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Outline

§ Brief recap on types of GWAS studies

§ Types of association testing models and their use

§ Covariates and testing / correcting for confounding

§ P values and correcting for multiple testing

§ Manhattan plots and other visualizations

§ Tools used for GWAS testing (e.g Plink)

§ Files, formats and outputs for GWAS testing
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Association Studies

Disease

Disease

Direct association

Indirect association

Marker

Etiology site

LD
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Statistical Association

• Any relationship between two measured quantities that shows them statistically 
dependent (correlation)

Definition
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Main GWAS characteristics

• Large sample size requirement
• No a priori knowledge
• Raise several statistical issues
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Issues & Considerations

• Management of large datasets
• Data quality control
• Controlling for confounding

– Sex, age
– Correlation with other variables

• Population stratification è PCA
• Linkage disequilibrium è LD pruning
• Cryptic relatedness è Mixed Models including GRM
• Statistical issues (multiple testing, e.g., FWER should be controlled !!!) 

è Bonferroni, FDR
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There are several types of GWAS ...

Recruitment design
- Population-based, Case/Control
- Family-based (related individuals)

Nature of the measured phenotype
- Qualitative, usually binary (affected / not affected)
- Quantitative

Complexity of genetic effect tested
- Single-Marker effect: One marker analyzed at a time (univariate methods)
- Multi-Marker effect: Joint markers analysis (multivariate methods, testing 
combined effect of different markers from a same gene, from selected regions 
or at the Genome-Wide level)

Depending on parameters like:
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Types of association testing models

Recruitment
- Population-based, Case/Control
- Family-based (related individuals)

Nature of the phenotype
- Qualitative, usually binary (affected / not affected)
- Quantitative

Complexity of genetic effect tested
- Single-Marker effect
- Multi-Marker effect
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Test statistic for association is X defined as: 

~   c2 with df=2

Association statistics : Chi-squared

å
-

=
ij ij

ijij

E
EO

X
2)(

Cases Controls

AA c0 t0
Aa c1 t1
aa c2 t2

Contingency table of 
observed counts (Oij)

• Conclude for association if the corresponding P-
value < significance threshold
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Association statistics : Chi-squared

Cases Controls Tot_c

AA 20 50 70
Aa 20 30 50
aa 60 20 80
Toc_l 100 100 200

Expected AA cases = 100 × 70 / 200 = 35

Expected Aa cases = 100 × 50 / 200 = 25

… etc.

Expected cell count = (Tot_l × Tot_c) / Total



11

Association statistics : Chi-squared

å
-

=
ij ij

ijij

E
EO

X
2)(

Cases Controls
AA 20 50
Aa 20 30
aa 60 20

Cases Controls
AA 35 35
Aa 25 25
aa 40 40

(Oij) (Eij)

X =  [(20 – 35)²/35] + [(20 – 25)²/25] + [(60 – 40)²/40] + [(50 – 35)²/35] + 
[(30 – 25)²/25] + [(20 – 40)²/40] 

X = 34.86 , a chi-squared with 2 df

P.value = 2.7e-08
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• Used test statistics
– Fisher’s exact test, Cochran-Armitage trend test
– Gold Standard— Fischer’s exact test (for case/control)

Other association statistics
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Odds ratio for aa vs. AA = (c2 × t0) / (c0 × t2)

Association measure : Odds-ratio (OR)

Cases Controls

AA c0 t0

Aa c1 t1

aa c2 t2

Odds ratio for Aa vs. AA = (c1 × t0) / (c0 × t1)
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Association measure : Odds-ratio

Cases Controls

AA 20 50
Aa 20 30
aa 60 20

Aa vs. AA: OR = (20 × 50) / (20 × 30) = 1.66

aa vs. AA OR = (60 × 50) / (20 × 20) = 7.5

… Optimize coding scheme
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"a" dominant "a" recessive

Genotypic analysis – dominance effect

Test statistic for association is  a c2 with df=1

Cases Controls

AA c0 t0
Aa or aa c1+c2 t1+t2

Cases Controls

AA or Aa c0+c1 t0+t1
aa c2 t2

Cases Controls OR P-value

AA 20 50 -
Aa or aa 80 50 4.0 8.7e-06
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Population stratification effect

Cases Controls

A 100 10

a 10 1

OR = 1

Pop 1

Cases Controls

A 1 10

a 10 100

OR = 1

Pop 2

Cases Controls

A 101 20

a 20 101

OR = 25.5
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To generalize: Logistic regression
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Required sample size
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MAF =  0.1
MAF =  0.2
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MAF =  0.4

Log-additive model, Power of 80%, a = 0.05

Sample size required in a case/control study according to:

- SNP effect (Odd Ratio)

- Allele frequency



19

Types of association testing models

Recruitment
- Population-based, Case/Control
- Family-based (related individuals)

Nature of the phenotype
- Qualitative, usually binary (affected / not affected)
- Quantitative

Complexity of genetic effect tested
- Single-Marker effect
- Multi-Marker effect
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Association statistics : Z-score from linear regression

Univariate methods:
- Generalized linear models
- ANOVA

Example of Quantitative Traits: blood glucose levels, BMI
- Usually Gaussian

e.g., the profile for a negative 
association between "a" allele 
and the trait
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Classical GWAS model

Linear regressions on each genetic marker

Repetition for i = 1 , … , number of SNPs analyzed

Y  =  β0i +  β1i SNPi + β2i PC1 + β3i PC2 + εi

Approach
o Individual test statistics
o Correction for multiple testing
• Bonferroni
• Gold Standard— FDR 
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Types of association testing models
Recruitment

Population-based, Case/Control
Family-based (related individuals)

Nature of the phenotype
Qualitative, usually binary (affected / not affected)
Quantitative

Type of genetic effect tested
Single-Marker effect
Multi-Marker effect
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Example of method combining individual test statistics
(main challenge: determine the theoretical or empirical distribution of the resulting 
test statistic)

Combining summary statistics to test joint markers effect

Software: VEGAS (with R and Plink dependency)
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Types of association testing models
Recruitment

- Population-based, Case/Control
- Family-based (related individuals)

Nature of the phenotype
- Qualitative, usually binary (affected / not affected)
- Quantitative

Complexity of genetic effect tested
- Single-Marker effect
- Multi-Marker effect



Trios: two parents and one affected offspring

AA Aa

Aa

The informative event is the transmission of allele a
by the heterozygous (Aa) parent (here the father)
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Transmission Disequilibrium Test (TDT)
(Spielman et al. 1993)



AA Aa

Aa

Under H0  A is transmitted as often as a
The probability that Aa parents transmit a = 0.5

Under H1 
The probability that Aa parents transmit a ¹ 0.5

TDT hypotheses
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Characteristics of TDT
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• Offspring (case) is affected
• Genotype the case and both parents

--test is conditional on the affected child; phenotype of parents can be 
ignored; but genotypes of parents are needed

• Immune against confounding due to population stratification



Aa AA

Aa

Aa Aa

aa

Aa AA

AA

NB: n11 & n22 do not contribute 
to the test statistic

TDT test statistic (Mc Nemar’s statistic)

Not transmitted

Transmitted A a
A n11 n12

a n21 n22
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TDT = (n12 – n21)² / (n12 + n21) ~ c²1df



Not transmitted

Transmitted A a

A 7 5
a 6 0

Aa Aa AA

Aa Aa aa
Aa Aa Aa

AA AA AA

Aa AA Aa

Aa AA AA
AA Aa Aa
AA Aa AA
Aa AA Aa

TDT practical
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Father Mother OffspringAa AA

Aa

TDT = (5–6)²/(5+6) = 0.091 ~ c²1df ® P-value = 0.763



TDT = (18 – 39)² / (18+39) = 7.74 ~ c²1df

p = 0.0054

à We reject H0 and conclude that the HbS locus 

or a locus in high linkage disequilibrium is involved in Malaria resistance

à The allele S is associated with Malaria resistance

Example: TDT within malaria resistant individual

Not transmitted

Transmitted A S

A 237 18

S 39 0
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FBAT statistic, an extension of TDT

FBAT statistic, an extension of TDT test (Spielman et al. 1993)

Introduced by Rabinowitz and Laird (2000) and Laird et al. (2000), builds 
on the original TDT method in which alleles transmitted to affected offspring 
are compared with the expected distribution of alleles among offspring

Robustness: Expected distribution is derived using Mendel’s law of 
segregation and conditioning on parents genotype eliminate any potential 
confounding: population stratification, admixture, potential model 
misspecification.

FBAT statistic use a natural measure of association between two variables, 
covariance between the traits and the genotypes:

( )( )å CE-CT= iijijij SU |

i indexes family and j indexes nonfounders in the family
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FBAT statistic, an extension of TDT

( )( )å CE-CT= iijijij SU |

( )( )iijij S|CE-C Can be thought of as residual of the 
"transmission" of parental genotype to offspring

= 0 ,   if both parents of ijth offspring are 
homozygous

- Transmissions from homozygous parents do not 
contribute to the test statistic (cf. Mendel Law)

AAAB

Mendel law of allele’s inheritance:

P(AA) = P(AB) = 0.5

Covariance between the 
trait and the centered 
genotype

For univariate X or T:
( )

( )

( ) ( )Vrankdf
U

U
lyequivalentor

elyapproximatN
UVar

U

FBAT ==

=Z

,
var

,

1,0~
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Design

• N independent "parents – affected offspring" trios
• 1 bi-allelic marker to test: a1 , a2

{a1=T | a1/a2}: a1 transmitted, given that parent’s genotype is a1/a2
P(1)(2) = Probability ({a1=T | a1/a2})

n(1)(2) = sample frequency of the event {a1=T | a1/a2}

Hypotheses

• H0: p(1)(2) = p(2)(1) = 0.5 (no linkage or no association)
• H1: p(1)(2) ≠ p(2)(1) (linkage and association)

Test Statistic (Mc Nemar)

• ( )
( ) 0
2

)1)(2()2)(1(

2
)1)(2()2)(1( Hunder1=~

+
= df

nn
nn

Mc cC

TDT (likelihood version)
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Likelihood of data

•

• log-likelihood under the null hypothesis

2112
2112)( nn ppL ´=a

)log()log()(log 21211212 pnpnL ´+´=a

)()2log(log 21120 nnL +´-=

Test Statistic (LRT)

• X = 2×max{logL(a) – logL0} ~   c2(1df) under null hypothesis   
p

X is equivalent to the Mc Nemar statistic XMc

Advantage: X is more adequate for multi-marker generaisation than XMc

TDT (likelihood version)
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Types of association testing models
Recruitment

- Population-based, Case/Control
- Family-based (related individuals)

Nature of the phenotype
- Qualitative, usually binary (affected / not affected)
- Quantitative

Type of genetic effect tested
- Single-Marker effect
- Multi-Marker effect
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Design

• N independent "parents – affected offspring" trios

• K multi-allelic markers to test simultaneously: L1, L2, …, LK
having respectively: l1 , l2, … , lK alleles

Detecting joint marker effect in family-based design
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Detecting joint marker effect in family-based design
Log-Likelihoods
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Detecting multiway interaction in family data
The test statistic "X"
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Multiple Testing
The principal
Family-Wise Error Rate

Correction methods

- Bonferroni
- Benjamini & Hochberg method for controlling the FDR



Multiple testing

The principal

Suppose that we performed m independent tests corresponding to different
alternative hypotheses H1, H2, ..., Hm against the same null hypothesis H0.

e.g., H1 : gene 1 has an effect on the trait

H2 : gene 2 has an effect on the trait

…

Hm : gene m has an effect on the trait

H0 : any of the genes has an effect on the trait

40



Multiple testing

The principal

Testing each marker for association at a given error rate α

Û Pr(Hi | H0) = probability to adopt hypothesis i given that H0 is true = α
(the probability to wrongly find gene i positive for the test)

How to obtained α’ ?

A natural way to correct this increase of the risk of false findings is to set a new error 
rate α’ for each gene such that the probability to have at least one false finding is α. 
Testing m genes at error rate α’ Û testing a single gene at error rate α.

Increasing the number of genes tested increases probability to find at least one of 
the genes wrongly significant, only by chance due to many trials.
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Corrected significance threshold

Family Wise Error Rate (FWER) or "Genome-wide Significance Level":

Is the probability to obtain at least one false positive (FP) result, and is 
conventionally expected to be equal to 0.05.

i.e., FWER = 1 – Pr(0 false positive | H0)

Then,    FWER = 1 – (1 – α’)m

≤ max(m α’ , 1).

If α’ is the probability for each single test to be found positive wrongly,

then, Pr(0 FP | H0) = P(H1 not FP, H2 not FP, …, Hm not FP | H0)

=  (1 – α’)  × (1 – α’)  × …  × (1 – α’)
=  (1 – α’)m

Then, α’ = 1 – (1 – FWER)1/m

α = 0.05 
Target threshold
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Bonferroni method

Bonferroni correction of p-values

α’ is obtained as followed:

α = P(H1 or H2, or ... or Hm |H0)
= P(H1 |H0) + ... + P(Hm |H0) as H1, H2, ..., Hm are independent
= α’ + ... + α’
= m×α’

Then, α’ = α/m.
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Bonferroni method

Bonferroni correction of p-values

A good approximation of Family-Wise Error Rate (FWER)
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-log10(0.05/1e6) = 7.3 , for 1,000,000 tests

α’ = 1 –(1 –α)1/m (FWER)
α’ = α/m (Bonferroni)



False Discovery Rate (FDR)

After performing the m tests as described above, suppose that P are declared 
positive and N as negative, but in reality m1 are positive and m0 are negative as 
summarized here:

Declared by the tests

The Truth Significant Not Significant Total

Null is True Fp Tn m0 = Fp + Tn

Alternative is True Tp Fn m1 = Tp + Fn

Total P = Fp + Tp N = Tn + Fn m
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Benjamini & Hochberg method



Benjamini & Hochberg method

False Discovery Rate (FDR)

The FDR method provides a control of error rate with a straightforward 
interpretability by setting a false discovery rate that satisfy the following condition:

FDRP
P
Fp

£÷
ø
ö

ç
è
æ >E 0|

i.e., given that we obtain a non null number of positive tests, 
the expectation of error rate which is Fp/P has to be lower than the FDR.
Conventionally FDR is set to 0.05 
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Benjamini & Hochberg method

False Discovery Rate (FDR)

The weak control of FDR (Benjamini and Hochberg 1995) follow these three steps:

§ Order the P-values from the lowest to the highest
P(1) ≤ P(2) ≤ ... ≤ P(m)

§ Find the highest rank k (denoted k*) that satisfy
P(k) ≤ k×α/m

§ If k* exists, adopt all hypotheses corresponding to
P(1), ..., P(k*)
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Benjamini & Hochberg method

False Discovery Rate (FDR)

Equivalently, we can calculate adjusted (or corrected) FDR’s P-values (P*). 
Order the P-value: P(1) ≤ P(2) ≤ ... ≤ P(m)

and follow these steps:

§ P*(m) = P(m)
§ P*(m-1) = min {P*(m) ; P(m-1)×m/(m-1)}
§ P*(m-2) = min {P*(m-1) ; P(m-2)×m/(m-2)}

...

§ P*(1) = min{P*(2) ; P(1)×m}.
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False Discovery Rate (FDR)

For example m=10 tests and α=0.05 with following raw P-values:

Test P-value Ordered P-value rank (k) k×α/m P*
gene1 0.378 g3 0.002 1 0.005 0.018
gene2 0.009 g10 0.004 2 0.010 0.018
gene3 0.002 g9 0.006 3 0.015 0.018
gene4 0.700 g6 0.008 4 0.020 0.018
gene5 0.166 g2 0.009 5 0.025 0.018
gene6 0.008 g8 0.094 6 0.030 0.157
gene7 0.443 g5 0.166 7 0.035 0.237
gene8 0.094 g1 0.378 8 0.040 0.473
gene9 0.006 g7 0.443 9 0.045 0.492
gene10 0.004 g4 0.700 10 0.050 0.700
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Benjamini & Hochberg method



False Discovery Rate (FDR)

Graphically
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Benjamini & Hochberg method



Bonferroni vs FDR

Bonferroni:

§ Simple to compute
§ Less consistent if the m tests are not really independent,

could be the case in genome wide studies due to linkage disequilibrium.
§ Conservative (number of false positive (Fp) is evaluated with respect to the total 

number of tests (m)
§ Not always appropriate for genetic studies where many genes are often involved

FDR:

§ Acceptable way of controlling the inflation of Fp in context of genetic studies,
considering the expected number of false positive among the P tests declared 
positive only, instead of referring to all the m tests.

51



52

Population stratification

PC1
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Definition

"Population stratification" = population structure

Spurious association due to:
- Systematic difference in allele frequencies
between sub-populations ...

… can be due to different ancestry

To visualize:
- PCA

To correct:
- Genomic Control
- Regression on Principal Components of PCA
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Graphical representation of results

Quantile-Quantile (QQ) Plot

Expected test statistic value given its rank 
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Manhattan plot 
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Manhattan plot 

Locus zoom plots

Graphical representation of results
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Table representation of results

SNP CHR Gene symbol Position Beta NominalP A1 A2 CR MAF HWE FDR Protein ID

rs10159191 1 MFSD6 191321186 -0.38 7.8E-07 A G 1 0.22 0.64 0.032 Q6ZSS7

rs2784115 1 PLCL1 198751401 0.51 3.9E-08 G A 1 0.15 0.01 0.006 Q15111

rs369459 5 ZNF143 9507624 0.46 5.3E-07 A G 1 0.12 0.37 0.026 P52747

rs716733 8 PLCE1 95888981 0.33 6.9E-07 G A 1 0.21 0.30 0.030 Q9P212



56

Tools used for GWAS testing

• Plink
• GCTA
• R Bioconductor libraries (availability of set of packages for GWAS: e.g., 

"GWASTools", "SNPRelate",  "gdsfmt", and for graphical representation)
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Files, formats and outputs for GWAS testing

GWAS results are generally exported in tabulated files,
and merging with:

• SNPs QC files (containing MAF, Call rate, HWE test, ...)
• Annotation files

- Usual file formats: .tsv, .xlsx, etc...
- Use of programming software (like R) to explore large results files



Thanks
for your attention

QUESTIONS ?


