
PolyRun - Polymer Microstructure Exploration HPC
Gateway

Alec Lofquist †

Department of Computer Engineering
Iowa State University

Ames, IA

David M. Ackerman †

Department of Mechanical Engineering
Iowa State University

Ames, IA

Steven Clark
ITaP Research Computing

Purdue University
West Lafayette, IN

Christopher Thompson
ITaP Research Computing

Purdue University
West Lafayette, IN

Amit Chourasia ‡

San Diego Supercomputer Center
University of California San Diego

La Jolla, CA
amit@sdsc.edu

Baskar Ganapathysubramanian ‡

Department of Mechanical Engineering
Iowa State University

Ames, IA
baskarg@iastate.edu

Abstract—This paper describes design and development of a
gateway enabling polymer scientists with limited HPC back-
ground to model the equilibrium microstructures of polymer
melts. These microstructures are critical to the physical prop-
erties of polymers and are of great interest in tailoring polymer
microstructures to meet application challenges. The gateway
utilizes a Qt application running in a HubZero framework to
allow users to configure, submit, track, and visualize polymer
structure simulations. In particular the gateway provides an
interface to perform multidimensional parameter sweeps of
different configurations to construct phase diagrams which are
of high interest to the polymer community. The gateway enables
both seasoned and non-hpc users to easily perform complex
computations and utilize simulations as an aid in designing
experiments towards materials by design.

I. INTRODUCTION AND MOTIVATION

Polymers are long chain macromolecules with physical
properties that make them appealing for a wide range of
uses in structural support, organic electronics, and biomedical
applications. The microscopic structure adopted by polymers
plays a key role in determining their suitability for advanced
applications. Changes in the polymer configuration or pro-
cessing can control the structure. Physical experiments and
theoretical studies are used to determine the structure formed
under a given set of conditions. It has long been recognized
that theory and simulation can guide experiments to desirable
structures. We have previously developed a finite element
framework for running these simulations on HPC systems [1].
This framework is powerful and flexible; however, it suffers
from accessibility issues common to many traditional HPC
software. This learning curve of the command line interface
limits the user base of the code. With that in mind, we
have developed a user-friendly gateway providing a graphical
front-end for the simulation code. The gateway runs a Qt

† co-lead authors. ‡ co-corresponding authors.

Presented at Gateways 2018, University of Texas, Austin, TX,
September 25-27, 2018.
https://gateways2018.figshare.com/

based application within a browser based virtual machine that
is portable across computer architectures. This paper briefly
describes the goals and development decisions involved in the
creation of the gateway.

II. DESIGN GOALS AND DECISIONS

Based on the problem description above, we selected several
focus points. First, the target audience consists of two main
groups: 1) existing polymer scientists with limited computa-
tional background, and 2) new researchers (e.g. undergrads or
first year grad students) interested in doing HPC related work.
Both are groups who might benefit from polymer science
simulations but may be put off by the steep learning curve
required to use standard command line based simulation tools.

With the target audience determined, the following main
priorities were identified:

• A Graphical User Interface (GUI) that matches what
most computer users expect. Like most HPC software,
the underlying simulation code is intended to run from a
terminal on a remote system. Past experience shows that
command line applications are a major hurdle for many
users. Without a graphical interface, experimentalists will
be hesitant to invest the effort to learn a command line
system and new researchers will spend a lot of time
learning terminal commands before they can do any
actual science.

• Data Management and Visualization: Simulations may
generate large amounts of data on the computing re-
sources. Data primarily includes snapshots of structural
evolution over time and statistics over the course of the
run. This data needs to be summarized in a meaningful
and easily accessible way while also being available to
the user in full for later use.

• Ready to use with minimal setup: The simulation soft-
ware depends on external libraries and has multiple setup
steps in order to build it. While those can be bundled
together in a distribution, it will still be a complicated



Fig. 1. The job configuration screen with a sample of the QML code used to generate it.

system. In addition, for simulations that will run on
HPC resources, there may be significant barriers to over-
come in gaining access before starting any calculations.
Minimizing set up can get users involved in answering
interesting science questions quickly.

• Maintain the power of the HPC software: The polymer
science software was designed to support both individual
simulation runs as well as broad parameter sweep cam-
paigns. The parameter sweeps are of particular interest
to researchers as they allow exploration of the phase
space of potential polymer configurations. These sweeps
are computationally demanding and require numerous
simulation jobs to be submitted at once. If the gateway
does not continue to support this capability, its value
would be substantially reduced.

All of the development was targeted to meet one of the
above goals. The first approach was a Qt-based desktop appli-
cation designed to manage creation of job scripts. This helped
address the first and last priorities and proved successful. Even
in a rough form, it was utilized by an undergraduate for his
honors research project [2], [3]. Cutting the learning curve
by providing a familiar GUI allowed him to get started with
the interesting part of generating results without needing to
learn Linux terminal commands. Despite that success, he still
required help in getting the system set up and support for
data sweeps suffered due to issues with job management.
Furthermore, despite being written with the cross-platform

Qt library, porting the application to Windows and Mac was
deemed too time-consuming.

While promising, this approach did not meet the priorities
listed above. The research group’s focus and expertise is with
the science of polymers and the development of the simulation
software. Expansion of the GUI to meet the given needs was
outside of that area of expertise. To address these needs,
assistance was requested through the Extended Collaborative
Support Services [4] program of XSEDE [5]. This program
provided the required technical expertise in networking, visu-
alization, and virtual machines.

Given limited development time, an appealing approach
was to deploy the existing Qt software within DiaGrid [6], a
HubZero [7] based virtual machine run by Purdue University.
This choice offered several advantages: 1) it preserved existing
work that had proven successful, 2) it enabled the use of
existing, well tested and well supported HPC job submission
and tracking software [8], 3) ongoing development costs were
reduced by only needing to support a single platform (the
Linux based virtual machine), 4) user setup is limited to
creating an account on the DiaGrid system, 5) HPC jobs
can be routed through an existing allocation if desired, 6)
upgrades automatically propagate for all users, and 7) wide
availability via an externally supported host. Several of these
features could be met in other ways, but the reduction in
upfront development and ongoing support effort made this a
compelling approach.



Fig. 2. Job status matrix for parameter sweep of jobs. The inset shows the code used to generate the simulation jobs in the status matrix.

III. IMPLEMENTATION ON VIRTUAL MACHINE

Each of our primary goals, along with the approach to meet
it and challenges encountered, is outlined below.

A. Graphical Interface

As mentioned earlier, this is the foundation of the project.
The original interface was designed as a stand-alone Qt ap-
plication. The normal text based configuration was converted
to an input form using QML (Fig. 1). Related items are con-
nected via scripting (e.g. changing from 2D to 3D simulations
triggers a change in the required number of simulation box
dimensions). Jobs are managed through a submission page
and a status page provides information on the progress. Once
completed, the results can be visualized using snapshots taken
during the simulation and plots of data values of interest.
Representative images of the intermediate and final system
states are generated on the computing resource using VisIt
[9] with predefined views that illustrate the results of the
simulation. This enables a rapid evaluation of the results
and permits the researcher to observe the progress of the
simulation. The raw data files may be retrieved from the
computing resource through the user interface to enable further

processing. Porting the Qt code to the virtual machine required
several non-standard Qt libraries to be installed, necessitating
updates to the underlying DiaGrid system. A larger issue was
limited support for HTML widgets within the supported Qt
environment. This prevented the use of HTML and JavaScript
(which had been used in rapid prototyping of the user interface
components) within the widgets used for layout and display
of information.

B. Minimal User Setup
The user is required to create an account on the DiaGrid

system, and needs to be given access to an HPC allocation.
Beyond that, the virtual machine environment is already set
up to run the system. Jobs are run on HPC resources using a
community account with a user specified HPC resource billing.
This enables users to either utilize an existing allocation which
they are granted access to, or to obtain an allocation on their
own for their project. The Diagrid system provides the account
authorization.

C. Retain HPC Capabilities
A critical component of the simulation software is the ability

to submit large batches of related jobs. Without this feature, it



Fig. 3. The results page allowing users to visualize the structures and time
evolution of data items of interest.

would not be possible to achieve one of the primary scientific
goals: the creation of phase diagrams from large numbers
of simulations. A recent project utilizing this code required
approximately 5000 simulations jobs, with most grouped into
batches of 10-200 jobs that covered a span of parameters.
To support this, a batch submission feature is included which
can generate jobs with a range of parameters. Internally, the
management of large batches of jobs is handled automatically
by HubZero’s job submission middleware. The user is kept
updated on the progress of the batch jobs via a status page
as shown in Fig. 2. Job results can be individually inspected
via the results page (Fig. 3). The inset shown on the status
page is an example of the code used to create the list of batch
jobs. While the goal of the project is to minimize the need
for users to write any sort of code, it proved unavoidable
in this case. A fully graphical means of specifying jobs
would require significant development time and be limited to
the capabilities provided by the developer – likely requiring
additional development effort every time a new use case is
needed. The code based generation avoids these issues. To
minimize the burden on users arising from this choice, the
following strategies are employed: 1) several detailed example
cases are available to users in the documentation, 2) the
JavaScript language was chosen as it has a large number of
freely available tutorials a user can reference, 3) a validation
of code is performed with error messages which specify exact
line numbers of problems, and 4) users are able to preview
the resulting job list prior to accepting it. These strategies are
expected to make it feasible for users to develop batch jobs
with minimal difficulties.

D. Data Management

This proved to be the most complicated part of development.
The fundamental challenge stemmed from the need for users to
have access to the large amounts of simulation data generated
on a system they, in general, will not have direct access
to. Data from a modest size simulation run could reach 100
GB when keeping only final configuration data. Simulations
on more complex polymer systems would have larger data

production. As shown in Fig. 3, the evolution of the physical
structure is of interest. Storing intermediate time points could
lead to 100 times more data than keeping only the end results.
This is not an unmanageable amount of data but due to the
size, it is not feasible to move all the data to the DiaGrid
system. It is impractical and unnecessary to automatically
move the data to the user’s local system. Not all of this is
data is ultimately necessary, but the determination of which
data is needed is made by the user during analysis. The
user will ultimately need access to the data that is deemed
relevant. The goal of this system is to help the user filter
through the data to decide what is relevant and then make
that data available for further analysis. Our approach is two
fold. First, we provide representative previews of all data to
enable the user to determine which data is needed for future
analysis. This is intended to reduce the number of files that
need to be transferred. Second, an interface is provided to
the Globus data management service [10], [11]. Data created
through the simulations is transferred to long term storage
on the HPC cluster and automatically made accessible by
the GUI tool using the web-based Globus interface. During
the simulation setup, the user can provide a Globus email
that the results will be shared with. The user is then able to
download the specific data files needed. Files can be transfered
through Globus to a local system or to another HPC system
for further post processing or visualization. File ownership is
maintained by the gateway, however access to specfic files is
governed by Globus sharing permission which prevents users
from accessing data they did not create. Storage of data on
the HPC system will be governed by a data retention policy
that may adapt over time as the gateway matures.

IV. CONCLUSION

This tool has been deployed on the DiaGrid system with
initial support for the Comet supercomputer at the San Diego
Supercomputer Center. The process of porting the Qt-based
application to the DiaGrid system presented several challenges
due to the nature of running on a virtual machine. The moti-
vation of porting an existing program to the virtual machine
was practicality. Utilizing an existing, working system was
preferable to creating a new system. This was one of several
design trade offs needed to balance user experience and limited
development time. Referencing the key goals listed above
helped guide the development process to ensure the resulting
gateway met its intended function. Future work will focus on
growth of a user community and expanding support for the
different polymer systems within the software.

ACKNOWLEDGMENTS

DMA, AL, and BG were partially supported by NSF Grant
No. DMR-1435587 and CMMI-1149365.

This work used the Extreme Science and Engineering Dis-
covery Environment (XSEDE), which is supported by National
Science Foundation grant number ACI-1548562 using the
Comet system at the San Diego Supercomputer Center.



REFERENCES

[1] D. M. Ackerman, K. Delaney, G. H. Fredrickson, and B. Ganapathysub-
ramanian, “A finite element approach to self-consistent field theory
calculations of multiblock polymers,” Journal of Computational Physics,
vol. 331, pp. 280 – 296, 2017.

[2] J. Green, D. M. Ackerman, and B. Ganapathysubramanian, “Effects
of confinement geometry on biblock copolymer systems using finite
element analysis,” in Presented during National Conference on Under-
graduate Research, (Memphis, TN), 2017.

[3] J. Green, D. M. Ackerman, and B. Ganapathysubramanian, “Phase
behaviour of polymer systems under geometric confinement,” submitted,
2018.

[4] N. Wilkins-Diehr, S. Sanielevici, J. Alameda, J. Cazes, L. Crosby,
M. Pierce, and R. Roskies, “An overview of the xsede extended collab-
orative support program,” in High Performance Computer Applications
- 6th International Conference, ISUM 2015, Revised Selected Papers,
vol. 595 of Communications in Computer and Information Science,
(Germany), pp. 3–13, Springer Verlag, 1 2016.

[5] J. Towns et al., “Xsede: Accelerating scientific discovery,” Computing
in Science & Engineering, vol. 16, pp. 62–74, Sept.-Oct. 2014.

[6] “Diagrid Web page.” https://diagrid.org/.
[7] M. McLennan and R. Kennell, “Hubzero: A platform for dissemination

and collaboration in computational science and engineering,” Computing
in Science & Engineering, vol. 12, no. 2, pp. 48–53, 2010.

[8] Submit Command (HubZero documentation).
https://help.hubzero.org/documentation/current/tooldevs/grid.submitcmd,
2009.

[9] H. Childs et al., “VisIt: An End-User Tool For Visualizing and Ana-
lyzing Very Large Data,” in High Performance Visualization–Enabling
Extreme-Scale Scientific Insight, pp. 357–372, Oct 2012.

[10] I. Foster, “Globus online: Accelerating and democratizing science
through cloud-based services,” IEEE Internet Computing, vol. 15,
pp. 70–73, May 2011.

[11] B. Allen et al., “Software as a service for data scientists,” Commun.
ACM, vol. 55, pp. 81–88, Feb. 2012.


