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Complex Trade-offs Between Immunity & Growth
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Complex Trade-offs Between Immunity & Growth
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Microbes in and on A. thaliana:

• Who is there?
• How much is there?
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Quantitative microbiome profiling links gut 
community variation to microbial load
Doris Vandeputte1,2,3*, Gunter Kathagen1,2*, Kevin D’hoe1,2,3*, Sara Vieira-Silva1,2*, Mireia Valles-Colomer1,2, João Sabino4, 
Jun Wang1,2, Raul Y. Tito1,2,3, Lindsey De Commer1, Youssef Darzi1,2, Séverine Vermeire4, Gwen Falony1,2§ & Jeroen Raes1,2§

Current sequencing-based analyses of faecal microbiota quantify 
microbial taxa and metabolic pathways as fractions of the sample 
sequence library generated by each analysis1,2 . Although these 
relative approaches permit detection of disease-associated 
microbiome variation, they are limited in their ability to reveal 
the interplay between microbiota and host health3 ,4 . Comparative 
analyses of relative microbiome data cannot provide information 
about the extent or directionality of changes in taxa abundance or 
metabolic potential5 . If microbial load varies substantially between 
samples, relative profiling will hamper attempts to link microbiome 
features to quantitative data such as physiological parameters or 
metabolite concentrations5 ,6 . Saliently, relative approaches ignore 
the possibility that altered overall microbiota abundance itself could 
be a key identifier of a disease-associated ecosystem configuration7 . 
To enable genuine characterization of host–microbiota interactions, 
microbiome research must exchange ratios for counts4 ,8 ,9 . Here 
we build a workflow for the quantitative microbiome profiling of 
faecal material, through parallelization of amplicon sequencing 
and flow cytometric enumeration of microbial cells. We observe up 
to tenfold differences in the microbial loads of healthy individuals 
and relate this variation to enterotype differentiation. We show how 
microbial abundances underpin both microbiota variation between 
individuals and covariation with host phenotype. Quantitative 
profiling bypasses compositionality effects in the reconstruction of 
gut microbiota interaction networks and reveals that the taxonomic 
trade-off between Bacteroides and Prevotella is an artefact of relative 
microbiome analyses. Finally, we identify microbial load as a key 
driver of observed microbiota alterations in a cohort of patients with 
Crohn’s disease10 , here associated with a low-cell-count Bacteroides 
enterotype (as defined through relative profiling)11,12 .

First, we collected a set of 40 fresh faecal samples (the study cohort), 
which were processed within one hour of egestion. We compiled an 
accompanying set of basic matching metadata, with an emphasis on 
anthropometrics and stool characteristics (Supplementary Table 1). 
Given expected dietary effect sizes2 and cohort limitations, participants 
were not requested to keep food records. Sample analysis was aligned 
with Flemish Gut Flora Project (FGFP) protocols2. Metadata explora-
tion reaffirmed the previously reported association of stool consistency 
(Bristol Stool Scale (BSS) score13) with moisture14 (Spearman’s ρ =  0.45, 
P =  5.2 ×  10−3; Supplementary Table 2). Microbiome analysis of frozen 
faecal aliquots characterized the sample set as within the bounds of 
FGFP community space, distributed over four enterotypes that were 
identified on the basis of Dirichlet multinomial mixtures (DMM)  
(Fig. 1a). Stool moisture and donor age were identified as the 
microbiome covariates that displayed the largest non- redundant 
effect size, jointly explaining 9.3% of inter-individual microbiota 
 variation  (stepwise distance-based redundancy analysis (dbRDA); 

Supplementary Table 3). Association analyses confirmed  several 
 previously reported FGFP genus–metadata associations,  including 
the covariation of stool consistency with Akkermansia and 
Methanobrevibacter15,16 (Supplementary Table 4).

Next, we determined total microbial cell counts in faecal samples 
using flow cytometry. Because microbiome analyses often begin with 
frozen material and freeze–thaw cycles can affect cell integrity17, 
we compared counts obtained from both fresh and frozen faecal  

1KU Leuven – University of Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, B-3000 Leuven, Belgium. 2VIB, Center for Microbiology, Kasteelpark Arenberg 31, 
B-3000 Leuven, Belgium. 3Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. 4Translational Research 
Center for Gastrointestinal Disorders (TARGID), KU Leuven, B-3000 Leuven, Belgium.
*These authors contributed equally to this work.
§These authors jointly supervised this work.
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Figure 1 | Faecal microbial loads vary across enterotypes. a, Genus-
level faecal microbiome community variation, represented by principal 
coordinates analysis (Bray–Curtis dissimilarity PCoA). Samples from the 
study cohort (full circles, n =  40) and the FGFP cohort (crosses, n =  1,106) 
were enterotyped and coloured accordingly. Stool moisture content and 
donor age were fitted onto the ordination (arrows scaled to contribution). 
The percentage of variance explained by the two first PCoA dimensions 
are reported on the axes. b, Microbial load differences between the 
four enterotypes in the study cohort (n =  40). Box plot representation 
of microbial load (cells per gram of faeces) distribution across the four 
enterotypes. The body of the box plot represents the first and third 
quartiles of the distribution and the median line. The whiskers extend from 
the quartiles to the last data point within 1.5×  interquartile range, with 
outliers beyond. Two-sided Dunn’s adjusted test, * * P <  0.01. Significant 
differences in microbial abundance between the Prevotella sample and 
other enterotypes were not assessed. The occurrence of a low-cell-count 
Bacteroides B2 enterotype was confirmed in a disease cohort, with the cell 
counts of Prevotella samples being similar to those of the Ruminococcaceae 
and Bacteriodes B1 enterotypes (Extended Data Fig. 4).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Foundational Data: Microbe Population in the Wild
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What Biomass Can Pseudomonas Achieve in the Lab?

Laboratory infection with Pst DC3000
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How Does It Compare to Microbial Load in the Wild?
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How Does It Compare to Microbial Load in the Wild?
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How Does It Compare to Microbial Load in the Wild?
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Is This Due to Pseudomonas Diversity in the Wild?
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Locally Common Pseudomonas OTU5 Is Often Pathogenic
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Pseudomonas OTU5 Has Been Around For a Long Time
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Blank

Does Arabidopsis thaliana have similarly old
broad-spectrum resistance genes?
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NLR-like Sequence Diversity at ACD6

ACD6 enhances SA signaling (J. Greenberg)
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Divergent ACD6 Alleles Are Common and Co-occur
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ACD6-Est Allele Increases Resistance to G. orontii
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ACD6-Est Allele Increases Resistance to G. orontii
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ACD6-Est Allele Common Cause for Small Size in A. thaliana
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ACD6-Est Allele Common Cause for Small Size in A. thaliana
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Suggests a typical immunity-growth trade off:

• ACD6 standard allele wins when pathogens low

• ACD6-Est allele wins when pathogens high



© Detlef Weigel 201820/32
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Things Are More Complicated
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Some ACD6-Est Suppressors Are Common
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MHA1-Ty-0 Suppresses ACD6-Est Activity

– gMHA1-Est-1Est-1 mha1 gMHA1-Ty-0

– mha1-1Ty-0 mha1-2
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Blank

• Functionally very different alleles at ACD6 
• Divergent alleles are common
• Also common variation at modifier loci

à Everything points to ACD6 as an important
immune regulator in natural populations
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So What does ACD6-Est Do Outdoors?

Derek
Lundberg

• Greenhouse & field / same soil
• Field plants started 10/16 & 10/17
• Greenhouse plants started 02/17 & 02/18
• Imaged until bolting à harvest

green-
house

field
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So What does ACD6-Est Do Outdoors?
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So What does ACD6-Est Do Outdoors?
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Microbes of Field-Grown Plant Similar to Wild Plants

greenhouse field wild

16S rDNA 2017 & 2018 season

similar results
with ITS (fungi)

ACD6-Est does not stand out
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Transcriptome Differences Disappear in the Field
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Fitness Difference Only Obvious in the Greenhouse
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• Natural variation reveals new aspects 
of the plant immune system 

• Whole-genome shotgun sequencing 
to measure microbial loads

• Wild plant pathosystems differ from 
crop and lab pathosystems

• Trade-offs differ between 
greenhouse and field

Lessons
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Lessons Learned

• Hybrid necrosis loci often in clusters and with internal repeats

• Causal polymorphisms in coding regions

• Trade-off between defense and growth (danger of too many R genes)

• May promote or reduce outcrossing


