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Abstract—The Network for Computational Nanotechnology's 
(NCN) [1] nanoHUB site uses the HUBzero® platform [2] to offer 
a variety of content, simulation tools, and collaboration methods 
to an international community of students, teachers and 
professionals. Understanding and identifying educational usage 
of nanoHUB to form communities around nanotechnology 
education and improve education content is a long term objective 
of nanoHUB. While certain users log into nanoHUB, providing us 
with an identity with which to associate their usage, the majority 
of activity is from unidentified users who download content and 
come to the site from outside references such as search engine 
results. This paper describes a method to detect classroom usage 
from content download events with no additional information, 
identifying classroom usage by any user of nanoHUB material 
and providing insights into content usage. 

I. INTRODUCTION 
To further NCN's educational mission, the nanoHUB site 

provides a venue for educational content and simulation tools. 
We are aware of classes that directly use nanoHUB through the 
creation of user accounts and the use of simulation tools. 
However, we suspect there are other classes that use nanoHUB 
indirectly, making use of content that can be accessed without 
creating a user account. Are there classes that use the education 
materials on nanoHUB that we should be reaching out to? Are 
there groupings of content, implied by actual usage, that we 
might discover and offer to users as suggestions, or to content 
contributors as feedback? There is significant potential to 
connect educators and students with similar interests and 
improve educational content if classrooms can be detected. 

Users of simulation tools are required to create an account 
before using nanoHUB. Account registration information is 
generally incomplete and not reflective of actual usage 
subsequent to the registration. Some information on 
institutional or University associations can be gathered [3], 
however registration information on user roles such as 
undergraduate student, graduate student, researcher or educator 
are not predictive of actual user behavior and better role 
categorization can be derived from user behavior analysis. [4] 
Earlier work [5, 6, 7] used clustering methods to detect where 
tools were in use in classrooms. Tool contributors then received 
usage feedback, including the identified classrooms using their 
tool. This detection method grouped the users and tools into 
classrooms using several signals, including the user account, 
close synchrony of simulation tool execution events, and 
similarity of simulation tool input. Simulation tools are often 
used in group settings for other events such as tutorials and 
demonstrations. These groups are also captured by this 
clustering method. 

However, over 95% of the 1.4 million visitors to nanoHUB 
do not log in. nanoHUB only requires user registration for the 
use of simulation tools or to join online classes. Visitors who 
come to nanoHUB to download content (e.g. papers, tutorials, 
videos, etc.) can do so without registering. These visitors often 
arrive from search engines or other sites that reference 
nanoHUB materials. Little data is available about these 
visitors:  only the time when they interacted with nanoHUB, 
their IP address, and what they viewed or downloaded. Unlike 
the case of simulation tool usage, there is little synchrony 
present in download events. Classroom participants may 
download a homework assignment or other content over a wide 
span of time, not synchronously with other members of their 
class. Is it possible to cluster these events in a way that detects 
class use while ignoring other downloads of the same material? 

II. METHODOLOGY 
Three features of the download event data were considered 

for clustering: content item ID, location and time. First, the 
download events were grouped by the internal identification 
number of the content item. The initial clustering considers one 
item at a time. We later looked across content items for 
possible combinations of items. 
A. Location, location, location 

The second feature used was location. The event log entries 
for user downloads record the Internet Protocol (IP) address of 
the browser the user used to download the content item. There 
are at least two ways to make use of the IP address as an 
indicator of location. An IP address to geographic location 
mapping provided by a service, such as IP2Location [8], can 
give an approximate geographical location. However, such 
mappings are often inaccurate [9]. There are numerous sources 
of inaccuracy: locations are not verified; unvalidated sources 
such IP address registry information may be used; network 
features such as virtual private networks may obfuscate 
location; and proxies and relays can obscure a user's actual IP 
address. Further, mobile devices are continually assigned new 
IP addresses as they move. 

An alternative way to use IP address space as an indicator 
of location is to make use of the structure of the IP address 
space itself. This has several factors to recommend it over 
mapping an IP address to a location. IP address space is 
allocated in blocks of addresses to Internet Service Providers 
(ISPs), businesses and institutions. Schools and Universities 
typically have blocks of IP address space allocated to their 
institutions. This allocation methodology groups IP addresses 
by organization, which aids in detecting clusters of events 
occurring in classrooms and, in some cases, allows for 
detection of the specific building in which a class occurred. 
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The ability to use IP addresses in this way is due to the 
design of the Internet v4 address space and its allocation to 
entities requesting addresses [10]. Initially, the IP address space 
was allocated in fixed-size blocks of three different sizes. The 
blocks of addresses are contiguous. For example, one of the 
blocks allocated to Purdue University is 128.46.00.00/16, 
which contains over 64,000 IP addresses, from 128.46.00.00 to 
128.46.255.255. Events that were recorded with IP addresses in 
this range, such as 128.46.19.99 or 128.46.19.160, are certain 
to have originated at Purdue University. 

Another aspect of the structure of IP address allocation is 
the implication it has for routing information across the 
Internet. The Internet is a collection of numerous small 
networks tied together by devices that route between networks, 
referred to as “routers”. The IP address is used by these routers 
to determine which physical connection to use in sending 
information on to its final destination. Information moves 
along from router to router from source to destination. By 
breaking a large space of addresses into contiguous blocks, the 
task of deciding which direction to move from one router to the 
next towards the destination is simplified. 

Routing also takes place inside assigned address blocks. 
Network engineers divide institutional networks into sub-
networks that align to physical boundaries such as campuses 
and buildings. This corresponds to the physical placement of 
interconnecting cabling and local routers. Smaller slices of an 
allocated block of IP addresses are, in turn, set aside by 
network engineers for each sub-network. This subdivision of a 
block of IP addresses by physical boundaries provides a fine-
grained location for an individual IP address and a strong 
assumption that events recorded as originating from 
numerically "close" IP addresses are originating from 
physically "close" devices and their users. Given the strength 
of likelihood that IP addresses related in this way indicate close 
geographical proximity, we chose to use IP addresses over IP 
address geolocation as an indication of location in the analysis 
that follows. We will discuss the problems with this choice 
later in this paper. 
B. Time 

The third feature used was time. In the work cited earlier 
[5], close synchronicity provided a signal that a group of tool 
simulation events was part of a classroom activity. However, 
downloads of classroom materials are rarely synchronized by 
activities such as demos or hands-on training, and may occur 
over several days surrounding a class. Several experiments 
were run with known classroom events to estimate a reasonable 
period of time to consider. A further decision was made to 
discretize the continuous time variable into buckets. In this 
analysis, the events are gathered into calendar-week buckets. 

Taken together, the events for a single content item can be 
viewed as 2 dimensional heat map. Each cell in the map is 
colored for the number of events that occurred from that IP 
address (x axis) during that week of the year (y axis) [Figure 
1]. 
C. Density-Based Clustering 

Visual inspection of the chosen features, pre-processed as 
described previously, suggested a density-based clustering 
algorithm. On visual inspection, it could be seen that the data 
included a high degree of noise in the form of other, probably 
unrelated, download events. Density-based clustering 

algorithms perform well in the presence of noise datums not 
associated with any cluster. Other clustering algorithms such as 
K-means were not considered since the expected number of 
clusters is required, and that is not known in this case. Density-
based methods work well in situations where the number of 
expected clusters is unknown. 

Supervised algorithms were not considered due to the 
limited amount of labelled training data. While we knew of a 
few classroom uses of nanoHUB that do not involve user 
registration or the use of simulation tools prior to this study, 
such data were sparse and anecdotal. A useable training data set 
of representative data from classrooms of varying sizes, 
locations and activity was not available. 

This analysis used the DBSCAN algorithm [11] to identify 
clusters of events in a 2D grid with the numerical IP address as 
one dimension and the week of the year as the other. DBSCAN 
takes two parameters, a minimum number of "nearby" points 
used to declare a point a "core" point and a distance the defines 
"nearby". A cluster contains one or more “core” points. In this 
analysis, the definition of "distance" was an ellipse with the 
long axis aligned along the IP address dimension and the short 
axis aligned along the week of the year axis. We chose the 
minimum number of points and the ellipse shape by 
observation and experimentation on data from known 
classroom usage situations. 

The DBSCAN algorithm proceeds from a random starting 
point to enumerate any nearby points. When a point is shown 
to have at least the minimum number of nearby neighboring 
points, it is declared a "core" point, marked in red [Figure 2: 
point A]. Points which do not reach this minimum may be part 
of a cluster, [Figure 2: points B, C], or they may be "noise" 
points that have no nearby neighbors [Figure 2: point N]. 
Points in a cluster are mutually density-connected, that is, 
nearby to at least one other point in the cluster. 

If DBSCAN is run on the heat map in figure 1, the 
following clusters with core, fringe, and noise points are 

Figure 1, Heatmap of download events. X axis is list of IP addresses in IP 
address order renumbered from 1 to 185. Y axis is week of the year.



identified [Figure 3]. Clusters are brightly colored, with core 
points labeled with large dots and fringe points as smaller dots. 
Groups of events which did not meet the minimum size for a 
cluster, or are noise points, are colored grey. 

After clustering with DBSCAN, a secondary analysis of the 
density of clusters with respect to the season of the year was 
performed. Content items with more clusters in the spring, fall, 
or both spring and fall, were categorized as being academic-
year classes [Figure 4]. 

III. RESULTS 
The pictured heat map [Figure 1], DBSCAN clustering 

[Figure 3], and seasonality analysis [Figure 4] show a 
successfully detected classroom. The clustered points in the 
lower left corner occurred within a single sub-network which, 

on analysis of the IP addresses is located in an engineering 
building on the Purdue University campus. Personal 
conversations with the professor teaching the class confirmed 
the location, date, time and materials offered. The figure shows 
the download events for the notes for the lecture presented. For 
the full year of which this analysis was performed, this method 
processed 112,290,752 web server event records and detected 
2353 classroom clusters which involved 1460 (23.2%) content 
items, out of a total of 6296 content items on the nanoHUB site 
at the time the analysis was run. 

Looking across content items, usage patterns that 
demonstrated an on-going class activity across a semester 
could be found. Figure 5 shows a series of lecture notes that are 
downloaded over a series of weeks from the same group of IP 
addresses in the same building. It is interesting to note the 
weakening of the cluster as the semester moves on. Also, other 
materials for the class are not found to cluster, perhaps an 
indication that they are lightly used or not being used by 
students in this class in a discernible pattern. 

Figure 2, DBSCAN algorithm visualization. Core points are red, fringe points 
that are part of a cluster are yellow, and noise points are blue.

Figure 3, Heatmap processed by DBSCAN with clusters identified. Each 
cluster is tagged with the total number of points, the number of core points 
and the ratio of height to width. X axis is renumbered as a result of 
conversion of IP address space from integer to float for DBSCAN.

Figure 4, Seasonality test. Identified clusters are labeled with squares, triangles 
and circles to denote spring, summer and fall semesters. Noise points are color 
coded blue green and red to denote spring, summer and fall semesters.

Figure 5, Cross content pattern appearing week after week.



Other phenomena were also detected. A few individual IP 
addresses with intense usage of a single content item over the 
entire year were noted. Further investigation showed these IP 
addresses to be associated with a large number of downloads of 
video content items. They may be a local caches employed to 
improve performance for viewing video content. 

IV. ISSUES WITH IP ADDRESSES AND LOCATION 
While the use of IP address allocation as an indication of 

location has several advantages as previously noted, it also has 
several disadvantages which limit the effectiveness of its use.  
Three disadvantages, in particular, pose the greatest 
impediment to using IP address as an indication of location: 
recent changes in way in which the current IP version 4 address 
space is allocated; the way institutions use their limited address 
allocation; and finally, the increasing use of mobile devices. 

To divide up the remaining IP address space, classless 
Internet domain routing (CIDR) [12] has been employed, 
breaking the earlier pre-defined blocks into smaller, odd-length 
blocks. This increases the likelihood that an organization might 
have several, discontinuous blocks of IP addresses, rather than 
a single block of IP addresses. In such a case, that 
organization’s geographically-close devices are less likely to 
have numerically-close IP addresses. 

Increasingly, network address translation (NAT) [13] is 
being used to provide a large number of addresses for devices 
within an organization or internet service provider. NAT uses 
non-routable addresses [10] within an organization and maps 
the traffic from those addresses to a smaller number of routable 
addresses as it leaves the organization. A reverse translation is 
performed as traffic enters the organization. NAT obscures the 
actual number of distinct users by mapping multiple users onto 
a single IP address. This results in fewer "points" from which a 
cluster might be formed. NAT also removes the relationship of 
IP address to physical location within an organization’s 
facilities, reducing the usefulness of numerical “closeness” as 
an indication of physical proximity. 

As the internet transitions to the IPv6 addressing standard 
from the current IPv4 addressing standard, the above two 
problems for our technique are likely to be mitigated. IPv6 
address allocation policies being discussed are aimed at 
providing sufficient addresses to assignees that they would not 
need to use address space conservation techniques such as NAT 
and would be able to assign subnets as needed by their physical 
infrastructure. [14] That would restore the IP-address-to-
physical-location property made we make use of here. 

Lastly, users who are geographically near one another but 
are accessing content via mobile devices will not have 
numerically close IP addresses — in fact, their IP addresses 
may potentially be widely spread across the IP address space, 
making them much less likely to be detected as a cluster. In 
addition, mobile service providers are employing NAT and 
mobile devices are frequently reassigned IP addresses as they 
move. In the past year, mobile users accounted for just over 
15% of visitors to nanoHUB, up from 14% the previous year. 
All of this further reduces the accuracy of IP address as an 
effective means of detecting locality. 

At a broader level, the locality of users, their physical 
closeness to each other, as a signal for an organized activity 
such as a class, is fundamentally limited to conventional, in-

person classes. Modern techniques such as inverted or flipped 
classrooms, where content is delivered online and discussion is 
held in person, and on-line classrooms (e.g. MOOCs, etc.), 
further spread usage out in both time and IP-address space. 
This spread is likely to be beyond the limits of what a density-
based clustering of time and IP address can detect. Other 
techniques will be needed. 

V. FUTURE DIRECTIONS 
Getting past the issues around successfully passively 

detecting classroom usage of downloaded materials will 
require combining techniques and perhaps adding additional 
data where available. Perhaps a multi-dimensional DBSCAN-
like algorithm that made use of both IP address locality and IP 
address geographical location mapping might result in a more 
reliable source of locality information. Additional data could be 
gathered by requiring more information before a download, 
either by requesting location information from the browser or 
directly from the user.  One must weigh the advantage of 
greatly increased locality accuracy against the privacy concerns 
such queries might raise, and against the potential that such 
queries would reduce the number of downloads and reduce the 
effectiveness of nanoHUB as a source of content. 

Another approach is to augment the heat map clustering 
technique with other data sources. Users who have accounts on 
nanoHUB have already been clustered into classrooms by their 
simulation tool usage. Combining those two sources of 
classroom identification might reveal other patterns of usage 
and increase the confidence in each technique’s identification 
of a classroom. Combining features of specific institutions’ 
schedule such as their academic calendar when a classroom is 
detected in their IP address space could boost the confidence 
that a cluster is in fact a classroom at that specific institution. 

VI. CONCLUSION 
It is possible to identify classroom usage of downloaded 

content from download event data. However, the significant 
challenges of passively inferring a user’s location from their IP 
address limit this approach. Improving this technique will 
involve combining the available data with other signals or with 
other pattern detection methods to overcome these limitations. 
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