

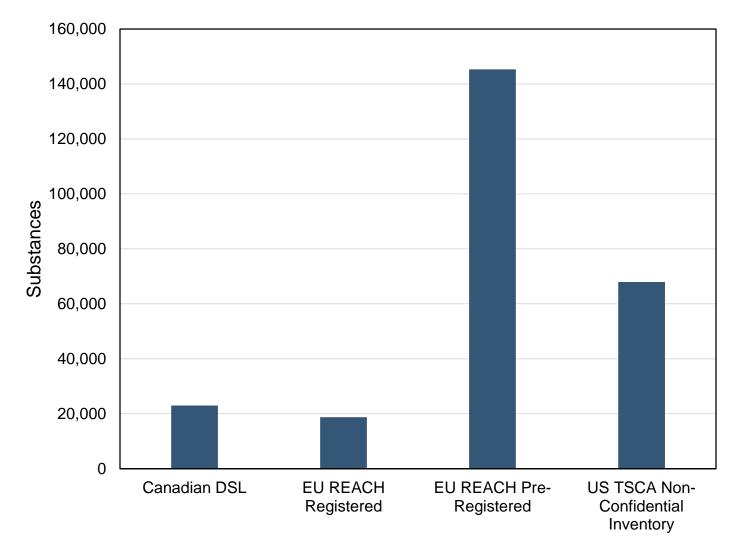
Accelerating the Development and Use of High-Throughput Screening Data for Application to Regulatory Risk Assessments

SETAC Focused Topic Meeting on High Throughput Screening and Environmental Risk Assessment

April 16, 2018

Rusty Thomas Director National Center for Computational Toxicology

The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the U.S. EPA


What Do Grandmothers, Regulators, and Toxicologists Have in Common?

http://talesfromthecircus.com/hissing-grandmother-roaming-hands/

Large Numbers of Chemicals in Commerce

Lack of Toxicity Data

Toxicity Testing

Strategies to Determine Needs and Priorities

Steering Committee on Identification of Toxic and Potentially Toxic Chemicals for Consideration by the National Toxicology Program

Board on Toxicology and Environmental Health Hazards

Commission on Life Sciences

National Research Council

- Major challenge is too many chemicals and not enough data
- Total # chemicals = 65,725
- Chemicals with no toxicity data of any kind = ~46,000

NATIONAL ACADEMY PRESS Washington, D. C. 1984

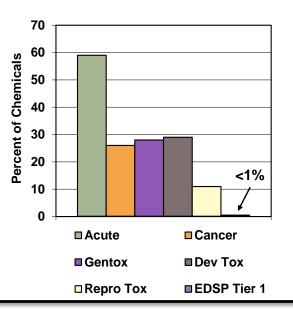
The Toxicity Data Landscape for Environmental Chemicals

Richard Judson,¹ Ann Richard,¹ David J. Dix,¹ Keith Houck,¹ Matthew Martin,¹ Robert Kavlock,¹ Vicki Dellarco,² Tala Henry,² Todd Holderman,² Philip Sayre,² Shirlee Tan,⁴ Thomas Carpenter,⁵ and Edwin Smith⁶

¹National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA; ²Office of Pesticide Programs, Office of Provention, Pasticides, and Toxic Substances, U.S. Environmental Protection Agency, Arington, Vrginia, USA; ²Office of Politon Prevention and Toxics and ⁴Office of Science Coordination and Policy, Office of Prevention, Pesticides, and Toxic Substances, U.S. Environmental Protection Agency, Washington, DC, USA; ²Office of Water, Office of Ground Water and Drinking Water, U.S. Environmental Protection Agency, Washington, DC, USA; ²Great Lakes National Program Office, U.S. Environmental Protection Agency, Washington, DC, USA;

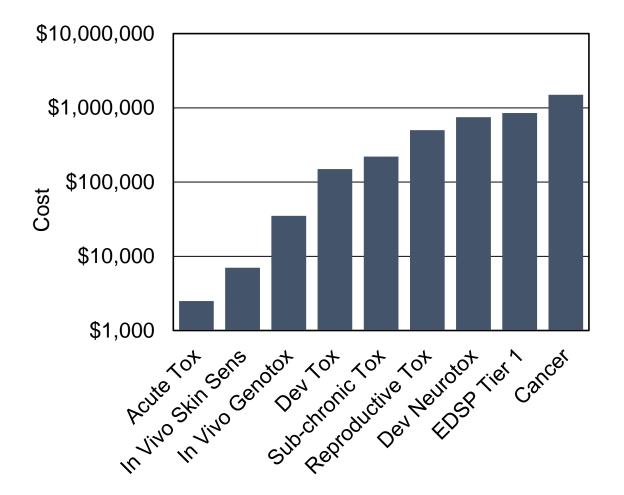
OBJECTIVE: Thousands of chemicals are in common ase, but only a portion of them have undergone significant traitcologic evaluation, localing to the nead to prioritize the meaninder for targeted leating. To addrase this losse, the U.S. Environmental Protection Append (EPA) and ether cognitizations are developing chemical accessing and prioritization programs. As part of these efforts, it is important in catalog, from widely dispersivel sources, the toticalogy information that are scalable. The main objective of this analysis is to define a list of environmental chemicals that are candidates for the U.S. EPA sementing and prioritization process, and to catalog from available inclusiony information.

DATA SOURCES: We are developing ACToR (Aggregated Computational Toxicology Resource), which combines information for handreds of thousands of chemicals from > 200 public sources, including the U.S. EPA, National Institution of Health, Food and Dreg Administration, corresponding agencies in Canada, Europe, and Japan, and audition cources.

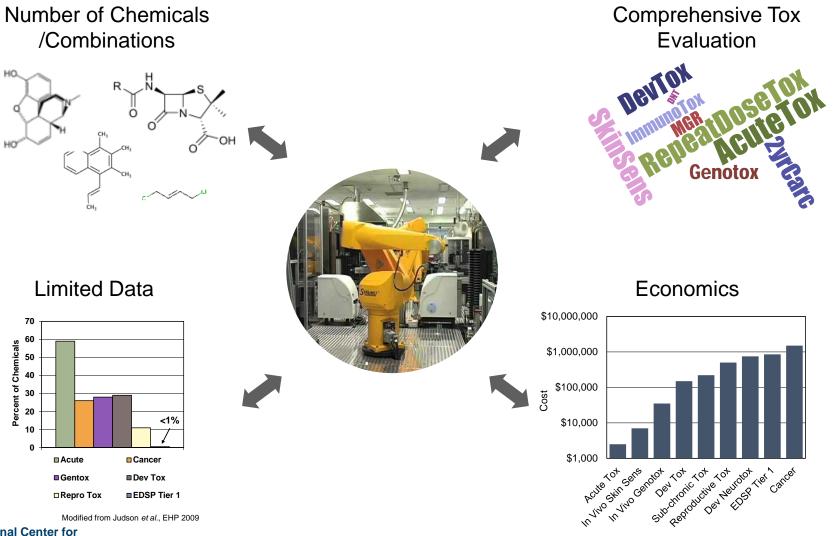

DATA EXTERCISION: ACTOR contains chemical structure information; physical-chemical properties: for ritre away data: tables in ritre data: summary toticology calls (e.g., a statement that a chemical is considered to be a human carcinogen); and links to conline toticology summaries. Here, we use data from ACTOR to assess the toticity data landscape for environmental chemicals.

Howard 2006). The European Union's Registration, Evaluation, and Authorization of Chemicals (REACH) program has recently released its first set of registered substances, which contains > 140,000 entrise (REACH 2008). The exact number of chemicals in use is, in a sense, unknowable because it depends on where one sets the threshold of use and because use changes over time. The major opint is that the number is relatively large and that only a relatively small subset of those chemicals have been sufficiently well characterized for their potential to cause human or conlogic toxicity to support regulatory acidan. This "data gog' is well documented (Mlanou

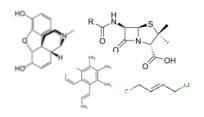
DATA STNIMUSE: We show reads for analysis as part of the U.S. EPA TorCi and medium-production-volume cher water contaminants.


CONCLISION: Approximately two-th market available. About one-quarter H realization detahuse such as the U.S. Ruk Information System, and the Nati KET WORDS: ACTOR, carcinogenicity reproductive, truicity. Environ Healt available via http://dx.doi.org/ [Online

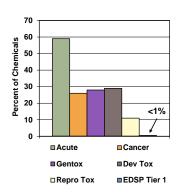
The U.S. Environmental Protect (EPA) has a significant interest in ing more efficient and informativ determination approaches in part of the large number of chemicals jurisdiction. Ultimately, it would ficial to characterize the toxicolog of all chemicals in use in the Uni However, the size of this chemical [in excas of 75,000 chemicals, wh estimated number in the Toxic St Control Act (TSCA 1976) inven EPA 2004b) makes this goal too using current approaches to toxicit terization that rely on extensive an ing, cost millions of dollars, and 2-3 years per chemical. The Interna Sciences Institute/Health and Envir Sciences Institute (ILSI/HESI) released several reports describing focused, tier-based approach for tor ing of agricultural chemicals, whi ultimately lead to the use of fews (Barton et al. 2006; Carnichael et : The National Research Counc



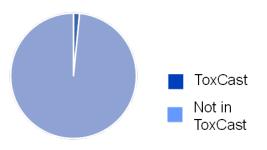
Costs of Traditional Toxicity Testing



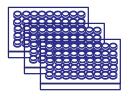
How Can High-Throughput Approaches Address These Challenges?



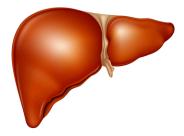
Key Steps in Satisfying Grandma, **Toxicologists, and Regulators**

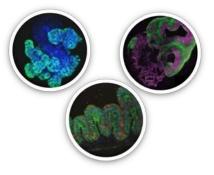

Modified from Judson et al., EHP 2009

- Systematically addressing limitations in alternative test systems
- Continue putting results in a dose/exposure context
- Characterize of uncertainty
- Emphasize development of computational models to integrate experimental data
- Deliver of data and models through decision support tools
- Translation of results through regulatory focused case studies

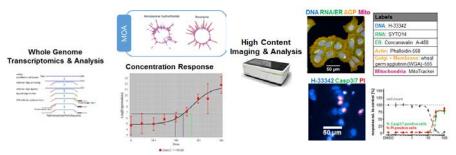


Some Existing Limitations in High Throughput and *In Vitro* Test Systems

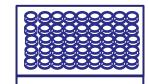

Biological Coverage (Gene Basis)


Chemical Coverage and Specific Chemical Types (e.g., VOCs)

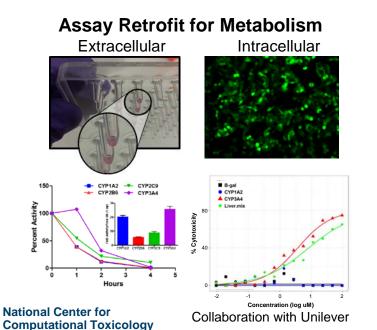
Metabolic Competence

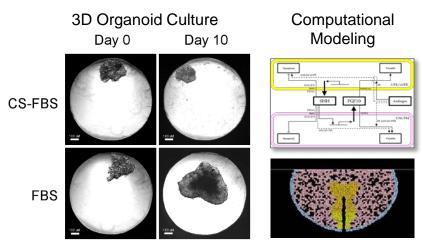


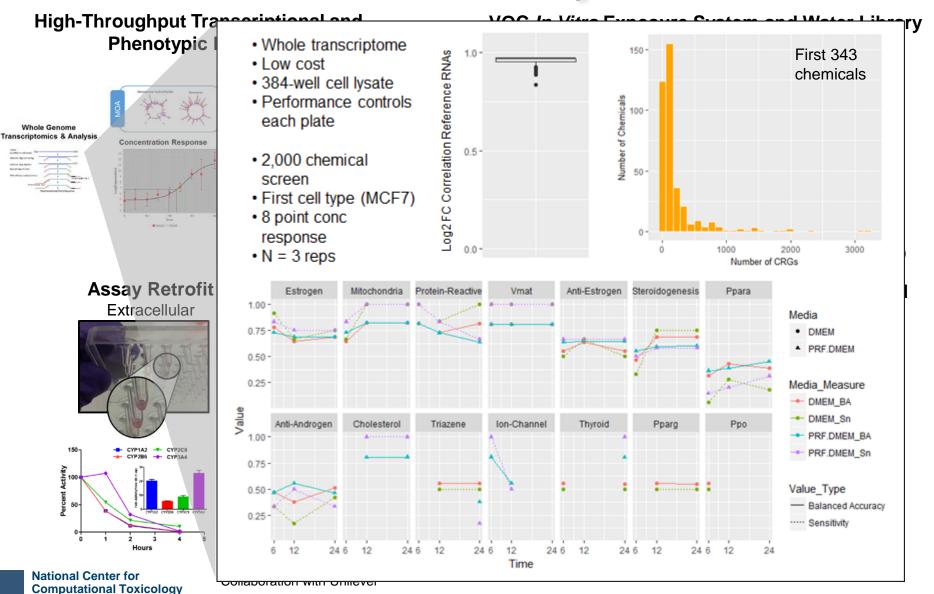
Organ and Tissue Responses

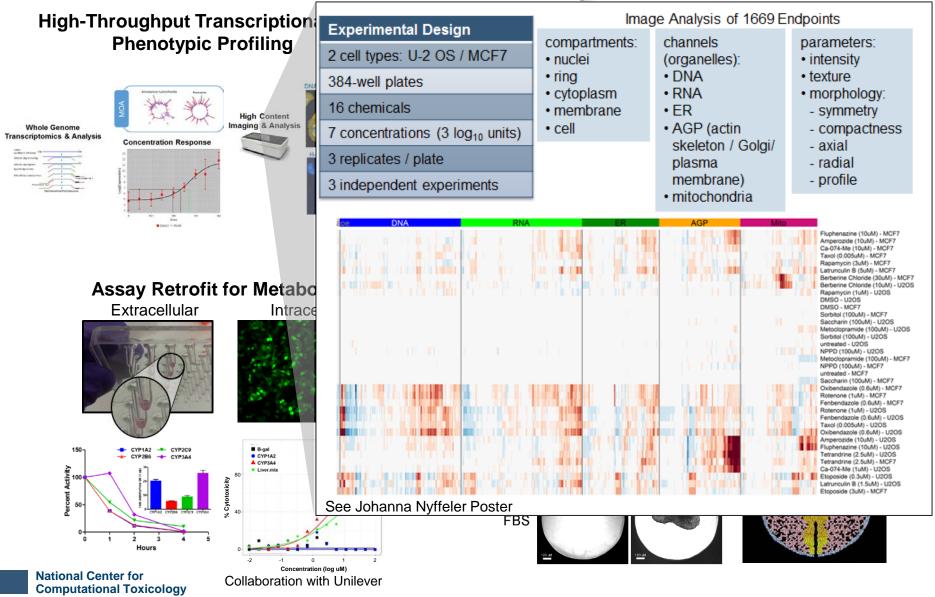


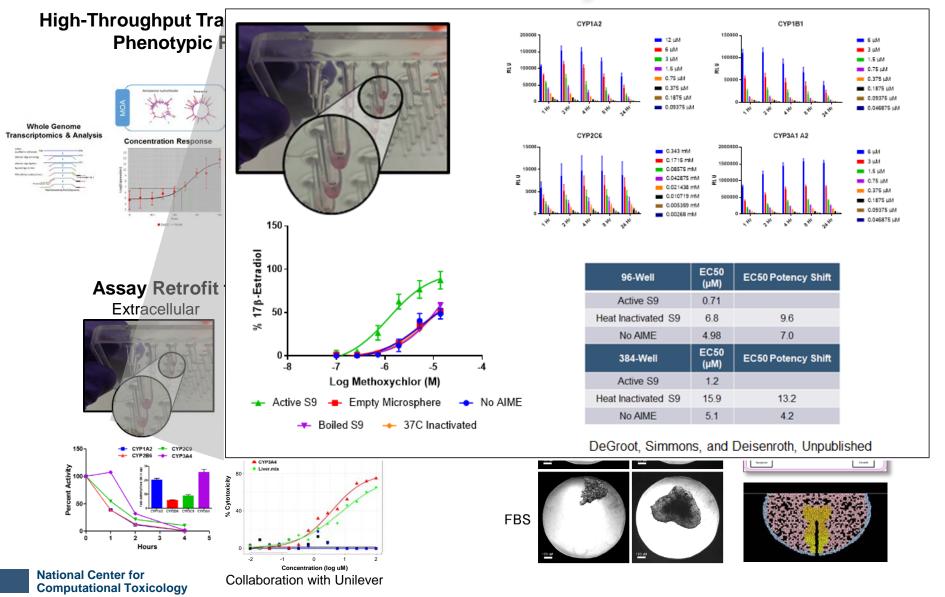
High-Throughput Transcriptional and Phenotypic Profiling

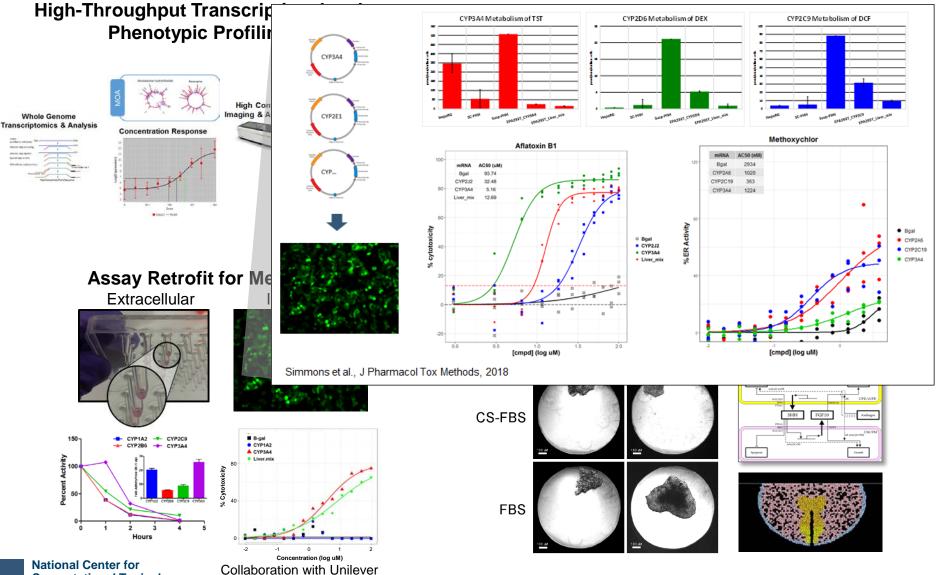

VOC In Vitro Exposure System and Water Library

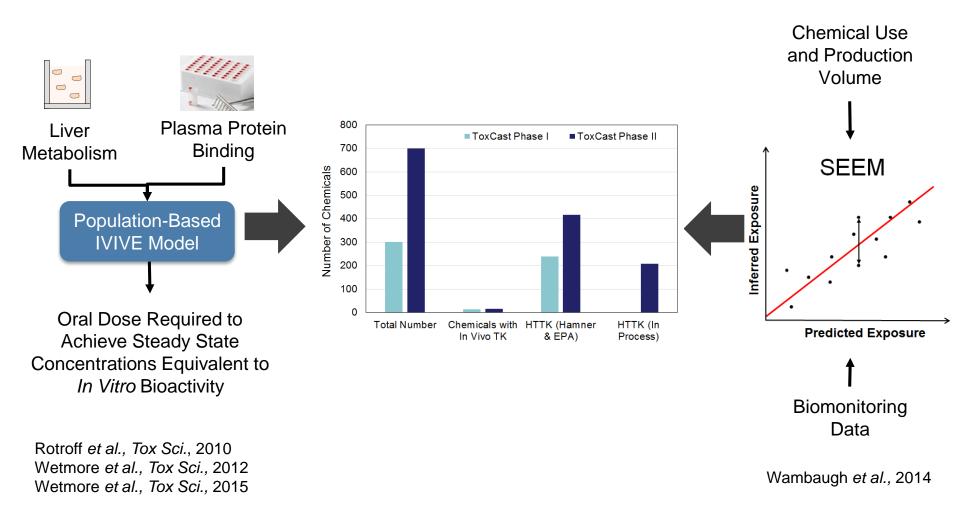

Initial test library of ~70 chemicals


M. Higuchi (EPA-NHEERL)


Organotypic Model Development and Virtual Tissue Modeling

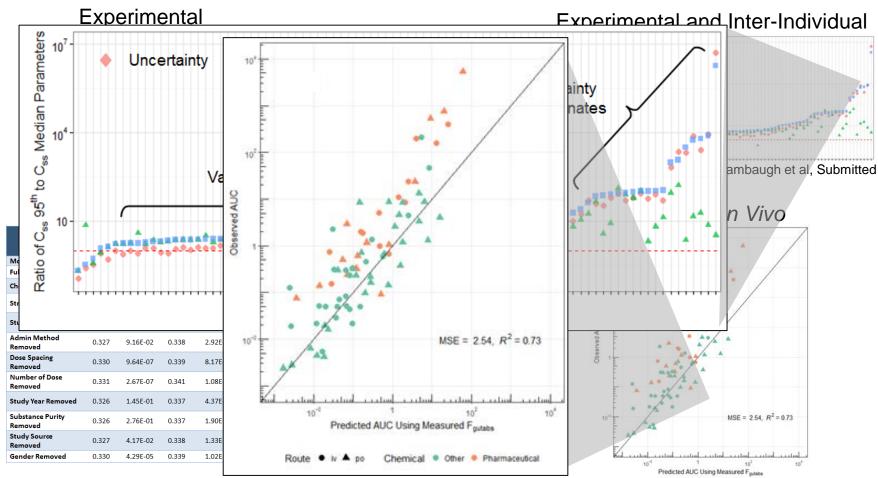






Computational Toxicology

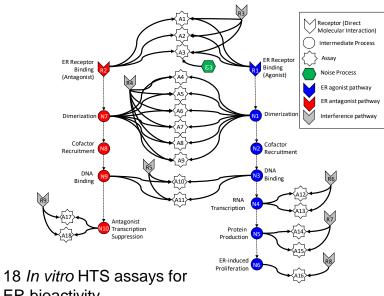
Putting Alternative Test Results in a Dose and Exposure Context



Quantifying Uncertainty and Variability

Pharmacodynamic

Pharmacokinetic


Paul-Friedman and Martin, Unpublished

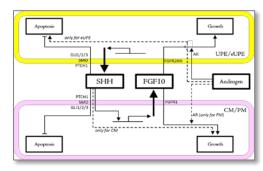
National Center for Computational Toxicology Chemical . Other . Pharmaceutical

Computational Modeling to Integrate Experimental Data

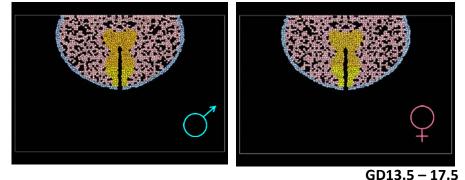
Computational Modeling of Estrogen Receptor Pathway

ER bioactivity

In Vitro Reference Chemicals*

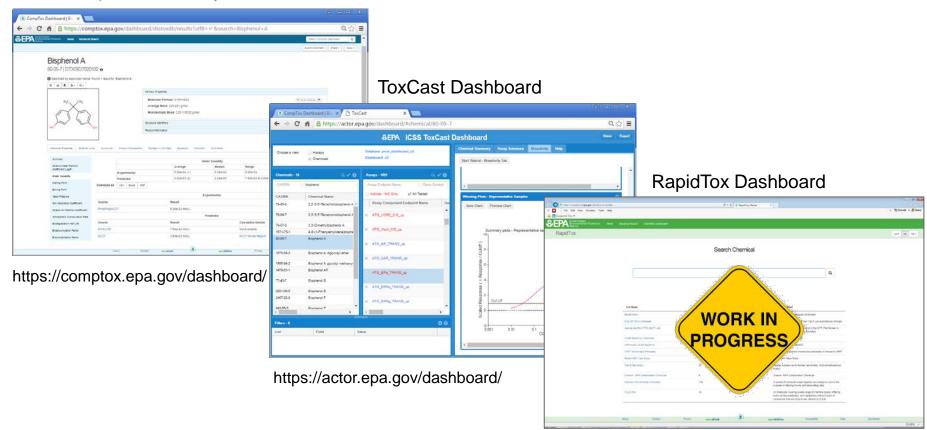

In Vivo Reference Chemicals*

Accuracy	0.93 (0.95)	Accuracy	0.86 (0.95)
Sensitivity	0.93 (0.93)	Sensitivity	0.97 (0.97)
Specificity	0.92 (1.0)	Specificity	0.67 (0.89)

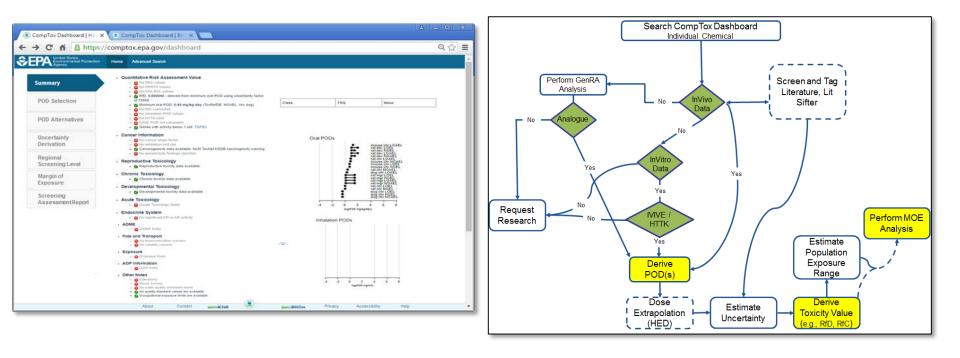

*Values in parentheses exclude inconclusive chemicals

Judson et al., Tox Sci. 2015 Browne et al., ES&T. 2015

Computational Modeling of Genital Tubercle Development


Androgenization	Phenotype (MCS 4000)					
(n = 10 sims)	Septation	Fusion	Conden.	Closure Index		
100%	6/10	8/10	10/10	0.80		
67%	2/10	5/10	10/10	0.57		
33%	0/10	4/10	0/10	0.13		
0%	0/10	2/10	0/10	0.07		

Leung et al., Repro Toxicol, 2016


Deliver Data and Models Through Decision Support Tools

Comptox Chemistry Dashboard

One Tool, Multiple Workflows to Address Diverse Partner Needs

- Semi-automated decision support tool
- Flexible integration of information related to chemical properties, fate and transport, hazard, and exposure
- Enable expert users to review the assumptions made and refine the results
- Presents alternative together with traditional toxicology data

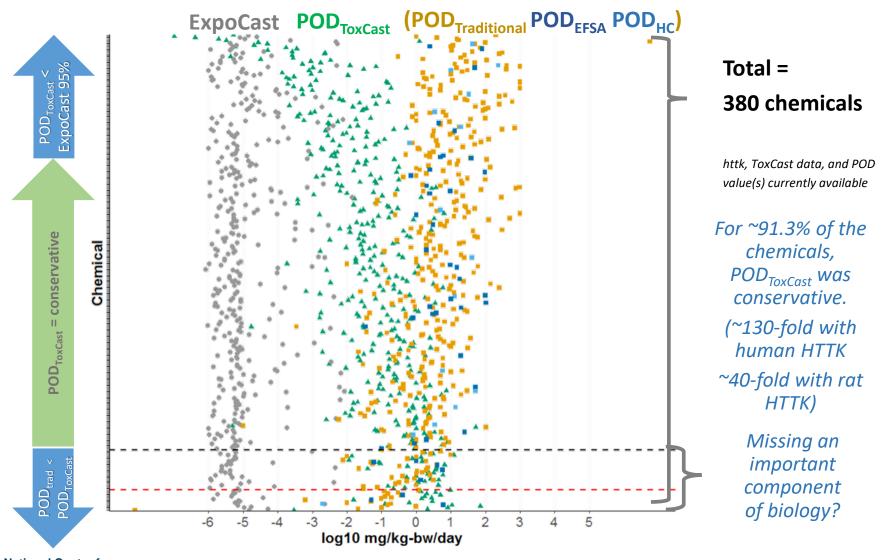
One Tool, Multiple Workflows to Address Diverse Partner Needs

0 127.0.0.1:4499				30% C ⁴ Q Search		TSCA Method 1 (
apidTox Prioritiza	-	York Times 🛛 kk phpMyAdmin 🖌	실 My Drive - Google Drive 웅	Home - PubMed - NCBI 🕚 Syste	m Dashboard - J 🕭 Dashbo	Mod (108)
Chemical List:	Components Weighting Fa	ctors In Vivo Data Ph	ysChem Data ER Data	AR Data ER QSAR Data	Hazard Prioritization	
TSCA OPP Inerts	Exposure Prioritization Ov	Exposure Prioritization Overall Prioritization				
OPP Inerts	Check All Uncheck	All				
run prioritization, select the emical set, the allowable data Human Health				High (192)		
lomains, and update the weights. 'hen select the Recalculate button	Acute Subchroni	c Chronic DevTox	ReproTox Cancer	Mutagenicity Neurotox	Systemic Tox Models	
nd go to the prioritization tab. You	🔽 In vivo 😨 In vivo	🖉 In vivo 🖉 In vivo	🔽 In vivo 🖉 In vivo	🔽 In vivo 😨 In vivo	🖉 Martin model	
an then sort by the different prioritization types.	🖉 QSAR 🛛 🖉 QSAR	QSAR QSAR	🔽 QSAR 🛛 🖉 QSAR	🔽 QSAR 🛛 🖉 QSAR	Pradeep model	
Recalculate					GenRA model	
▲ Export Table					ToxCast IVIVE	SCIL Method 1 (
	Endocrine					
	Estrogen Agonist	Estrogen Antagonist	Androgen Agonist	Androgen Agonist		
	In vitro	In vitro	In vitro	In vitro		
	Q SAR	QSAR	🔽 QSAR	QSAR		
	Ecological					Mod (430)
	Fish Acute Tox	Crustacea Acute Tox	Algae Tox	Fish ReproTox		
	In vivo	In vivo	QSAR	QSAR		
	QSAR	QSAR				

- Flexible exploration of multiple prioritization scenarios
- Selection and weighting of different data streams
- •Outputs ordinal and binned prioritization
- Proposed to selected candidates for TSCA prioritization

National Center for **Computational Toxicology** EPA-HQ-OPPT-2017-0586

Low (44)


Translation of Results Through Regulatory Focused Case Studies

Bloomberg BNA	Daily En Report [™]	vironi	nent	
Practitioner Insights: Regulatory Toolbox; It The recently amendes ing non-animal safety te and reports on a recent work for tests that can i	Newsteel with generation from Dalog 2016 bit , thinking, Copyright 2017 bit , thinking, Copyright 2017 manual Atlan, Inc. (100-272-1020) ma Bringing New Methods for is Time to Get Serious Concernational Series (Serious Series) (Series)	or Chemical Sa to take significa Robert Kavlock e ugency convened	nt strides towards us- xplores this challenge that lays the ground-	
Robert Kaslock is th Administrator for Se of Research Develop 2 ORD is the scientific whose leading-edge the underpitning of for the agency. The underpitning of	Specific Constraints Acceleration the Constraints Acceler	of Chemical t ¹ , ¹ Tars S. Barton- the and the second second second the second second second second second terms and second second second terms and second second second terms and second second second second second second second terms and second second second second second second second second second second second second sec	Madaren ¹ Mauren R. Gwi tran Jerry, Wahapan D.C. 20 Mark J. Chao, Ox 20 Mark S. Can and J. Chao, Ox 20 Mark S. Can and J. Chao, Ox 20 Mark S. Can and J. Chao, Chao M. San J. Can and J. Chao, Chao M. San J. Can and J. Chao, Chao M. San J. Can and J. Can and J. Can and J. Can and J. Can and J. Can and J. Can and San J. Can and J. Can and San J. Can and J. Can an	AND Under States And And A context 2771 L thand States mical Rick Accessment A context 2771 L thand States mical Rick Accessment A context 2771 L than the states mical and any states and the states
1 101	CONTENTS -Services Next Segs -Condusion table information -Conduction -Conduction -Boographine derapose -Conduction -Conducti	Union's Registration,	Evaluation, Anthonistics and (REGCH), the one phase of the most Pine (CAP), and many most protect policies and low have evada widey of characteristic. To note this structure—in haused, exposure, to considered to augment tradicular helds of our advanced models. The or data is from high throughput tains molecular polenoidage, make comparational density, and bear Residuel. Documber 19, 2017 Published. Masch 39, 2018	Candian Chenicali Mangge inmitiant chenicali mangge inmitiant for data en the data and a variety of nor data data era chenican-are beng otologo data witchinamondy data are chene and include signati numericante toring generator, ergomento chenicati toring animal modele, amongorben.
	ACS Rublections #### Avecan 0			(00 10 10 and and an a collection of the collect

- Multiple international case studies stemming from 2016 inter-governmental workshop
- Example: *In Vitro* Bioactivity as a Conservative Point of Departure
- Participants include EPA, Health Canada, ECHA, EFSA, JRC, and A*STAR
- Goal: Determine whether *in vitro* bioactivity from broad high-throughput screening studies (e.g., ToxCast) can be used as a conservative point-of-departure and when compared with exposure estimates serve to prioritize chemicals for future study or as lower tier risk assessment.

Bioactivity Provides a Conservative Estimate of a NOAEL/LOAEL

Grandma Approved

https://www.freepik.com/free-photo/senior-woman-witha-thumbs-up_1014676.htm

Take Home Messages...

- Multiple opportunities exist for using highthroughput and computational approaches to address challenges in toxicology and risk assessment
- Using high-throughput approaches will require systematically addressing key technical and data analysis challenges
- Enabling application of high-throughput data to chemical safety decisions with require delivery and integration using a broad range of IT tools
- Partnering with regulators on case studies will increase confidence and acceleration application to chemical risk assessment

Acknowledgements and Questions

Tox21 Colleagues: NTP FDA NCATS

EPA Colleagues: NERL NHEERL NCEA

Collaborative Partners: Unilever A*STAR ECHA EFSA Health Canada JRC

