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Abstract

In 2017, approximately 62% of electricity generated in the United Sates (U.S.) came from coal
and natural gas sources, while only 8% came from wind and solar energy sources. This heavily
fossil fuel dependent generation mix contributes to approximately 30% of total U.S. greenhouse
gas emissions. Energy efficiency (EE) and renewable energy (RE) are two ways to reduce the
carbon footprint of our electricity sector. This dissertation addresses the decision-making
behavior of actors in and across the commercial, residential and educational sectors on the
adoption of EE and RE technologies in the U.S. This work characterizes the barriers and
motivations to adoption as well as the associated health and environmental benefits from
offsetting electricity generated by fossil fuel power plants.

In Chapter 2, | employ an interview study to explore the behavioral and social factors in
commercial building energy efficiency investment decision-making and to clarify the distinction
between influences related to Economics/Technology and Psychology/Context. | find
heterogeneity among interviewed experts and owners/managers regarding the value of corporate
social responsibility (CSR). I also find that the relationship between owners/managers and their
building engineering team heavily influences decision-making. Finally, the interviews reveal
potentially promising new concepts related to psychological and social influences in the EE
investment decision domain.

Chapter 3 focuses on the residential sector and details findings from two studies evaluating the
effect of a clean energy campaign on civic engagement (e.g. signing a petition) among parents
already taking advocacy actions (i.e. advocacy sample) and those who aren’t (i.e. public sample).
Among our public sample, I find that participants who believe the campaign to be credible and
comprehendible are more likely to take action than those who discredit the campaign or do not
understand its message. Additionally, I find parents who have children under the age of 18
negatively adjust their attitudes towards fossil fuels after being presented with health
information.

Finally, in Chapter 4, | focus on the educational sector and employ a benefit-cost analysis (BCA)
to determine which states in the U.S. will benefit most from installing solar photovoltaic (PV) on
their educational facilities and which PV projects are financially feasible. | find that solar PV in
U.S. educational institutions can provide 100 TWh of electricity services annually, meeting 75%
of these buildings current electricity consumption. The provision of electricity services from
rooftop solar PV on educational institutions can reduce environmental, health and climate change
damages by roughly $4 billion per year.

Discussed in Chapter 5 are this work’s contribution to the literature and the policy implications
regarding the adoption of EE and RE among various actors revealed in Chapters 2 through 4. For
instance, findings from Chapter 2 suggest that policy makers should consider non-economic
factors related to EE adoption, such as the relationship between owners and building engineers.
In Chapter 3, | learn that campaigns can inspire civic engagement among residential consumers
if campaign materials are perceived credible and advocacy actions seem effective. In Chapter 4,
results detail which regions in the U.S. stand to benefit the most from installing PV on their
educational buildings and provides a baseline analysis for efficient incentive design.
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1. Introduction

“An innumerable host of actions and attitudes, comprising perhaps the bulk of all land relations,
is determined by the land-users’ tastes and predilections, rather than by his purse.”
— Aldo Leopold, The Land Ethic

“She generally gave herself very good advice, (though she very seldom followed it).”
— Lewis Carroll, Alice’s Adventures in Wonderland

It is difficult to ignore the omnipresent negative effects associated with the release of greenhouse
gasses (GHGs) and criteria air pollutants from burning fossil fuels in the United States (U.S.).
These harmful effects manifest as positive climate forcing — a change in Earth’s energy balance
that promotes a warming effect — which has increased by 37% between 1990 and 2015 due to
anthropogenic GHG emissions [1]. Additionally, GHG emissions directly contribute to changes
in air quality (e.g. increases in ozone, changes in particulate matter, and changes in allergens and
asthma triggers), extreme weather events, vector borne diseases, and water and food safety [2],
resulting in annual health costs amounting to roughly 4% of the national gross domestic product
(GDP) [3]. Environmental and health risks are particularly acute for at-risk populations such as
asthmatics, the elderly, and those living near a coast [4]-[8].

In 2016, the electricity sector contributed 28% of all GHG emissions in the U.S. that
made it, along with the transportation sector, the top source of domestic emissions [9].
According to the U.S. Energy Information Administration (EIA) [10], this trend is likely to
continue into the foreseeable future and might expand under low oil price and high economic
growth scenarios. A strong dependence on fossil fuels explains the link between electricity
generation and GHG emissions — today more than 60% of electricity generated in the U.S. comes
from fossil fuel sources, while only 2% comes from solar photovoltaic (PV) and 6% comes from
wind [11]. On balance, there are two approaches to reduce electricity sector emissions: reduce
consumption (i.e. increase energy efficiency) or change the portfolio (i.e. adopt more renewable
energy).

Fully realizing these approaches requires multiple actors at various scales to take action
to increase the share of energy efficiency (EE) and renewable energy (RE) throughout the U.S.
Traditionally, economic incentives have been used as the main tool to promoting this change

across actors and actions. Moreover, a sectoral incentive approach is often taken where, for
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instance, programs are designed only for actors in the residential sector (e.g. residents reducing
energy consumption in the home through the use of in-home energy displays), rather than
recognizing that actors can act across sectors (e.g. residents petitioning a local utility to invest in
clean energy)[12], [13]. This top-down approach does not exploit all of the political and
technological actions that are available to these actors wishing to reduce their fossil fuel
electricity demand, and it does not motivate the discovery of new actions. This thesis employs a
bottom-up decision and engineering science approach to explore the behavioral, regulatory, and
technical factors that inspire actors to effect change of their own energy behavior and that of

their energy providers.
1.1 Decision-making

The research described in this thesis contributes to literature in judgement and decision-making
(JDM) related to EE and RE technology adoption and investments. In general, decision-making
is studied at the individual [14] and group levels [15] — where group decision-making is also
organized into large group (e.g. mob) behavior [16], intergroup relations [17], special types of
groups (e.g. therapy groups), team groups [18], and small groups [15]. Decision-making is
thought to be influenced by cognition (e.g. how decision-makers attend to provided information
and seek additional information) [14], [19], [20], the decision environment (e.g., task, content,
and context) [21]-[24], and the decision-maker’s internal state (e.g., beliefs, values, goals, and
prior experience) [25]-[27]. Moreover, individual differences that are shown to particularly
matter include gender [28], age [29], personality types relating to proneness to risky behavior
[30] and susceptibility to framing [31], and cognitive traits/styles (e.g. numeracy) [32]. Indeed,
JDM is complex and is difficult to map onto mathematical models since humans apply a wide
variety of processing modes and strategies to available choices based on internal and external
constraints [14]. For instance, attention accounts for a larger proportion of response when the
decision-maker is explicitly provided all information in numeric or graphic form [33].
Alternatively, memory and learning are important in decisions drawn from experience, where
information about outcome types and likelihood is acquired from trial and error sampling of
options over time [34]. Similarly, affective processes are important in dynamic decisions under
uncertainty and analytic evaluations play an important role in static uncertain decisions [35].

This thesis explores ways to elicit a decision-maker’s values and motives regarding EE and RE
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technologies as well as characterize the decision context to allow for behaviorally realistic

interventions that promote adoption.
1.1.1 Individual energy decision-making

Psychological models of decision-making, such as the Theory of Planned Behavior (TPB) [36],
help explain how individual actors might be motivated to adopt EE and RE. Within the
framework of TPB, beliefs about such things as self-efficacy, subjective norms, and/or the
behavior in question determine intention to act and consequent behavior [36]. Additionally,
within this framework, it is also shown that contextual forces and personal capabilities/habits
contribute to the effect that attitudes have on behaviors [37]. Therefore, the TPB framework
suggests that one should focus on understanding attitudes and measuring intentions in order to
understand the likelihood of action and/or behavior change. Still, some policies aim to promote
desired behaviors by simply increasing information dissemination and closing the VValue-Action
Gap that persists when members of society experience cognitive dissonance (e.g. espousing pro-
environmental values but not acting in accordance with them) [38]. However, this particular
theory of behavior change, coined the Information Deficit Model (IDM), fails to address why
some science communications increase polarization and result in non-activity [39], [40].
Therefore, when employing IDM methods for promoting adoption and/or behavior change, how
information is framed could play a critical role in communication efficacy. Framing involves
selectively emphasizing certain dimensions of an issue over the others, which implies
(inadvertently or not) a specific diagnosis as well as prescription for action [41], [42]. In this
way, framing provides an opportunity to leverage the Theory of Motivated Reasoning, which
suggests that partisan audiences are motivated to interpret and process information in a biased
manner that reinforces their predispositions [43], [44]. Yet, in all of these decision-making
frameworks, the “audience” is comprised of individual actors and the mechanisms within each

theory are complicated when the audience is comprised of two or more actors working together.
1.1.2 Organizational energy decision-making

Models for EE and RE investments in organizations (e.g. commercial buildings), tend to fall into
two categories: (1) capital investment theory (CIT) models and (2) organizational behavior

science (OBS) theories.



Tenets of CIT maintain that investment decisions are based on capital budgeting tools,
such as payback period, net present value, and internal rate of return [45]-[47]. Within this
framework, sometimes investments are dismissed if hidden/transaction costs and high levels of
risk lower their profitability below the firm’s cost of capital [45]. In fact, sometimes commercial
building investment decision-makers will artificially increase the required rate of return for EE
and RE investments due to these perceived hidden costs and risks, forcing EE and RE
investments to perform better than the cost of capital [48], [49] or other investments aimed at
increasing production capacity [45]. Yet, CIT fails to address the strategic nature of energy
investments often comprised of several steps, does not explain the differences in behavior
between similar firms operating in the same industry, and omits the hidden benefits of EE and
RE investments which are often quantifiable [50]-[53].

Researchers in organizational behavior sciences address some of the gaps in the CIT
literature by asserting that certain organizational factors play an important role in EE and RE
investment decisions, thus weakening the weight of financial factors underscored in the CIT
literature [51]. Significantly, OBS identifies the following factors that influence EE and RE
investments: power relationships [49]; managers’ interests and mindsets towards energy [54];
organizational energy culture [49], [55]; and characteristics of the investment itself and its link to
core business [56]-[59]. The link to an organization’s core business is found to be especially
important in a study by Weber [59], who confirms his hypothesis that “barriers to energy
efficiency in organizations may result from...a trade-off with non-energy-specific goals,” with
robust, longitudinal results from empirical research related to decisions and energy consumption
in 100 Swiss office buildings between 1986 and 1996. Finally, it is usually the case that these
trade-offs in EE and RE decision-making are often made by one (e.g. building manager) or a few
individuals (e.g. sustainability management team) within a larger organization [58]. Individual
factors of these energy leaders, such as their internal sustainability motivations and technical
savvy, influence the adoption of EE and RE [60]. Therefore, this thesis explores the motivations

and barriers of individual actors and their abilities to act across sectors.
1.2 Potential for reducing the end use and changing the mix

The literature surrounding the technical potential and financial feasibility of EE and RE tends to
take a sectoral approach (e.g., electricity sector, commercial sector, residential sector, etc.). For

instance, Pacala and Socolow’s theory of “Stabilization Wedges™ [61] urges the adoption and
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scaling up of existing technologies in five main categories as a means to stabilize atmospheric
CO: levels at 500 ppm by the year 2054: (1) energy efficiency and conservation, (2) fuel shifting,
(3) CO2 capture and storage, (4) nuclear fission, and (5) forests and agricultural soils. Relevant
here is their treatment of energy efficiency improvements as primarily manifesting in the
transportation sector (e.g. electric vehicles and mass transit innovation), building sector (e.g.
cutting carbon emissions by 25% from buildings and efficient appliances), and the electricity
sector (e.g. improving efficiency of baseload coal plants from 40% to 60%)[61]. The “Unlocking
Energy Efficiency in the U.S. Economy” report by McKinsey [62] suggests that energy
efficiency can yield gross energy savings worth more than $1.2 trillion, with an estimated
reduction in end-use energy consumption in 2020 by 9.1 quadrillion BTUs (Quads), or 23% of
projected demand, offsetting 1.1 gigatons of GHGs each year. In their report, they suggest
pathways to these savings that reduce industrial sector energy consumption by 18% and
commercial and residential sectors energy consumption by 29% and 28%, respectively [62]. As
for renewable energy potential, the U.S. Energy Information Administration (EIA) suggests that
electricity-scale solar and wind will reach 1.1 and 2.6 Quads, respectively, or 10% and 23% of
total U.S. generation, by 2019 in their short-term energy outlook [63]. Sector- and technology-
specific studies estimate that PV systems installed on small, medium, and large buildings in the
U.S. can generate 1,400 TWh of electricity [64] and estimate that the residential sector alone can
provide 419 TWh from rooftop solar PV [65]. However, these technical potential studies make
little or no assumptions about adoption behavior and/or narrowly define rational actors as
investors who operate within a set of goals and constraints consistent with the CIT framework
[66] — yielding technical potential results that may not be behaviorally realistic.

Even diffusion models of certain technologies like rooftop PV that do consider behavioral
inputs (e.g. agent-based models) tend to focus on adoption one sector at a time given various
price signals and top-down regulation, neglecting the bottom-up role that individual actors can
take to have an influence across sectors [67]. For instance, much of the residential sector
literature addresses effective interventions for energy-efficient appliance adoption [68]-[71];
residential peer effects in diffusion rates [72], [73]; and rebound effects within the household
[74], [75] — little is known about the preferences of actors within these households to influence
their electricity providers or engage with their state legislators to set renewable portfolio

standards. Additionally, the potential footprint of some actors are completely overlooked in these
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sectoral technical potential studies. Such is the case of educational institutions, which are often
classified as commercial buildings in PV technical potential papers, despite the fact that
educational institutions comprise 11% of total U.S. building electricity consumption and 14% of
building floorspace [76]. Siloing actors into large sectors obscures the granularity in knowing
what is possible from specific actors and discounts the nuance of the various options available to
these actors to promote the adoption of EE and RE — and ultimately their power to reduce GHG
emissions from electricity generation. This thesis explores how less well-examined actors may
influence the electricity sector directly by adopting their own energy efficiency and renewable

energy technologies or influencing the adoption of these technologies by utilities.
1.3 Thesis organization

This thesis includes findings from three studies I conducted with an overarching aim to expand
on actor-specific barriers and motivations to EE and RE. In Chapter 2, | employ an interview
study to explore the behavioral and social factors in commercial building investment decision-
making and to clarify the distinction between actors serving as decision-makers and actors
serving as decision-influencers. Chapter 3 details findings from two studies evaluating the effect
of a clean energy campaign on civic engagement among parent actors in the residential sector
who are already taking advocacy actions (i.e. advocacy sample) and who aren’t yet (i.e. public
sample). In Chapter 4, | consider actors in educational institutions, which also include building
managers and parents. Here, | employ a benefit-cost analysis (BCA) to determine which states in
the U.S. will gain the most social benefits from installing solar PV on their educational facilities
and which PV projects are financially feasible. Finally, Chapter 5 summarizes all of these studies
and discusses their contributions to the JDM literature as well as their implications for some
existing and potential interventions to inspire actors to adopt energy efficiency and renewable

energy.



2. The role of psychology and social influences in
energy efficiency adoption

Abstract

Current energy efficiency policy and incentive programs tend to target economic motivations,
which may misalign with other potentially important motivations arising from situational factors,
individual differences, and social context. Thus, in this research, we review areas of work that
have focused on psychological and social influences to energy efficiency adoption in commercial
buildings. We then conduct an empirical scoping study interviewing 10 commercial building
owners/managers (decision-makers) and 10 experts/consultants (decision-influencers) regarding
perceived motives and barriers to energy efficient investments, decision-maker attributes, and the
social context of the decision. Potential factors that emerge from the interviews, which are not
yet extensively discussed in the energy efficiency literature, include owners/managers’ resistance
to change and the influence of investment funding origins on the decision. Our results also
suggest potential heterogeneity in energy efficiency decision-making philosophies between the
two groups. Interviewed owners/managers prioritize corporate social responsibility (CSR) and
prefer internal consulting (e.g. building engineers). Conversely, experts/consultants do not
emphasize CSR and are more concerned with external policies. These findings suggest that
accounting for the decision-maker and the social context in which decisions are made could
enhance the design of commercial sector energy efficiency programs.

2.1 Introduction

Commercial buildings account for approximately 20% of total energy consumption in the United
States and the Department of Energy (DOE) reports that savings of 3% each year for commercial
buildings is achievable [77], [78]. In recent years the U.S. federal government has expressed
interest in capturing these savings, by implementing national initiatives such as the Better
Buildings Initiative in 2011 aimed to make commercial buildings 20% more efficient over the
next ten years. To date, only 4% of commercial building square feet has been committed to this
challenge, saving on average 2% each year [78], [79]. One possible explanation for this may be
ineffective policy and incentive programs [12]. These programs often assume commercial
building owners are solely motivated by economic factors rather than situational factors,
individual differences, and social context [80]-[82]. Ignoring psychological and social factors
may reduce a program’s effectiveness. For instance, public opposition to wind farms for
aesthetic or environmental reasons can delay or terminate wind energy development [83],
unfamiliar energy savings information (e.g. KWh units) can confuse potential adopters [84], and
stakeholder preferences can derail transition pathways to cost-optimal energy portfolios [85]. To
aid in our examination of the various factors that may influence energy efficient (EE) investment

decisions, we develop an influence diagram. This diagram (shown in Figure 1) summarizes the
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four main areas of literature explaining EE investment decisions made by a single decision-

maker: (1) Economics, (2) Technology, (3) Psychology, and (4) Context.

Economics

Financing Models
Economics
Existing
Equipment

Context

Internal Influences
(e.g. tenants)

Technology

Equipment
Selection

Investment
Decision

External Influences
(e.g. government)

Alternative
Investments

Psychology

Behavioral Economics
(2.g. inconsistent time
discounting)

Social Psychology (e.g.
political ideologies)

Figure 1. The four main components of an individual EE investment decision profile used to
scope Ch. 2 interviews: (1) Economics, (2) Technology, (3) Psychology, and (4) Context.

To illustrate how this diagram might characterize EE decision-making, consider a
commercial building owner who is interested in installing a new lighting control. The owners’
decision-making is subject to Economics (e.g. what sort of financing is available to me?),
Technology (e.g. what are the new technologies available to me?), Psychology (e.g. how much
do I value having a small capital investment today over the potential savings of a larger capital
investment over time), and Context (e.g. will my tenants like having new lighting controls?).
While much is known about influences related to Economics and Technology, less is known
about how Psychology and Context contribute to EE investment decisions in large commercial
buildings. Thus, our empirical scoping study focuses on Psychology and Context and expands on
previous work in this space by drawing three distinctions: (1) our focus is on the commercial
rather than residential building sector, (2) we look beyond the normative, expert opinions by also
interviewing owners/managers (decision-makers), and (3) interview findings suggested existence
of heuristic decision-making that has not yet been explored in the commercial EE literature. In
the next sections we examine what is known about the four main components of EE decision-

making and where our study diverges from the existing literature.
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2.1.1 Economic and technology influences

First, we consider those factors related to Economics and Technology (Table 1). Economic
influences can be both internal (e.g. capital constraints) and external (e.g. fuel prices) and are
those related to project budgeting and the benefiting parties. For instance, limited or nonexistent
reserves and conflicting budget priorities between owners and engineers may dissuade decision-
makers from considering EE investments [49], [86]. Split incentives are also a significant
deterrent in non-owner occupied commercial buildings — energy savings will bypass the owner if

tenants pay the utility bills and thus reduce the owner’s incentive to invest in EE [86].

Table 1. Economic and Technological influences to energy efficiency adoption.

Economic Influences References
Capital constraints [49], [86], [87]
Principal-agent relationships [49]
Split incentives [49], [86]
Hidden costs [49], [86]
Fuel prices [88], [89]
Incentive programs [12], [90]
Technological Influences References
Knowledge of technology [91]
Low prioritization [91]
Available EE technologies [12], [92]
Renewable energy options [12], [92]

Other Economic influences include hidden costs (e.g. inferior performance of a new technology
or overhead costs of energy management), fuel prices (e.g. high fuel prices tend to increase
demand for EE whereas low fuel prices lower demand — see Appendix A.1 for more
information), and available incentive programs (e.g. direct rebates and on-bill financing) [12],
[86], [88], [90].

Technology options influence decision-making at a number of stages, as the owner must
first acknowledge the current state of existing building systems before addressing the
accessibility of new technologies. As such, cities vary in their conservation efforts as
demonstrated by differing adoption rates of EE markers such as Energy Star! and organized 2030

! Energy Star is an award assigned to high-performing buildings whose energy consumption is benchmarked on
Portfolio Manager; both Energy Star and Portfolio Manager are maintained by the U.S. Environmental Protection
Agency (Colaizzi 2015).
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Districts.? Explanations for this heterogeneity in commitment to building energy efficiency
include availability of technologies and installers across the U.S. as well as existing building
conditions in the real estate market [12], [93]. However, increasing the stock of EE technologies
alone is insufficient; information presented in personalized and specific terms can influence EE
decision-making [46], [94], [95] (see Sections 1.1.1 and 2.1.2 for more on the Information
Deficit Model). An EE investment decision-maker with technical knowledge of the project can
more readily understand how the equipment will operate in their specific energy management
program and visualize how the technology will contribute to their building’s primary function
[91], [96]. Thus, knowledge should increase technology accessibility in the EE market and also
reduce uncertainty of investment benefits [97].

Although the commercial building EE literature is currently advanced on topics related to
Economics and Technology, influences related to Psychology and Context are less explored. The
next section highlights non-economic factors related to EE investment decisions as they are

presently characterized in the literature and suggests areas for further research.
2.1.2 Psychological and contextual influences

Influences related to Psychology and Context (Table 2) include the decision-maker’s own set of
individual differences and decision-making heuristics as well as social influences that could
occur within the building (e.g. tenants) or from outside the building (e.g. other buildings).
Psychological influences are shown to be substantial forces in similar areas of pro-
environmental behavior such as recycling, taking action towards pollution control, and
implementing residential energy efficiency. In the recycling literature, we find that certain
relevant attitudes (e.g. environmental concern) are more predictive of recycling if it requires a
high degree of effort, which can be influenced by situational factors such as prompts, normative
influence, and feedback [98]. In addition to attitudes and situational factors influencing pro-
environmental behavior, there also exist theoretical models that connect pollution mitigation
behavior to moral norms against human and environmental harm [99]. Moreover, studies in the
residential sector find that non-price incentives (e.g. health and environmental benefits) increase

participation rates in energy savings programs more effectively than messaging that focuses on

2 There exist 10 separate 2030 Districts, spanning Seattle to Stamford, with building owners committed to 50%
reduction in energy use, water consumption, and transportation emissions by 2030 (2030 Districts 2015).
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economic benefits; effect is enhanced in participants who claim having pro-environmental
attitudes [68], [70], [71].

Explanations for pro-environmental behavior that extend beyond neo-classical economic
theory, which characterize the residential sector, may also apply to commercial EE investment
decision-making. For instance, a decision-maker with pro-environmental beliefs may willingly
invest in EE, reducing the significance of economics (should they be unfavorable) in their
decision [100]. Furthermore, decision-making heuristics, such as bounded rationality, can stifle
EE investment action due to the investor’s potentially limited knowledge of or search capacity
for technologies/incentives, their misunderstanding of the EE technology functionality, or simply
their lack of time for making a decision [101]. Another heuristic, time discounting on
investments, tends to discourage decision-makers from EE investments due to their aversion for
paying up-front costs (including an implied opportunity cost) for delayed cost savings [100].
Time discounting may also be influenced by the availability of cost savings information and its
corresponding certainty [69]. Empirical evidence suggests that owners have relatively high
implicit discount rates compared to the market discount rates, ranging from 25% to over 100%
[102]-[104]. These high discount rates could suggest that commercial EE decision-makers
perceive higher uncertainty in returns on EE investments than other types of investments [94],
[97], [100]. Alternatively, a high implicit discount rate could suggest investors are simply
looking for short payback periods (e.g. 3 years) for energy efficiency projects; corresponding to
high internal rate of return (IRR) values. As many EE investments fail to achieve rapid payback
and a high IRR, some investors will find them unattractive, especially when considered in
addition to other, necessary investments with low profitability [105]. However, many energy
efficiency investors do not even compute the IRR or compare them to the weighted average cost
of capital (WACC), which would more often yield a positive investment decision if they agreed
that projects with profitability higher than the WACC would increase overall profitability [105].
Ultimately, it is difficult to attribute inaction on investments to single metrics, like discount rates,
due to the complex set of decision factors, potential conflicting goals of the decision-maker(s),
and the lack of conformity on investment capital practices in this domain that often fly in the
face of finance theory prescriptions [51]. It does seem that trepidation towards EE investments
might be reduced if there exist some element of Corporate Social Responsibility (CSR)

motivated from within the decision-maker [106]. CSR could also provide external motivation to
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a building owner who is considering EE by increasing competition in the commercial building
community, which informs the decision-maker’s Context of internal and external influences
(Figure 1).

Table 2. Psychological and Contextual influences to energy efficiency adoption.

Psychological Influences References
Attitudes towards energy efficiency [100]
Heuristic decision-making [101], [107]
Time discounting [42], [102], [103]
Uncertainty & perceived risk [94], [97], [100]
Corporate social responsibility [106]

Contextual Influences References
Organizational structure [49], [51]
Societal Norms [49], [108]
Community Characteristics [72], [109], [110]
Corporate social responsibility [106]
Stakeholders (e.g. tenants) [111]
Sustainable legislation [92], [93]
Building codes [100], [112]
Real estate market [93], [111]

Several studies have focused on how Context influences residential energy efficiency
adoption. Often social network analyses related to energy efficiency focus on residential
consumers’ responses to monitoring and reporting of electricity consumption, either privately or
on a public benchmarking website [68], [72], [73], [113], [114]. For instance, in a randomized
field study of 600,000 U.S. households, Allcott [115] found a 2% reduction in energy
consumption after OPOWER provided Home Energy Reports. Furthermore, Peschiera and
Taylor [116] demonstrated an inverse relationship between residential energy consumption and
the number of comparable peers. Economic sociologists also posit that residential consumer
action is embedded in social relations and that community forums or neighborly competition
may inspire EE investment decisions and increase technology diffusion [82], [108]. Therefore, it
seems plausible that these social influences could also infiltrate commercial building EE
investment decisions. Yet, these direct social influences might be harder to trace due to the
complexity of the stakeholder structure and decision process within the commercial sector [51].

Another source of external influence on the decision context includes the informational

materials available to the decision-makers. Indeed, some energy efficiency policies aim to
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promote desired behaviors and investments by simply increasing information dissemination and
closing the Value-Action Gap that persists when members of society espouse pro-environmental
values but do not act in accordance with them [38]. However, this theory of behavior change,
coined the Information Deficit Model, fails to address why some incentive program
communications may result in non-activity or worse, increased resistance to invest [39]. In fact,
information conduits are just as important as the energy information. Lutzenhiser et al. [117]
found in a series of expert interviews that energy efficiency decision-makers have varying levels
of skill and expertise in different professional domains and decisions contexts, “all of which
affect their ability to access, process, and act on energy information.” Additionally, in an
interview study of organizations who participated in an energy audit program, Goitein [118]
found that lack of information was one of the least likely barriers to energy efficiency to be listed
(cited less often only by “not having a good contractor”). As such, these complex dimensions of
information diffusion and decision-making are little understood in the context of commercial
building energy efficiency investments.

Aside from external social influences (e.g. commercial owner peers and energy efficiency
campaigns), Context for a commercial building owner could also include organizational/internal
influences, legislation, and the real estate market. Organizational influences are those related to
the composition of the building ownership/management structure as well as the mission of the
organization. In fact, in the commercial building sector, one should likely reject the unitary
rational actor model in favor of an organizational decision-making perspective that incorporates
power dynamics, as organizations are often comprised of a collection of actors with individual
objectives that could be in conflict [118]-[120]. For instance, a dedicated EE coordinator in a
management team may identify opportunities more effectively than a building engineer who is
primarily concerned with keeping the building systems in good condition and pleasing the
tenants [51]. Indeed, Stern et al. [121], identifies addressing and improving in-house energy
expertise, empowering building operators, and using information technologies such as social
media throughout the organizations as opportunities for reducing commercial energy
consumption. Building stakeholders, such as tenants, influence decisions by requesting
reductions in energy costs and improvements in air quality [111]. Building energy codes, such as
those established by the American Society of Heating, Refrigeration and Air-Conditioning

(ASHRAE) or the International Energy Conservation Code (IECC) mandate inclusion of EE
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technologies and practices in new construction designs [112], [117]. However, energy codes and
other EE legislation may be futile if there exist information gaps [84], rebound effects [74], [75],
or capital constraints that undermine compliance with energy legislation [100]. Therefore, policy
makers should bridge the normative component of commercial building EE policy with the
descriptive component in order to design behaviorally realistic prescriptions that yield energy
savings at a level comparable to other successful nationwide initiatives such as the CAFE
standards or appliance efficiency standards [90], [122].

The existing commercial building EE literature currently addresses several important
influences; however, it may omit additional behavioral and social factors addressed in other
domains that may be pertinent here. This study aims to identify those additional factors and
clarify the distinction between influences related to Economics/Technology and
Psychology/Context. The next section entails the development and implementation of an
interview protocol designed to explore EE investment decisions, followed by an explanation of
the analysis methods (Section 2.3) employed in this study. Section 2.4 outlines the results of the
cognitive interviews, Section 2.5 provides a discussion of implications of these results relating to
EE policy, and Section 2.6 concludes with suggestions for future work.

2.2 Materials and methods

It is difficult to reach commercial building owners/managers due to their limited time and often
limited resources (e.g. building staff). This may be one reason why many energy efficiency
studies that employ a behavioral sciences approach tend to focus on the much more accessible
residential sector. Therefore, we ascertained that it was best to first employ an interview study to
explore what factors might be prevalent in the commercial building population before developing
and implementing a survey. Since we obtained a smaller, non-representative sample we do not
make statistical claims of these findings. However, our interviews did allow us to explore the
various factors that decision-makers intuit are important as well as to compare these factors to

those already identified in the literature.
2.2.1 Interview protocol

The interview protocol was informed by the Mental Models approach, which is a systematic
method for determining knowledge gaps between experts and laypeople in order to design

effective risk communications [123]. The Mental Models approach primarily involves three
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steps: (1) normative research, (2) descriptive research, and (3) prescriptive research [123].
Normative research includes a review of the literature and consultation with experts to identify
the key information that needs to be communicated to the public (expert model). Next,
descriptive research is performed through interviews and surveys with laypeople to determine
their knowledge, values, and beliefs about the information experts deem important and how they
actually make decisions (lay model). Finally, through a systematic comparison of expert and lay
models of decision-making, prescriptive research identifies gaps in knowledge or differences in
perception and values to be addressed through a risk communication. These risk communications
avoid pitfalls resulting from the presumption that a researcher knows in advance the full set of
potentially relevant beliefs, knowledge, and values, as well as the terms in which they are
intuitively expressed. Historically, these communication materials aided the public in making
informed judgments about risks associated with such topics as health and climate change [124],
[125]. In our study, we adapted this approach to identify potentially important factors influencing
EE decision-making between owners/managers and experts. Comparing these two groups is
particularly useful for determining existing knowledge differences regarding the Psychological
(perhaps unrecognizable in consulting meetings) and Contextual (potentially effective
information conduits) influences.

In our interviews we were particularly interested in Psychology and Context, as we found
this to be less examined in the commercial EE investment decision literature. Therefore, our
reported findings reflect this focus. Furthermore, since the commercial EE literature regarding
the Psychology of commercial EE invests is relatively limited, our protocol was less informed in
this area and discussions were more organic. The protocol was designed to encourage
interviewees to openly discuss their perspectives on large commercial building energy efficiency.
We developed two different versions of the interview protocol, one for EE experts (see Appendix
A.2) and one for building owners/managers (see Appendix A.3). The overall structure and
content of the protocols were similar and are briefly summarized in the paragraphs below (see
Appendix A.4 for further details). The protocol was pilot tested in April 2015 for
comprehensiveness by two energy efficiency consultants from Chicago and two scholars of
behavioral decision sciences from Carnegie Mellon University in Pittsburgh.

The first part of the interview started with open-ended questions. The first set of

discussion topics considered market gaps or energy policies in Pittsburgh and included questions
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such as the following: “Can you describe what, if any, areas of the market have had less
penetration in regard to energy efficiency?”” The second set of topics allowed the interviewees to
openly describe what they think might motivate or prevent EE investments and included
questions such as: “What do you believe motivates building owners/managers to pursue energy
efficiency?” Finally, the third set of open-ended questions allowed participants to discuss the
extent to which building owner/manager investment decisions are motivated by social
influences: “Can you tell me more about how opportunities to invest in your building came to
your attention?”

The second part of the interview involved three ranking exercises. Participants were
asked to rank 17 motivations and 20 barriers to EE investments in order of descending
importance, where 1 = most important and 17 (or 20) = least important. They were asked to add
any seemingly missing concepts and tied rankings were also permitted. Additionally,
owners/managers performed the same ranking exercise for a set of 24 social influences. The
items contained in each of the three sets were informed by the literature [12], [56], [86], [92],
[93], [100], discussions during the pilot tests, and additions provided by the interviewees (see
Appendix A.5). Finally, interviewees answered demographic questions, reported on their

interview experience, and noted any topics missing from the protocol.
2.2.2 Recruitment and participants

Our sample included building experts and owners/managers of large commercial buildings
having an area of > 50,000 ft? in Pittsburgh. We interviewed a total of 20 participants — one
group of ten experts and one group of ten owners/managers. Plateauing concept saturation curves
for each group (see Appendix A.6) confirmed sufficient sample sizes [123].

We collaborated with Pittsburgh’s Green Building Alliance (GBA) to recruit much of our
non-representative sample and employed snowball sampling methods to recruit the remainder
[126]. Snowball sampling involves participants listing any social connections they believe might
be interested in participating in an interview. Seven experts and nine owners/managers were
affiliated with the GBA’s Pittsburgh 2030 Districts. We recruited from both of Pittsburgh’s 2030
Districts — Downtown and Oakland — which comprises 70% of the real estate square footage in
Pittsburgh. We assumed expert involvement in the 2030 Districts did not drastically bias their EE
knowledge. We did not make the same assumption for owners/managers. However, we defined

“energy efficient” as a combination of varying levels of commitment and internal/external
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competition (see Appendix A.7). In Pittsburgh, for instance, an owner/manager might compete in
the Green Workplace Challenge, which involves a high level of commitment and external
competition; together, these two attributes of energy efficiency programs can lead to high actual
achieved energy savings in the building [127]. Irrespective of EE labeling, the intention of this
study was to elicit a set of concepts related to the behavioral and social influence impacts to EE
investment decisions. We do not make claims regarding the prevalence of these concepts in the
population of owners/managers in Pittsburgh or elsewhere.

Of the total 20 participants, 60% were male. Most participants were between the ages of
25 and 54 (70%), and the remainder were over 54 (30%). The majority of owners/managers had
pursued Energy Star and LEED (70%); this group included representation from Class A
commercial office buildings, hospital campuses, and university campuses. Experts included
those from EE consulting, academia, real estate, and policy. Each interview took approximately
one hour to complete, was audio-recorded, and participants were compensated with a $50

Amazon gift card for their time. Appendix A.8 provides additional demographic information.

2.3 Analyses

2.3.1 Coding

All interviews were transcribed either directly by the lead author or split into five-minute audio
files and processed by transcribers recruited though Amazon Mechanical Turk.® The lead author
checked all Mechanical Turk transcription file for errors before compiling each interview. Using
NVivo,* the lead author performed an open-coding procedure, which is an inductive and iterative
approach for comparing responses of the two groups [128]. While coding open-ended responses,
the lead author assigned each common or new concept in the interviews to one or multiple codes
(short labels that summarizes the content). The lead author developed a master code by
performing a first-round assessment of the ten expert interviews. Next, the lead author consulted
with the second author on coding scheme, made refinements, and performed a second iteration of
coding on the expert interviews. The lead author used this refined master code to assess the ten
owner/manager interviews and additional codes were created for any new findings. Finally, the

lead author recoded the expert interviews with the new codes. A second coder independently

3 Mechanical Turk is an online forum where “workers” are compensated for assisting in research, such as
participating in an experiment or transcriptions. Web link: https://www.mturk.com/mturk/welcome
4 NVivo is a qualitative data analysis software by QSR International. Web link: http://www.gsrinternational.com/
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coded the interviews and a final assessment resulted in a Cohen’s Kappa coefficient of 73%
agreement. The Cohen’s Kappa coefficient is a measure of inter-rater reliability, which considers

the pairwise agreement between the coding schemes of two coders while taking into account the

amount of agreement that could be expected to occur through chance [129]. The major code

groups are summarized in Table 3 and a full list of sub-codes under these categories can be

found in Appendix A.9.

Table 3. Major code groups.

Code Group

Description of Excerpts

EE Definition

Metering

Work Experience

Relationship with Building Engineer
Investment Decision Process
Organization Details

Reason for Repeated Business

EE Climate

Market Gaps

Market Gap Solutions

Energy Star Designation

Energy Star Target Goals

LEED Certification

LEED Target Goals

Mandatory Energy Benchmarking
Mandatory Energy Auditing
Perception of EE Public Subsidies
Motivations

Barriers

Social Influences

Pro. Societies — Purposes

Pro. Societies — Level of involvement

Building Technologies

Interviewee definition of energy efficiency

Utility measurement type (e.g. sub-metering)

Interviewee work experience

Relationship betw. building engineers and owners/managers
How EE investment decisions are made

How experts describe their organization

Explanations for why a client/consultant relationship is lasting
Perception of Pittsburgh’s building EE climate

Perception of lagging building sectors

Suggestions for closing the gap

Perception of Energy Star

Suggested improvements to Energy Star

Perception of LEED

Suggested improvements to LEED

Perception of mandatory energy benchmarking in Pittsburgh
Perception of mandatory energy auditing in Pittsburgh
Perception of EE public subsidies

Perception of EE motivations

Perception of EE barriers

Perception of EE social influences

Perception of the role of professional societies

Level of involvement in professional societies
Aspirational/difficult technologies to implement

We calculated frequency of mentions for single sub-codes for each participant and

compared the overall frequencies between the two groups. For instance, we compared the

number of mentions for the sub-code titled EEClowpriority (“energy efficiency is a low priority

in Pittsburgh”) between experts and owners/managers to gain an understanding of how these two

groups perceive the EE climate in Pittsburgh. Additionally, we developed pairings for the sub-

codes and calculated frequencies of mention to determine which interactions occurred most

often. As an example, we looked at a combination of the sub-code titled ESTARpositive

(“Energy Star mentioned positively”’) with a sub-code such as RBEpositive (“owner/manager has
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positive relationship with building engineer”). Finally, we studied the number of participants
mentioning each sub-code or sub-code pairing to gain an understanding of the potential

difference in prevalence of certain concepts between the two groups.
2.3.2 Ranking data

Ranking results were explored first by frequency and secondly incorporating their ordinal
component. To compare the number of listings between experts and owners/managers, we
developed dot plots representing the number of unique listings in each category. Since only the
owners/managers ranked social influences, it was unnecessary to perform comparative analyses.
Next, ranking plots and simple descriptive statistics helped to further characterize the ordinal
component of the barriers, motivations, and social influences rankings. Finally, the ranking data

was supported by some key findings from the open-ended discussion portion of the interviews.

2.4 Results

2.4.1 Coding results

Our analyses revealed 95 unique responses from ten experts and ten owners/managers in
Pittsburgh. Overall, participants most frequently discussed financing & budgeting for EE
investments, organization & jurisdiction of decisions, and economic barriers Table 4. This
interview study was designed to be exploratory research aimed at uncovering important factors
to commercial building EE investment decision-making and potential policy interventions that

could be informed by the decision-making behavior.
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Table 4. This table depicts the three most frequently discussed topics among the interviews with
all participants (n = 20). These subcodes represent unique items that fall under broader topic
categories. For instance, IDP represents the Investment Decision Process code and BAR
represents the Barriers code.

No. of % of Participants
Subcode Description Mentions  (No. of Participants)

What the decision-maker targets in
IDPfinancing& budget incentives, financing, and budget 63 70% (14)
of EE investment decisions

Chain of command and jurisdiction

IDPorganization in EE investment decisions

53 85% (17)

Economic or financial barriers to
BAReconomic-not.split.inc. EE investment decision unrelated 48 75% (15)
to split incentives

In this paper, we further analyze the subcodes in the context of (1) Investment Decision
Process and (2) Potential Public Policy Interventions. The Investment Decision Process category
includes budget details as well as technical information required to make EE decisions. This
category comprises 268 mentions and 100% of the participants discussed it at some capacity
during their interview. The Potential Public Policy category includes discussions regarding
mandatory energy benchmarking, mandatory energy auditing, and public subsidies. Combined,
participants mentioned topics in this category 92 times and 100% of the participants discussed
this topic category at some capacity during their interview. In the last section of coding results,
we discuss some potentially emerging topics in the field of EE investment decision-making.
Discussions of Investment Decision Process
A large portion of the open-ended interview protocol was aimed at characterizing the EE
Investment Decision Process simplified in Figure 1. The dual protocols allowed for comparison
of the cognitive model of the Investment Decision Process between experts and
owners/managers. Figure 2 illustrates the total number of mentions by each group throughout the

interview, categorized by each component.
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Figure 2. Comparison of number of mentions regarding the four components to EE investment
decision-making: (1) Context, (2) Economics, (3) Technology, and (4) Psychology. Each bar
represents the total number of mentions throughout the open-ended interview section.

Appendix A.10 includes a full description of what subcodes are in each component of the
Investment Decision Process; Context includes 37 subcodes, Economics includes 6 subcodes,
Technology includes 4 subcodes, and Psychology includes 4 subcodes. In this figure, the number
of mentions in each of the EE investment decision components has a similar decreasing pattern
for both groups of participants. However, owners/managers tended to discuss the contextual
influences to the decision-making process more than experts. Table 5 includes combined and

simplified subcodes to illustrate the most commonly discussed topics between the two groups.
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Table 5. Frequency of mention table depicting interview discussions surrounding the Investment
Decision Process. Numbers in parenthesis represent total number of participants in each group

that mentioned the concepts during their interview.

Number of Mentions
(Number of Participants)

Investment Decision Process Expert Owner/Manager
Context
Organization (chain of command, jurisdiction) 26 (9) 27 (8)
Goals & strategy (investment strategies) 8(4) 31(7)
Investment consultant 0(0) 32 (10)
Barriers related to organizational & social influences 43 (9) 24 (8)
Motivations related to organizational & social influences 60 (9) 47 (10)
Social influences mentioned during interview 47 (7) 123 (10)
Discussion of building staff 6 (4) 98 (10)
Economics
Investment financing and budgeting 18 (4) 45 (10)
Desired economics of investment 20 (8) 25 (9)
Barriers related to economics 53 (8) 24 (7)
Motivations related to economics 23 (7) 17 (6)
Technology
Investment information (technical details of equipment) 19 (8) 17 (7)
Decision-maker pilot tests the equipment 0(0) 9(4)
Barriers related to building systems 38 (8) 16 (7)
Motivations related to building systems 18 (6) 9 (5
Psychology
Fear of change 13 (4) 4(3)
Mental accounting 1(0) 0(0)
Agenda setting 1(0) 3(2)
Rewarding work 1(0) 6 (4)

Owners/managers discussed their investment financing strategies and desired project

economics more frequently than experts. There was much disparity in the various budgeting

strategies described for EE investments; participants mentioned rotating funds, energy service

contracts, and combined budgets (e.g. utility and EE projects). Budget responsibilities also

varied across owners/managers; some managers had authority to implement projects not

exceeding $50,000 in capital expenses, while other managers needed owner approval for every

purchase. Despite the differences in budgeting practices, most experts and owners/managers
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tended to agree that decision-makers focus on simple economic indicators, such as simple

payback period,® which varied depending on the building type.

“This is a generalization, but certain federal governments are looking for upwards of a 15-yr
payback, higher education looks for upwards of a 10-yr payback, healthcare looks for 5- to
6-yr payback, commercial office building owners are looking for somewhere between 3- and
5-yr paybacks, and industrial sector is looking for less than a 3-yr payback.” (Participant
EE2)

Aside from economics, owners/managers also frequently mentioned investment goals and

strategies as a large part of their EE Investment Decision Process (31 mentions, 70% of

owners/managers).
“We try to be strategic about our investments —we do multiple analyses to find the different
building energy hogs across our portfolio. We have what we call the good, the bad, and the
ugly. The good buildings don’t need much investment, just operational tweaks. The bad and
ugly might need more retrofits.” (Participant OM2)

In fact, the goals sometimes involved non-economic attributes of an investment such as

maintaining innovative competitiveness in the building sector.

“It’s more of the innovation behind those projects and trying to be the company that’s setting
the first step into some of that new work.” (Participant OM2)

Whereas the experts tended to think owners/managers’ goals more often centered on economics.
“And they usually show interest in one specific thing. Like they’ll latch onto, ‘Oh, I want to
save money on my energy bills,” or they’ll latch onto, ‘Oh, you’ll do my utility analysis for
me.’” (Participant EE 5)

Additionally, owners/managers discussed their processes for investigating opportunities, which

often involved consultants assessing their systems and performing pilot tests before

implementing a technology throughout their building portfolio. The Investment Consultant
subcode included the number of times owners/managers discussed this process and their stance
on reaching out to a consultant for advice. Owners/managers that did work with consultants

found them through trusted networks.

5 Simple payback period is the period of time required to recoup the funds spent on an investment; for an EE
investment, this would be the amount of time required to recoup the funds from the annual energy savings.
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“We invite people to bid based on their qualifications and experience — both experience with
use and others. Then once you have been invited to bid, you are sort of pre-qualified for the
project. We get five or six people that we believe are a good fit for the project. ” (Participant
OM4)

It seemed that without that experience or trust in place, owners/managers might avoid
consultants.

“My experience with consulting groups is that just because you can come in and say that
changing a setpoint is going to make a difference, you still need to sit down and talk with my
building engineers — because maybe they already tried and it doesn’t work.” (Participant
OM1)

Discussions of potential public policy interventions
The next most frequently discussed topics involved potential EE policy interventions (Table 6)
such as mandatory energy benchmarking, energy audits, and public subsidies.

Table 6. Total mentions regarding EE policy interventions.

No. of Mentions (No. of Participants)

Public Policy Interventions Expert Owner/Manager
Mandatory Energy Benchmarking

Positive 15 (9) 8 (6)
Negative 2 (1) 8 (5)
Methodology 4 (3) 2 (1)
Mandatory Energy Auditing

Positive 6 (6) 33
Negative 6 (4) 8 (6)
Methodology 4 (3) 2(2)
Public Subsidies

Positive 9 (6) 33
Negative 1(1) 2(2)
Methodology 4 (4) 5(4)

Owners/managers were fairly neutral about energy benchmarking, but preferred if it was
disaggregated by buildings types so that inherently large consumers (e.g. hospitals) were not
penalized. Experts and owners/managers agreed that mandatory energy auditing resulted in
funding issues — both for the audits as well as the recommendations outlined in the audits.

“It’s an unfunded mandate. In some cases you can measure it [energy efficiency] or you can

do it, but you don’t have the money to do both.” (Participant OM4)
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Furthermore, experts believed mandating energy audits would not lead to action if the
owners/managers were uninterested in energy efficiency.
“I think it’s beneficial when people do it voluntarily, because then they 're more bought into
it. If they don'’t like it or don’t want it, they 're probably not going to implement the solutions
anyway.” (Participant EE7)
Although experts felt positively about public subsidies, owners/managers were sometimes
uncertain of their eligibility or did not understand program requirements (e.g. monitoring and
verification).
“They watch you so much and if you don’t do it right then you have to pay them back. So
there are strings attached. I like small governments.” (Participant OM6)
Supporting this finding, experts who spoke positively of public subsidies also mentioned
information as a major barrier to EE investments (50% of the experts mentioned both concepts)
and participants thought it was important to have organizations dedicated to summarizing all
funding opportunities and technologies available to the decision-makers.
“You need organizations to hand it to managers on a silver platter, ‘Look, this is what you
could be doing, we will give you all the information you need to do it.’ ...I mean probably
75% of our projects are paid [with incentives]. Once again, I don’t think there’s enough
companies out there to pass along the information.” (Participant OM5)
Other studies also illustrate information gaps, such as a misunderstanding of the most effective
investments for conserving energy (Attari et al. 2010) and more classical market failures (e.g.
inadequate provision of incentive information) leading to low adoption rates of EE technologies
and utilization of public incentives (Jaffe and Stavins 1994; Swim et al. 2014).
Potential emerging topics
A few concepts arose in the interviews that are, to our knowledge, not currently or heavily
considered in the building EE literature. These items were coded as Fear of Change (17
mentions, 35% of participants), Mental Accounting (1 mention, 5% of participants), Agenda
Setting (4 mentions, 15% of participants), and Rewarding Work (7 mentions, 25% of
participants). Fear of Change was described differently by various participants, but included

barriers related to technical knowledge and reluctance to implement a new system.
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“The facilities people aren’t working all the time... so if an Energy Manager came in, they
would require more work and that would result in a Fear of Change. And the [facilities]
people don’t always choose the projects, but they are certainly instrumental in the savings
over time.” (Participant EE7)
One expert explained that owners/managers spend money differently in their homes than they do
on their buildings — this was coded as Mental Accounting.
“It’s this mentality that it’s somebody else’s money that makes it easier to do things. The
downside of that is it makes it very easy to pollute... it makes it easy to do any kind of abuse
when it’s not affecting them.” (Participant EE9)
Agenda Setting was used to code any discussion of how the financial institutes or funding
sources dictate spending in the building (e.g. requiring CSR).
“This is a more recent trend that we 've found... buildings that are backed by some kind of
fund are often constrained... investors definitely want to see that their money is being spent
on ecological activities.” (Participant EE9)
Finally, some owners/managers believed their engineering team pursued EE goals because it was
rewarding work — we coded these discussions as Rewarding.
"[ think it pushes the team that works here...it kind of works when you feel good about what
you do - Energy Star really makes you come to work and push yourself." (Participant OM5)
These emerging concepts may warrant additional follow-up studies of large commercial building

owner/managers.
2.4.2 Ranking results

In this section, we explore the results of the ranking exercises performed on barriers,
motivations, and social influences. As shown in Figure 3, experts tended to list more barriers
than owners/managers; however, both groups agreed upon economic barriers such as Capital
(capital constraints), Uncertainty (uncertainty of savings), Investment Horizon (investment will
not pay off in the time horizon of building ownership), and Time Discounting (savings are not

immediate).
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Figure 3. Dot plot comparing number of barrier listings between experts and owners/managers.

From our interviews, we find a stark difference in the number of listings between experts
and owners/managers for EE Low Priority and Lack Information (information regarding
technologies, incentives, or available funding); it seems that experts may perceive these as strong
barriers to EE investment decision-making. Indeed, during the open-ended discussions, experts
expressed the belief that EE was a low priority among owners and managers.

“I can tell you that after you develop a building and you have a management company

managing it, all they 're worried about is keeping the building occupied. The whole issue of

making a building energy efficient is outside of the skillset of most managers... if there is

cash flowing and their buildings are filling up, maybe that is sufficient.” (Participant EE1)
However, owners and managers did not readily admit to not prioritizing energy efficiency as
illustrated in the ranking results depicted in Figure 3 and open-ended interview results (EE low
priority: 15 mentions by 7 experts compared to 3 mentions by 3 owners/managers).

“If two projects had the same return on investment, and one of them was an energy project

and one was a non-energy project, you would value the energy project higher.” (Participant
OM4)
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An econometric study by Schleich (2009) demonstrated organizations underestimating internal
priority setting as a barrier to EE investments; however, our finding may suggest a difference in
perception of prioritization between experts and owners/managers.

To compare expert and owner/manager rankings of these barriers, we developed side-by-
side boxplots (Figure 4). Average ranking for the set is 3.7 with a standard deviation of 2.4 and a
maximum ranking of 13 (1 = highest importance, 13 = lowest importance). See Appendix A.11
for the full set of barrier boxplots. Generally, both groups agreed that economic barriers (Capital,
Time Discounting, and Staffing) have relative importance in EE investment decision-making;
however, owners/manager rankings suggest that uncertainty of savings is a larger deterrent for

EE investments than experts may currently assume.

o

i I
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Capital constramts Time discounting Lack staff support Uncertauty
Bairier

Figure 4. Side-by-side boxplots depicting differences in selected barrier rankings between
experts and owners/managers. Lower rankings indicate higher importance (1 = highest
importance and 9 = lowest importance).

From the open-ended discussions, we also find that economics are the most often discussed
barrier to EE investment decisions (34 mentions by 8 experts and 14 mentions by 7
owners/managers). Economic barriers are coded as those barriers mentioned in the interviews

that relate to topics such as lack of capital reserves and debt aversion.
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“Medium sized manufacturers. They probably represent the biggest sector in Pittsburgh’s

economy. They operate on such a margin that they don’t have the personnel to devote to

[energy efficiency] — they 're worried about making payroll and getting product out the

door.” (Participant EE10)

Some of the most common code-pairings for economic barriers include discussion of building

technologies the participants deemed aspirational (13 pairings), discussion of professional

societies providing insight (13 pairing), and lack of information available to decision-makers

regarding available technologies and funding opportunities (12 pairings).

Next, we compare motive listings and rankings between the two groups. In a dot plot of

motives (Figure 5), we do not see quite the discrepancy in the total number of listings between

each group. However, we do find that owners/managers tend to list motives related to CSR

(Occupant Comfort, Social Responsibility, and Industry Leaders) more often than experts.

Experts (n = 10)

Owners and Managers (n = 10)

Reduce energy costs s s « »
Retain tenants ‘e
Reduce labor costs "o
Reputation .
Imminent investment .
Real estate '

Premium tenants

Fresh air

Occupant productivity

Ample subsidies

Occupant comfort

Occupant health U
Social responsibility .
Industry leaders '
Regulation/policy o
Reliability/security '

Healthy building

f

=17 19 5

Motive Frequency

Figure 5. Dot plot comparing number of motive listings between experts and owners/managers.

Average ranking for the motive set is 4.2 with a standard deviation of 2.9 and a maximum

ranking of 14 (see Appendix A.12 for the full set of motive boxplots). Both groups listed Reduce

Energy Costs with the highest frequency and, similarly, ranked this with the highest relative

importance (Figure 6). Ranking results depicted in the boxplots also illustrate the potential

discrepancy in expert and owner/manager opinion of motives associated with CSR (i.e.,

Occupant comfort, Industry leaders, and Social responsibility).
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Figure 6. Side-by-side boxplots depicting differences in selected motive rankings between
experts and owners/managers. Lower rankings indicate higher importance (1 = highest
importance and 13 = lowest importance).

However, during the open-ended discussions, we found that both experts and owners/managers
tended to discuss motivations related to CSR such as mission and leadership (26 mentions by 7
experts and 14 mentions by 5 owners/managers).

“It goes back to motivation. This stuff isn’t a technology issue, it’s a value issue.”

(Participant EE6)

“I think the people can change when there is a change from the top. If management says,

‘We’re going to do this — we now want to focus on sustainability, it’s important to our

business,’ then the team will get on board.” (Participant EES)
Often, participants who described motivations related to CSR also discussed the benefits of
Energy Star (11 code pairings), LEED certification (10 code pairings), and mandatory energy
benchmarking (10 code pairings).

Only the ten owners/managers were asked to list their perceived social influences to

building EE investments (Figure 7). Internal influences, such as Building Engineers, Tenants,

and Employees were often listed as influential sources in EE investment decision-making.
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Conversely, owners/managers avoided listing sources representing a certain technology or

product such as Renewable Energy Companies and Controls Contractors.

Social Influence Listings
(by owners/managers)

Building Engineers
Conferences

Utility Companies
Tenants

Universities
Employees
Professional Associations
Federal Government
Government Policies
Local Government
EE Consultants
Building Architects
Building Owners
Property Managers
News Sources

Large Corporations
Customers
Renewable Energy Companies
Controls Contractors
Trade Journals
Online Forums
Building Contractors
ESCOS

(n=23) 0

2 4 6 8
Frequency of Listings

Figure 7. Bar chart representing the number of times each social influence type is listed by the
10 owners/managers interviewed in this study. The maximum number of listings is eight
(Building Engineers and Conferences) and the minimum is zero (Building Contractors and
ESCOs).

Next, we compared the social influence rankings with boxplots; average ranking for the social
influence set was 4.8 with a standard deviation of 3.3 and a maximum ranking of 16 (see
Appendix A.13 for the full set of boxplots). Selected boxplots may suggest that owners/managers
may value information received from utility companies and the government similar to how they

value information from internal sources, such as their building staff (Figure 8).
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Figure 8. Boxplots depicting owner/manager rankings of selected social influences to EE
investment decision-making. Lower rankings indicate higher importance (1 = highest importance
and 16 = lowest importance).

2.5 Discussion

A few thematic patterns emerge from the interview data. Some of these ideas map onto the
influence diagram (Figure 1) explained in the Introduction, while other ideas are promising
concepts not yet heavily studied in the EE literature: (1) heterogeneity among experts and
owners/managers regarding value of CSR, (2) differing approaches to the Investment Decision
Process between experts and owners/managers, (3) owners/managers trust in various information
sources, and (4) emerging behavioral concepts related to EE investment decision-making.
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2.5.1 Heterogeneity among experts and owners/managers regarding value of CSR

During the open-ended questions, both groups often discussed the compelling role of Corporate
Social Responsibility in EE investment decision-making. However, when asked to rank
motivation cards, experts found others to have greater relative importance. Experts only listed
Social Responsibility and Being Industry Leaders six times with average rankings of 8 (recall, 1
= most important and 13 = least important), while owners/managers ranked these items 15 times
with average rankings of 4.5. These findings suggest that it may be beneficial for experts to
illustrate CSR benefits to EE investments when communicating with owners/managers of large
commercial buildings. Furthermore, benchmarking policy may be attractive to owners/managers
who are inclined to reduce energy consumption in an attempt to signal CSR, which as a result
may minimize the issue of split incentives between owners and tenants [121]. One might
consider the following hypothesis: When two investments have similar economics,

owners/managers of commercial buildings are more likely to pick the one with CSR benefits.

2.5.2 Differing approaches to the Investment Decision Process between groups

As shown in Table 5, experts and owners/managers differed greatly in their approach to the
Investment Decision Process. The most distinct differences occurred in their discussions of goals
and strategy and the role of an investment consultant in decision-making. The number of
mentions of “Goals & Strategy” is nearly four times higher for owners/managers as it is for the
experts. Specifically, it seems that owners/managers are focused on meeting company goals such
as improving occupant comfort or maintaining innovative competitiveness, which was often
highlighted in their open-ended responses as well as their motivation rating frequencies shown in
Figure 5. In this instance, it seems that experts tend to overlook the strategic logic potentially in
place with owners/managers’ decision-making, instead focusing on the economic barriers to
energy efficiency investments. The experts’ emphasis on economic barriers is shown by how
they mentioned Economic Barriers in open-ended questions (Table 5) two times, the benefits of
Public Subsidies to investments (Table 6) three times, and Lack Financing six times more than
did owners/managers. One possible explanation for this difference is owners/managers may
evaluate how energy efficiency equipment helps them achieve overarching core business goals
and not just economic goals. Indeed, Dutton et al. [130] found that organizational context

influences the dimensions of an issue that are most salient to the decision-maker. Future study
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should further examine these contextual factors and how they might influence owner/manager
decision-making.
2.5.3 Owners/managers trust in various information sources
During the ranking exercises, it was apparent that owners/managers valued input from internal
sources such as their building engineers and tenants. Conversely, they did not tend to list social
influences affiliated with certain technologies, such as controls contractors. When asked to
explain their ranking rationale, many owners/managers admitted feeling pressured by vendors or
energy service contractors.
“Sometimes I don’t trust [ESCOs], because they push their product. I usually go for people
that are running the same thing you re running, they re trying to do the same thing you 're
doing.” (Participant OM6)
Similarly, some owners/managers discredited EE consultants, because they believed the
consultants’ goals (making a profit) ultimately misaligned with their goals (save energy). Most
owners/managers expressed trust in their building engineering team, who often interfaces with
the controls contractors, ESCOs, and vendors.
“My guys are really good. They like learning about this stuff [energy efficiency], so they went
to school for it. I'm confident in their abilities.” (Participant OM1)
Therefore, a bad relationship between engineers and contractors may result in a bad relationship
between the owners and contractors. Indeed, Beamish et al. [131], identify trust networks among
owners/managers and contractors as a means to minimize risk aversion related to the adoption of
new energy efficient technologies, providing a mechanism for demystifying innovative
products/practices. To mitigate reliance on contractors, perhaps offering training services for
building engineers may be an alternate and effective way to increase EE. These findings inspire
hypotheses such as the following: Owners/managers of commercial buildings trust information
regarding EE investments more when they come from their building engineering team than if

they come from external consultants.

2.5.4 Emerging behavioral concepts related to EE investment decision-making
Several concepts arose from the interviews between experts and owners/managers that are not yet
considered or heavily discussed in the EE investment decision literature. These concepts were

coded as Fear of Change, Mental Accounting, Agenda Setting, and Rewarding (Table 7):
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Table 7. Emerging concepts in EE decision-making.

Code Concept References
Fear of Change Resistance to change [132]
Aversion to technology [133]
Mental Accounting ~ Mental accounting [134]
Agenda Setting R&D agenda setting [135]
Rewarding Social demand characteristics [136]
Team collaboration & job satisfaction [137]

For instance, Fear of Change might be defined as resistance to change, which is explained
through routine seeking, emotional reaction to imposed change, cognitive rigidity, and short-term
focus [132]. Fear of Change has minimal mention in previous building EE studies involving
focus groups for commercial building performance [138], open-ended interviews in multi-family
residential buildings [139], [140], and surveys regarding new construction and technology
diffusion [141]. Conversely, a manager’s high technology adoption rate might be explained by
their self-perceived lack of responsibility for the funding. As such, Mental Accounting suggests
that funding origins impact spending patterns [134]. Furthermore, financial institutes mandating
sustainable investments seems to resemble R&D Agenda Setting [135]. Finally, social demand
characteristics, team collaboration, and job satisfaction are topics heavily studied in
Organizational Behavioral Sciences that may explain why pursuing energy efficiency can
influence the performance of building engineers [136], [137]. Each of these emerging concepts
warrants its own hypothesis — one example might be: Owners/managers of commercial buildings
are deterred from making an EE investment if their engineering staff is reluctant to install the

new technology.
2.6 Conclusion

This paper discusses the findings from open-ended interviews with ten experts and ten
owners/managers in Pittsburgh. This research characterizes potential non-economic factors
associated with EE investment decisions made in large commercial buildings. Specifically, the
authors are interested in exploring the social influences and behavioral decision profiles of EE
investment decision-makers.

Findings from this scoping study identify several policy implications. First, policy

makers and incentive program designers should focus on delivering economic incentives as well
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as social and behavioral incentives. Secondly, policy makers should carefully consider their
methods for conveying program information. When considering potential information conduits,
it is important to consider the dynamics of the building engineering team as well as the
owner/manager’s current perceptions of various social influences. For instance,
owners/managers may perceive the government and/or NGOs as neutral sources capable of
delivering unbiased, trustworthy information regarding building EE investments.

Additional research is necessary to determine the potential efficacy of these suggested
policy implications on a population of owners/managers. For instance, a follow-up detailed
survey study of large commercial building owners could characterize the prevalence of these
identified thematic patterns. A similar survey study among experts could allow for systematic
comparisons between groups (i.e. Experts and Owners/Managers) as well as within groups (i.e.
types of experts ranging from academics to energy efficiency consultants). Findings from this
interview study also suggest that social influences do play a role in decision-making; therefore,
one might perform a social network analysis of owners/managers to characterize how concepts
identified in this study propagate through a network. In sum, our work aims to target late
adopters by cataloging the distinctions and ranges of energy efficient building manager attributes
as well as deepening the understanding of identified barriers through employment of a social
network perspective. Integrating behavioral and social drivers with economic factors in energy
efficiency policy may be the necessary catalyst for yielding substantial savings in support of U.S.
national efforts, such as the Better Buildings Initiative.
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3. Framing clean energy campaigns to promote civic
engagement among parents

Abstract

Civic engagement is one important way citizens can influence the rate of the decarbonization in
the electricity sector. However, motivating engagement can be challenging even if people are
affected and interested in participating. Here we employed a randomized controlled trial to assess
the effect clean energy campaigns emphasizing cost savings, health, climate, or health and
climate, or no additional information at all (control) on civic engagement behaviors (signing a
petition or making a phone call) among parents. We targeted parents as they have been shown to
be powerful agents of political and business practice change in other contexts, and hence could
play an important role in the decarbonization of the energy sector. In Study 1 we recruited n=292
parents already engaged in climate advocacy; in Study 2, we recruited a representative sample of
n=1,254 parents drawn from the general public. Both studies were conducted in Michigan,
Florida, and California, as these states have sizable advocacy group membership, divergent
energy profiles, and strategic importance to the climate movement. In both studies, we find the
odds of taking action are reduced by over 90% when participants are asked to make a phone call
and leave a voicemail message, versus signing an online petition. Among the parents already
engaged in advocacy, we observe a ceiling effect regarding attitudes towards clean energy and
find the cost campaign produces unintended consequences. Among our public sample, we find
that participants who believe the campaign to be credible and comprehendible are more likely to
take action than those who discredit the campaign or do not understand its message.
Additionally, we find parents who have children under the age of 18 negatively adjust their
attitudes towards fossil fuels after being presented with health information. Ultimately, we find
that campaign messages can influence energy attitudes and parents are willing to take action on
the topic if the advocacy action seems like an effective approach.

3.1 Introduction

Approximately two-thirds of the electricity generated in the United States (U.S.) comes from
fossil fuels, with negative externalities occurring at every point of the supply chain. Water and
air pollution emanate from extraction processes; air pollution and spills can arise from fuel
transportation; and, finally, environment and public health impacts result from burning fossil
fuels and hazardous waste [142]-[150]. At-risk populations such as families with children,
asthmatics, and those living in flood-prone regions are particularly vulnerable [5]-[8], [68].
However, without clear signals, utilities have little incentive to use cleaner energy sources to
mitigate these ill effects [151]. Civic engagement — voting, demonstrating, signing petitions, and
fundraising — is one way that people can signal their dissatisfaction with fossil fuels [152]-[155],
and is increasingly vital as negative externalities are more widely understood and as

environmental regulatory bodies are weakened through proposed budget cuts [156]-[158]. The
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challenge, however, is learning how to leverage this concern and transform it into action on clean
energy issues.

Parents are a potential compelling target audience for clean energy campaigns.
Parenthood has been described as either a hindrance to political activism, because parents are so
busy, or a reason to participate [159]. However, there is a strong reason to believe that parents
can be powerful agents of change. Examples of parent movements abound, including the
immensely successful Mothers Against Drunk Driving (MADD) founded by Candy Lightner
[160]; Shannon Watts’ Moms Demand Action for Gun Sense in America [161]; and more
recently MomsRising, which campaigns for initiatives such as maternity/paternity leave as well
as health care for all [162]. Other seminal examples of parent initiatives include Lois Gibbs’
establishment of the Love Canal Homeowner’s Association that lobbied successfully for the
remediation of hazardous chemical waste in Niagara Falls, New York [163] and Mary Brune’s
Making our Milk Safe initiative, which demanded that retailers stop selling baby products made
with polyvinyl chloride [164]. Finally, there also exists the EcoMom Alliance, a nonprofit
empowering women through education to help create an “environmentally, socially and
economically sustainable future” [165] and numerous school cafeteria food initiatives such as
Farm to School [166] or Parents for Healthy Schools [167]. Drawing on these examples, there is
reason to believe that parents wishing to protect their children from environmental threats, such
as buried toxic waste and water pollution, may be highly motivated activists [168], [169].
Additionally, we focus on parents since the majority (85%) of women in the U.S. between the
ages of 18 and 44 have had at least one child [170] and, hence, our findings could potentially
generalize to a large segment of society. Therefore, our research objective is to investigate the
extent to which health and environmental arguments influence parents’ attitudes towards and
motivation to take civic action on clean energy.

To achieve our research objective, parents in Florida, California and Michigan are
exposed to a real clean energy campaign. They are then randomly assigned to learn more about
cost savings, health, climate, health + climate impacts related to fossil fuel consumption, or to
learn nothing more (control). Finally, they are randomly asked to either sign a petition or leave a
voice message to urge their local utility to increase its share of clean energy and encourage
energy efficiency, with the signed petitions and voice messages being batched and sent to utility

company CEOs. Established audience segmentation analyses suggest that messaging which
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assumes a diverse population as homogenous will fall flat or potentially result in unintended
“boomerang effects”; therefore, it is important to identify sources of diverse perspectives [70],
[171], [172].5 Hence, we perform two studies where we evaluate the effect of a clean energy
campaign among (Study 1) those parents who are already actively engaged on climate change
and (Study 2) those who are not. We hypothesize:
H1: Compared to cost savings or no information, exposure to health, climate, or the
combination of health and climate information will result in less favorable attitudes by
parents towards fossil fuels and more favorable attitudes towards clean energy.
H2: Compared to cost savings or no information, exposure to health, climate, or the
combination of health and climate information will result in higher intention and action
rates by parents.
H3: Those parents who accept climate change, see the campaigns as more credible, and
believe taking action is effective will express higher civic engagement intent and higher

action rates.

3.2 Study 1 — Advocacy Parents Sample

3.2.1 Method

Sampling and participants

We recruited from the membership lists of two advocacy organizations, Climate Parents
(climateparents.org) and Moms Clean Air Force (momscleanairforce.org), targeting parents and
grandparents concerned about climate change. Participants completed a web-based study in
exchange for being entered to win 1 of 4 solar gift bundles, valued at $200 each. The target
population consisted of adults (age 18 years or older) who were or had ever been parents, aunts
or uncles. We targeted members who were customers of select utilities residing in Michigan
(Consumers Energy and DTE Energy), Florida (Florida Power and Light and Duke Energy), and
California (Southern California Edison). We selected these utility districts and states based on
advocacy group membership, divergent energy profiles, and strategic importance to the climate
movement [173]-[176].” Between September 13, 2016 and November 7, 2016, the advocacy
groups invited 51,774 of their members by email to participate in a survey. Email reminders

were sent out five times between September and November 2016. A total of 364 responded, with

6 See Appendix B.1 for more details on background, framing, and theoretical models of decision-making.
" See Appendix B.2 for justification of utility selection and associated electricity generation portfolios.
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292 completing the study for a completion rate of 0.6%.%° According to self-reports, the
participants’ average age was 58 (SD = 15.4), 53% were female (n = 153), 79% were White or
Caucasian (n = 229), 55% had at least a bachelor’s degree (n = 162), and 45% had a household
annual income of $40k or greater (n = 133). In terms of party affiliation, 47% identified as
Democrats (n = 136), 29% identified as Independents or Undecided (n = 84), 3% identified as
Republicans (n = 10), and 21% preferred not to answer (n = 62). Most participants answered that
they were parents (62%, n = 182), and of these 45% were also grandparents (n = 82) and 84%
were also aunts or uncles (n = 153). Of those who reported being aunts or uncles, 63 out of 182
participants reported not having children of their own. A number of participants reported having
at least one child under the age of 18 living at home (43 out of 182; 24%), and of these 21% had
at least one child age 5 or under (n = 9). Only 5% (n = 15) of participants in Study 1 were not
involved in other community service activities, 46% were involved in 1-3 other activities (n =
134), and 49% were involved in more than 3 activities (n = 143).
Experimental protocol
Figure 9 summarizes the study design; the full survey can be found in Appendix B.7. In this
study, participants were randomly assigned to one of ten conditions, with clean energy campaign
and advocacy action as fully crossed factors. The five types of Campaign?® were:
i.  Control. Participants read a neutral, informative message about the role of electricity
utilities in generating and distributing electricity.
ii.  Cost. Identical to the control but with additional information about potential reductions in
future electricity bills if utilities switched to renewables or were more efficient.
iii.  Health. Identical to the control but with additional information about negative health
impacts associated with burning fossil fuels.
iv.  Climate. Identical to the control but with additional information about negative climate
impacts associated with burning fossil fuels.
v. Health + Climate. Identical to the control but with additional information about negative

health and climate impacts associated with burning fossil fuels.

8 An a priori power analysis using G*Power [237] indicated a total sample of 196 for a medium effect size (n% =
0.25) with 80% power, for ANOVA (fixed effects, main effects, and interactions) with alpha at 0.05.

9 See Appendix B.3 for email templates and Appendix Tables B3-B5 for a summary of the Study 1 sample.

10 See Appendix B.6 for campaign materials.
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After reading the campaign, participants were informed that this was a real campaign albeit
within a study. They then were asked to urge their utility to invest in clean energy and energy
efficiency by either signing a petition or leaving a voice message:
I.  Petition. If they chose to sign the petition, they were taken to a page to fill out their
participant code, first name, last name, and zip code (See Appendix Figures B8 and B10).
ii.  Message. If they chose to leave a voice message, they were taken to a page where they
were given a phone number for the researchers’ Google voice mail account, name of the
utility CEO, and a sample script. They were asked to also include their participant code
and name in their voice message (See Appendix Figures B9 and B11).
Campaign materials, selected advocacy actions, and survey questions were developed in
collaboration with Moms Clean Air Force and Climate Parents. Campaign materials and survey
questions were pre-tested for affect, readability, and comprehension in a series of in-person
interviews (n = 5) and online pilot tests (n = 172). Additional explanation of framing selection is
provided in Appendix B.1. In addition to exposing participants to various clean energy
campaigns and measuring advocacy intentions and actions, we also collected data on key
variables that were relevant to the campaign materials (e.g. agreement with utilities using various
energy sources) and measured individual differences (e.g. climate change acceptance). These
variables are explained in the next section. The Institutional Review Board of Carnegie Mellon

University approved all procedures. All participants provided informed consent.
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Figure 9. Schematic of the Chapter 3 study design.
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Variables

For a further description of the included variables and coding methodology, please see Appendix

B.8.

a.

Perception. Participants indicated their perception of their utility’s electricity portfolio
by answering the following question: “What percentage of the electricity that you use in
your home do you think comes from fossil fuels (i.e., natural gas, oil, and/or coal)?” the
responses were recorded on a sliding scale from 0% to 100%.

Knowledge. Given a participant’s perception of the fossil fuel percentage of their
utility’s portfolio, we calculated knowledge as an absolute difference from their response
and the actual percentage published on their respective utility’s websites.!

Fossil fuel attitudes. Participants indicated their fossil fuel attitudes with their agreement
to the following statement (1 = strongly disagree, 5 = strongly agree): “My utility should
use fossil fuels to make electricity,” before and after being exposed to their condition.
Clean energy attitudes. Participants’ attitudes towards clean energy were measured by
taking the mean of their agreement with the following two statements (1 = strongly
disagree, 5 = strongly agree) before and after the conditions: “My utility should use wind,
sun, and other renewable energy sources to make electricity,” and “My utility should use
energy efficiency to reduce the amount of electricity needed.” (Before: Cronbach’s o =
0.33; After: Cronbach’s a = 0.62).

Intention. Participants indicated their intention to take action'? by either selecting, “Sign
the petition”/“Leave a message” or “No thanks”.

Action. Participants who took action were assigned a 1, and those who didn’t take action
were assigned a 0.

Credibility. Participants indicated their perception of campaign credibility by answering
the following question (1 = definitely no, 5 = definitely yes): “Was the clean energy
information just presented to you credible?”

Comprehension. Participants’ comprehension was measured by their responses to two

questions (1 = definitely false, 5 = definitely true): (1) “My utility can only provide

11 See Appendix Tables B1 and B2 for utility portfolios.
12 See Appendix Figures B8-B11 for an example of the Intention and Action Screens.
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electricity generated from fossil fuels” [correct answer = definitely false] and (2) “My
utility can choose to invest in energy efficiency” [correct answer = definitely true].
Action-efficacy. Participants indicated action efficacy beliefs by indicating their
agreement (1 = strongly disagree, 5 = strongly agree) with either “Signing an online
petition is an effective way to change my utility’s practices” or “Joining others who have
already made a phone call to my utility is an effective way to change my utility’s
practices.”

Self-efficacy. Participants’ self-efficacy was assessed by taking the mean of their
agreement with two statements from Schwarzer and Jerusalem’s General Self-Efficacy
Scale [177] (1 = strongly disagree, 5 = strongly agree): (1) “I am often able to overcome
barriers” and (2) “I generally accomplish what I set out to do” (Cronbach’s o = 0.76)
[178].

Climate change. Participants’ climate change acceptance was assessed by taking the
mean of their agreement with four statements from Leiserowitz et al.’s Global Warming’s
Six Americas survey [179] (1 = definitely no to 5 = definitely yes): (1) “Do you think that
climate change is happening?” (2) “Do you think that climate change is mostly caused by
humans?” (3) “Do you think that climate change will harm future generations?”” and (4)
“Are you worried about climate change?” (Cronbach’s .= 0.75) [178].

Experience. Participants indicated their experience of extreme events by checking any of
the following: coastal/inland flooding, drought, severe weather, wildfires, other, and
prefer not to answer.

. Respiratory llIness. Participants answered, “Have YOU been diagnosed by a doctor or
other qualified medical professional with asthma, chronic bronchitis, COPD, or other

lung disease?”

Analytic strategy

Statistical analyses were conducted using Stata 14.2. We performed a Pearson’s chi-squared test

to confirm balanced experimental conditions. To ensure successful randomization, we performed

a 2-way Analysis of Variance (ANOVA) with Campaign x Action on Perception. We conducted

separate linear regressions, considering Campaign and Action on change of attitude (after

campaign — before campaign) for Fossil Fuels (Model 1) and Clean Energy (Model 2). In these

regressions, we controlled for Knowledge, Credibility, Comprehension, Experience, Respiratory
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IlIness and demographics. We conducted separate logistic regressions using a hierarchical
variable-entry strategy to analyze correlates of our dependent variables, Intention and Action, in

theoretically relevant blocks.3
3.2.2 Results

Table 8 provides summary statistics for our dependent variables across the experimental
conditions in Study 1.

Balance and randomization check

A chi-square test of independence found no significant difference in the number of participants
assigned to each condition, ¥ (4, N = 292) = 1.11, p = 0.893, indicating a balanced experimental
design. A 2-way ANOVA also found no significant interaction between Campaign and Action on
Perception, F(4, 292) = 1.65, p = 0.161, suggesting successful randomization.'*

Attitudes

Figure 10 depicts the effects of Campaign on overall attitudes towards fossil fuels. As shown in
Table 9 (Model 1) and Figure 10, cost information resulted in fossil fuels being viewed more
favorably than neutral information (control) or climate information [approached significance].
Figure 11 depicts the effects of Campaign on overall attitudes towards renewable energy. While
we observed no significant main effects from campaign on clean energy attitudes, it is important
to note that views across all conditions were high before (M = 4.92, SD = 0.27) and after (M =
491, SD = 0.31), indicating the strong environmental orientation of our sample (Figure 11).
Unplanned post hoc analyses found those shown health information saw fossil fuels more
negatively than those shown cost information (Contrast = -0.71, SE = 0.22, p = 0.002).*°
Intention

Cost information resulted in lower intent to take action than neutral information (control) (Table
10, Model 5a and Appendix Figure B18). We found those asked to make a phone call were much
less likely (99%) to intend to do so than those asked to sign a petition (Models 3a-5a). Greater
climate change acceptance was associated with higher levels of intent to take action when
controlling for demographics and when not (Model 5a and 4a, respectively). Additionally, the
odds of intention to make a phone call or sign a petition were 2 times greater among those who

13 See Appendix B.8 for regression block details.
14 See Appendix B6 and B7 for additional balance and randomization check results for Study 1.
15 See Appendix Tables B8 and B9 for additional post-hoc analysis results for Study 1.
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expressed stronger belief in the efficacy of the action than those less convinced, when not
controlling for demographics (Model 4a). Finally, we found the odds of intention were 1.5 times
higher among those who reported higher self-efficacy than those who reported low self-efficacy,
when controlling for demographics (Model 5a). No other significant predictors or interactions
were observed.

Action

Figure 12 depicts the effects of Campaign on action rates. Cost information resulted in lower
action rates than neutral information (control) (Table 10, Model 5b and Figure 12), controlling
for demographic variables. We also found those asked to make a phone call were much less
likely (99% less likely) to do so than those asked to sign a petition (Models 3b-5b). We also
found those who reported greater climate change acceptance and stronger beliefs in the
effectiveness of the requested action were significantly more likely to take action when and when
not controlling for demographics (Model 5b and 4b, respectively). No other significant predictors
or interactions were observed. See Appendix B.13 for more details about differences across

states.
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Table 8. Ch.3, Study 1 summary statistics of dependent variables across experimental conditions.

Averagfe chan_ge in fossil Average chang_e in clean Count of intentions Count of actions
uel attitude energy attitude
Made Took

Campaign Action n? Mean SD n Mean SD n Intention® n Action®
Control Petition 30 -0.10 0.96 30 0.08 0.42 33 33 33 32
Cost Petition 38 0.31 1.16 38 0.01 0.25 40 40 40 37
Health Petition 36 0.11 1.14 36 -0.10 0.49 37 34 37 33
Climate Petition 32 -0.15 0.51 33 -0.05 0.20 34 34 34 32
Health + Climate Petition 31 0.00 0.89 31 0.03 0.48 34 33 34 31
Control Voice Message 21 0.10 0.70 22 -0.02 0.11 31 10 31 5
Cost Voice Message 27 -0.07 0.92 27 0.04 0.19 29 9 29 6
Health Voice Message 31 -0.06 0.36 33 -0.03 0.21 35 9 35 7
Climate Voice Message 25 -0.12 0.60 25 -0.02 0.27 29 5 29 4
Health + Climate Voice Message 29 -0.31 0.85 29 -0.09 0.30 34 11 34 3

& Participants were not required to answer every question in the online survey. Therefore, we observe some small differences in the n
values for different dependent variables within each condition.

b «Made Intention” means participants indicated their intention to take action.

¢ “Took Action” means participants took their assigned advocacy actions.
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Table 9. Ch. 3, Study 1 (advocacy) linear regression predicting changes? in attitudes towards fossil fuels and
clean energy®.

Model 1 (Fossil Fuels) Model 2 (Clean Energy)
(n=284) (n = 286)
Variables B(95% CI) SE t B(95% CI) SE t
Campaign (Ref = Control)

Cost 0.50 (0.02, 0.98)* 024 205 -0.03(-0.22,0.17) 0.10 -0.27

Health -0.21 (-0.69, 0.28) 0.24 -0.85 -0.01(-0.20,0.19) 0.10 -0.08

Climate 0.07 (-0.48, 0.62) 0.28 0.24 -0.03(-0.25,0.20) 011 -0.23

Health + Climate 0.06 (-0.46, 0.58) 0.26  0.24 0.05(-0.16, 0.26) 0.11 0.6
Action (Ref = Petition)

Voice Message -0.10 (-0.40, 0.21) 0.15 -0.64 -0.16(-0.28,-0.04)* 0.06 -2.48
Knowledge 0.00 (-0.01, 0.00) 0.00 -1.06 0.00(-0.01, 0.00) 0.00 -1.06
Credibility -0.25 (-0.50, 0.01) 0.13 -1.91 0.06(-0.04,0.17) 005 119
Comprehension -0.04 (-0.43, 0.35) 0.20 -0.20 -0.06 (-0.21,0.10) 0.08 -0.71
Constant 2.01 (0.35, 3.68)* 0.84 240 -0.20(-0.87,0.47) 0.34 -0.59
R? 0.16 0.12

***p<.001, **p<.01, *p<.05

&Here changes in attitudes were calculated by subtracting attitudinal responses after participants viewed the
campaigns and were asked to take an action from their original responses.

b Demographics controlled for in Model 1 and Model 2 include Age, Income, Number of Children, Experience
with climate change-related weather, and whether or not the participant suffers from respiratory illness
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Table 10. Ch. 3, Study 1 (advocacy) logistic regression predicting intention and action®.

Intentions Actions
Model 3a (n = 287) Model 4a (n = 284) Model 5a (n = 123) Model 3b (n = 287) Model 4b (n = 284) Model 5b (n = 123)
Variable B SE OR"(e®) B SE OR(e®) B SE OR(e®) B SE OR(e®) B SE OR(e®) B SE OR(e®)
Campaign (Ref. = Control)

Cost 0.06 0.61 1.06 -0.34 066 0.71 -3.05* 149  0.05 -0.11 0.67  0.90 -0.69 0.70 0.50 -3.12* 149 0.04

Health -0.17 0.61 084 0.05 0.65 1.05 -2.18 132 011 0.22 0.66 1.25 0.42 069 152 -1.37 120 025

Climate -0.32 0.64 0.73 -0.45 0.68 0.64 -2.22 148 011 -0.07 0.68 0.93 -0.29 072 0.75 -0.30 128 074

Health + Climate 0.09 0.60 1.09 0.06 0.64 1.06 -0.53 133 059 -0.42 0.69 0.66 -0.59 0.71 0.55 -1.51 138 022
Action (Ref. = Petition)

Voice Message -5.03***  0.65 0.01 -5.24*** 072 0.01 -7.43%** 159  0.00 -4.88*** 051 0.01 -5.25*** 059 0.01 -6.44%** 120 0.00
Knowledge 0.00 0.01 1.00 0.00 0.01 1.00 0.02 0.02 1.02 0.01 0.01 101 0.01 0.01 1.01 0.01 0.02 1.01
Credibility 0.61 0.34 184 0.41 035 151 114 0.63 3.13 0.83* 034 229 0.64 035 1.90 0.78 0.58 218
Comprehension 0.31 042 136 0.46 0.43 158 -1.82 1.03 0.16 -0.04 0.40 0.96 0.10 042 111 -1.27 0.83 0.28
Action-Efficacy 0.69** 021 199 0.53 043 170 0.82*** 023 227 1.09* 047 297
Self-Efficacy 0.14 029 115 1.49* 0.74 444 -0.26 033 0.77 -0.05 0.62 0.95
Climate Change 1.46* 072 431 2.85** 1.09 17.29 1.78* 0.69 593 2.45* 111 1159
Demographics® No No Yes No No Yes
Constant 0.59 192 1.80 -8.54* 3.68 0.00 -16.79* 6.51 0.00 -1.18 191 031 -10.73**  3.65  0.00 -14.92* 6.65 0.00
R2d 0.50 0.55 0.66 0.56 0.60 0.65

***p<.001, **p<.01, *p<.05

&We chose not to include Climate x Action interaction term in these regression models.

b A significant odds ratio with a value below 1 indicates that the specified independent variable reduces the odds of a participant
stating an intention to act (i.e. Intention = 1). An odds ratio greater than 1 indicates an increase in these odds. Therefore, we can
subtract 1 from the ratio and multiply by 100 to determine the percent change in the odds of intending to take an action. The same can
be done for the observed action regressions.

¢ Demographics controlled for in this regression include Age, Income, Number of Children, Experience with climate change-related
weather, and whether or not the participant suffers from Respiratory illness.

d These represent pseudo R? values for logistic regressions.
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3.2.3 Discussion

Overall, our participants who are members of climate advocacy groups held very positive views
about clean energy and additional information about impacts did little to shift those views. We
did not find support for H1 and H2. In support of H3, other factors seemingly increased action
rates, including whether the participant saw the action as being able to make a difference in their
utility’s practices and if they accepted climate change. Finally, on balance, people found it easier
to sign a petition than make a phone call. See Appendix B.14 for additional Study 1 discussion.
Whether these findings hold among parents who don’t prioritize climate change or other

environmental issues is an empirical question, which we investigate in Study 2.

3.3 Study 2 — Public Parents Sample

3.3.1 Method

Sampling and participants

Respondents were drawn from the GfK KnowledgePanel, which uses address-based random
sampling methods to recruit individuals in U.S. households. Data were weighted to account for
probability of selection and any differences in the demographics of our sample compared to U.S.
Census benchmarks. Panelists completed Web-based surveys in return for compensation or free
Internet. The target population consisted of adults (age 18 or older) who were or had ever been
parents and are customers of the same utilities targeted in Study 1. Between September 23, 2016
and October 3, 2016, GfK invited 1,890 people to participate, with 1,254 completing the study
for a completion rate of 66%.%1" According to self-reports, the participants’ average age was 51
(SD = 15), 54% were female (n = 683), 53% were White or Caucasian (n = 670), 26% had at
least a bachelor’s degree (n = 324), and 69% had a household annual income of $40k or greater
(n =873). In terms of party affiliation, 45% identified as Democrats (n = 557), 2% identified as
Independents or Undecided (n = 27), and 53% identified as Republicans (n = 670). All
participants in Study 2 answered that they were parents, and of these 48% were also grandparents
(n = 605) and 74% were also aunts or uncles (n = 924). Some participants reported having at
least one child under the age of 18 living at home (363 out of 1,254; 30%), and of these 35% had

16 An a priori power analysis using G*Power [237] indicated a total sample of 1,199 for a small effect size (2 =
0.10) with 80% power, for ANOVA (fixed effects, main effects, and interactions) with alpha at 0.05.

17 See Appendix B.15 for a description of GfK’s sampling method and Appendix Table B11 for a summary of the
Study 2 sample.
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at least one child age 5 or under (n = 127). In Study 2, 16% of participants were not involved in
other community service activities (n = 229), 64% were involved in 1-3 other activities (n =
794), and 20% were involved in more than 3 activities (n = 201).

Experimental protocol

Study 2 followed the same exact experimental protocol as that described in Study 1 (Figure 9).
Variables

For Clean Energy Attitudes, we found a Cronbach’s a of 0.78 and 0.79 for before and after
presentation of the campaign, respectively. We found a Cronbach’s o of 0.77 and 0.92 for Self-
efficacy and Climate Change, respectively [178].

Analytic strategy

We performed the same exact set of analyses for Study 2 as we did for Study 1, with the
inclusion of sampling weights to retain demographic representativeness.'® To investigate how
different parent segments reacted to the clean energy campaigns, we performed analyses on two
group distinctions within this sample: (1) grandparents / non-grandparents and (2) parents with
children under 18 years old / parents without children under 18 years old. We ran the same
change of attitude regressions for Fossil Fuels and Clean Energy as well as logistic regressions
for Intention and Action, controlling for demographics. All results are included in Appendix
B.23.

3.3.2 Results

Table 11 provides summary statistics for our dependent variables across the experimental
conditions in Study 2.

Balance and randomization check

Similar to Study 1, a chi-square test of independence indicated a balanced experimental design
[*(4, N = 1254) = 1.80, p = 0.773] and a 2-way ANOVA with Campaign x Action on Perception
suggested successful randomization [F(4, 1247) = 0.95, p = 0.433].°

18 See Appendix B19 for unweighted results.
19 See Appendix Tables B14 and B15 for additional balance and randomization check results for Study 1.
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Attitudes

Health information resulted in significantly less favorable attitudes towards clean energy (Table
12, Model 7), seemingly driven by parents in Florida.?® Unplanned post hoc analyses found those
presented with the health impacts viewed clean energy (Contrast = -0.34, SE = 0.12, p = 0.005)
and fossil fuels (Contrast = -0.41, SE = 0.167, p = 0.009) less favorable than those presented
with the cost benefits of utilities switching to renewables and increasing efficiency. However,
coupling health with climate information resulted in more favorable views towards clean energy
than those shown health information alone (Contrast = 0.29, SE = 0.12, p = 0.017).%

Fossil Fuel Attitudes - Before and After the Campaign (with SE bars)
& Petition - Before O Petition - After
B VVoice Message - Before O Voice Message - After

[8)]

IN

N

M%%%%

Control Cost Health Climate Climate Control Cost Health Climate Climate
+ Health + Health
Members Sample (Study 1) Public Sample (Study 2)

Agreement with utility using fossil fuels (1
= completely disagree, 5 = completely
aggse)

Figure 10. The effects of Campaign (Control, Cost, Health, Climate, and Health + Climate) on
overall attitudes towards fossil fuels (before — after) in the advocacy sample (Ch.3, Study 1) and
the general public sample (Ch. 3, Study 2).

20 |_ooking at state differences, we found that in Florida showing the health information increased negative views of
both clean energy (before = 4.32, after = 3.95) and fossil fuels (before = 3.04, after = 2.51). In Michigan, however,
views on clean energy remained virtually unchanged (before = 4.48, after = 4.45) but did become less favorable for
fossil fuels (before = 3.05, after = 2.63).

21 See Appendix Tables B16 and B17 for additional post-hoc analysis results for Study 2.
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Clean Energy Attitudes - Before and After the Campaign
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= Voice Message - Before OVoice Message - After

= completely
agrge) o

N

[N

(1 = completely disagree, 5
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Climate Climate

Members Sample (Study 1) Public Sample (Study 2)

Agreement with utility using clean energy

Figure 11. The effects of Campaign (Control, Cost, Health, Climate, and Health + Climate) on
overall attitudes (before — after) towards renewable energy in the advocacy sample (Ch. 3, Study
1) and the general public sample (Ch. 3, Study 2).
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Table 11. Ch. 3, Study 2 summary statistics of dependent variables across experimental conditions.

Average change in fossil Average change in clean

fuel attitude energy attitude Count of intentions Count of actions
Made Took

Campaign Action n? Mean SD n Mean SD n Intention® n Action®
Control Petition 110 -0.12 0.66 111 0.04 0.79 112 45 112 43
Cost Petition 125 0.01 1.01 126 0.08 0.77 127 53 127 53
Health Petition 116 -0.31 1.18 119 -0.08 0.84 120 51 120 50
Climate Petition 113 -0.33 1.25 115 -0.07 0.85 118 61 118 56
Health + Climate Petition 125 -0.22 1.06 126 0.06 0.86 129 58 129 56
Control Voice Message 125 -0.05 0.97 127 -0.01 0.89 132 13 132 5
Cost Voice Message 122 -0.23 1.00 126 0.17 0.83 126 11 126 5
Health Voice Message 134 -0.13 1.21 138 -0.05 0.98 140 15 140 5
Climate Voice Message 119 -0.11 1.10 120 0.00 0.84 120 15 120 3
Health + Climate Voice Message 127 -0.13 0.99 128 0.09 0.83 130 14 130 2

& Participants were not required to answer every question in the online survey. Therefore, we observe some small differences in the n
values for different dependent variables within each condition.

b“Made Intention” means participants indicated their intention to take action.

¢ “Took Action” means participants took their assigned advocacy actions.
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Table 12. Ch. 3, Study 2 (general public) linear regression predicting changes® in attitudes
towards fossil fuels and clean energy®.

Model 6 (Fossil Fuels) Model 7 (Clean Energy)
(n=1205) (n=1222)
Variables B(95% CI) SE t B(95% CI) SE t
Campaign (Ref = Control)

Cost 0.16 (-0.10, 0.41) 0.13 1.18  0.09 (-0.16, 0.34) 013 071

Health -0.26 (-0.53, 0.01) 0.14 -1.88 -0.25(-0.48,-0.01)* 0.12 -2.06

Climate -0.17 (-0.52, 0.18) 0.18 -0.97 0.14(-0.17,0.44) 0.16  0.90

Health + Climate -0.04 (-0.32, 0.25) 0.15 -0.26 0.04(-0.20, 0.28) 012 034
Action (Ref = Petition)

Voice Message 0.09 (-0.13, 0.31) 0.11 0.81 0.04(-0.13,0.22) 0.09 051
Knowledge 0.00 (0.00, 0.01) 0.00  0.47 0.00(0.00, 0.00) 0.00 -0.16
Credibility -0.11 (-0.21,-0.01)* 0.05 -2.10 0.07(-0.01,0.14) 0.04 169
Comprehension -0.10 (-0.23, 0.03) 0.07 -1.50 0.15(0.05, 0.26)** 0.05 2.79
Constant 0.74 (0.00, 1.47)* 0.37 0.05 -0.65(-1.25,-0.06)* 0.30 -2.17
R? 0.07 0.06

***p<.001, **p<.01, *p<.05
2Here changes in attitudes were calculated by subtracting attitudinal responses after participants
viewed the campaigns and were asked to take an action from their original responses.

b Demographics controlled for in Model 6 and Model 7 include Age, Income, Number of
Children, Experience with climate change-related weather, and whether or not the participant
suffers from respiratory illness.

Intention

A main effect was observed for intention with those asked to make a phone call being much less
likely (~90%) to intend to do so than those asked to sign a petition (Table 13, Models 8a-10a).
We also found the odds of intending to take action were 2 times higher among those who
believed the campaign to be credible than those who didn’t believe it to be credible (Model 8a).
Those who accepted climate change and expressed a stronger belief in the efficacy of the action
were more likely to intend to take action when and when not controlling for demographics
(Model 9a and 10a, respectively). No significant other main effects or interactions were
observed.

Action

A main effect was observed for action with those asked to make a phone call being much less
likely (~90%) to do so than those asked to sign a petition (Table 13, Models 8b-10b). No other
significant main effects or interactions were observed. We also found those who believed the

campaign to be more credible, expressed stronger beliefs in the efficacy of the action, and
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accepted climate change were more likely to take action when and when not controlling for
demographics (Model 9b and 10b, respectively). No other significant predictors were observed.
See Appendix B.22 for more details about state differences.

Predictions of Actions (Campaign x Action) with 95% Cls
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Figure 12. The effects of Campaign (Control, Cost, Health, Climate, and Health + Climate) on
action rates in the advocacy sample (Ch. 3, Study 1) and the general public sample (Ch. 3, Study
2). This chart illustrates the predicted action rates with 95% confidence intervals from Models 5b
and 10b.
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Table 13. Ch. 3, Study 2 (general public) logistic regression predicting intention and action?®.

Intentions Actions
Model 8a (n = 1237) Model 9a (n = 1200) Model 10a (n = 1168) Model 8b (n = 1237) Model 9b (n = 1200) Model 10b (n = 1168)
Variable B SE OR®(e®) B SE OR(e®) B SE OR(e®) B SE OR(e®) B SE OR(e®) B SE OR(e®)
Campaign (Ref. = Control)

Cost -0.34 035 0.71 -0.14 0.39 0.87 -0.18 040 0.84 0.09 042 1.09 0.46 047 158 0.42 048 152

Health 0.17 035 119 -0.03 0.38 0.97 0.12 039 113 0.53 040 1.70 0.45 044 157 0.60 046 1.82

Climate 0.31 0.36 1.36 0.47 0.37 1.60 0.52 0.36 1.68 0.24 037 127 0.49 041 1.63 0.50 042 165

Health + Climate 0.02 041 1.02 -0.10 045 0.90 -0.15 047 086 -0.22 044 0.80 -0.36 047 070 -0.46 0.50 0.63
Action (Ref. = Petition)

Voice Message -2.19*** 027 011 -2.42*** 032 0.09 -2.66***  0.33  0.07 -3.55*** 033 0.03 -4.07*** 039  0.02 -4.37%** 041 0.01
Knowledge 0.00 0.01 1.00 0.00 0.01 1.00 0.001 0.01 1.00 0.01 001 1.01 0.01 0.01 1.01 0.01 0.01 101
Credibility 0.77*** 0.15 216 0.38* 0.17 146 0.44* 0.18 155 0.92%** 014 251 0.58*** 015 1.79 0.63*** 016 1.88
Comprehension 0.26 017 1.30 0.28 019 132 0.25 020 1.28 0.22 019 125 0.35 020 142 0.36 022 143
Action-Efficacy 0.69*** 013 199 0.75%** 012 212 0.82%** 014 227 0.87%*=* 014 239
Self-Efficacy -0.10 0.18 0.90 -0.18 0.18 084 -0.30 020 0.74 -0.37 021  0.69
Climate Change 0.49%** 013 1.63 0.49** 0.15 163 0.42** 013 152 0.38** 0.14 146
Demographics® No No Yes No No Yes
Constant -3.43%** 0.70 0.03 -5.85*** 1.09 0.00 -5.17*** 1.23 0.01 -4 5*** 0.80 0.01 -6.77*** 1.31 0.00 -6.21*** 155 0.00
R 0.23 0.32 0.37 0.35 0.44 0.47

***p<.001, **p<.01, *p<.05

&We chose not to include Climate x Action interaction term in these regression models.

b A significant odds ratio with a value below 1 indicates that the specified independent variable reduces the odds of a participant
stating an intention to act (i.e. Intention = 1). An odds ratio greater than 1 indicates an increase in these odds. Therefore, we can
subtract 1 from the ratio and multiply by 100 to determine the percent change in the odds of intending to take an action. The same can
be done for the observed action regressions.

¢ Demographics controlled for in this regression include Age, Income, Number of Children, Experience with climate change-related
weather, and whether or not the participant suffers from Respiratory illness.

d These represent pseudo R? values for logistic regressions.
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Segmentation analysis

Parents who aren’t grandparents. Parents who are not also grandparents presented with health
information reported significantly less favorable attitudes towards fossil fuels (B =-0.43, p =
0.029) than those presented with neutral information. Moreover, for these parents, stronger
reported self-efficacy was associated with less action taking (B = -0.60, p = 0.30). We did
observe, however, similarities between parents who are and who are not also grandparents with
those being asked to make a phone call being much less likely to intend to or to actually do so
than sign a petition. We also found that across all parents, greater perceived campaign
credibility, action efficacy, and belief in climate change was associated with greater intention
and action. No other significant effects were observed (p >.05).

Having a child under the age of 18 at home. Parents who have children under the age of 18
years old presented with health information reported significantly less favorable attitudes
towards fossil fuels (B = -0.51, p = 0.044) than those presented with neutral information.
Moreover, for these parents, greater message comprehension was predictive of greater action (B
=0.69, p = 0.024). We also observed similarities between parents who have children under the
age of 18 and those who don't with those being asked to make a phone call being much less
likely to do intend to or to actually do so than sign a petition. We also found that across all
parents, greater perceived campaign credibility, action efficacy, and belief in climate change was
associated with greater intention and action. No other significant effects were observed (p >.05).
3.3.3 Discussion

Overall, our participants recruited from the general public held relatively neutral opinions on
energy sources. Here, among those shown health information, we found more negative attitudes
towards clean energy than the control group as well as more negative attitudes towards both
fossil fuels and clean energy than the cost group (in partial support of H1). We did not find
support for H2; we found the campaigns had no effect on intention or action rates. In support of
H3, we found climate change acceptance and beliefs about campaign credibility among the
participants to be more predictive of intention and action than the campaign materials. Our
segmentation analysis demonstrated that parents should be treated as a heterogeneous group.

3.4 General discussion

Attitudes. On the whole, parents who are members of the advocacy groups, Climate Parents and

Moms Clean Air Force, held negative views towards fossil fuels and positive views towards
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clean energy (Study 1). Alternatively, parents recruited from the general population were more
ambivalent (Study 2). When compared to neutral information (control), cost information had
little effect on general public parents’ attitudes. However, we were surprised to find that
advocacy group parents reported more favorable views of their utilities using fossil fuels after
being presented information describing the potential for reduced electricity bills when utilities
switched to cleaner energy sources. This could suggest a boomerang effect, supported by Self-
Perception Theory, which posits that clean energy campaigns heralding monetary benefits, an
extrinsic motivation, may not work well with self-defined intrinsically motivated
environmentalists [70], [180].

Surprisingly, we also found general public parents expressed less favorable attitudes
towards their utilities using clean energy when shown health information compared to when they
were presented with neutral or cost information with those in Florida seemingly driving this
effect. However, when health was coupled with climate information, attitudes towards clean
energy improved among general public parents. According to the Centers for Disease Control
and Prevention (CDC) National Asthma Control Program, Florida had asthma rates lower than
the national average in 2011,%2 but has experienced the highest number of flood insurance claims
since 1978 among our three targeted states of Florida, Michigan and California (and 3 in the
nation) [181], [182]. Thus, one possible explanation is that Florida parents are more concerned
about the climate and sea level rise, due the availability heuristic, rather than the health
implications of burning fossil fuels [183], [184]. We also found that younger parents (e.g. those
parents who were not also grandparents and/or who have children under the age of 18 years old)
reported significantly less favorable attitudes towards fossil fuels when shown health
information, compared to the control. This could also be due to the availability heuristic or the
issue of co-benefits [185]; some parents will respond well to information that has direct
relevance for themselves and their family (i.e. health) compared to information often perceived
as abstract (i.e. climate change).

Intentions and behaviors. Few differences were observed between advocacy and general public
parents with behavioral intent and action. On balance, people expressed greater intent and action

rates when asked to sign a petition versus leaving a voice message. Previous research also

22 |_ifetime asthma rates among adults in Florida were 10.2% in 2011 compared to the national average of 13.3% and
child current asthma prevalence was 8.3% compared with the national average of 9%.
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suggests that as the level of perceived or actual effort required increases,?® the level of civic
engagement decreases [186]. Self- and action-efficacy enhances this effect; participants who
perceive having agency in a matter should express more persistent efforts, manifested in our
study by higher action rates [187], [188]. This also echoes the common finding in public health
that messages both conveying the risk and providing a plausible solution enhance pro-health
behaviors [189]. We also found that greater acceptance of climate change, perceiving the
information as credible, and seeing the proposed action as effective were associated with
enhanced behavioral intention and action rates. Risk communications research suggests that trust
in the source and the information itself determine whether people pay attention and perhaps more
importantly in this context, take action [190], [191].

Another difference is that advocacy parents tended to have higher action rates across all
campaign types whereas general public parents tended only to be responsive when exposed to
cost, health or climate information (as shown in Figure 12). This suggests potentially two
phenomena. First, advocacy parents may be less susceptible to the influence of messaging due to
their existing dedication to advocacy action. Moreover, factors such as social influences and peer
behavior, recent news headlines, and familiarity with petitions may play a larger role than do the
messages for the advocacy parents. The second is that public parents can be influenced by
messages. Our findings suggest that these parents are responding differently to different
messages largely due to their individual differences (e.g. climate change acceptance);
recognizing these differences is essential for more impactful targeting of the general
population. This general conclusion is also supported by findings in our brief segmentation
analysis presented in Section 3.3.2. and other widely accepted segmentation analyses regarding

climate change acceptance and messaging [171], [179].
3.5 Conclusion

We found promising results in our study of how clean energy campaign framing moves parents
to take civic action and urge their utilities to provide clean energy. Parents, regardless of their

involvement in climate advocacy groups, are open to changing their perception of energy sources

2 |n attempt to reduce the varying levels of perceived effort to complete these actions (e.g. increased embarrassment
from expressing personal qualms with fossil fuels in a voice message, increased amount of time required to make a
phone call, and general ignorance regarding contacting utilities), we provided the participants with a suggested script
that included the utility’s contact information. We also specified that they would be recording a message that we
would deliver later, assuring them that they wouldn’t be speaking with a live person.
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when presented with relevant information. However, unintended consequences can occur with
people expressing seemingly contradictory viewpoints and inaction. We also found that beliefs
about action-efficacy, climate change, and information credibility matters. Hence, sensitivity to
the heterogeneity that exists among parents in terms of knowledge, values, and culture is
paramount when developing and executing a campaign — this point is underscored by our
segmentation analysis, which illustrated differences among younger and older parents. Future
study could examine how parents are influenced by campaigns delivered by a host of messengers
and mediums (e.g. campaigns delivered directly by electric utilities or government agencies) to
take a broader set of clean energy actions (e.g. installing their own on-site generation or
switching utilities).?* Ultimately, we find that campaigns can influence energy attitudes and
parents are willing to take action on the topic if the advocacy action seems like an effective
approach.

24 See Appendix B.26 for additional discussion of study limitations and suggestions for future study.
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4. Solar PV as a mitigation strategy for the U.S.
education sector

Abstract

Solar PV will be an important strategy to decarbonize the energy sector in the United States, and
to reduce the health, environmental, and climate change damages associated with the production
of electricity from fossil fuel sources. While the potential for solar PV in the residential and
commercial sectors has been widely studied, the potential in educational buildings is largely
unknown. Educational institutions account for 11% of total U.S. building electricity consumption
and 14% of building floorspace. These buildings also contribute to approximately 4% of total
U.S. CO- emissions, thus playing a potentially important role in climate mitigation strategies.
We estimate the electricity use for 132,592 educational institutions across the U.S. and estimate
electricity generation, greenhouse gas and health damaging air emissions reductions, and private
and social costs and benefits that would result from adopting rooftop solar PV. We find that solar
PV in U.S. educational institutions could provide 100 TWh of electricity services annually,
meeting 75% of these buildings’ current electricity consumption. We estimate the highest
generation potential in Texas, California, and Florida with K-12 Public educational institutions
comprising the bulk of that generation. The provision of electricity services from rooftop solar
PV on educational institutions could reduce health, environmental, and climate change damages
by roughly $4 billion per year (assuming a social cost of carbon of $40/ton and value of
statistical life of $10M in 2018 USD). This analysis suggests that some states, like Texas, could
increase their school PV incentives to match the high social benefits they realize from these
systems. Other states, such as California, are currently over-incentivizing school PV systems as
the value of these incentives is higher than the health, environmental, and climate change
benefits they provide.

4.1 Introduction
Solar photovoltaic (PV) capacity has grown at an unprecedented rate over the last few years in
the United States (U.S.). Despite that increase, more than 60% of the electricity generated in the
U.S. comes from fossil fuel sources, compared to only about 2% that is now provided by solar
PV [145]. In 2015, electricity generation accounted for 30% of all U.S. greenhouse gas (GHG)
emissions [145], contributing to annual health costs amounting to roughly 4% of the national
gross domestic product (GDP) [146]. Health effects arise mostly due to secondary formation of
particulate matter < 2.5 microns wide (PM2s) from sulfur dioxide (SO2) emissions, with negative
impacts in particular for at-risk populations such as asthmatics, the elderly, and low-income
families [3]-[6], [8], [192].

The technical potential and costs/benefits of installing solar PV in the residential and
commercial sectors have been quantified in detail in the literature. Gagnon et al. [64] estimate

that PV systems installed on small, medium, and large buildings in the U.S. can generate 1,400
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TWh of electricity; Denholm and Margolis [65] estimate the residential sector alone can provide
419 TWh from rooftop solar PV. Recently, a study by Vaishnav et al. [193] estimates annual
state-level health and environmental benefits for residential and commercial systems to be on the
range of $50/kW-yr. Previous studies demonstrate that residential solar PV has been mostly
adopted by high-income households, benefitting from publicly-funded incentives [193], [194].
As for non-residential adoption, an economic analysis of historical project costs by Barbose et al.
[195] demonstrates that installed prices are higher for tax exempt customer sites than for for-
profit commercial sites. Despite these currently discouraging installation costs, educational
institutions, like industrial facilities, often have large, flat roofs that might allow for greater
economies of scale. Additionally, their low summer electricity consumption profiles and
locations in residential communities could make them decent candidates for community solar
projects [196]. The decreasing installation costs of solar PV may also make these projects
potentially economical [197].

However, to date, little attention has been devoted regarding the use of solar PV in the
education sector. Educational institutions account for 11% of total U.S. building electricity
consumption and 14% of building floorspace [76]. They contribute to approximately 4% of total
U.S. carbon dioxide (CO2) emissions, making them a decent target for climate mitigation
strategies [198]. Many institutions, especially in higher education, have already set goals to
reduce energy consumption and GHG emissions. According to the Bloomberg Philanthropies’
America’s Pledge Report, in 2016, 587 U.S. universities with a total enrollment of 5.2 million
students (25% of the U.S. college and university student population), had voluntarily adopted
GHG targets [199]. To date, 335 colleges and/or universities have GHG emissions inventories
and 78 have defined climate action plans [200].

In this paper, we focus on estimating the potential electricity generation, emissions
reductions, and private and social net-benefits of installing rooftop solar PV on educational
institutions throughout the U.S. We consider public and private K-12 as well as higher education
institutions [201], [202].

The rest of this paper is organized as follows. First, we explain our data and methods.
Next, we present our results, which include regionally specific estimates of electricity generation
from rooftop PV, avoided electricity consumption from the grid, emissions reductions, and the

private and social costs and benefits. We also include a sensitivity analysis regarding inputs such
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as discount factor, system size, and the value of excess generation. Finally, we conclude and

provide policy recommendations.
4.2 Data and methods

We estimate the electricity generation, CO2, SO, PM2s and nitrogen oxide (NOx) emissions
reductions, and private and social net-benefits of installing solar PV on each K-12 and higher
education public and private institution across the United States. We assume systems are
installed today and use recent system installation costs as detailed below. We assume a system
lifetime of 20 years and use alternative discount rates of 2% and 7% per year when computing
the private and social net-benefits. We provide our results in terms of annual electricity
generation, reduced emissions, and net-benefits.

We use the following modeling strategy, as shown in Figure 13: (1) we estimate the
available PV rooftop area for each U.S. educational institution, (2) we estimate the hourly
electricity output of the panels given the local irradiation for that site, (3) we estimate the hourly
electricity demand of each institution, (4) we calculate the amount of electricity that can be saved
annually from using the panels instead of acquiring the electricity from the grid by subtracting
hourly demand from hourly PV generation, (5) we determine the value of electricity generated
by the panels (i.e. electricity cost savings and excess generation sales), (6) we quantify the
emissions of criteria air pollutants and GHGs avoided by the PV systems, and (7) we monetize
the avoided health, environmental, and climate change (HE&CC) damages associated with the
avoided emissions using two reduced form air quality models. In Table 14, we summarize the
different data sources that are used in our analysis. In the Appendix C.1, we provide a table of

model assumptions and our treatment of uncertainty.
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Figure 13. Framework used in Ch. 4: (1) we estimate the available PV rooftop area for each U.S.
educational institution, (2) we estimate the hourly electricity output of the panels given the local
irradiation for that site, (3) we estimate the hourly electricity demand of each institution, (4) we
calculate the amount of electricity that can be saved annually from using the panels instead of
acquiring the electricity from the grid by subtracting hourly demand from hourly PV generation,
(5) we determine the value of electricity generated by the panels, (6) we quantify the emissions
of criteria air pollutants and greenhouse gases avoided by the PV systems, and (7) we monetize
the avoided health, environmental, and climate change damages associated with the avoided
emissions using two reduced form air quality models.

Table 14. Inputs and data sources used in Ch. 4 analysis.

Variable Source Reference

Institution location and counts

Higher education Integrated Postsecondary [203]

(N = 7,084 institutions) Education Data System

K-12 public schools Common Core [204]

(N = 99,772 institutions) of Data

K-12 private schools Private School [205]

(N = 25,736 institutions) Universe Survey
Solar irradiance data NREL TMY3 Data [206]
Building load profiles DOE Commercial Reference Buildings [207]
Solar PV system costs LBNL Tracking the Sun 10 [197]
Rebates LBNL Tracking the Sun 10 [197]
Electricity rates

Retail rates EIA 2016 Commercial Rates [208]

Locational marginal price ISO/RTO portals [209]
Available roof space NREL LIDAR data [64]
Health & environmental damages EASIUR Model, AP2 Model [210][211]
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Available PV roof space

We construct a database of 132,592 educational institutions’ building counts and location (see
Figure 14) using three National Center for Education Statistics (NCES) datasets: the Integrated
Postsecondary Education Data System — 2014/2015 (for higher education institutions), the
Common Core of Data — 2014/2015 (for K-12 public institutions), and the Private School
Universe Survey — 2013/2014 (for K-12 private institutions) [203]-[205].

" ® K12 Public
@® K12 Private
R @ Higher Education
€ LIDAR Measurement

Figure 14. Map of U.S. educational institutions in our datasets: K-12 public institutions are
shown in green, K-12 private institutions are shown in blue, and higher education institutions are
shown in red. Institutions for which we have direct NREL LIDAR data on available rooftop
space are marked with a black diamond. Data on institution location comes from NCES datasets
(Integrated Postsecondary Education Data System — 2014/2015; Common Core of Data —
2014/2015; and Private School Universe Survey — 2013/2014).

The Integrated Postsecondary Education Data System is a mandatory survey of
postsecondary institutions that receive federal funding under Title IX (including degree- and
non-degree granting); this dataset also includes non-federal funded schools, but that percentage
is unknown [203], [212]. The Common Core of Data [204] and Private School Universe Survey
[205] are both considered to include the entire population of public and private K-12 schools,
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respectively, which NCES uses for sampling frames. These datasets do not include rooftop
space, and thus we have established a strategy to estimate such areas. We use National
Renewable Energy Laboratory (NREL) light detection and ranging (LIDAR) estimates of
available rooftop space for 16,000 institutions that are included in NREL’s dataset (which
account for 12% of all educational institutions in the NCES dataset). Although a total of 39,000
institutions are linked by NREL to LIDAR data, only 16,000 of these institutions are linked to
open-street mapping (OSM) polygons. To characterize suitable rooftop space for solar PV on
buildings in the U.S., NREL uses LIDAR data provided by the Department of Homeland
Security (DHS) in combination with Geographic Information System (GIS) methods and
statistical modeling [64]. First, NREL runs a shading simulation on the digital surface model for
each city provided in the DHS dataset. Next, they classify roof orientation using the LIDAR
dataset to determine the tilt and azimuth of each 1m? space. Finally, they use NREL’s System
Advisor Model (SAM) to determine generation profiles of each site, defining a suitability
threshold for each of the 128 cities in the dataset. NREL links as many institutions as they can
with OSM polygon data, which allows them to consider entire campuses that are associated with
the institution address. If multiple institutions are co-located in an OSM polygon, NREL’s
method is to proportionally distribute the roof space using the reported institution populations
(taken from NCES). In Appendix C.2 we provide a detailed explanation of their estimation
procedure, and for more details the reader can refer to Gagnon et al. [64]. The advantage of using
these estimates is that they are readily available and reasonably measure? rooftop area [64],
[213].

In order to estimate the rooftop areas for the remaining institutions that are in the NCES
dataset, but not in NREL’s rooftop estimates, we start by fitting simple linear regression models
for each institution type to explain the observed NREL LIDAR rooftop estimates as a function of
several institution- and county-level variables. We then use the results from that regression to
predict the available PV rooftop area for the remaining institutions in our dataset. While more
sophisticated regressions could be envisioned, we balanced the modeling parsimony and insight
that could be provided and concluded that selecting a simple model would be preferable.

%5 NREL’s best-case performance validation method involved training their model on 3,312 ZIP codes with 90% or
greater LIDAR coverage, predicting results for these ZIP codes, and analyzing the difference between the
predictions and actual values — they found their model under-predicts the true value and thus available rooftop space
estimates are conservative (total error for all ZIP codes is 21.9 m?or 2.6% relative error) [64].
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Appendix C.3 provides additional information on the data and results from our estimation
procedure.

Estimating solar PV hourly generation at each institution

We use NREL’s TMY3 data, which provides hourly solar irradiance for 936 locations across the
contiguous U.S. We assign each educational institution to the geographically closest location for
which we have solar irradiance data. We then use the method outlined in Lorenzo [214], which is
also used in Vaishnav et al. [193], to estimate hourly power output for the systems installed at
each institution. We assume the PV panels will cover 100% of the suitable roof space and then
relax this assumption in our sensitivity analysis.

Estimating hourly load profiles for each institution

We use the typical hourly load profiles for “secondary schools” compiled by the U.S.
Department of Energy (DOE) for each of the TMY 3 locations [207]. These reference building
load profiles are specific to 16 different climate zones across the U.S. The DOE characterizes the
secondary school reference buildings as having an average floor area of 210,887 ft? and two
stories. Assuming the floor area divides evenly among stories, this equates to a roof area of
approximately 100,000 ft2. The 95" percentile of the OSM-linked rooftop area data is 90,000 ft?
and the 95" percentile of the regression estimated rooftop area across all educational institutions
is 77,000 ft? (see Appendix C.2 for more details of rooftop area summary statistics). We scale the
building load profile linearly using the building roof space for each institution, assuming the
ratio between the net-power and peak load remains the same across building sizes. See Appendix
C.4 for a detailed description of how we estimate net-power and load scaling.

Electricity cost savings, net-metering, and third-party ownership

First, we calculate the electricity savings from using the PV power instead of grid electricity by
computing the difference between hourly solar PV generation and hourly load. We assume that if
load exceeds hourly generation in that hour, the remaining power is bought from the grid (again,
see Appendix C.4 for a description of net-power estimation). Electricity cost savings are
determined by multiplying the difference between solar hourly production and load by a
volumetric electricity price ($/kWh), which we assume to be the state-average 2016 commercial

retail rate (henceforth referred to as the “retail rate”).28

2 |n this analysis, we do not use time-of-use (TOU) rates due to their highly specialized, utility-specific structure
(e.g. utilities often design them to be revenue-neutral).

-68 -



We also estimate demand cost savings. We do so as follows: (1) the demand charge
accounts for 20% of the average rates for educational institutions and (2) rooftop solar PV can
provide average monthly demand savings of 20%. Ultimately, we adjust the retail rate as follows
to account for the demand cost savings and appropriately reduce the volumetric rate:
Commercial. Rategiqe = Avg. Rategigre * -8 + Avg. Rategigie * .20 x .20 1)

The Avg.Rate represents the state-average 2016 commercial retail rate. Therefore, the
first part of the Commercial.Rate approximates the variable rate observed for each state and the
second part approximates the demand savings for each state. These assumptions are informed by
a demand rate analysis following a method outlined in Darghouth et al. [215], where we simulate
secondary school DOE reference building loads in 15 cities across the U.S. using NREL’s
System Advisor Model (SAM) [216] (see Appendix C.5 for more details). In the sensitivity
analysis, we vary the demand charge rates and fractional savings.

Finally, we characterize net-metering and third-party ownership (TPO) scenarios. Net-
metering policies vary widely across the U.S., although it is established in most states at some
capacity (see Appendix C.6 for a table of net-metering policies currently outlined in the DSIRE
database) [217]. Therefore, in this analysis we assume net-metering is available to educational
institutions across the U.S. We consider two scenarios as bounding cases for valuing the excess
electricity generated by the PV systems: (1) retail rates and (2) locational marginal prices
(LMPs). Valuing excess generation with the retail rate closely approximates net-metering
policies in effect today (e.g. customers are allowed to roll over monthly applied power credits
over a 12-month period); this scenario is the “best case” scenario from the institution’s
perspective. However, if net-metering policies are financed by spreading costs over the entire
rate base, there is a transfer of resources from those who do not install PV to those who do install
these systems [193]. We estimate this cross-subsidy as the difference between the retail and
LMPs for that institution, and we consider it a social cost in this scenario. The “worst case” net-
metering scenario experienced by institutions would be when excess generation is valued at the
LMP;2 this scenario is sensible since small, distributed power sources may be valued by using

an avoided cost calculation or considering costs associated with distribution.

2" Following Vaishnav et al. [193], we download hourly LMP data for year 2015 for representative aggregate pricing
nodes in each state from the IST/RTO data portals. Generation nodes reported by neighboring ISOs are used for
states not in an electricity market. See Horner [209] Section 4.3.2. and Table 4.4. for additional information.
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The TPO scenario is characterized as the difference between the regular annual electricity
consumption costs to the educational institutions (without PV) and the costs of electricity if
schools purchased electricity at a TPO-defined rate. This TPO-defined rate is assumed to be less
than the retail rate. Here, annual electricity costs to the school at the TPO-defined rate are
estimated as the annualized cost of owning the PV systems, assuming commercial owners can
take advantage of the Federal Investment Tax Credit (ITC) and that excess generation is valued
at the LMP. Table 15 describes each of the three benefit-cost analysis (BCA) scenarios for
valuing electricity cost savings and excess generation sales that we consider in this study.

Table 15. Three BCA scenarios for valuing electricity savings and excess generation considered
in Ch. 4.

Value of offset Value of excess
Scenario consumption? generation

State-average 2016

Net-metering at LMPs . X LMP
commercial retail rate

Net-metering at retail State-average 2016 State-average 2016

rates commercial retail rate commercial retail rate

School purchases electricity from the TPO at a rate
reduced from the State-average 2016 commercial
retail rate. We estimate the rate by amortizing the
cost of the system for a 20-yr lifetime.

& Each scenario also includes an estimate for the demand savings, using the
described methodology.

Third-party ownership

Installed price of system

We use Lawrence Berkeley National Laboratory’s (LBNL) Tracking the Sun X (TTS10) data on
recently observed solar PV system prices in 2015 and in 2016. Since a previous study by
Barbose et al. [195] finds that tax-exempt sites have higher average installation costs than for-
profit commercial sites, we limit our LBNL dataset consideration to only school, government
and non-profit sites to derive an estimate for project installation cost. There are approximately
1,046 projects out of the roughly 800,000 projects meeting these criteria in the LBNL TTS10
database (see Appendix C.7 for more details). These projects represent 11 states in the U.S., with
the top three most represented being California, Maine, and Arizona [197]. The mean project
cost from these observations is approximately $3,800/kW. We use this mean value to estimate
project costs for all systems in our combined educational institution dataset, varying this

assumption in our sensitivity analysis. We also include annual operations and maintenance
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(O&M) costs of $15/kW-yr and inverter replacement costs of $120/kW at year ten [218]. We
assume O&M and inverter replacement costs are constant across the U.S. We do not include the
decommissioning cost of the system at the end of its useful life in our analysis.

PV system rebates

We include rebates when estimating the upfront project costs. We use the state-average rebates
($/KW) observed in the LBNL TTS10 database for school, government, and non-profit
installations on recently observed projects in 2015 and in 2016 [197]. The rebate values
identified range from $100/kW to $1,700/kW. Since the Federal ITC only applies to residential,
commercial, industrial, investor-owned utility, cooperative utilities, and agricultural PV projects,
these are not included in our non-TPO BCA scenarios; however, we do assume third parties can
take advantage of the ITC [219], [220]. In Appendix C.6, we provide a table of available state-
level rebates assumed in our analysis as well as a table of rebates currently outlined in the
DSIRE database.

Valuing health, environmental, and climate change benefits

We estimate marginal avoided damages from reducing emissions of CO2, SO2, NOx, and PM2 5
that arise from using the electricity generated by the solar PV systems instead of grid electricity.
First, we estimate the avoided marginal emissions damages in each Emissions & Generation
Resource Integrated Database (eGrid) subregion characterized by the Environmental Protection
Agency (EPA) using the time of day, by season emissions factors posted in the Center for
Climate and Energy Decision Making “Electricity Marginal Factors Estimates” website by
Azevedo et al. [221]. These estimates are produced by our research group using an approach
similar to the one described in Siler-Evans et al. [222], [223] and used in the literature to assess
the emissions and damages consequences from renewables, energy efficiency, and storage [69],
[112], [193], [224]-[227]. Marginal damages reported on this website are marginal emissions
reductions that are translated to damage reductions using two integrated air quality models: AP2
and EASIUR [210], [223], [228]. These models estimate the dispersion of pollutants and the
resulting concentration in all U.S. counties and then rely on dose-response functions to estimate
physical impacts. Finally, these models monetize the impacts by using estimates for such inputs
as the value of statistical life (which is assumed to be $10M in 2018 USD with a relative risk of
1.06 for concentration-response relation) and the value of lost commaodities [228]. For the

climate change benefits, Azevedo et al. [221] multiply the CO2 emissions outputs from AP2 and
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EASIUR by the social cost of carbon, which they assume to be $40/ton CO; following EPA’s
Social Cost of Carbon for Regulatory Impact Analysis [211], [229]. For our analysis, we use the
marginal emissions damage factors by eGRID sub-regions for the year 2016 reported in Azevedo
et al. [221]. We multiply time of day marginal emissions damage factors by the hourly electricity
generation from the solar system for each institution to estimate the hourly damages avoided, and
then compute the total marginal damages for year 2016.

Private and social net-benefits

We estimate the annualized benefits and costs to the educational institutions and society
separately. Costs to educational institutions include PV system capital costs, annual O&M costs,
and an inverter replacement at year 10, minus any available rebates (which will effectively
reduce the capital cost). The annual benefit to the educational institution is comprised of the cost
savings from electricity that does not need to be purchased from the grid, as well as the value of
excess electricity that the institution can now sell back to the grid. As previously described, the
TPO option is characterized as the difference between the regular annual electricity consumption
costs to the educational institutions (without PV) at the retail rate and annual electricity
consumption costs at a lower TPO-defined rate.

Social costs include any rebates made available to the educational institutions, which tax
payers need to support. Costs also include the Federal ITC in the TPO scenario as well as the
cross-subsidy in the aforementioned net-metering scenario where institutions sell excess
generation at the retail rate. The social benefits are the monetized annual benefits associated with
the reduction in CO2, SO2, NOx, and PM2 5 emissions.

The following simplified equations depict how we calculate net-benefits for each
educational institution, considering the three BCA scenarios for valuing electricity savings and
excess generation described in Table 15.

Net-metering scenario, with excess generation from the PV system valued at the LMP:

School. NB.LMP = —[Installation — Rebate] + [(Of fset x Retail) + (Excess x LMP)] — 0&M — Inv. (2)
Social. NB.LMP = —Rebate + [(Of fset + Excess) x Marginal Damages] (3)
Net-metering scenario, with excess generation from the PV system valued at the retail rate:
School. NB. Retail = —[Installation — Rebate] + [(Of fset + Excess) X Retail] — 0&M — Inv. (4)

Social. NB. Retail = —Rebate — [Of fset X (Retail — LMP)] + [(Of fset + Excess) X Marginal Damages] (5)
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Third-party ownership scenario:

School. NB.TPO = Annual Electricity Cost @ Retail — Annual Electricity Cost @ TPO.rate (6)
Annual Electricity Cost @ TPO.rate = Annualized{—[Installation — Rebate — ITC] + [(Of fset X Retail) +

(Excess x LMP)] — O&M — Inv.} (7)
Social. NB.TPO = —[Rebate + ITC] + [(Of fset + Excess) X Marginal Damages] (@
In these equations, School.NB.LMP and Social.NB.LMP represent the school and social net-
benefits, respectively, when excess generation from the PV system is valued at the LMP rate.
School.NB.Retail and Social.NB.Retail represent the school and social net-benefits, respectively,
when excess generation from the PV system is valued at the retail rate. School.NB.TPO and
Social.NB.TPO represent the school and social net-benefits, respectively, when the PV systems
are owned and operated by third-party owners and schools purchase electricity from the third-
party owners. Note, in order to systematically estimate a TPO rate that is lower than the current
retail rate for each state, we ultimately assume that the third parties are compensated by the
schools at a rate that breaks even over the lifetime costs of the systems. Therefore, in order to
estimate conservative cost savings for the schools (e.g. TPOs could design rates that yield better
economics for them as well as for the schools), net-benefits are estimated to be zero for TPOs in
this analysis. Installation represents the total installation cost for each educational institution,
Rebate represents the state-average rebates ($/kW) observed in the LBNL TTS10 database,
Offset represents the hourly solar PV generation consumed by the educational building, Excess
represents the difference between hourly solar PV generation and hourly load when the PV
generation exceed the load, Retail represents the state-level average 2016 commercial retail rate,
LMP represents the hourly locational marginal price, O&M represents the annual operations and
maintenance costs, Inv. is the annualized cost of the inverter replacement, ITC represents the
30% Federal Investment Tax Credit, and Marginal Damages represented the monetized health,
environmental, and climate change damages associated with hourly offset emissions. Although
not captured in these simplified equations, we take the present value of annual school benefits
(i.e. electricity cost savings and excess generation sales) and annual school costs (i.e. O&M and
inverter) for each year the system is in operation. Similarly, we take the present value of annual
social benefits (i.e. avoided damages) and annual social costs (i.e. retail cross-subsidy) for each
year the system is in operation. Therefore, we arrive at a net-benefit from the perspective of

schools and society for each educational institution, assuming a project lifetime of 20 years. In
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this paper, we present annualized net-benefits using alternate discount rates of 2% and 7%. We
also report values by dividing the school and social annualized benefits and costs by the system
capacity to arrive at per-kilowatt estimates of annual benefits and costs. When reporting
aggregated results, we sum the annualized benefits and costs of all the systems in the unit of
aggregation (e.g. a state) and divide by the sum of the total system capacity within the unit. See
Appendix C.8 for a detailed description of BCA equations used in this analysis.

Sensitivity analysis

We perform parametric sensitivity analyses on seven key inputs in our analysis: (1) project
installation costs, (2) discount factor, (3) available rebates, (4) system size, (5) project lifetime,
(6) social cost of carbon, and (7) annual emissions/damages levels. We also consider the best-
and worst-case scenarios for demand charge costs and fractional savings for the educational
institutions. We vary each of these inputs separately and report varying outcomes in a spider plot
and tables. Reference Appendix C.9 on limitations and future study, including discussion of our

geographic scope and focus on PV deployment rather than production and disposal.
4.3 Results

Total PV technical potential and avoided emissions on U.S. educational institutions
We estimate a total available rooftop space of 0.4 billion m? for all U.S. educational institutions.
This results in a total installed generation potential of 64 GW or 100 TWh of annual electricity
generation, serving 75 million students and teachers in the associated educational institutions and
meeting 75% of their current electricity consumption from the grid [76]. The electricity output
generated by solar PV at educational institutions thus corresponds to roughly 3% of total U.S.
electricity consumption [230]. As a comparison, Gagnon et al. [64] find the total available
rooftop space for all commercial and residential buildings to be approximately 8 billion m?,
resulting in a total technical potential of 1.1 TW of installed capacity or 1,400 TWh of annual
energy generation. These values are understandably larger since educational institutions
constitute 14% of commercial floorspace, suggesting the available rooftop PV space for
educational institutions should be a similar fraction of space [231].

Avoided emissions associated with solar PV on all U.S. educational facilities amounts to
approximately 60M metric tons of CO> per year, 7K metric tons of PM. s per year, 45K metric
tons of NOx per year, and 45K metric tons of SO per year. As previously mentioned, the U.S.

education sector is estimated to be responsible for 4% of total U.S. CO2 emissions [198], which
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equates to roughly 211 million metric tons/yr [9]. Therefore, this paper estimates that solar PV
could reduce the education sector carbon footprint by 28%.

Varying PV technical potential and avoided emissions across the U.S.

In Figure 15 we illustrate our estimates of the potential PV generation in different states. When
reporting aggregated results, we sum the annualized estimated generation of all the systems in
the state and divide by the sum of the total system peak capacity within that state. In terms of
absolute generation potential, we find that Texas, California, and Florida (with K-12 Public
educational institutions comprising the bulk of that generation) have the largest technical
potential. We estimate that 11% of the institutions do not have suitable roof space for solar PV
based on NREL’s LIDAR and GIS modeling and our own linear regression modeling. See
Appendix C.11 for state- and county-level generation maps.

In Figure 15 we also illustrate our estimates of total offset CO2, PM2s, NOx, and SO>
emissions in each state from the solar PV systems installed on K-12 public, K-12 private, and
higher education institutions. We separate the CO2 emissions plot from the other criteria air
pollutants, because the total offset metric tons are in different orders of magnitude. We find that
the top five states generating electricity from solar PV on schools (Texas, California, Florida,
North Carolina, and Illinois) are not the exact same top five states that offset CO2 emissions
(Texas, California, Florida, Illinois, and Ohio) nor are they the same top five states that offset

PM2s, NOx, and SO, emissions (Texas, Illinois, Ohio, Indiana, and Pennsylvania).
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Figure 15. Estimated solar PV annual electricity generation (TWh) (top left) and annual electricity generation by peak KW
(TWh/kW) (bottom left) at U.S. educational institutions by institution type and state. Estimated annual avoided CO> emissions (metric
tons) (top middle) and annual avoided PM>.5, NOx, and SO. emissions (metric tons) (top right) at U.S. educational institutions by
institution type and state. These avoided emissions are also normalized by total state capacity (bottom middle for CO2 emissions and
bottom right for PM25, NOx, and SOz emissions). When reporting aggregated results, we sum the annualized estimated generation and
offset emissions of all the systems in the state and divide by the sum of the total system peak capacity within that state.
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Private net-benefits of U.S. school PV to educational institutions

We estimate net-benefits from PV systems to educational institutions under three scenarios: (1)
net-metering with excess generation valued at the LMP, (2) net-metering with excess generation
valued at the retail rate, and (3) third-party ownership. In Figure 16, we show annualized private
net-benefits for educational institutions for the different scenarios explored (using a 7% discount
rate). When reporting aggregated results, we sum the annualized net-benefits of all the systems in
the state and divide by the sum of the total system peak capacity within that state. We find that
there is no private case to adopt solar unless it is third-party owned and operated. Even in states
such as California, with large rebates and high PV generation potential, these investments do not
break-even. In Table 16, we show that even when a lower discount rate is assumed (2%) the
scenarios that do not involve a third-party do not pass the private benefit-cost analysis. In
Appendix C.12 we provide histograms of annualized school benefits (offset electricity cost
savings + excess generation sales) and costs (installation — rebate + O&M + inverter) to
educational institutions across the U.S. and in each state, organized by institution type.
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Figure 16. Annualized private net-benefits ($) by peak kW for three scenarios: selling excess
generation at the LMP (left), selling excess generation at the retail rate (right), and third-party
ownership (bottom), assuming a 7% discount rate. When reporting aggregated results, we sum
the annualized net-benefits of all the systems in the state and divide by the sum of the total
system peak capacity within that state. In Appendix C.12 we show the distribution of these
results across all institutions in our dataset.
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Table 16. Annualized educational institutions net-benefits and social net-benefits (assuming a 20
year project lifetime) in each of the three electricity value scenarios.

School Society
Scenario Discount Rate Net-Benefits Net-Benefits

($Blyr) ($B/yr)
_ 7% -16 3.1
Net-metering at LMPs 204 -85 35
_ : 7% -15 1.3
Net-metering at retail rates 204 -6.9 2.3
: : 7% -1 -3.6
Third-party ownership 204 4 -0.8

Social net-benefits of U.S. school PV to the public

In Figure 17, we provide the annualized net-benefits to society under the same three scenarios
reported for the schools (again, using a 7% discount rate). When reporting aggregated results, we
sum the annualized net-benefits of all the systems in the state and divide by the sum of the total
system peak capacity within that state. We find that in most of the U.S., the HE&CC benefits
provided by the installation of solar PV at U.S. educational institutions exceeds the
subsidies/incentives that are provided when the business model is that the educational institutions
install and own the systems (with the exceptions of California, New York, Delaware, New
Hampshire, Nevada, and VVermont - which have relatively high rebate levels). Midwestern states
like Wisconsin and Ohio have the highest aggregated social net-benefits, under current policies
and grid generation portfolios. However, under a third-party operated model, the costs of the
subsidies/incentives exceed the societal benefits, since third-party operators will have access to
an additional subsidy/incentive: the Federal ITC. In Appendix C.12 we provide histograms of
annualized social benefits (offset HE&CC damages) and costs (rebate + cross-subsidies) to the

public across the U.S. and in each state, organized by institution type.
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Figure 17. Annualized social net-benefits ($) by peak kW for three scenarios: selling excess
generation at the LMP (left), selling excess generation at the retail rate (right), and third-party
ownership (bottom), assuming a 7% discount rate. When reporting aggregated results, we sum
the annualized net-benefits of all the systems in the state and divide by the sum of the total

system peak capacity within that state. In Appendix C.12 we show the distribution of these
results across all institutions in our dataset.

Overall, the provision of electricity services from rooftop solar PV on educational
institutions is estimated to create annualized HE&CC benefits on the order of $4 billion per year.
In Figure 18 we present the highest-ranking states in terms of avoided HE&CC damages and
compare those monetized benefits with the social costs for incentivizing the adoption of such PV
systems. See Appendix C.12 for these results depicted on an average per school basis. We find
that the HE&CC benefits provided by these systems would generally exceed the level of the
incentives — with the exception of California and New York, where the rebates exceed the health,
environmental, and climate change benefits provided by these PV systems. For instance, we
estimate that California would need to value carbon at $160/ton CO> to make the current PV
incentive for educational institutions pay off (compared to the roughly $40/ton CO; that we used
in the rest of this paper). It is worth noting that it is not difficult to find literature arguing that
CO:2 emissions should be valued at more than $160/ton [232]-[234]. Alternatively, California
would need to provide incentives of $350/kW to meet carbon offsets currently valued at $40/ton
CO- (compared to the current average inventive value of $1400/kW in the LBNL TTS10 dataset
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[197]). Other states could substantially increase their rebates to match the HE&CC benefits that
solar PV at educational institutions could provide. For example, Pennsylvania could have a
rebate of up to $958/kW, which would break even with the societal benefits provided from solar
PV at educational institutions. Even if we assumed Pennsylvania valued the reduction in carbon
emissions at $0/ton COy, it would still make sense in terms of the health and environmental
benefits provided from reducing criteria air pollutant emissions from the main electric grid by

providing a rebate to solar PV at educational institutions of up to $590/kW. See Appendix C.13
for state-by-state analysis on this topic.
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Figure 18. Avoided damages from CO2, SO2, NOx and direct PM2.s emissions when compared to
the rebates and cross-subsidy paid by public when excess generation is valued at the retail rate
for the 10 states with the largest health, environmental, and climate change avoided damages. All

values are reported in millions of dollars. In this plot we used the EASIUR model to monetize
the emissions damages avoided.
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Sensitivity analysis

We perform parametric sensitivity analyses on seven key inputs in our analysis: (1) project
installation costs, (2) discount factor, (3) available rebates, (4) system size, (5) project lifetime,
(6) social cost of carbon, and (7) annual emissions/damages levels. We also consider the best-
and worst-case scenarios for demand charge costs and fractional savings for the educational
institutions. We vary each of these inputs separately and report varying outcomes in a spider plot

and tables. In all baseline scenarios, we assume excess generation is sold back at the LMP (see
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Appendix C.14 for sensitivity analysis results assuming excess generation is sold back at the
retail rate).

Figure 19 depicts the parametric sensitivity analysis for the first six aforementioned key
inputs. We parametrically adjust the baseline values listed in Table 17 from -50% to +50%, using

10% increments.

Table 17. Baseline values for parametric sensitivity analysis.

Variable Baseline Value
Installation Cost LBNL average: $3,800/kW
Discount Rate 7%
PV Rebate LBNL average: $780/kW
Project Size Each school's system size (ft?)
Project Lifetime 20 years

Social Cost of Carbon  $40/ton CO;

Values depicted in Figure 19 are the median private and social annualized net-benefits from the
full distribution across all educational institutions (see Appendix C.14 for separate CDFs of net-
benefits for each sensitivity input). We find that median educational institution net-benefits
become positive when the average available rebate is $2,700/kW (or 3.5 times the current
average available rebate of $780/kW) and is available for all institutions. We also find that
private net-benefits are overall most sensitive to installation cost and discount rate. Finally, it
seems that the costs of rebates to society may outweigh the benefits if project sizes grow at the

same rate as rebate increases.
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Figure 19. Parametric sensitivity analysis for six key inputs, varying each input from -50% to
+50% of the baseline values, holding all other values constant. These plots depict the median
private (left) and social (right) annualized net-benefits from the full distribution across all
educational institutions (see Appendix C.14 for separate CDFs of net-benefits for each sensitivity
input). For simplification, when adjusting the PV Rebate value, an average was assumed across
all states (i.e. the entire TTS10 dataset), which resulted in annualized private and social net-
benefits that do not match the median value that is observed in the true baseline scenario (where
observed state-level PV rebates vary).

Table 18 depicts the parametric sensitivity analysis for annual emissions levels/avoided
damages. Here, we consider annually increasing and decreasing avoided damages ranging from -
5% to 5% of the baseline assumption (i.e. constant avoided damages). We find that even if the
avoided damages decreased each year by 5% (from external factors decarbonizing the electricity
grid) our median net-benefits to society would still be positive.

Table 18. Results of parametric sensitivity analysis of rate of annual avoided damages to social
net-benefits.

Social Net-Benefits

Percent Annual
Change Min Max Median Mean
-5% -$4,000,000  $1,700,000  $12,000 $14,000
-2.5% -$3,800,000 $2,000,000  $16,000 $18,000
0% -$3,500,000  $2,400,000  $20,000 $23,000
2.5% -$3,200,000 $2,900,000  $26,000 $30,000
5% -$2,700,000 $3,500,000  $32,000 $39,000

Table 19 depicts the scenario analysis for changes in demand rates and savings. We use

the 25" and 75" percentile “Fraction of Average Rate for Demand Charge” and “Estimated
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Demand Savings from PV” values taken from our demand rate analysis that we conducted for 15
reference educational institutions across the US (Appendix C.5). We construct a best-case
scenario, in terms of overall cost savings to educational institutions, by matching the 25%
percentile demand charge fraction with the 75" percentile demand savings value. The worst-case
scenario is then the opposite combination. We find that median net-benefits to educational

institutions are only marginally different between the best-case and worst-case scenarios.

Table 19. Results of scenario analysis of demand charge costs and fractional savings to school
net-benefits.

School Net-Benefits

Fraction of
Average Rate for Estimated Demand
Scenario Demand Charge Savings from PV Min Max Median Mean
15% 18%
Best-case (25th percentile) (75th percentile) -$11,000,000 $50,000 -$99,000  -$120,000
41% 6%
Worst-case (75th percentile) (25th percentile) -$13,000,000 $0 -$120,000 -$150,000

4.4 Conclusion and policy implications

In this paper, we estimate the potential electricity generation, emissions reductions, and private
and social net-benefits of installing rooftop solar PV on educational institutions throughout the
U.S. We estimate a total installed generation potential of 64 GW or 100 TWh of annual
electricity generation, serving 75 million students and teachers in the associated educational
institutions and meeting 75% of their current electricity consumption from the grid [76]. We find
regional heterogeneity in the private and social benefits of solar PV, similar to the findings from
a study by Siler-Evans et al. (2013). We find energy output to be highest in the Southwest and
lowest in New England. Furthermore, we find solar PV to have the highest health,
environmental, and climate change benefits in regions where it is offsetting carbon-intensive and
high-polluting technologies such as coal-fired power plants in the Midwest. California, Texas,
and Florida have the highest technical potential for educational institution PV electricity
generation. Similarly, these states have some of the highest estimated social benefits under
current grid generation portfolios (whereas Midwestern states like Wisconsin and Ohio have the

highest aggregated social net-benefits, under current policies and grid generation portfolios).
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TPOs are the most economically viable option for educational institutions

Ultimately, we find that at the level of rebates observed in the LBNL dataset and current
electricity rates, it is not economically viable for educational institutions to purchase these
systems outright in any state. However, a TPO scenario that allows for educational institutions to
divert the capital and annual costs of owning a system is estimated to be economically viable in
some parts of the country. It is assumed that the TPO would offer educational institutions a
contract electricity rate that is derived from the lifetime cost of the system to the TPO (including
an ITC) and that is less than the current annual cost of electricity for the educational institutions.
Internalizing health and environmental benefits increase value of solar

Alternatively, this analysis suggests that if environmental, health, and climate change
externalities were to be internalized such that educational institutions would be rewarded for
reducing emissions, then it would be feasible for institutions to purchase the systems outright.
Electricity prices that reflect the cost of emissions is one way to internalize this benefit from PV
systems. Alternatively, utilities and government agencies could increase rebates. Results
depicted in Figure 15 suggest that policy makers might focus on incentivizing the adoption of
solar PV on K-12 Public, higher education, and K-12 private institutions (in descending order), if
the goal is to maximize PV generation. We also find that in current rebate conditions, K-12
public institutions present the highest annualized net-benefits to society and higher education
institutions present the lowest annualized net-benefits to society in non-TPO scenarios. Results
from our sensitivity analysis suggest that median educational institution net-benefits become
positive when the average available rebate is $2,700/kW (or 3.5 times the current average
available rebate of $780/kW) and is available for all institutions.

Heterogeneity in PV incentive efficiency

Finally, this analysis suggests that some states such as New York, Wisconsin, Texas, and Maine
do not currently offer rebates at the level they are observing social benefits. Furthermore, some
states such as California, Nevada, Vermont, and Delaware, might be currently offering PV
rebates to educational institutions at rates that would exceed total HE&CC benefits if all
institutions installed rooftop PV. For instance, it is estimated that California would need to value
carbon at $160/ton CO- to make the current PV incentive for educational institutions pay off

(compared to the roughly $40/ton CO> reported in the EPA’s Social Cost of Carbon for
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Regulatory Impact Analysis [229] and used in this paper). See Appendix C.13 for state-by-state
analysis on this topic.

Solar PV will be an important strategy to decarbonize the energy sector in the United
States, and to reduce the health, environmental, and climate change damages associated with the
production of electricity from fossil fuel sources. While the potential for solar PV in the
residential and commercial sectors has been widely studied, the potential in educational
buildings is largely unknown. Our analysis identifies which regions in the U.S. stand to gain the
most HE&CC benefits from solar PV on educational institutions. Moreover, our work provides a
baseline analysis for efficient school PV incentive design. Our findings suggest that solar PV on
educational institutions can serve an important role in U.S. emissions mitigation strategies if

attractive economic options are made available to them.
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5. Discussion

Realizing the full potential of energy efficiency (EE) and renewable energy (RE) adoption in
reducing electricity sector greenhouse gas (GHG) emissions requires that multiple actors at
various scales take action. Restricting the actions to those that are specific to “their sector” —
such as homeowners acting only in the residential sector — limits the range of new and innovative
possibilities for enhancing the adoption of EE and RE. The aim of this thesis is to go beyond
such a disjointed approach, to employ bottom-up decision and engineering science approaches to
explore the behavioral, regulatory, and technical factors that inspire actors across sectors to
effect change in energy behavior. This thesis contributes to the decision-making literature on EE
and RE investments across a range of actors, provides insights for how to consider the behavioral
viability of technical potential analyses, and yields concrete suggestions for policy makers

aiming to encourage actors to change their own energy behavior or that of their energy providers.
5.1 Understanding and informing EE and RE decisions

This thesis employs a hybrid engineering and behavioral sciences approach to characterizing EE
and RE decisions to inform behaviorally realistic interventions. First, | use behavioral sciences
(e.g. expert elicitation and a survey) to contextualize actors’ preferences towards EE and RE
adoption. Next, | employ engineering and economic models to assess the technical potential and
financial feasibility of such technologies. Chapters 2 through 4 allow me to develop this hybrid
model and build upon each other in the types of actors and actions that I consider.

Chapter 2 employs expert elicitation to reveal motives and barriers to EE that are not yet
heavily discussed in the literature, and to identify differences in the perceptions of decision-
making among the actual decision-makers (i.e. building owners/managers) and decision-
influencers (i.e. energy efficiency experts). Potential factors that emerge from the interviews,
which are not yet extensively discussed in the energy efficiency literature, include
owners/managers’ resistance to change and the influence of investment funding origins on the
decision. Results also suggest potential heterogeneity in energy efficiency decision-making
philosophies between the two groups. Interviewed owners/managers prioritize corporate social
responsibility (CSR) and prefer internal consulting (e.g. building engineers). Conversely,

experts/consultants do not emphasize CSR and are more concerned with external policies.
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Results from this study yield intervention opportunities specific to these actors that promote EE
adoption, directly reducing demand on the electricity sector.

Building on Chapter 2, I next focus on understanding and designing interventions to
motivate actors from the public to indirectly influence the electricity sector. In Chapter 3, |
employ a randomized controlled field trial of clean energy campaigns to study how campaigns
can influence parents’ energy attitudes and willingness to engage with their utilities on the topic.
| study two groups: parents already involved in climate advocacy groups (e.g. Study 1, Advocacy
Sample) and those who are not involved in advocacy groups and who represent the general
public (e.g. Study 2, Public Sample). In both studies, I find the odds of taking action are reduced
by over 90% when participants are asked to make a phone call and leave a voicemail message,
versus signing an online petition. Among the parents already engaged in advocacy, | observe a
ceiling effect regarding attitudes towards clean energy and find the cost campaign produces
unintended consequences (i.e. advocacy parents reported more favorable attitudes towards fossil
fuels after being presented cost information). Among the public sample, | find that participants
who believe the campaign to be credible and comprehendible are more likely to take action than
those who discredit the campaign or do not understand its message. Additionally, I find parents
who have children under the age of 18 reduce their support of fossil fuels after being presented
with health information. Ultimately, | find that parents are interested in taking action to influence
their utilities to adopt clean energy technologies to preserve their children’s health and safety.

Finally, building on Chapter 2 and 3, | turn my attention to understanding what is the
actual technical potential for educational facilities to adopt RE technologies, which is
necessitated by the support of two actors already considered (e.g. building owners/managers and
parents/public) to directly (e.g. invest in solar PV) and indirectly (e.g. support with incentives)
affect the electricity sector. Here, | employ a benefit cost analysis (BCA) to analyze the
economic feasibility of PV adoption and to provide insight for incentive programs that target
schools. In Chapter 4, | find that solar PV in U.S. educational institutions could provide 100
TWh of electricity services annually, meeting 75% of these buildings current electricity needs. |
estimate the highest generation potential in Texas, California, and Florida with K-12 Public
educational institutions comprising the bulk of that generation. The provision of electricity
services from rooftop solar PV on educational institutions could reduce environmental, health

and climate change damages by roughly $4 billion per year.
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The hybrid engineering and decision sciences approach employed in this thesis yields
actor- and action-specific results regarding the technical potential and behavioral viability of

specific technologies, and also contributes to the decision-making literature in this field.
5.2 Contributions to the decision environment and decision-maker literature

As previously described in this thesis, decision-making is thought to be influenced by cognition,
the decision environment, and the decision-maker’s internal state. Chapters 2 through 4 detail
exploratory and empirical studies that contribute to the literature surrounding the decision
environment (e.g., management organization, information, and economics) and the decision-
maker’s internal state (e.g. attitudes and values).

The organizational behavior science (OBS) literature suggests that EE and RE
investments made in an organization or by a building management team are influenced by power
relationships [49], organizational energy culture [49], [55], and characteristics of the investment
that align (or misalign) with the core business of the organization [56]-[59]. Furthermore, it is
shown that EE and RE decision-making is often handled by one or a few individuals within a
larger organizations and, therefore, the differences and relationships between these decision-
makers and decision-influencers (e.g. EE experts and vendors) are particularly important to
understand [58]. In Chapter 2, | found experts and owners/managers differed greatly in their
approach to the investment decision process. The most distinct differences occurred in their
discussions of goals and strategy and the role of an investment consultant in decision-making.
Specifically, it seems that owners/managers are focused on meeting company goals such as
improving occupant comfort or maintaining innovative competitiveness, which was often
highlighted in their open-ended responses as well as their motivation rating frequencies. In this
instance, it seems that experts tend to overlook the strategic logic potentially in place with
owners/managers’ decision-making, instead focusing on the economic barriers to energy
efficiency investments. Although Chapter 2 highlights some differences between decision-
makers and influencers, it is also underscores the importance in understanding the relationships
between the two and demonstrates how information conduits can influence EE adoption. During
the ranking exercises, it was apparent that owners/managers valued input from internal sources
such as their building engineers and tenants. Conversely, they did not tend to list social
influences affiliated with certain technologies, such as controls contractors. Therefore, a bad

relationship between engineers and contractors may result in a bad relationship between the
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owners and contractors. Indeed, Beamish et al. [131] identify trust networks among
owners/managers and contractors as a means to minimize risk aversion related to the adoption of
new energy efficient technologies, providing a mechanism for demystifying innovative
products/practices. | also find that specific information and information sources influence the
public’s decision to engage with their electric utilities.

Chapter 3 of this thesis experiments with various clean energy campaign framing
designed to improve attitudes towards clean energy and promote civic engagement among
parents. The campaigns include a control frame with neutral information about electricity
generation; a cost frame that suggests introducing more clean energy into a portfolio will lower
costs to the consumer in the long-run; and health, environment, and health + environment frames
that each promote associated benefits from adopting EE and RE technologies in electricity
plants. Studies find that framing, selectively emphasizing certain dimensions of an issue over
others [41], [235], can promote pro-environmental behaviors such as buying more energy
efficient technologies and practicing curbside recycling [42], [98]. Research suggests that
framing should target people’s unique social, psychological, and cultural makeup [171], [180],
[236], otherwise messaging may backfire. Indeed, I find in Chapter 3 that advocacy group
parents reported more favorable views of their utilities using fossil fuels after being presented
information describing the potential for reduced electricity bills when utilities switched to
cleaner energy sources. This could suggest a boomerang effect, supported by Self-Perception
Theory, which posits that clean energy campaigns heralding monetary benefits, an extrinsic
motivation, may not work well with self-defined intrinsically motivated environmentalists [70],
[180]. Additionally, risk communications research suggests that trust in the source and the
information itself determine whether people pay attention, and perhaps more importantly in this
context, take action [190], [191]. In Chapter 3, | find that parents are more likely to take action if
they report greater acceptance of climate change, perceive the campaign information as credible,
and see the proposed action as an effective one to take.

In Chapter 4, 1 explore the “effectiveness” of a particular RE technology for a specific set
of actors: rooftop PV on educational facilities, which are installed by decision-makers on campus
with or without incentives that are supported by the public. To date, 335 colleges and/or
universities have GHG emissions inventories and 78 have defined climate action plans.[200]

Chapter 4 contributes to the limited literature that currently addresses rooftop PV as a viable
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option for educational facilities to meet their own sustainability goals and contribute to a
reduction in electricity sector GHG emissions. | find regional heterogeneity in the private and
social benefits of solar PV, similar to the findings from a study by Siler-Evans et al. [223]. | find
energy output to be highest in the Southwest and lowest in New England. Furthermore, I find
solar PV to have the highest health and environmental benefits in regions where it is offsetting
carbon-intensive and high-polluting technologies such as coal-fired power plants in the Midwest.
California, Texas, and Florida are estimated to have the highest technical potential for
educational institution PV electricity generation. Similarly, these states have some of the highest
estimated social benefits under current grid generation portfolios (whereas Midwestern states
like Wisconsin and Ohio have the highest aggregated social net-benefits, under current policies
and grid generation portfolios). Despite the promising potential for rooftop PV systems on
schools to offset harmful emissions across the U.S., I ultimately find that the current level of
rebates and the current electricity rates, make purchasing these systems outright economically
inviable. Rather, | conclude that a third-party ownership scenario that allows for educational
institutions to divert the capital and annual costs of owning a system is a better option.

This thesis also contributes to the literature surrounding the internal state of the decision-
maker — specifically, how a single decision-maker or a group of decision-makers value EE and
RE technologies. Within the Theory of Planned Behavior (TPB) framework, beliefs about
subjective norms and intrinsic motivations can influence intention to act and consequent
behavior [36], [37]. Therefore, the TPB framework suggests that one should focus on
understanding attitudes and measuring intentions in order to understand the likelihood of action
and/or behavior change. Chapter 2 explored the intrinsic motivations of commercial building
management teams and Chapter 3 explored how different framing can evoke different construal
levels of parents in the public.

In Chapter 2, open-ended questions posed to decision-makers (e.g. building
owners/managers) and decision-influencers (e.g. EE experts) exposed the compelling role of
CSR in EE investment decision-making. However, when asked to rank motivation cards, experts
found others to have greater relative importance. Experts only listed Social Responsibility and
Being Industry Leaders six times with average rankings of 8 (recall, 1 = most important and 13 =
least important), while owners/ managers ranked these items 15 times with average rankings of

4.5. These findings suggest that it may be beneficial for experts to first acknowledge and
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characterize CSR benefits of EE investments, and then communicate these results with
owners/managers of large commercial buildings. I also find, in Chapter 3, that non-economic
factors matter to parents aiming to protect their children by urging their utilities to adopt clean
energy.

In Chapter 3, I learn that messaging about health and climate effects of clean energy have
varying effects on the public depending on local climate change experiences and characteristics
of the family. For instance, | find general public parents express less favorable attitudes towards
their utilities using clean energy when shown health information compared to when they were
presented with neutral or cost information, with those in Florida seemingly driving this effect.
However, when health was coupled with climate information, attitudes towards clean energy
improved among general public parents. According to the Centers for Disease Control and
Prevention National Asthma Control Program, Florida had asthma rates lower than the national
average in 2011, but has experienced the highest number of flood insurance claims since 1978
among our three targeted states of Florida, Michigan and California (and 3rd in the nation) [181],
[182]. Thus, one possible explanation is that Florida parents are more concerned about the
climate and sea level rise, due the availability heuristic, rather than the health implications of
burning fossil fuels [183], [184]. We also found that younger parents (e.g. those parents who
were not also grandparents and/or who have children under the age of 18 years old) reported
significantly less favorable attitudes towards fossil fuels when shown health information,
compared to the control. This could also be due to the availability heuristic or the issue of co-
benefits [185], suggesting that some parents will respond well to information that has direct
relevance for themselves and their family (i.e. health) compared to information often perceived

as abstract (i.e. climate change).
5.3 Policy implications and future study

Each chapter has policy implications regarding how to promote the proliferation of energy
efficiency and renewable energy among a host of actors in the United States.

Findings from Chapter 2 yield recommendations for policy that can influence actors in
the commercial building sector, such as building owners/managers and building energy
efficiency experts. However, additional research is necessary for determining the potential
efficacy of such policies on the population of large commercial building owners and managers —

since Chapter 2 was conducted on a small, non-representative sample. First, policy makers and
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incentive program designers might focus on delivering economic incentives as well as social and
behavioral incentives to inspire commercial building energy efficiency adoption. Secondly,
policy makers should carefully consider their methods for conveying commercial building
program information. When considering potential information conduits, it is important to
consider the dynamics of the building engineering team as well as the owner/manager’s current
perceptions of various social influences. For instance, owners/managers may perceive the
government and/or non-governmental organizations as neutral sources capable of delivering
unbiased, trustworthy information regarding building EE investments. Findings from this
interview study also suggest that social influences do play a role in decision-making; therefore,
one might perform a social network analysis of owners/managers to characterize how concepts
identified in this study propagate through a networ