

AOP-based ontologies for developmental toxicity

Thomas B. Knudsen, PhD

Developmental Systems Biologist US EPA, National Center for Computational Toxicology <u>knudsen.thomas@epa.gov</u>

ORCID 0000-0002-5036-596x

DISCLAIMER: The views expressed are those of the presenter and do not necessarily reflect Agency policy.

Vascular Development

- Blood vessel development is essential to the embryo (cardiovascular is first functioning organ system across *Vertebrate* species).
- Vascular insufficiency is tied to many disease processes (stroke, diabetes, preeclampsia, neonatal respiratory distress, osteoporosis, Alzheimer's...).
- Aop43: one of 28 AOPs included in the OECD work plan with status 'open for citation & comment' [<u>https://aopwiki.org/wiki/index.php/Aop:43</u>].

Aop: 43 Disruption of VEGFR Signaling Leading to Developmental Defects

> Short name: Developmental Vascular Toxicity

AOP framework: *developmental vascular toxicity (DVT)*

SOURCE: Knudsen and Kleinstreuer (2011) Birth Defects Res

AOP-based ranking: predicted vascular disrupting chemicals (pVDCs)

24 ToxCast target assays

1058 ToxCast chemicals ranked by pVDC ToxPi

VEGFR2 inhibition (PTK787)

SOURCE: Tal et al. (2014) Reprod Toxicol

Vasculogenesis

Primary tubular network

Angiogenesis

Remodeling

How well does ToxCast do predicting endothelial disruption across the angiogenesis cycle?

- 3D angiogenic sprouting [Belair et al. (2016) Acta Biomat]
- nuCTNB and endothelial migration [in preparation]
- HTS tubulogenesis [Li et al. (2018) SLAS Tech]
- endothelial co-culture [in preparation]
- engineered matrices [Nguyen et al. (2017) Nature Bioeng]
- KDR-reporter zebrafish embryos [Tal et al. (2017) Reprod Toxicol]
- rat whole embryo culture [Ellis-Hutchings et al. (2017) Reprod Toxicol]

38 chemical test set: qualification of pVDC ToxPi across 9 endothelial behaviors

pVDC ToxPi

- B HUVEC tubulogenesis (FICAM)
- C HUVEC tubulogenesis (NCATS)
- D tubulogenesis in synthetic matrices (HMAPS)
- E tubulogenesis in Matrigel (HMAPS)
- F nuCTNB biomarker (VALA)
- G endothelial cell migration (VALA)
- H iPSC endothelial sprouting (HMAPS)
- ISV reporter zebrafish (NHEERL)
- reporter zebrafish (UDUBLIN)
- K HUVEC tubulogenesis (VALA)
- L ANY (B to K)

Sens 0.89, Spec 0.80 ACC 87% (PPV 93%, NPV 73%)

Embryotoxicity: 5HPP-33 vs TNP-470

5HPP-33

- synthetic thalidomide analog
- microtubule disruptor
- \downarrow endothelial networks
- critical effect embryo viability
- AC50 = 21.2 μM
- TI threshold from hESC = 9.5 μ M

TNP-470

- synthetic fumagillin analog
- MetAP II inhibitor
- non-canonical WNT signaling
- critical effect dysmorphogenesis
- AC50 = 0.038 μM
- TI threshold from hESC = 0.01 μ M

RNAseq: 5HPP-33 vs TNP-470 whole embryo culture

SOURCE: K Saili, J Franzosa (collaboration with DOW Chemical)

Computer simulation: cell agent-based models

Li and Carmeliet (2018) Science

VEGF corridors

Nicole Kleinstreuer

SOFTWARE: www.CompuCell3D.org

BioComplexity Institute, Indiana U

Network assembly

sFlit1

TIE2

CCL2

Kleinstreuer et al. (2013) PLoS Comp Biol

- Endothelial Stalk
- Endothelial Tip
- Mural Cell
- * Inflammatory Cell

Simulated (in silico) profiling

Neural tube vascularization

Tata et al. (2015) Mechanism Devel

Neuroepithelium notch Stalk Cell CSF1 dll4 Tip Cell NICD Microglia induced Csf1r NICD anastomoses notch Microglia Vegfr3 VEGF-C dll4 Vegfr2 Vegfr2 Vegfr1 Vegfr3 NICD > Threhold Vessel migration sVegfr1 Stalk Cell VEGF-A **SVP formation** Ventricle/NPC population Reduced VEGF-A/Cresponse

VEGF-A gradient: NPCs in subventricular zone

Simulated dose-response: brain angiogenesis from *in vitro* HTS data (ToxCast)

https://www.epa.gov/chemical-research/toxcast-dashboard

Computational prediction (cNVU)

Critical concentration:

- predicted in silico ~0.5 μM
- observed in vitro ~0.3 μ M

Biomimetic reconstruction (hNVU)

W Murphy, W Daly, G Kaushick – U Wisconsin (HMAPS)

Todd Zurlinden, Kate Saili - NCCT

Summary: *decoding the toxicological blueprint of vascular development*

- HTS profiles can assess *in vitro* bioactivity of large numbers of chemicals but translation remains a challenge for complex processes such as DevTox.
- Mapping HTS features to AOPs brings into context the weight of evidence for critical determinants potential invoking the altered phenotype in a self-organizing system.
- AOP-based ontologies provide the necessary structure for quantitative prediction of cellular and tissue responses to molecular perturbation.
- The 'angiogenic cycle' is responsive to genetic and physiological signals in the embryonic microenvironment, and can be useful for predictive toxicology.
- For DevTox, this can be demonstrated by an AOP network for embryonic vascular disruption represented in the OECD AOP-KB (Aop43).

Acknowledgements

National Center for Computational Toxicology SEPA United States Environmental Chad Deisenroth Jeffery Edwards

http://www2.epa.gov/sites/production/files/2015-08/documents/virtual tissue models fact sheet final.pdf

Nancy Baker – Leidos / NCCT
Jill Franzosa – NCCT (now CSS/NHEERL)
Ed Carney[†] – Dow Chemical Company
Rob Ellis-Hutchings – Dow Chemical Company
Raj Settivari – Dow Chemical Company
Tuula Heinonen – U Tampere / FICAM
Tarja Tomela – U Tampere / FICAM
Maria Bondesson – U Houston (TIVS) (now Indiana U)
James Glazier – Indiana U (TIVS)
Kate Saili – NCCT

• Nicole Kleinstreuer - NCCT (now NTP/NICEATM)

○ Todd Zurlinden – NCCT

 $\circ\,$ BeiBei Cai – Vala Sciences

○ Richard Spencer – EMVL

○ Jill Franzosa – NCCT (now CSS)

o Eric Nguyen – U Wisconsin (HMAPS)
o Guarav Kaushick – U Wisconsin (HMAPS)

• William Murphy – U Wisconsin (HMAPS)

William Daly – U Wisconsin (HMAPS)

o Tamara Tal – NHEERL/ISTD

David Belair – NHEERL/TAD (now CellGene)

○ Florent Ginhoux – A*STAR/SIgN

Aymeric Silvin – A*STAR/SIgN