Supporting information

Stabilizing Metastable Polymorphs of Metal-Organic Frameworks through Encapsulating Graphene Oxide and Mechanistic Studies

Hui Su, ${ }^{\text {a,b }}$ Yao Du, ${ }^{\text {a }}$ Jichuan Zhang, ${ }^{\text {a }}$ Panpan Peng, ${ }^{\text {a }}$ Shenghua Li, ${ }^{\text {a }}$ Pengwan Chen, ${ }^{\text {b }}$ Michael Gozin, ${ }^{\text {c }}$ and Siping Pang, ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Materials Science \& Engineering, Beijing Institute of Technology, Beijing 100081, PR China
${ }^{\mathrm{b}}$ State key laboratory of explosion science and technology, Beijing Institute of Technology, Beijing 100081, PR China
${ }^{\mathrm{c}}$ School of Chemistry, Faculty of Exact Science, Tel Aviv University, Tel Aviv, 69978, Israel

Corresponding Author

*E-mail: lishenghua@bit.edu.cn
pangsp@bit.edu.cn

1 Instruments and methods for measurements

(1) Instrumentation: Powder X-ray diffraction (PXRD) patterns of the samples were analyzed with monochromatized $\mathrm{Cu}-\mathrm{K} \alpha(\lambda=1.54178 \AA)$ incident radiation by Bruker D8 Advance X-ray diffractometer operating at 40 kV voltage and 50 mA current. PXRD patterns were recorded from 5° to $90^{\circ}(2 \theta)$ at 298 K . Infrared (IR) spectrum was recorded on a Bruker Tensor 27 spectro-photometer with HTS-XT (KBr pellets). Raman spectra (RS) in the $3500 \sim 50 \mathrm{~cm}-1$ range were measured in back scattering geometry with a LabRAM HR Evolution Raman spectrometer. The 532 nm line was used as excitation with the resolution was $2 \mathrm{~cm}^{-1}$. X-ray photoelectron (XPS) spectrum was recorded on an AXIS Ultra X-ray photoelecton spectroscopy (Kratos corporation, England). Elemental analysis was performed on an Elementar Vario EL (Germany). Field emission scanning electron microscopy (FE-SEM, Hitachi S-4800) was used to characterize the morphology (5 KV accelerating voltage, gold coating) and element analysis (at 20 KV accelerating valtage) of the samples. Transmission electron microscopy (TEM; FEI Tecnai G2 F30) and atomic force microscopy (AFM; NanoScope V, VEECO) was used to observe the interphase structure of the hybrid.
(2) Measurement of heat of reaction and ignition temperature using DSC/TG: In our study, a TA-DSC Q2000 differential scanning calorimeter was employed to determine the ignition temperatures. About 1.5 mg of sample was used and the temperature was programmed to $500^{\circ} \mathrm{C}$ $(773 \mathrm{~K})$ at the rate of $10^{\circ} \mathrm{C} \mathrm{min}-1$ in $60 \mathrm{~mL} \mathrm{~min}^{-1} \mathrm{~N}_{2}$ flow. The ignition temperature was usually regarded as the onset temperature of an exothermic reaction and also as the lowest temperature that can induce the thermal explosion of a sample.
(3) Measurement of impact sensitivity: The impact sensitivity was tested on a type 12 tooling according to "up and down" method (Bruceton method). A 2.5 kg weight was dropped from a set height onto a 20 mg sample placed on 150 grit garnet sandpaper. Each subsequent test was made at the next lower height if explosion occurred and at the next higher height if no explosion happened. 50 drops were made from different heights, and an explosion or non-explosion was recorded to determine the results. RDX was considered as a reference compound, the impact sensitivity of RDX is 7.4 J .
(4) Measurement of friction sensitivity: The friction sensitivity was tested on a FSKM-10 BAM friction apparatus. RDX was also used as a reference compound, and its friction sensitivity is 110 N .
(5) Measurement of electrostatic sensitivity: The electrostatic sensitivity was tested on a FSKM 50/20K apparatus produced by OZM Research. The sample was placed between the porcelain plate and peg. The weight of leading at least one ignition in six times was recorded. The friction sensitivity of RDX is 0.2 J . Test conditions: $25^{\circ} \mathrm{C}$ (temperature); 34% (relative humidity).
(6) The measurement of the heat of detonation $\left(\Delta H_{d e t}\right)$

To estimate the heat of detonation ($\Delta \mathrm{Hdet}$) of the above materials, and to see how they compare to those of common energetic materials, a precise rotating-oxygen bomb calorimeter31 was used for energetic $\operatorname{MOF}(A T A-a)$ and $\mathrm{GO} \subset \mathrm{MOF}($ ATA-a). The heats of reaction of gram-scale thermites (500 mg sample) were measured using a Parr 6200 (Parr Instrument Company, USA) bomb calorimeter under the oxygen atmosphere at 3 MPa . The measured heats of reaction of $\operatorname{MOF}(A T A-a), \operatorname{GO} \subset \operatorname{MOF}(A T A-a)$ and GO/MOF(ATA-a) are $8.8624 \mathrm{~kJ} \mathrm{~g}^{-1}, 8.8484 \mathrm{~kJ} \mathrm{~g}^{-1}$ and $8.9107 \mathrm{~kJ} \mathrm{~g}^{-1}$, respectively. In addition, the chemical formula for $\operatorname{GO\subset MOF}(A T A-a)$
approximately equal to $\operatorname{MOF}(\mathrm{ATA}-\mathrm{a})$, which is due to the low GO content $(<1 \%)$ for GOСMOF (ATA-a).

On the basis of the formula $\Delta_{\mathrm{c}} \mathrm{H}_{\Theta m}=\Delta_{\mathrm{c}} \mathrm{U}_{\Theta \mathrm{m}}+[\mathrm{ng}$ (products) -ng (reactants)] RT (where ng is the total molar amount of gases in the products or reactants, $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, \mathrm{~T}=298.15 \mathrm{~K}$), the standard molar enthalpies of combustion $(\Delta \mathrm{cH} \mathrm{Cm})$ can be derived as being $2082.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The combustion reaction Equations are listed as equations (1):

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{10} \mathrm{Zn}+3.75 \mathrm{O}_{2}=\mathrm{ZnO}+2 \mathrm{CO}_{2}+2.5 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{~N}_{2} \tag{1}
\end{equation*}
$$

The standard molar enthalpies of formation of the combustion products are obtained from the literature ${ }^{1}$. According to Hess's law, the standard molar enthalpies of formation $\left(\Delta^{f} \mathrm{H}_{\Theta \mathrm{m}}\right)$ of $\operatorname{MOF}(A T A-a)$ at $298.15 \mathrm{~K}^{2}$ are calculatedas $340.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. In accordance with the maximum heat release principle, zinc, methane, nitrogen and carbon ere assumed to be the final products of decomposition of the organic part of the framework MOF(ATA-a), and the formation of zinc was assumed to be governed by the deficiency of oxygen. The complete detonation reactions are described by equations (2):

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{10} \mathrm{Zn}=\mathrm{Zn}+1.25 \mathrm{CH}_{4}+5 \mathrm{~N}_{2}+0.75 \mathrm{C} \tag{2}
\end{equation*}
$$

In the theoretical case, the heat of detonation ($\Delta \mathrm{Hdet}$) of compounds MOF (ATA-a), $\operatorname{GO} \subset \operatorname{MOF}(A T A-a)$ and $G O / \operatorname{MOF}(A T A-a)$ at 298.15 K are calculated as $1858.2 \mathrm{~J} \mathrm{~g}^{-1}, 1906.5 \mathrm{~J} \mathrm{~g}^{-1}$ and $1891.5 \mathrm{~J} \mathrm{~g}^{-1}$, respectively.

2 Figures and table

Figure S1. Photograph for preparated MOFs(ATA-a) and MOFs(ATA-b) ((MOF(ATA-a): left; MOF(ATA-b): left right)

Figure S2. Photograph for new preparated GO \subset MOFs(ATA-a) and GO \subset MOFs(ATA-b) (GOᄃ (MOF(ATA-a): left; $\mathrm{GO} \subset \mathrm{MOF}(\mathrm{ATA}-\mathrm{b}):$ left right)

Figure S3. The ortep drawing shows the coordination for MOFs(ATA-a) (MOFs(ATA-a) and MOFs(ATA-b) with identical coordination mode) $)^{2}$. Displacement ellipsoids are drawn at the 40% probability level and H atoms are omitted for clarity.

Figure S4. Schematic view about structural differences between MOF(ATA-a) and MOF(ATA-b). (MOF(ATA-a), upper panel; MOF (ATA-b), lower panel. The difference between MOF (ATA-a) and MOF(ATA-b) is the ligand of ATA, which is parallel for MOF(ATA-b) and anti-parallel for MOF(ATA-b). Some atoms and structures have been omitted or replaced.

Figure S5. PXRD patterns of some materials: (a) pristine MOF(ATA-a), (b) MOF(ATA-a) placed 1 hours at $160{ }^{\circ} \mathrm{C}$, (c) $\operatorname{MOF}(A T A-a)$ placed 2 hours at $160{ }^{\circ} \mathrm{C}$, (d) $\operatorname{MOF}(A T A-a)$ placed 3 hours at $160{ }^{\circ} \mathrm{C}$, (e) MOF(ATA-a) placed 4 hours at $160{ }^{\circ} \mathrm{C}$ and (f) pristine $\operatorname{MOF}($ ATA-b)

Figure S6. DSC curves of pristine $\operatorname{MOF}(A T A-a), G O / M O F(A T A-a)$ and $G O \subset M O F(A T A-a)$.

Figure S7. DSC curves of (A) pristine $\operatorname{MOF}(A T A-a)$, (B) GO/MOF(ATA-a), (C) MOF(ATA-a) at $120^{\circ} \mathrm{C}$ for 10 h ;
(D) GOCMOF(ATA-a) at $120^{\circ} \mathrm{C}$ for 48 h ; (E) pristine $\operatorname{MOF}(A T A-B)$

Figure S8. SEM images of (A) pristine GO, (B) pristine MOF(ATA-b), (C) GO/MOF(ATA-b) and (D) $\mathrm{GO} \subset \operatorname{MOF}(\mathrm{ATA}-\mathrm{b})$; EDS elemental maps of O for (E) pristine GO, (F) pristine MOF(ATA-b), (G) GO/MOF(ATA-b) and (H)GOсMOF(ATA-b)

Figure S9. IR spectroscopy of $\operatorname{MOF}(A T A-a)$ and $\operatorname{MOF}(A T A-b)$ under different conditions. (A) pristine $\operatorname{MOF}(A T A-a) ;(B) \operatorname{MOF}(A T A-a)$ in aqueous solutions with $\mathrm{pH}=1$ for 10 h ; (C) $\operatorname{MOF}(A T A-a)$ at $120^{\circ} \mathrm{C}$ for 10 h ; (D) $\operatorname{MOF}(A T A-a)$ at $160{ }^{\circ} \mathrm{C}$ for 5 h , and (E) pristine $\operatorname{MOF}(A T A-a)$.

Figure S10. IR spectroscopy of $\operatorname{MOF}(A T A-a)$ and $G O \subset M O F(A T A-a)$ under different conditions. (A) pristine $\operatorname{MOF}(A T A-a)$; (B) $\operatorname{MOF}(A T A-a)$ in aqueous solutions with $\mathrm{pH}=1$ for 12 h ; (C) MOF (ATA-a) in aqueous solutions with $\mathrm{pH}=14$ for 12 h ; (D) pristine $\mathrm{GO} \subset \mathrm{MOF}(\mathrm{ATA}-\mathrm{a})$; (E) $\mathrm{GO} \subset \mathrm{MOF}(\mathrm{ATA}-\mathrm{a})$ in aqueous solutions with $\mathrm{pH}=1$ for 12 h , and $(\mathrm{F}) \mathrm{GO} \subset \mathrm{MOF}(\mathrm{ATA}-\mathrm{a})$ in aqueous solutions with $\mathrm{pH}=14$ for 12 h .

Figure S11. IR spectroscopy of (a) pristine GO, (b) pristine MOF(ATA-b), (c) GO/MOF(ATA-b) and (d) GOСMOF(ATA-b).

Figure S12. Raman spectroscopy of (a) pristine GO, (b) pristine MOF(ATA-b), (c) GO/MOF(ATA-b) and (d) GOСMOF (ATA-b)

Figure S13. XPS binding energy spectra of (A) pristine GO, (B) pristine MOF(ATA-b), (C) GO/MOF(ATA-b) and (D)GOᄃMOF(ATA-b); the fitted C 1s peak curves for (E) pristine GO; (F) pristine MOF(ATA-b), (G) GO/MOF (ATA-b) and (H) GOᄃMOF(ATA-b); the fitted N 1s peaks for (I) pristine MOF(ATA-b), (J) $\mathrm{GO} / \mathrm{MOF}(\mathrm{ATA}-\mathrm{b})$ and (K) GO$\subset \mathrm{MOF}(\mathrm{ATA}-\mathrm{b})$; and the Zn 2 p spectrum for (L) GO-Zn(II), MOF(ATA-b), GO/MOF(ATA-b), and GOᄃMOF(ATA-b), without peak fitting.

Figure S14. TEM images of (a) pristine GO, (b) pristine MOF(ATA-b), (c) GO/MOF(ATA-b) and (d)GOᄃMOF(ATA-b)

Table S1. Crystal data and structure refinement details for ATA-based complexes

Compound name	MOF(ATA-a)	MOF(ATA-b)
CCDC по.	1843046	-
Formula	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{10} \mathrm{Zn}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{10} \mathrm{Zn}$
T/K	293 (2)	173(2)
M	233.5	233.5
Crystal system	monoclinic	orthorhombic
Space group, Z	C $12 / \mathrm{m} 1$ (12)	C m c m (63)
$a / A ̊$	10.3782(7)	17.8673(12)
$b / A ̊$	17.942(2)	10.4029(9)
$c / A ̊$	10.3758(8)	19.8430(16)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	98.467(8)	90
$\gamma /{ }^{\circ}$	90.00	90
V / \AA^{3}	1911.0(3)	3688.3(5)
$\mu(\mathrm{Mo-K} \mathrm{\alpha}) / \mathrm{mm}^{-1}$	2.546	2.638
$D_{\text {cald }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.623	1.682
$2 \theta \max { }^{\circ}$	52	50.6
Measd/ Unique reflns	4495 / 1756	9183/1519
$R_{\text {int }}$	0.0347	0.0431
Parameters refined	212	259
$R_{l}, w R_{2}[I>2 \sigma(I)]$	0.0368, 0.1087	0.0528, 0.1860
$R_{1}, w R_{2}$ (all data)	0.1114, 0.0410	0.0642, 0.1950
Max, min peak $/ e \cdot \AA^{-3}$	0.640, -0.562	0.652, -1.207

References

1. Speight, J. G., Lange's handbook of chemistry. McGraw-Hill New York: 2005; Vol. 1.
2. Wang, X-W.; Chen, J-Z.; Liu, J-H. Photoluminescent Zn (II) Metal-Organic Frameworks Built from Tetrazole Ligand: 2D Four-Connected Regular Honeycomb (4363)-net. Crystal Growth \& Design, 2007, 7,1227-1229.
