1234-56-10	Name4	5	Moderate (ExeHzeHzh)	5	Moderate (ExeHzeHzh)	5	Moderate (ExeHzeHzh)	13	Moderate (ExeHzeHzh)
DTXSID124360	1234-56-11	Name5	5	Moderate (PbExeHzeHzh)	5	Moderate (PbExeHzeHzh)	5	Moderate (PbExeHzeHzh)	20	Moderate (PbExeHzeHzh)
DTXSID124361	1234-56-12	Name6	5	Moderate (ExeHzeHzh)	5	Moderate (ExeHzeHzh)	5	Moderate (ExeHzeHzh)	35	High (ExeHzeHzh)
DTXSID124362	1234-56-13	Name7	5	Moderate (PbExeHze)	5	Moderate (PbExeHze)	5	Moderate (PbExeHze)	21	Moderate (PbExeHze)
DTXSID124363	1234-56-14	Name8	6	Moderate (PbExeHze)	6	Moderate (PbExeHze)	6	Moderate (PbExeHze)	16	Moderate (PbExeHze)
DTXSID124364	1234-56-15	Name9	5	Moderate (PbExeHze)	5	Moderate (PbExeHze)	5	Moderate (PbExeHze)	26	Moderate (PbExeHze)
DTXSID124365	1234-56-16	Name10	6	Moderate (PbExeHze)	6	Moderate (PbExeHze)	6	Moderate (PbExeHze)	23	Moderate (PbExeHze)
DTXSID124366	1234-56-17	Name11	5	Moderate	5	Moderate	5	Moderate	17	Moderate 14

Fraction of chemicals in each bin

Heatmaps showing the domain-specific scores for chemical sets.

Registration and Curation of Chemicals

- Consolidation and registration of the original chemical lists into the underlying database (DSSTox)
- Careful (and time-consuming) curation
 - Confirming mappings of chemical names and CASRNs

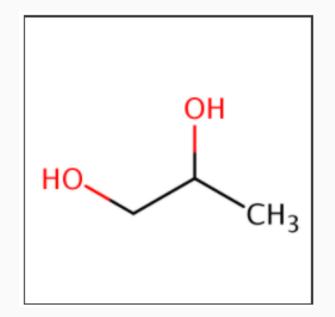

Names to CASRN Mappings

	(1 of 66) 🛛 🖪 🤜	Substance M	apping 6 7 8 9 10 •	» ▶1 25 ¥	
	Source Casrn	Source Name	Hit Substance_ID	Hit Casrn	Hit Name	
0	19398-89-1	4-Decene	DTXSID50876156	19689-18-0	4-Decene	Remove Validation
0	112926-00-8	silica gel, cryst free	DTXSID9029851	112926-00-8	Hydrated silica	Remove Validation
0	124-28-7	1- Octadecanamine, N,N-dimethyl-	DTXSID4027026	124-28-7	N,N-Dimethyl-1- octadecanamine	Remove Validation
0	1330-43-4	Boron sodium oxide	DTXSID2034388	1330-43-4	Sodium tetraborate	Remove Validation
0	13492-26-7	Mono- and di- potassium salts of phosphorous acid	DTXSID9035961	13492-26-7	Phosphonic acid, potassium salt (1:2)	Remove Validation
0	135-37-5	Glycine, N- (carboxymethyl)- N-(2- hydroxyethyl)-, disodium salt	DTXSID8042008	135-37-5	Ethanoldiglycine disodium salt	Remove Validation

"4-Decene"

E/Z-stereochemistry

E-stereochemistry


Registration and Curation

- Registration of the chemical list into the underlying database (DSSTox)
- Careful (and time-consuming) curation
 - Confirming mappings of chemical names and CASRNs
 - CASRN checking Active, Alternate and Deleted

CAS Registry Numbers

1,2-Propylene glycol

Propane-1,2-d

1,2-Propanediol

57-55-6 Aotive CA8-RN

alpha-Propylene glycol

(+/-) 1,2-Propanediol

(RS)-1,2-Propanediol

dl-Propylene glycol

3-01-00-02142 Belistein Registry Number

1,2-Propanediol

(.+-.)-1,2-Propanediol

(.+-.)-Propylene glycol

Propylenglycol

Sentry Propylene Glycol

Trimethyl glycol

Ucar 35

a-Propylene glycol

alpha-propyleneglycol

methyl glycol

methylethyl glycol

1194048-20-2 Deleted CA8-RN

190913-75-8 Deleted CA 8-RN

4254-16-4 Deleted CA8-RN

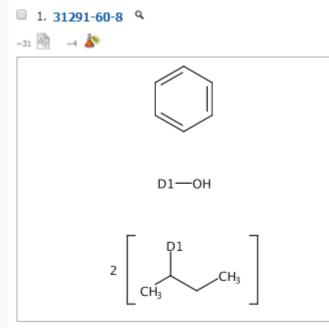
63625-56-9 Deleted CA8-RN

Registration and Curation

- Registration of the chemical list into the underlying database (DSSTox)
- Careful (and time-consuming) curation
 - Confirming mappings of chemical names and CASRNs
 - CASRN checking Active, Alternate and Deleted
 - Misspellings, alternative synonyms, misassociations

Alternative Synonyms

	4		Substance M	apping		
	45	(1 of 66) 🛛 🖽 🔫	12345	6 7 8 9 10	» ►I 25 T	
	Source Casrn	Source Name	Hit Substance_ID	Hit Casrn	Hit Name	
O	19398-89-1	4-Decene	DTXSID50876156	19689-18-0	4-Decene	Remove Validation
0	112926-00-8	silica gel, cryst free	DTXSID9029851	112926-00-8	Hydrated silica	Remove Validation
0	124-28-7	1- Octadecanamine, N,N-dimethyl-	DTXSID4027026	124-28-7	N,N-Dimethyl-1- octadecanamine	Remove Validation
0	1330-43-4	Boron sodium oxide	DTXSID2034388	1330-43-4	Sodium tetraborate	Remove Validation
0	13492-26-7	Mono- and di- potassium salts of phosphorous acid	DTXSID9035961	13492-26-7	Phosphonic acid, potassium salt (1:2)	Remove Validation
O	135-37-5	Glycine, N- (carboxymethyl)- N-(2- hydroxyethyl)-, disodium salt	<u>DTXSID8042008</u>	135-37-5	Ethanoldiglycine disodium salt	Remove Validation


- UVCBs are chemical substances of unknown or variable composition, complex reaction products and biological materials
 - Surfactants (C11-14 linear alkyl sulfonates)
 - Reaction mass of p-t-butylphenyldiphenyl phosphate and bis(p-t-butylphenyl)phenyl phosphate and triphenyl phosphate
 - Almond Oil

Di-sec-butylphenol

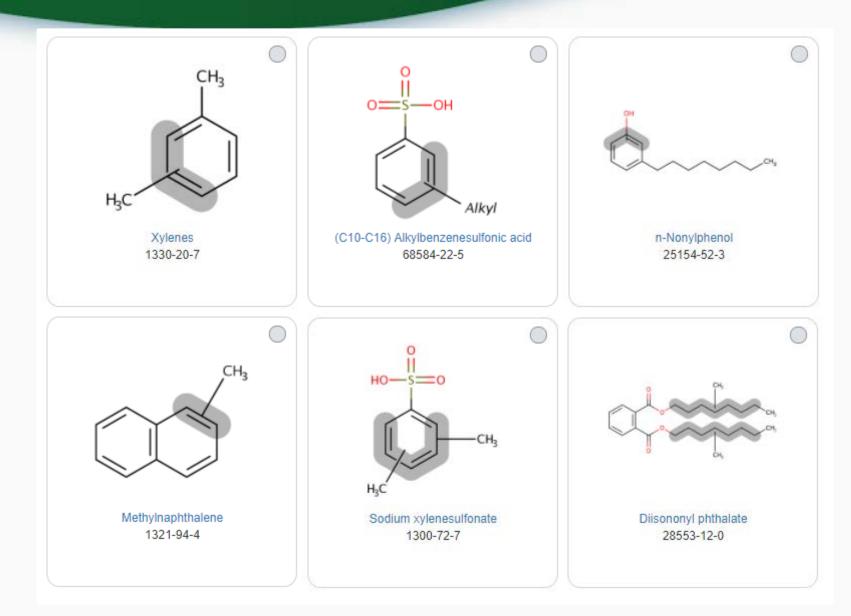
Dashboard Representation

CAS Representation

C14 H22 O Phenol, bis(1-methylpropyl)-

Di-sec-butylphenol

31291-60-8 | DTXSID5049574


Searched by DSSTox_Substance_Id: Found 1 result for 'DTXSID5049574'.

Quality Control Note	es							
elated Substances	Synonyms	Links	Bioassays	Exposure	Hazard	Comments	Chemical Properties	Literature
								3 chemicals
Download / Se		Sort by:	Relationship					
2 rela	arched Chemical ited chen ures with ubstance	nical	Relationship		ntative Isomer	0		ntative Isomer

"Markush Structures"

https://en.wikipedia.org/wiki/Markush_structure

- RapidTox workflow enabled identification of data that contributed most to candidate selection
- Allowed flexible exploration of prioritization methods
- Incorporation of NAM data does result in changes for chemical test sets, either by adding data or by changing the overall bin (Low, Moderate, High)

- The NCCT CompTox Dashboard
 Development Team
- Kamel Mansouri OPERA models
- Todd Martin TEST predictions

Antony Williams

US EPA Office of Research and Development

National Center for Computational Toxicology (NCCT)

Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821