# Scalable and Chemoselective Synthesis of $\gamma$ -Keto Esters and Acids *via* Pd-Catalyzed Carbonylation of Cyclic $\beta$ -Chloro Enones

Justin M. Kaplan,<sup>†</sup> Damian P. Hruszkewycz,<sup>†</sup> Iulia I. Strambeanu,<sup>†</sup> Christopher J. Nunn,<sup>‡</sup> Kelsey F. VanGelder,<sup>†</sup> Anna L. Dunn,<sup>†</sup> Derek I. Wozniak,<sup>§</sup> Graham E. Dobereiner,<sup>§</sup> and David C. Leitch<sup>†,\*</sup>

<sup>†</sup>API Chemistry, GlaxoSmithKline, King of Prussia, Pennsylvania. <sup>‡</sup>Product and Process Engineering, GlaxoSmithKline, King of Prussia, Pennsylvania. <sup>§</sup>Department of Chemistry, Temple University, Philadelphia, Pennsylvania.

# **Supporting Information**

# **Table of Contents**

| I: Preparation of Substrates          | S2   |
|---------------------------------------|------|
| General                               | S2   |
| Synthesis of <b>4a</b>                | S2   |
| Synthesis of <b>6a</b>                | S5   |
| Synthesis of <b>7a</b>                | S8   |
| Synthesis of <b>8a</b>                | S11  |
| II: High-Throughput Screening         | S17  |
| Screen 1 (from Figure 1, Main Text)   | S17  |
| Screen 2 (from Figure 2, Main Text)   | S25  |
| III: Preparative-Scale Carbonylations | S37  |
| Characterization of Products          | S37  |
| Large-Scale Preparation of <b>1b</b>  | S102 |
| IV: Mechanistic Studies               | S106 |
| Reaction Profile Curves               | S106 |
| Synthesis of <b>1m</b>                | S113 |
| Oxidative Addition Studies            | S114 |
| Characterization Data for <b>11</b>   | S123 |
| Characterization Data for <b>12</b>   | S129 |
| V: X-Ray Crystallography              | S133 |
| VI:References                         | S151 |
|                                       |      |

## I: Preparation of Substrates

**General:** The following substrates are known compounds, and were prepared using literature procedures: **1a**,<sup>1</sup> **2a**,<sup>1</sup> **3a**,<sup>1</sup> and **5a**.<sup>1</sup>



Synthesis of 4a: This compound was prepared in an analogous fashion to 1a using the literature protocol<sup>1</sup> from the known<sup>2</sup> dione: 2-(4-acetylphenyl)cyclohexane-1,3-dione (1.40 g, 6.08 mmol) was added to a 40 mL vial containing a stirbar and dissolved in dichloromethane (10 mL). The vial was cooled to 0 °C. N,N-dimethylformamide (0.511 g, 0.54 mL, 6.99 mmol) was added via syringe. Oxalyl chloride (0.810 g, 0.56 mL, 6.38 mmol) was dissolved in DCM (5 mL). This solution was added dropwise via syringe to the stirring solution of the dione/DMF. After addition was complete, the vial was warmed to room temperature. The reaction mixture was stirred for one hour, and reaction progress assessed by analysing an aliquot by LCMS, which indicated complete consumption of the starting material. Water (15 mL) was added to guench the reaction, and the layers mixed. The agueous phase was removed, and the organic phase concentrated under vacuum. The residue was redissolved in ethyl acetate (15 mL), and washed with water (5 x 15 mL). The organic phase was then dried over MgSO<sub>4</sub>. After filtration, the solvent was removed under vacuum to give a suspension of a tan-coloured solid in a dark red liquid phase. Addition of hexanes further precipitated the tan solid, which was collected by filtration and washed with hexanes to give **4a** (1.33 g, 88% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 2.18 - 2.25 (m, 2 H) 2.62 - 2.66 (m, 2 H) 2.64 (s, 3 H) 2.96 (t, J = 6.2 Hz, 2 H) 7.27 - 7.30 (m, 2 H) 7.99 - 8.02 (m, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 21.78, 26.67, 35.30, 37.34, 128.04, 130.16, 136.44, 138.12, 138.83, 155.19, 195.10, 197.73 (s, 1 C). LRMS (ESI): m/z = 249 / 251 [M+H]<sup>+</sup>; 290 / 292 [M+H+CH<sub>3</sub>CN]<sup>+</sup>.







Figure S2: <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 4a.



Figure S3: LCMS trace of 4a.



Synthesis of 6a: This compound was prepared in an analogous fashion to 1a using the literature protocol<sup>1</sup> from the known<sup>3</sup> dione: A 3-necked 250 mL round-bottomed flask was charged with a stirbar. 2-(4-Cyanobenzyl)cyclohexane-1,3-dione (10 g, 44.0 mmol) was slurried in 75 mL DCM with stirring in the flask, which was cooled to 0 °C. N,N-dimethylformamide (4.09 mL, 52.8 mmol) was added via syringe. An addition funnel was charged with oxalyl chloride (4.24 mL, 48.4 mmol) and 25 mL DCM. The funnel was fitted to the middle neck of the flask, while the other two necks were left open to ensure efficient venting of evolved gases. The oxalyl chloride solution was added dropwise over 15 minutes to the stirring reaction mixture. The reaction mixture remains heterogeneous throughout. The mixture was warmed to room temperature, which resulted in complete dissolution. The addition funnel was filled with 50 mL water, which was added slowly to the stirring reaction mixture. After the addition was complete, stirring was stopped and the layers allowed to settle. The phases were separated in a separatory funnel. The volatiles were removed from the organic phase in vacuo, and the crude residue redissolved in TBME (100 mL). This solution was washed with water (3 x 100 mL), 1:1 brine/water (100 mL total), dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo to give a pale orange oil that solidified on standing at -20 °C. Isolated yield: 10.40 g (96%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  ppm 2.08 (quin, J = 6.5 Hz, 2 H), 2.46 - 2.53 (m, 2 H), 2.83 (t, J = 6.2 Hz, 2 H), 3.85 (s, 2 H), 7.38 (d, J = 8.0 Hz, 2 H), 7.56 (dt, J = 8.0, 2.0 Hz, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 21.79, 32.46, 35.11, 37.10 (s, 1 C), 110.04, 119.06, 129.59, 132.15, 135.80, 144.58, 155.58, 195.81 (C=O). LRMS (ESI): m/z = 246 / 248 [M+H]<sup>+</sup>.







**Figure S5:** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **6a**.



Figure S6: LCMS trace of 6a.



Synthesis of 7a: This compound was prepared in an analogous fashion to 1a using the literature protocol<sup>1</sup> from the known<sup>4</sup> dione: A 3-necked 100 mL round-bottomed flask was charged with a stirbar. 2-(3-Chlorobenzyl)cyclohexane-1,3-dione (4.0 g, 16.90 mmol) was slurried in 40 mL DCM with stirring in the flask, which was cooled to 0 °C. N,N-dimethylformamide (1.570 mL, 20.28 mmol) was added via syringe to the tan suspension. Oxalyl chloride (1.627 mL, 18.59 mmol) was added dropwise via syringe through a rubber septum over 15 minutes; the other two necks of the flask were left open to ensure venting of the evolved gases. Once the addition was complete, the reaction mixture was warmed to room temperature with stirring. The reaction was quenched by slow addition of water (40 mL) with thorough mixing for 10-15 minutes. The stirring was stopped to allow the layers to settle, followed by separation of the phases in a separatory funnel. The organic phase was dried over MgSO<sub>4</sub>, filtered, and the solvent removed in vacuo. The resulting residue was redissolved in TBME (50 mL), washed with water (3 x 50 mL), 1:1 brine/water (50 mL total), dried over MgSO<sub>4</sub>, filtered, and the solvent removed. The resulting pale yellow oil solidified on standing at -20 °C. Isolated yield: 4.10 g (95%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 1.98 (quin, J = 6.5 Hz, 2 H) 2.40 (dd, J = 6.5, 6.2 Hz, 2 H) 2.73 (t, J = 6.2 Hz, 2 H) 3.69 (s, 2 H) 7.04 - 7.14 (m, 3 H) 7.17 (s, 1 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 21.83, 31.92, 35.12, 37.18, 126.36, 127.09, 128.81, 129.50, 134.01, 136.30, 140.94, 155.07, 195.89. LRMS (ESI): m/z = 255 / 257 / 259 [M+H]+.







Figure S9: LCMS trace of 7a.

#### Synthesis of 8a:



Synthesis of 2-(4-bromo-2-fluorobenzyl)cyclohexane-1,3-dione: Cyclohexane-1,3-dione (4.49 g, 40 mmol) was dissolved in 1 M sodium hydroxide (40.0 mL, 40 mmol) in a 250 mL round-bottomed flask containing a stirbar. 4-Bromo-1-(bromomethyl)-2-fluorobenzene (11.25 g, 42.0 mmol) was added as a solid to the stirring solution. The flask was fitted with a condenser cooled with a stream of compressed air. The reaction mixture was heated to 80 °C and stirred overnight. The next morning, the mixture was dilute with water to ensure all of the solids are slurried in solution, and the flask cooled to room temperature. A white globular solid was observed in the bottom of the solution after cooling. This material was filtered using vacuum suction, and dried for several hours. The solid was washed with 20 mL TBME without suction to give a yellow/orange filtrate and a cream-white solid. The solid was dried in vacuo, giving 7.80 g (65% yield) of the dione (100% area by LCMS). <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectroscopy in CD<sub>3</sub>OD reveals the compound exists as the enol tautomer (shown above), but exhibiting symmetry, indicative of rapid exchange on the NMR timescale. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$  ppm 2.02 (quin, J = 6.5 Hz, 2 H, -CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-), 2.49 (t, J = 6.5 Hz, 4 H, 2 x -CH<sub>2</sub>-C=O), 3.57 (s, 2 H, -CH<sub>2</sub>-Ar), 7.00 (t, J = 8.1 Hz, 1 H, Ar-H), 7.15 - 7.24 (m, 2 H, 2 x Ar-H). <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CD<sub>3</sub>OD) δ ppm -116.68. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CD<sub>3</sub>OD) δ ppm 19.40 (d, J = 3.8 Hz), 20.53, 32.35 (br), 112.46, 117.71 (d, J = 26.1 Hz), 118.39 (d, J = 9.5 Hz), 126.52 (d, J = 3.4 Hz), 127.41 (d, J = 15.8 Hz), 130.85 (d, J = 5.1 Hz), 160.82 (d, J = 248.5 Hz, C-F), carbonyl/enol carbons not observed, likely due to exchange on NMR time scale, and low S/N due to poor solubility. LRMS (ESI):  $m/z = 299 / 301 [M+H]^+$ .



**Figure S10:** <sup>1</sup>H NMR spectrum of 2-(4-bromo-2-fluorobenzyl)cyclohexane-1,3-dione.



**Figure S11:** <sup>19</sup>F NMR spectrum of 2-(4-bromo-2-fluorobenzyl)cyclohexane-1,3-dione.



**Figure S12:** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 2-(4-bromo-2-fluorobenzyl)cyclohexane-1,3-dione.



Figure S13: LCMS trace of 2-(4-bromo-2-fluorobenzyl)cyclohexane-1,3-dione.

Synthesis of 8a: This compound was prepared in an analogous fashion to 1a using the literature protocol<sup>1</sup> from the above dione: A 3-necked 250 mL round-bottomed flask was charged with a stirbar. 2-(4-Bromo-2-fluorobenzyl)cyclohexane-1,3-dione (5 g, 16.71 mmol) was slurried in 35 mL DCM in the flask, which was then cooled to 0 °C. N,N-dimethylformamide (1.553 mL, 20.06 mmol) was added via syringe with stirring. An addition funnel was charged with oxalyl chloride (1.609 mL, 18.39 mmol) and 15 mL DCM. The addition funnel was attached to the center neck of the 3-necked flask, while the other two necks were left open to ensure efficient venting of the evolved gases. The oxalyl chloride solution was added dropwise to stirring reaction mixture over 15 minutes. During this time, the mixture became homogeneous. Once the addition was complete, the addition funnel was rinsed with 10 mL DCM, and then the reaction mixture warmed to room temperature. The addition funnel was filled with 50 mL water, which was added slowly to the stirring reaction mixture. Once addition was complete, the stirring was stopped to allow the two layers to settle. The phases were separated in a separatory funnel, and the volatiles removed in vacuo. The resulting yellow oil was dissolved in 50 mL TBME, and washed with water (3 x 50 mL), 1:1 brine/water (50 mL total), and finally dried over MgSO<sub>4</sub>. The suspension was filtered and the solvent removed in vacuo to give a clear, viscous oil that solidified on standing at -20 °C. Isolated yield: 4.80 g (90%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 2.09 (quin, J = 6.5 Hz, 2 H) 2.51 (dd, J = 6.5, 6.2 Hz, 2 H) 2.83 (t, J = 6.2 Hz, 2 H) 3.78 (s, 2 H) 7.00 (t, J = 8.0 Hz, 1 H) 7.14 - 7.22 (m, 2 H).  ${}^{13}C{}^{1}H{}$  NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  ppm 21.85, 25.03 (d, *J* = 3.4 Hz), 35.18, 37.11, 118.82 (d, *J* = 25.6 Hz), 119.84 (d, J = 9.5 Hz), 124.88 (d, J = 15.7 Hz), 127.12 (d, J = 3.8 Hz), 131.22 (d, J = 5.1 Hz), 135.13, 155.81, 160.64 (d, J = 251 Hz, C-F), 195.73. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ ppm -113.66 (t, J = 8.6 Hz, 1 F). LRMS (ESI): *m*/*z* = 317 / 319 / 321 [M+H]<sup>+</sup>.



Figure S14: <sup>1</sup>H NMR spectrum of 8a.



Figure S15: <sup>19</sup>F NMR spectrum of 8a.



Figure S16: <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 8a.



Figure S17: LCMS trace of 8a.

## II: High-Throughput Screening

## Screen 1 (from Figure 1, Main Text):



Each reaction vial was charged with the following materials in this order:

- PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>: 1.3 mg, 0.0050 mmol
- Phosphine ligand: 0.010 mmol (monodentate ligands) or 0.0050 mmol (bidentate ligands)
- K<sub>2</sub>CO<sub>3</sub> (if present): 20.7 mg, 0.150 mmol
- Substrate **1a** through **8a**: 0.100 mmol as a solution in either toluene or acetonitrile (300 uL solvent) that also contains biphenyl internal standard (3.1 mg, 0.020 mmol)
- Triethylamine (if present): 15.2 mg, 20.9 μL, 0.150 mmol
- Methanol: 6.4 mg, 8.1 µL, 0.200 mmol

Reaction conditions: 100 °C, 60 psig CO, 8 hours.

**Determining solution assays:** This screen was analysed using HPLC Method B, with detection at 220 nm. In order to determine the mol% of remaining starting material, negative control vials containing only the starting material and internal standard were analyzed to establish a ratio of absolute peak areas between the peak for substrate and standard. All reactions that were dispensed from the same stock solution were calibrated against this relative response factor to obtain correct %conversion values. For calculating the mol% of product, several wells were subject to NMR analysis to obtain solution yields relative to internal standard. The volatiles in the original reaction vials were removed in a GeneVac prior to redissolution in CDCl<sub>3</sub>; this solution was then passed through a 0.45 µm syringe filter if needed (to remove insoluble inorganics and/or palladium-black). By determining the solution yields for representative examples, the ratio of peak areas for the product and internal standard were calibrated across the plate. In other words, the product to internal standard response factor was determined by obtaining these NMR solutions yields, and this response factor was applied to the HPLC-derived results of the plate as a whole. The results are collated in Table S1.

| Entry | Substrate | Ligand                                              | Ligand Base Solvent            |                    | %<br>Conv.<br>(HPLC) | % Yield<br>(HPLC) | % Yield<br>(NMR) |
|-------|-----------|-----------------------------------------------------|--------------------------------|--------------------|----------------------|-------------------|------------------|
| 1     | 1a        | dcpp-2HBF <sub>4</sub>                              | K <sub>2</sub> CO <sub>3</sub> | CH <sub>3</sub> CN | 99%                  | 77%               |                  |
| 2     | 1a        | dcpp-2HBF <sub>4</sub>                              | K <sub>2</sub> CO <sub>3</sub> | Toluene            | 56%                  | 45%               |                  |
| 3     | 1a        | dcpp-2HBF <sub>4</sub>                              | NEt <sub>3</sub>               | CH₃CN              | 97%                  | 66%               |                  |
| 4     | 1a        | dcpp-2HBF <sub>4</sub>                              | NEt <sub>3</sub>               | Toluene            | 1%                   | 1%                |                  |
| 5     | 1a        | DPEPhos                                             | $K_2CO_3$                      | CH₃CN              | 100%                 | 56%               |                  |
| 6     | 1a        | DPEPhos                                             | K <sub>2</sub> CO <sub>3</sub> | Toluene            | 62%                  | 47%               |                  |
| 7     | 1a        | DPEPhos                                             | $NEt_3$                        | CH₃CN              | 42%                  | 29%               |                  |
| 8     | 1a        | DPEPhos                                             | $NEt_3$                        | Toluene            | 84%                  | 80%               |                  |
| 9     | 1a        | dppp                                                | $K_2CO_3$                      | CH₃CN              | 97%                  | 69%               |                  |
| 10    | 1a        | dppp                                                | $K_2CO_3$                      | Toluene            | 66%                  | 47%               |                  |
| 11    | 1a        | dppp                                                | $NEt_3$                        | CH₃CN              | 95%                  | 57%               |                  |
| 12    | 1a        | dppp                                                | $NEt_3$                        | Toluene            | 38%                  | 31%               |                  |
| 13    | 1a        | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$                      | CH₃CN              | 100%                 | 63%               |                  |
| 14    | 1a        | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$                      | Toluene            | 100%                 | 73%               |                  |
| 15    | 1a        | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$                        | CH₃CN              | 99%                  | 71%               |                  |
| 16    | 1a        | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$                        | Toluene            | 100%                 | 94%               | 92%              |
| 17    | 1a        | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$                      | CH₃CN              | 100%                 | 76%               |                  |
| 18    | 1a        | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$                      | Toluene            | 97%                  | 73%               |                  |
| 19    | 1a        | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $NEt_3$                        | CH₃CN              | 100%                 | 69%               |                  |
| 20    | 1a        | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $NEt_3$                        | Toluene            | 100%                 | 94%               | 94%              |
| 21    | 1a        | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$                      | CH₃CN              | 80%                  | 31%               |                  |
| 22    | 1a        | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$                      | Toluene            | 28%                  | 26%               |                  |
| 23    | 1a        | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $NEt_3$                        | CH₃CN              | 81%                  | 56%               |                  |
| 24    | 1a        | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $NEt_3$                        | Toluene            | 99%                  | 91%               |                  |
| 25    | 2a        | dcpp-2HBF <sub>4</sub>                              | $K_2CO_3$                      | CH₃CN              | 97%                  | 70%               |                  |
| 26    | 2a        | dcpp-2HBF <sub>4</sub>                              | $K_2CO_3$                      | Toluene            | 65%                  | 70%               | 75%              |
| 27    | 2a        | dcpp-2HBF <sub>4</sub>                              | NEt₃                           | CH <sub>3</sub> CN | 92%                  | 84%               |                  |
| 28    | 2a        | dcpp-2HBF <sub>4</sub>                              | NEt₃                           | Toluene            | 1%                   | 3%                |                  |
| 29    | 2a        | DPEPhos                                             | $K_2CO_3$                      | CH₃CN              | 97%                  | 74%               |                  |
| 30    | 2a        | DPEPhos                                             | $K_2CO_3$                      | Toluene            | 82%                  | 71%               |                  |
| 31    | 2a        | DPEPhos                                             | NEt₃                           | CH₃CN              | 100%                 | 82%               |                  |
| 32    | 2a        | DPEPhos                                             | NEt₃                           | Toluene            | 0%                   | 13%               |                  |
| 33    | 2a        | dppp                                                | $K_2CO_3$                      | CH <sub>3</sub> CN | 78%                  | 82%               |                  |
| 34    | 2a        | dppp                                                | $K_2CO_3$                      | Toluene            | 11%                  | 30%               |                  |
| 35    | 2a        | dppp                                                | $NEt_3$                        | CH <sub>3</sub> CN | 95%                  | 95%               |                  |
| 36    | 2a        | dppp                                                | $NEt_3$                        | Toluene            | 1%                   | 14%               |                  |
| 37    | 2a        | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$                      | CH <sub>3</sub> CN | 91%                  | 72%               |                  |
| 38    | 2a        | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | K <sub>2</sub> CO <sub>3</sub> | Toluene            | 85%                  | 78%               |                  |
| 39    | 2a        | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$                        | CH₃CN              | 83%                  | 93%               |                  |
| 40    | 2a        | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$                        | Toluene            | 87%                  | 99%               | 99%              |

#### Table S1: Full Set of Results from Screen 1

| 41 | 2a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$              | CH <sub>3</sub> CN | 71%  | 68% |     |
|----|----|-----------------------------------------------------|------------------------|--------------------|------|-----|-----|
| 42 | 2a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$              | Toluene            | 40%  | 53% |     |
| 43 | 2a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $NEt_3$                | CH₃CN              | 93%  | 83% |     |
| 44 | 2a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $NEt_3$                | Toluene            | 4%   | 11% |     |
| 45 | 2a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$              | CH <sub>3</sub> CN | 24%  | 33% |     |
| 46 | 2a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$              | Toluene            | 43%  | 71% |     |
| 47 | 2a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $NEt_3$                | CH <sub>3</sub> CN | 73%  | 52% |     |
| 48 | 2a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $NEt_3$                | Toluene            | 1%   | 0%  |     |
| 49 | 3a | dcpp-2HBF <sub>4</sub>                              | $K_2CO_3$              | CH <sub>3</sub> CN | 98%  | 91% | 91% |
| 50 | 3a | dcpp-2HBF <sub>4</sub>                              | $K_2CO_3$              | Toluene            | 45%  | 41% |     |
| 51 | 3a | dcpp-2HBF <sub>4</sub>                              | $NEt_3$                | CH <sub>3</sub> CN | 40%  | 36% |     |
| 52 | 3a | dcpp-2HBF <sub>4</sub>                              | $NEt_3$                | Toluene            | 1%   | 0%  |     |
| 53 | 3a | DPEPhos                                             | $K_2CO_3$              | CH <sub>3</sub> CN | 54%  | 39% |     |
| 54 | 3a | DPEPhos                                             | $K_2CO_3$              | Toluene            | 10%  | 5%  |     |
| 55 | 3a | DPEPhos                                             | NEt <sub>3</sub>       | CH₃CN              | 4%   | 4%  |     |
| 56 | 3a | DPEPhos                                             | NEt <sub>3</sub>       | Toluene            | 1%   | 1%  |     |
| 57 | 3a | dppp                                                | $K_2CO_3$              | CH₃CN              | 66%  | 52% |     |
| 58 | 3a | dppp                                                | $K_2CO_3$              | Toluene            | 6%   | 8%  |     |
| 59 | 3a | dppp                                                | NEt₃                   | CH <sub>3</sub> CN | 48%  | 23% |     |
| 60 | 3a | dppp                                                | NEt₃                   | Toluene            | 4%   | 0%  |     |
| 61 | 3a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$              | CH₃CN              | 99%  | 77% |     |
| 62 | 3a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$              | Toluene            | 12%  | 0%  |     |
| 63 | 3a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | NEt₃                   | CH₃CN              | 92%  | 92% |     |
| 64 | 3a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | NEt <sub>3</sub>       | Toluene            | 86%  | 90% | 91% |
| 65 | 3a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$              | CH₃CN              | 20%  | 4%  |     |
| 66 | 3a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$              | Toluene            | 10%  | 6%  |     |
| 67 | За | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $NEt_3$                | CH₃CN              | 10%  | 9%  |     |
| 68 | За | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $NEt_3$                | Toluene            | 0%   | 0%  |     |
| 69 | За | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$              | CH₃CN              | 6%   | 5%  |     |
| 70 | За | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$              | Toluene            | 50%  | 45% |     |
| 71 | За | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $NEt_3$                | CH₃CN              | 8%   | 7%  |     |
| 72 | 3a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | NEt <sub>3</sub>       | Toluene            | 0%   | 0%  |     |
| 73 | 4a | dcpp-2HBF <sub>4</sub>                              | $K_2CO_3$              | CH₃CN              | 95%  | 52% |     |
| 74 | 4a | dcpp-2HBF <sub>4</sub>                              | $K_2CO_3$              | Toluene            | 75%  | 53% |     |
| 75 | 4a | dcpp-2HBF <sub>4</sub>                              | $NEt_3$                | CH₃CN              | 26%  | 12% |     |
| 76 | 4a | dcpp-2HBF <sub>4</sub>                              | $NEt_3$                | Toluene            | 7%   | 1%  |     |
| 77 | 4a | DPEPhos                                             | $K_2CO_3$              | CH₃CN              | 100% | 23% |     |
| 78 | 4a | DPEPhos                                             | $K_2CO_3$              | Toluene            | 73%  | 22% |     |
| 79 | 4a | DPEPhos                                             | $\operatorname{NEt}_3$ | CH₃CN              | 13%  | 7%  |     |
| 80 | 4a | DPEPhos                                             | $\operatorname{NEt}_3$ | Toluene            | 0%   | 1%  |     |
| 81 | 4a | dppp                                                | $K_2CO_3$              | CH₃CN              | 100% | 44% |     |
| 82 | 4a | dppp                                                | $K_2CO_3$              | Toluene            | 85%  | 78% |     |
| 83 | 4a | dppp                                                | $NEt_3$                | CH <sub>3</sub> CN | 16%  | 7%  |     |
| 84 | 4a | dppp                                                | NEt <sub>3</sub>       | Toluene            | 7%   | 1%  |     |

| 85  | 4a | P(Me)(t-Bu) <sub>2</sub> -HBF <sub>4</sub>          | $K_2CO_3$                      | $CH_3CN$           | 100% | 30% |     |
|-----|----|-----------------------------------------------------|--------------------------------|--------------------|------|-----|-----|
| 86  | 4a | P(Me)(t-Bu) <sub>2</sub> -HBF <sub>4</sub>          | $K_2CO_3$                      | Toluene            | 5%   | 0%  |     |
| 87  | 4a | P(Me)(t-Bu) <sub>2</sub> -HBF <sub>4</sub>          | $NEt_3$                        | CH₃CN              | 100% | 71% | 71% |
| 88  | 4a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$                        | Toluene            | 100% | 72% | 65% |
| 89  | 4a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$                      | CH <sub>3</sub> CN | 86%  | 16% |     |
| 90  | 4a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$                      | Toluene            | 74%  | 55% |     |
| 91  | 4a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $NEt_3$                        | CH <sub>3</sub> CN | 50%  | 31% |     |
| 92  | 4a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $NEt_3$                        | Toluene            | 54%  | 37% |     |
| 93  | 4a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$                      | CH <sub>3</sub> CN | 75%  | 15% |     |
| 94  | 4a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$                      | Toluene            | 100% | 4%  |     |
| 95  | 4a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $NEt_3$                        | CH <sub>3</sub> CN | 49%  | 33% |     |
| 96  | 4a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $NEt_3$                        | Toluene            | 38%  | 26% |     |
| 97  | 5a | dcpp-2HBF <sub>4</sub>                              | K <sub>2</sub> CO <sub>3</sub> | CH₃CN              | 49%  | 22% |     |
| 98  | 5a | dcpp-2HBF₄                                          | $K_2CO_3$                      | Toluene            | 44%  | 38% | 36% |
| 99  | 5a | dcpp-2HBF <sub>4</sub>                              | $NEt_3$                        | CH₃CN              | 6%   | 4%  |     |
| 100 | 5a | dcpp-2HBF <sub>4</sub>                              | $NEt_3$                        | Toluene            | 6%   | 4%  |     |
| 101 | 5a | DPEPhos                                             | $K_2CO_3$                      | CH₃CN              | 75%  | 33% |     |
| 102 | 5a | DPEPhos                                             | $K_2CO_3$                      | Toluene            | 27%  | 18% |     |
| 103 | 5a | DPEPhos                                             | $NEt_3$                        | CH₃CN              | 0%   | 0%  |     |
| 104 | 5a | DPEPhos                                             | NEt₃                           | Toluene            | 3%   | 2%  |     |
| 105 | 5a | dppp                                                | $K_2CO_3$                      | CH₃CN              | 90%  | 49% |     |
| 106 | 5a | dppp                                                | $K_2CO_3$                      | Toluene            | 19%  | 13% |     |
| 107 | 5a | dppp                                                | $NEt_3$                        | CH₃CN              | 33%  | 19% |     |
| 108 | 5a | dppp                                                | $NEt_3$                        | Toluene            | 1%   | 0%  |     |
| 109 | 5a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$                      | CH₃CN              | 64%  | 25% |     |
| 110 | 5a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$                      | Toluene            | 18%  | 9%  |     |
| 111 | 5a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$                        | CH₃CN              | 64%  | 62% | 62% |
| 112 | 5a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$                        | Toluene            | 22%  | 19% | 19% |
| 113 | 5a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$                      | CH₃CN              | 35%  | 16% |     |
| 114 | 5a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$                      | Toluene            | 8%   | 5%  |     |
| 115 | 5a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $NEt_3$                        | CH₃CN              | 9%   | 8%  |     |
| 116 | 5a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | NEt₃                           | Toluene            | 29%  | 29% |     |
| 117 | 5a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$                      | CH₃CN              | 4%   | 0%  |     |
| 118 | 5a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$                      | Toluene            | 6%   | 0%  |     |
| 119 | 5a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $NEt_3$                        | CH₃CN              | 3%   | 0%  |     |
| 120 | 5a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | NEt <sub>3</sub>               | Toluene            | 7%   | 5%  |     |
| 121 | 6a | dcpp-2HBF <sub>4</sub>                              | K <sub>2</sub> CO <sub>3</sub> | CH₃CN              | 75%  | 37% |     |
| 122 | 6a | dcpp-2HBF <sub>4</sub>                              | K <sub>2</sub> CO <sub>3</sub> | Toluene            | 50%  | 46% |     |
| 123 | 6a | dcpp-2HBF <sub>4</sub>                              | $NEt_3$                        | CH₃CN              | 30%  | 21% |     |
| 124 | 6a | dcpp-2HBF <sub>4</sub>                              | $NEt_3$                        | Toluene            | 2%   | 0%  |     |
| 125 | 6a | DPEPhos                                             | K <sub>2</sub> CO <sub>3</sub> | CH₃CN              | 94%  | 51% |     |
| 126 | 6a | DPEPhos                                             | K <sub>2</sub> CO <sub>3</sub> | Toluene            | 64%  | 62% |     |
| 127 | 6a | DPEPhos                                             | $NEt_3$                        | CH₃CN              | 2%   | 6%  |     |
| 128 | 6a | DPEPhos                                             | NEt <sub>3</sub>               | Toluene            | 9%   | 5%  |     |

| 129 | 6a | dppp                                                | $K_2CO_3$        | CH₃CN              | 69%  | 44% |     |
|-----|----|-----------------------------------------------------|------------------|--------------------|------|-----|-----|
| 130 | 6a | dppp                                                | $K_2CO_3$        | Toluene            | 61%  | 59% |     |
| 131 | 6a | dppp                                                | $NEt_3$          | CH <sub>3</sub> CN | 22%  | 9%  |     |
| 132 | 6a | dppp                                                | $NEt_3$          | Toluene            | 1%   | 0%  |     |
| 133 | 6a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$        | CH <sub>3</sub> CN | 100% | 67% |     |
| 134 | 6a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$        | Toluene            | 62%  | 66% |     |
| 135 | 6a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$          | CH <sub>3</sub> CN | 99%  | 89% | 89% |
| 136 | 6a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$          | Toluene            | 95%  | 97% | 97% |
| 137 | 6a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$        | CH <sub>3</sub> CN | 29%  | 8%  |     |
| 138 | 6a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$        | Toluene            | 21%  | 16% |     |
| 139 | 6a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $NEt_3$          | CH₃CN              | 10%  | 13% |     |
| 140 | 6a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $NEt_3$          | Toluene            | 40%  | 36% |     |
| 141 | 6a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$        | CH₃CN              | 13%  | 16% |     |
| 142 | 6a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$        | Toluene            | 47%  | 47% |     |
| 143 | 6a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $NEt_3$          | CH₃CN              | 14%  | 16% |     |
| 144 | 6a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $NEt_3$          | Toluene            | 52%  | 52% |     |
| 145 | 7a | dcpp-2HBF <sub>4</sub>                              | $K_2CO_3$        | CH₃CN              | 58%  | 32% |     |
| 146 | 7a | dcpp-2HBF <sub>4</sub>                              | $K_2CO_3$        | Toluene            | 23%  | 24% |     |
| 147 | 7a | dcpp-2HBF <sub>4</sub>                              | NEt₃             | CH₃CN              | 21%  | 14% |     |
| 148 | 7a | dcpp-2HBF <sub>4</sub>                              | NEt₃             | Toluene            | 2%   | 4%  |     |
| 149 | 7a | DPEPhos                                             | $K_2CO_3$        | CH₃CN              | 76%  | 38% |     |
| 150 | 7a | DPEPhos                                             | $K_2CO_3$        | Toluene            | 46%  | 45% |     |
| 151 | 7a | DPEPhos                                             | $NEt_3$          | CH₃CN              | 9%   | 7%  |     |
| 152 | 7a | DPEPhos                                             | NEt <sub>3</sub> | Toluene            | 4%   | 5%  |     |
| 153 | 7a | dppp                                                | $K_2CO_3$        | CH₃CN              | 69%  | 44% |     |
| 154 | 7a | dppp                                                | $K_2CO_3$        | Toluene            | 23%  | 18% |     |
| 155 | 7a | dppp                                                | $NEt_3$          | CH₃CN              | 16%  | 9%  |     |
| 156 | 7a | dppp                                                | $NEt_3$          | Toluene            | 4%   | 2%  |     |
| 157 | 7a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$        | CH₃CN              | 100% | 66% |     |
| 158 | 7a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$        | Toluene            | 100% | 96% | 97% |
| 159 | 7a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$          | CH₃CN              | 94%  | 86% | 86% |
| 160 | 7a | P(Me)( <i>t</i> -Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$          | Toluene            | 75%  | 75% | 75% |
| 161 | 7a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$        | CH₃CN              | 11%  | 10% |     |
| 162 | 7a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $K_2CO_3$        | Toluene            | 13%  | 11% |     |
| 163 | 7a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | $NEt_3$          | CH₃CN              | 3%   | 10% |     |
| 164 | 7a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>              | NEt₃             | Toluene            | 32%  | 32% |     |
| 165 | 7a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$        | CH₃CN              | 3%   | 12% |     |
| 166 | 7a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | $K_2CO_3$        | Toluene            | 91%  | 88% |     |
| 167 | 7a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | NEt <sub>3</sub> | CH₃CN              | 2%   | 13% |     |
| 168 | 7a | PCy <sub>3</sub> -HBF <sub>4</sub>                  | NEt <sub>3</sub> | Toluene            | 0%   | 0%  |     |
| 169 | 8a | $dcpp-2HBF_4$                                       | $K_2CO_3$        | CH₃CN              | 89%  | 22% |     |
| 170 | 8a | dcpp-2HBF <sub>4</sub>                              | $K_2CO_3$        | Toluene            | 87%  | 10% |     |
| 171 | 8a | $dcpp-2HBF_4$                                       | $NEt_3$          | CH₃CN              | 48%  | 13% |     |
| 172 | 8a | dcpp-2HBF <sub>4</sub>                              | $NEt_3$          | Toluene            | 10%  | 1%  |     |

| 173 | 8a | DPEPhos                                    | $K_2CO_3$ | CH <sub>3</sub> CN | 78%  | 5%  |     |
|-----|----|--------------------------------------------|-----------|--------------------|------|-----|-----|
| 174 | 8a | DPEPhos                                    | $K_2CO_3$ | Toluene            | 31%  | 8%  |     |
| 175 | 8a | DPEPhos                                    | $NEt_3$   | CH <sub>3</sub> CN | 23%  | 1%  |     |
| 176 | 8a | DPEPhos                                    | $NEt_3$   | Toluene            | 13%  | 4%  |     |
| 177 | 8a | dppp                                       | $K_2CO_3$ | CH <sub>3</sub> CN | 87%  | 10% |     |
| 178 | 8a | dppp                                       | $K_2CO_3$ | Toluene            | 48%  | 20% |     |
| 179 | 8a | dppp                                       | $NEt_3$   | CH <sub>3</sub> CN | 43%  | 5%  |     |
| 180 | 8a | dppp                                       | $NEt_3$   | Toluene            | 0%   | 2%  |     |
| 181 | 8a | P(Me)(t-Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$ | CH <sub>3</sub> CN | 100% | 36% |     |
| 182 | 8a | P(Me)(t-Bu) <sub>2</sub> -HBF <sub>4</sub> | $K_2CO_3$ | Toluene            | 100% | 73% | 73% |
| 183 | 8a | P(Me)(t-Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$   | CH <sub>3</sub> CN | 70%  | 61% | 61% |
| 184 | 8a | P(Me)(t-Bu) <sub>2</sub> -HBF <sub>4</sub> | $NEt_3$   | Toluene            | 24%  | 22% | 28% |
| 185 | 8a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>     | $K_2CO_3$ | CH <sub>3</sub> CN | 55%  | 4%  |     |
| 186 | 8a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>     | $K_2CO_3$ | Toluene            | 44%  | 5%  |     |
| 187 | 8a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>     | $NEt_3$   | CH₃CN              | 53%  | 5%  |     |
| 188 | 8a | P(t-Bu) <sub>3</sub> -HBF <sub>4</sub>     | $NEt_3$   | Toluene            | 86%  | 7%  |     |
| 189 | 8a | PCy <sub>3</sub> -HBF <sub>4</sub>         | $K_2CO_3$ | CH₃CN              | 33%  | 13% |     |
| 190 | 8a | PCy <sub>3</sub> -HBF <sub>4</sub>         | $K_2CO_3$ | Toluene            | 93%  | 72% |     |
| 191 | 8a | PCy <sub>3</sub> -HBF <sub>4</sub>         | $NEt_3$   | CH <sub>3</sub> CN | 36%  | 14% |     |
| 192 | 8a | PCy <sub>3</sub> -HBF <sub>4</sub>         | $NEt_3$   | Toluene            | 0%   | 0%  |     |



Figure S18: LCMS for Table S1, Entry 178, showing non-selective carbonylation using dppp.



Figure S19: LCMS for Table S1, Entry 182, showing selective carbonylation at Cl using P(Me)(t-Bu)<sub>2</sub>

#### Screen 2 (from Figure 2, Main Text):



Each reaction vial was charged with the following materials in this order:

- PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>: 1.3 mg, 0.0050 mmol
- P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub>: 2.5 mg, 0.010 mmol
- Substrate **1a** through **8a**: 0.100 mmol as a solution toluene (150 uL) that also contains biphenyl internal standard (3.1 mg, 0.020 mmol)
- Triethylamine: 15.2 mg, 20.9 µL, 0.150 mmol
- Nucleophile b-k: 0.200 mmol as a solution in acetonitrile (150 μL), except h, which was added as a solid prior to the substrate solution.

Reaction conditions: 100 °C, 60 psig CO, 8 hours.

**Determining solution assays (Screen 2):** This screen was analysed using LCMS to enable identification of all the desired products and byproducts. To simplify quantification of this screen, mol% values for substrate and product were estimated using area% values from UV absorbance between 210-350 nm (diode array detector) after excluding peaks due to solvent, internal standard, excess nucleophile, or catalyst (as identified by *m/z* values); this assumes an equal UV absorbance response factor for all components (starting material, product, and byproducts). As for screen 1, select examples were also analyzed by <sup>1</sup>H NMR spectroscopy to determine solution yields versus internal standard (biphenyl). These values are in generally good agreement with the solution yields determined using area%. The major byproducts observed are the product isomer (same m/z, different RT, assigned based on <sup>1</sup>H NMR spectra of select examples as due to alkene isomerization) and the carboxylic acid. All of the results are summarized in Table S2. Note that because not all of these runs have been accurately quantified by calibration against an isolated sample of the product, these results represent a semi-quantitative map of expected reactivity across the eight electrophiles and ten nucleophiles.

For several of the reactions, we observed second component with the same m/z as the desired product. <sup>1</sup>H NMR spectroscopic analysis of many of these reactions revealed that this second species is likely an alkene isomer of the desired product. In Table S2, the area% value for these putative isomers are denoted 'Product Isomer'. This isomer was not definitively identified in every LCMS trace; therefore, the absence of data for 'Product Isomer' in Table S2 should not be interpreted to indicate no isomerization. In the preparative-scale experiments (see Section IV), this isomerization was greatly reduced or eliminated in most cases, likely due to the milder reaction conditions. Our hypothesis is that this isomerization is a competing Pd-catalyzed side pathway, which can be mitigated by lowering reaction temperature and catalyst loading.<sup>5</sup>

Finally, the chemoselectivity for carbonylations with **8a** was assessed by LCMS identification of all ionizing components (see Figures S22-29).

| Entry    | Substrate | Nucleophile | %<br>Conv. | Substrate<br>Retention<br>Time<br>(min) | Product<br>Area<br>(%) | Product<br>%Yield<br>(NMR) | Product<br>Retention<br>Time (min) | Product<br>Alkene<br>Isomer<br>Area% | Product<br>Alkene<br>Isomer<br>Retention<br>Time<br>(min) | Carboxylic<br>Acid Area<br>(%) | Carboxylic<br>Acid<br>Retention<br>Time<br>(min) |
|----------|-----------|-------------|------------|-----------------------------------------|------------------------|----------------------------|------------------------------------|--------------------------------------|-----------------------------------------------------------|--------------------------------|--------------------------------------------------|
| 1        | 1a        | b           | 100%       | 0.56                                    | 79%                    |                            | 0.53                               |                                      | . ,                                                       | 5%                             | 0.40                                             |
| 2        | 1a        | с           | 100%       | 0.56                                    | 83%                    |                            | 0.40                               |                                      |                                                           | 83%                            | 0.40                                             |
| 3        | 1a        | с           | 91%        | 0.56                                    | 67%                    |                            | 0.40                               |                                      |                                                           | 67%                            | 0.40                                             |
| 4        | 1a        | d           | 100%       | 0.56                                    | 83%                    |                            | 0.98                               |                                      |                                                           | 4%                             | 0.40                                             |
| 5        | 1a        | е           | 100%       | 0.56                                    | 72%                    |                            | 1.05                               | 11%                                  | 1.00                                                      | 6%                             | 0.40                                             |
| 6        | 1a        | f           | 100%       | 0.56                                    | 82%                    | 80%                        | 1.43                               |                                      |                                                           | 7%                             | 0.40                                             |
| 7        | 1a        | f           | 100%       | 0.56                                    | 80%                    |                            | 1.43                               |                                      |                                                           | 6%                             | 0.40                                             |
| 8        | 1a        | g           | 100%       | 0.56                                    | 75%                    |                            | 0.92                               |                                      |                                                           | 14%                            | 0.40                                             |
| 9        | 1a        | g           | 100%       | 0.56                                    | 77%                    | 74%                        | 0.93                               |                                      |                                                           | 11%                            | 0.40                                             |
| 10       | 1a        | h           | 100%       | 0.56                                    | 86%                    |                            | 1.16                               |                                      |                                                           | 0%                             | 0.40                                             |
| 11       | 1a        | h           | 100%       | 0.56                                    | 74%                    |                            | 1.16                               | 13%                                  | 1.11                                                      | 6%                             | 0.40                                             |
| 12       | 1a        | i           | 100%       | 0.56                                    | 58%                    |                            | 0.82                               |                                      |                                                           | 8%                             | 0.40                                             |
| 13       | 1a        | j           | 100%       | 0.56                                    | 67%                    |                            | 0.91                               | 7%                                   | 0.80                                                      | 7%                             | 0.40                                             |
| 14       | 1a        | k           | 100%       | 0.56                                    | 53%                    |                            | 0.38                               |                                      |                                                           | 26%                            | 0.40                                             |
| 15       | 2a        | b           | 93%        | 0.84                                    | 78%                    |                            | 0.77                               |                                      |                                                           | 3%                             | 0.61                                             |
| 16       | 2a        | с           | 98%        | 0.84                                    | 85%                    |                            | 0.61                               |                                      |                                                           | 85%                            | 0.61                                             |
| 17       | 2a        | с           | 85%        | 0.85                                    | 68%                    |                            | 0.61                               |                                      |                                                           | 68%                            | 0.61                                             |
| 18       | 2a        | d           | 100%       | 0.85                                    | 93%                    |                            | 1.14                               |                                      |                                                           | 5%                             | 0.61                                             |
| 19       | 2a        | e           | 100%       | 0.84                                    | 82%                    |                            | 1.19                               |                                      |                                                           | 5%                             | 0.61                                             |
| 20       | 2a        | e           | 100%       | 0.84                                    | 88%                    | 79%                        | 1.20                               |                                      |                                                           | 4%                             | 0.61                                             |
| 21       | 2a        | f           | 100%       | 0.84                                    | 84%                    |                            | 1.55                               |                                      |                                                           | 7%                             | 0.61                                             |
| 22       | 2a        | g           | 100%       | 0.84                                    | 75%                    |                            | 1.12                               |                                      |                                                           | 13%                            | 0.61                                             |
| 23       | 2a        | h           | 100%       | 0.84                                    | 83%                    |                            | 1.26                               |                                      |                                                           | 6%                             | 0.61                                             |
| 24       | 2a        | h           | 100%       | 0.84                                    | 86%                    | 87%                        | 1.27                               | 5%                                   | 1.23                                                      | 4%                             | 0.61                                             |
| 25       | 2a        | i           | 100%       | 0.84                                    | 83%                    |                            | 1.01                               |                                      |                                                           | 5%                             | 0.61                                             |
| 26       | 2a        | j           | 100%       | 0.84                                    | 75%                    |                            | 1.09                               | 11%                                  | 1.04                                                      | 4%                             | 0.61                                             |
| 27       | 2a        | k           | 100%       | 0.84                                    | 66%                    |                            | 0.50                               |                                      |                                                           | 22%                            | 0.61                                             |
| 28       | 3a        | b           | 80%        | 0.78                                    | 67%                    |                            | 0.66                               |                                      |                                                           | 4%                             | 0.42                                             |
| 29       | 3a        | c           | 94%        | 0.78                                    | 88%                    |                            | 0.42                               |                                      |                                                           | 88%                            | 0.42                                             |
| 30       | 3a        | c           | 86%        | 0.78                                    | 75%                    |                            | 0.42                               |                                      |                                                           | 75%                            | 0.42                                             |
| 31       | 3a        | d           | 95%        | 0.78                                    | 79%                    |                            | 1.05                               |                                      |                                                           | 7%                             | 0.42                                             |
| 32       | 3a        | e           | 100%       | 0.78                                    | 80%                    |                            | 1.12                               |                                      |                                                           | 10%                            | 0.42                                             |
| 33       | 3a        | f           | 100%       | 0.78                                    | 82%                    |                            | 1.49                               |                                      |                                                           | 9%                             | 0.42                                             |
| 34       | 3a        | g           | 79%        | 0.78                                    | 47%                    |                            | 0.99                               |                                      |                                                           | 17%                            | 0.42                                             |
| 35       | 3a        | h           | 100%       | 0.78                                    | 90%                    |                            | 1.21                               |                                      |                                                           | 5%                             | 0.42                                             |
| 36       | 3a        | i           | 100%       | 0.78                                    | 81%                    |                            | 0.94                               |                                      |                                                           | 8%                             | 0.42                                             |
| 37       | 3a        | I           | 100%       | 0.78                                    | 82%                    | 95%                        | 0.94                               |                                      |                                                           | 6%                             | 0.42                                             |
| 38       | 3a<br>2   | 1           | 100%       | 0.78                                    | 84%                    | F.20/                      | 1.01                               |                                      |                                                           | 8%                             | 0.42                                             |
| 39       | 3a        | <u>к</u>    | 100%       | 0.78                                    | 53%                    | 53%                        | 0.43                               | 60/                                  | 0.72                                                      | 22%                            | 0.42                                             |
| 40       | 4a<br>4-  | a           | 100%       | 0.88                                    | 5/%                    | 5/%                        | 0.79                               | b%                                   | 0.73                                                      | 4%                             | 0.59                                             |
| 41       | 4a<br>4-  | C           | 100%       | 0.88                                    | 08%                    | 659/                       | 0.59                               | 10%                                  | 0.64                                                      | 50%                            | 0.59                                             |
| 4Z<br>10 | 48        | ک<br>ہ      | 100%       | 0.88                                    | 74%                    | 03%                        | 1.059                              | 9%<br>70/                            | 1.04                                                      | /4%<br>1.00/                   | 0.59                                             |
| 43       | 4d<br>4a  | u           | 100%       | 0.00                                    | 71%                    |                            | 1.00                               | / %                                  | 1.01                                                      | 1U%                            | 0.59                                             |
| 44<br>15 | 4d<br>4a  | e<br>f      | 100%       | 0.00                                    | 71%                    |                            | 1.12                               | 20%                                  | 1.07                                                      | 10%                            | 0.59                                             |
| 45<br>46 | 4a<br>4a  | I<br>a      | 96%        | 0.00                                    | 50%                    |                            | 1.42                               | 570                                  | 1.30                                                      | 18%                            | 0.59                                             |
| 40<br>47 | 70<br>42  | 5<br>h      | 97%        | 0.00                                    | 79%                    |                            | 1.05                               | 7%                                   | 1 20                                                      | 7%                             | 0.55                                             |
| 48       | 4a        | i i         | 100%       | 0.88                                    | 75%                    |                            | 0.98                               | 16%                                  | 0.92                                                      | 3%                             | 0.59                                             |
|          |           | -           |            |                                         |                        |                            |                                    |                                      |                                                           | - / 5                          |                                                  |

## Table S2: Full Set of Results from Screen 2

| 49        | 4a       | j      | 100%  | 0.88 | 59%  |      | 1.03         | 31% | 0.98 | 8%       | 0.59 |
|-----------|----------|--------|-------|------|------|------|--------------|-----|------|----------|------|
| 50        | 4a       | k      | 100%  | 0.88 | 44%  |      | 0.53         | 15% | 0.51 | 30%      | 0.59 |
| 51        | 5a       | b      | 65%   | 0.60 | 56%  |      | 0.65         |     |      | 0%       | 0.38 |
| 52        | 5a       | b      | 42%   | 0.60 | 35%  |      | 0.56         |     |      | 0%       | 0.38 |
| 53        | 5a       | с      | 60%   | 0.60 | 40%  |      | 0.39         |     |      | 40%      | 0.39 |
| 54        | 5a       | С      | 60%   | 0.60 | 43%  |      | 0.38         |     |      | 43%      | 0.39 |
| 55        | 5a       | С      | 74%   | 0.60 | 64%  |      | 0.39         |     |      | 64%      | 0.39 |
| 56        | 5a       | d      | 90%   | 0.60 | 86%  | 90%  | 1.03         |     |      | 0%       | 0.39 |
| 57        | 5a       | d      | 80%   | 0.60 | 73%  |      | 1.00         |     |      | 0%       | 0.39 |
| 58        | 5a       | d      | 86%   | 0.60 | 80%  | 83%  | 1.00         |     |      | 0%       | 0.39 |
| 59        | 5a       | е      | 78%   | 0.60 | 70%  |      | 1.10         |     |      | 4%       | 0.39 |
| 60        | 5a       | e      | 60%   | 0.60 | 56%  |      | 1.05         |     |      | 4%       | 0.39 |
| 61        | 5a       | f      | 74%   | 0.60 | 57%  |      | 1.46         |     |      | 5%       | 0.39 |
| 62        | 5a<br>-  | f      | 42%   | 0.60 | 30%  |      | 1.45         |     |      | 5%       | 0.39 |
| 63        | 5a<br>-  | g      | 57%   | 0.60 | 38%  |      | 0.97         |     |      | 8%       | 0.39 |
| 64        | 5a       | g      | 52%   | 0.60 | 35%  |      | 0.94         |     |      | 14%      | 0.39 |
| 65        | 5a<br>5- | n<br>F | 94%   | 0.60 | 88%  |      | 1.19         |     |      | 0%       | 0.39 |
| 66        | 5a<br>5- | n      | 12%   | 0.60 | 01%  |      | 1.19         |     |      | 0%       | 0.39 |
| 67        | 5a<br>5a | 1<br>: | 98%   | 0.60 | 91%  |      | 0.89         |     |      | 0%       | 0.39 |
| 60        | 58       | 1      | 100%  | 0.60 | /5%  | 0.2% | 0.00         |     |      | 0%       | 0.39 |
| 70        | Ja<br>En | J      | 06%   | 0.00 | 92%  | 33%  | 0.99         |     |      | 0%       | 0.39 |
| 70        | 50       | J      | 90%   | 0.00 | 91%  | 89%  | 0.92         |     |      | 0%       | 0.39 |
| 72        | 5a       | J<br>k | 59%   | 0.00 | 52%  | 05/0 | 0.52         |     |      | 0%       | 0.35 |
| 73        | 5a       | k      | 39%   | 0.60 | 31%  |      | 0.38         |     |      | 0%       | 0.39 |
| 74        | 6a       | b      | 100%  | 1.05 | 89%  |      | 0.99         | 7%  | 0.93 | 4%       | 0.85 |
| 75        | 6a       | c      | 100%  | 1.05 | 98%  | 87%  | 0.86         | .,. | 0.00 | 98%      | 0.86 |
| 76        | 6a       | d      | 100%  | 1.05 | 88%  |      | 1.22         | 6%  | 1.18 | 6%       | 0.84 |
| 77        | 6a       | е      | 100%  | 1.05 | 94%  |      | 1.27         | <1% | 1.23 | 6%       | 0.83 |
| 78        | 6a       | f      | 100%  | 1.05 | 90%  | 84%  | 1.56         | 5%  | 1.53 | 5%       | 0.82 |
| 79        | 6a       | g      | 100%  | 1.05 | 84%  |      | 1.20         | 4%  | 1.17 | 12%      | 0.82 |
| 80        | 6a       | h      | 100%  | 1.05 | 87%  |      | 1.33         | 6%  | 1.29 | 3%       | 0.85 |
| 81        | 6a       | i      | 100%  | 1.05 | 83%  |      | 1.13         | 14% | 1.06 | 3%       | 0.82 |
| 82        | 6a       | j      | 100%  | 1.05 | 88%  |      | 1.20         | 12% | 1.13 | 5%       | 0.86 |
| 83        | 6a       | k      | 100%  | 1.05 | 70%  |      | 0.68         | 5%  | 0.63 | 22%      | 0.83 |
| 84        | 7a       | b      | 100%  | 1.21 | 90%  |      | 1.16         | 5%  | 1.10 | 0%       | 1.01 |
| 85        | 7a       | с      | 100%  | 1.21 | 97%  |      | 1.01         |     |      | 97%      | 1.01 |
| 86        | 7a       | d      | 100%  | 1.21 | 88%  |      | 1.36         | 6%  | 1.33 | 0%       | 1.01 |
| 87        | 7a       | е      | 100%  | 1.21 | 90%  |      | 1.41         | 6%  | 1.38 | 0%       | 1.01 |
| 88        | 7a       | f      | 100%  | 1.21 | 90%  |      | 1.71         | 6%  | 1.69 | 0%       | 1.01 |
| 89        | 7a       | g      | 100%  | 1.21 | 92%  |      | 1.36         | 4%  | 1.33 | 0%       | 1.01 |
| 90        | 7a       | h      | 100%  | 1.21 | 87%  | 89%  | 1.43         | 9%  | 1.40 | 0%       | 1.01 |
| 91        | 7a       | i      | 100%  | 1.21 | 79%  | 71%  | 1.28         | 16% | 1.21 | 0%       | 1.01 |
| 92        | 7a<br>_  | j      | 100%  | 1.21 | 76%  |      | 1.34         | 14% | 1.27 | 0%       | 1.01 |
| 93        | 7a       | k      | 100%  | 1.21 | 89%  |      | 0.79         | 7%  | 0.75 | 0%       | 1.01 |
| 94        | 8a       | b      | 43%   | 1.24 | 33%  |      | 1.12         |     |      | 0%       | 0.95 |
| 95        | 8a       | c      | 71%   | 1.24 | 66%  | 66%  | 0.95         |     |      | 66%      | 0.95 |
| 96        | 8a<br>8a | đ      | 72%   | 1.24 | 61%  | 639/ | 1.35         |     |      | U%       | 0.95 |
| 97        | 8a<br>8a | e<br>f | 110/  | 1.24 | 01%  | 53%  | 1.39         |     |      | 5%       | 0.95 |
| 98        | 8a<br>8a | ſ<br>~ | 2.494 | 1.24 | 11%  |      | 1.0/         |     |      | U%       | 0.95 |
| 99<br>100 | od<br>8a | 5<br>h | 05%   | 1.24 | 62%  |      | 1.35         |     |      | 5%<br>0% | 0.95 |
| 100       | 0d<br>8a | н<br>і | 93%   | 1.24 | 7/1% | 67%  | 1.40<br>1.26 |     |      | 5%       | 0.95 |
| 101       | 0d<br>8a | і<br>і | 88%   | 1.24 | 68%  | 0270 | 1.20         |     |      | 5%<br>0% | 0.95 |
| 102       | od<br>8a | 1      | 80%   | 1.24 | 46%  |      | 0.76         |     |      | 720/     | 0.95 |
| 103       | od       | ĸ      | 00%   | 1.24 | 40%  |      | 0.70         |     |      | 23%      | 0.95 |



Representative <sup>1</sup>H NMR spectra to illustrate presense of alkene isomer.

Figure S20: <sup>1</sup>H NMR spectrum of crude reaction mixture from Table S2, Entry 6.



**Figure S21:** <sup>1</sup>H NMR spectrum of crude reaction mixture from Table S2, Entry 24.

#### LCMS traces for reactions with 8a to demonstrate site selectivity:

Peaks denoted 'x' in the following traces are either toluene (0.91 min), biphenyl (1.16 min), or alcohol substrates containing a chromophore (BnOH, 1-PhEtOH, PhOH, etc.).



Figure S22: LCMS trace for reaction from Table S2, Entry 94.



Figure S23: LCMS trace for reaction from Table S2, Entry 95.



Figure S24: LCMS trace for reaction from Table S2, Entry 96.



Figure S25: LCMS trace for reaction from Table S2, Entry 97.



Figure S26: LCMS trace for reaction from Table S2, Entry 100.



Figure S27: LCMS trace for reaction from Table S2, Entry 101.



Figure S28: LCMS trace for reaction from Table S2, Entry 102.



Figure S29: LCMS trace for reaction from Table S2, Entry 103.
# **III: Preparative-Scale Carbonylations**

## **Characterization of Products**

Compounds **1b**,<sup>6</sup> **1c**,<sup>7</sup> **1f**,<sup>8</sup> **1g**,<sup>9</sup> **3c**,<sup>10</sup> and **5c**<sup>11</sup> have been previously reported.



**Material charges: 1a** (1.00 g, 7.66 mmol),  $PdCl_2(CH_3CN)_2$  (39.7 mg, 0.153 mmol),  $P(Me)(t-Bu)_2-HBF_4$  (76.0 mg, 0.306 mmol), triethylamine (1.16 g, 1.60 mL, 11.5 mmol), methanol (0.49 g, 0.62 mL, 15.3 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **1b:** 0.779 g isolated as a pale yellow oil (66% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  ppm 1.99 - 2.13 (m, 2 H) 2.41 - 2.50 (m, 2 H) 2.59 (td, *J* = 6.0, 1.9 Hz, 2 H) 3.83 (s, 3 H) 6.74 (t, *J* = 1.9 Hz, 1 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  ppm 22.13, 24.83, 37.68, 52.60, 133.07, 148.76, 166.99, 200.06 (s, 1 C). LRMS (ESI): *m/z* = 155 [M+H]<sup>+</sup>, 196 [M + H + CH<sub>3</sub>CN]<sup>+</sup>.



Figure S30: Crude <sup>1</sup>H NMR spectrum of **1b**.

### NMR yield determination:

Amount of biphenyl standard added = 0.466 mmol (71.9 mg). Peak at 7.62 ppm integration set to 0.466 mmol X 4 = 1.86 (signal corresponds to four protons) Product peak at 3.84 ppm thus corresponds to 16.58 mmol / 3 = 5.53 mmol

NMR yield = 5.53 mmol / 7.66 mmol X 100% = 72%







Figure S32: <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **1b**.



Figure S33: LCMS trace of 1b.



**Material charges: 1a** (1.00 g, 7.66 mmol),  $PdCl_2(CH_3CN)_2$  (39.7 mg, 0.153 mmol),  $P(Me)(t-Bu)_2-HBF_4$  (76.0 mg, 0.306 mmol), triethylamine (1.16 g, 1.60 mL, 11.5 mmol), water (0.28 g, 0.28 mL, 15.3 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **1c:** 0.837 g isolated as a tan solid (78% yield). <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$  ppm 2.01 - 2.13 (m, 2 H) 2.41 - 2.52 (m, 2 H) 2.61 (td, *J* = 6.0, 2.0 Hz, 2 H) 6.66 (t, *J* = 1.9 Hz, 1 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CD<sub>3</sub>OD)  $\delta$  ppm 21.91, 24.51, 37.06, 131.71, 150.95, 168.03, 201.30 (s, 1 C). LRMS (ESI): *m/z* = 141 [M+H]<sup>+</sup>, 182 [M + H + CH<sub>3</sub>CN]<sup>+</sup>.





#### NMR yield determination:

Amount of biphenyl standard added = 0.417 mmol (64.3 mg). Peak at 7.62 ppm integration set to 0.417 mmol X 4 = 1.67 (signal corresponds to four protons) Product peak at 6.66 ppm thus corresponds to 6.33 mmol / 0.91 = 6.96 mmol

(0.91 is response factor for signal at 6.66 ppm - see below spectrum for isolated material)

NMR yield = 6.96 mmol / 7.66 mmol X 100% = 91%



**Figure S35:** <sup>1</sup>H NMR spectrum of **1c**. Peaks denoted 'methanol' correspond to residual protio solvent from CD<sub>3</sub>OD.



**Figure S36:**  ${}^{13}C{}^{1}H$  NMR spectrum of **1c**.



Figure S37: LCMS trace of 1c.



**Material charges: 1a** (1.00 g, 7.66 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (39.7 mg, 0.153 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (76.0 mg, 0.306 mmol), triethylamine (1.16 g, 1.60 mL, 11.5 mmol), menthol (2.39 g, 15.3 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **1f:** 1.47 g isolated as a viscous yellow oil (69% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 0.76 (d, *J* = 7.0 Hz, 3 H, menthyl-CH<sub>3</sub>), 0.90 (d, *J* = 6.7 Hz, 3 H, menthyl-CH(CH<sub>3</sub>)<sub>2</sub>), 0.92 (d, *J* = 6.7 Hz, 3 H, menthyl-CH(CH<sub>3</sub>)<sub>2</sub>), 0.92 (d, *J* = 7.0, 2.7 Hz, 1 H), 1.98 - 2.13 (m, 3 H), 2.40 - 2.50 (m, 2 H), 2.59 (tdd, *J* = 6.0, 6.0, 4.0, 1.9 Hz, 2 H, -CH<sub>2</sub>-C=O), 4.80 (td, *J* = 10.9, 4.4 Hz, 1 H, -C(O)O-CH-), 6.73 (t, *J* = 1.9 Hz, 1 H, -C=CH-). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 16.31, 20.76, 21.97, 22.15, 23.38, 24.89, 26.35, 31.39, 34.13, 37.71, 40.67, 47.03, 75.78 (-O-CH-), 132.64 (-C=CH-), 149.63 (-C=CH-), 166.01 (-CO<sub>2</sub>R), 200.38 (C=O). LRMS (ESI): *m/z* = 279 [M+H]<sup>+</sup>, 320 [M + Na]<sup>+</sup>.



Figure S38: Crude <sup>1</sup>H NMR spectrum of 1f.

### NMR yield determination:

Amount of biphenyl standard added = 0.421 mmol (64.9 mg). Peak at 7.62 ppm integration set to 0.421 mmol X 4 = 1.68 (signal corresponds to four protons) Product peak at 6.75 ppm thus corresponds to 5.79 mmol / 0.95 = 6.10 mmol (0.95 is response factor for vinyl C-H signal – see <sup>1</sup>H NMR spectrum for isolated material)

NMR yield = 6.10 mmol / 7.66 mmol X 100% = 80%



**Figure S40:**  ${}^{13}C{}^{1}H$  NMR spectrum of **1f**.



Figure S41: LCMS trace of 1f.



Material charges: 1a (1.00 g, 7.66 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (39.7 mg, 0.153 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (76.0 mg, 0.306 mmol), triethylamine (1.16 g, 1.60 mL, 11.5 mmol), *tert*-butanol (1.14 g, 1.45 mL, 15.3 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). 1g: 0.887 g isolated as a pale yellow oil (59% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 1.52 (s, 9 H, -C(CH<sub>3</sub>)<sub>3</sub>), 1.97 - 2.12 (m, 2 H, -CH<sub>2</sub>-), 2.40 - 2.49 (m, 2 H, -CH<sub>2</sub>-C=C-), 2.55 (td, J = 6.0, 1.9 Hz, 2 H-CH<sub>2</sub>-C=O), 6.68 (t, J=1.9 Hz, 1 H-C=CH-). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 22.19 (-CH<sub>2</sub>-), 24.82 (-CH<sub>2</sub>-), 27.94 (-OC(CH<sub>3</sub>)<sub>3</sub>), 37.71 (-CH<sub>2</sub>-C=O), 82.21 (-OC(CH<sub>3</sub>)<sub>3</sub>), 132.33 (-C=CH-), 150.87 (-C=CH-), 165.63 (-CO<sub>2</sub>tBu), 200.64 (-C=O). LRMS (ESI): m/z = 197 [M+H], 238 [M+H+CH<sub>3</sub>CN]<sup>+</sup>.



Figure S42: Crude <sup>1</sup>H NMR spectrum of 1g.

#### NMR yield determination:

Amount of biphenyl standard added = 0.434 mmol (66.9 mg). Peak at 7.61 ppm integration set to 0.434 mmol X 4 = 1.74 (signal corresponds to four protons) Product peak at 6.69 ppm thus corresponds to 5.06 mmol / 0.89 = 5.69 mmol

(0.89 is response factor for vinyl C-H signal – see <sup>1</sup>H NMR spectrum for isolated material) NMR yield = 5.69 mmol / 7.66 mmol X 100% = **74%** 







Figure S44:  ${}^{13}C{}^{1}H$  NMR spectrum of 1g.



Figure S45: LCMS trace of 1g.



**Material charges: 2a** (1.00 g, 6.30 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (32.7 mg, 0.126 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (62.6 mg, 0.252 mmol), triethylamine (0.957 g, 1.32 mL, 11.5 mmol), 1-phenylethanol (1.54 g, 12.6 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **2e**: 1.25 g isolated as a yellow oil (73% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 1.07 (s, 3 H) 1.09 (s, 3 H) 1.63 (d, *J*=6.55 Hz, 3 H) 2.32 (s, 2 H) 2.50 (d, *J*=1.86 Hz, 2 H) 6.01 (q, *J*=6.55 Hz, 1 H) 6.84 (t, *J*=1.91 Hz, 1 H) 7.30 - 7.37 (m, 1 H) 7.37 - 7.42 (m, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 22.28, 28.15, 28.17, 33.51, 38.72, 51.44, 73.90, 126.08, 128.21, 128.66, 132.15, 141.02, 147.11, 165.84, 200.62. LRMS (ESI): m/z = 273 [M+H]<sup>+</sup>, 317 [M+H+CH<sub>3</sub>CN]<sup>+</sup>.



Figure S46: Crude <sup>1</sup>H NMR spectrum of 2e.

#### NMR yield determination:

Amount of biphenyl standard added = 0.445 mmol (68.6 mg). Peak at 7.54 ppm integration set to 0.445 mmol X 4 = 1.78 (signal corresponds to four protons) Product peak at 2.41 ppm thus corresponds to 10.48 mmol / 2 = 5.24 mmol

NMR yield = 5.24 mmol / 6.30 mmol X 100% = 83%



Figure S48:  ${}^{13}C{}^{1}H$  NMR spectrum of 2e.



Figure S49: LCMS trace of 2e.



**Material charges: 2a** (1.00 g, 6.30 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (32.7 mg, 0.126 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (62.6 mg, 0.252 mmol), triethylamine (0.957 g, 1.32 mL, 11.5 mmol), *N*-CBz-L-phenylalaninol (2.16 g, 7.57 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **2h**: 1.87 g isolated as a yellow oil (71% isolated). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 1.09 (2 x s, 3 H) 2.33 (s, 2 H) 2.47 (d, *J*=1.50 Hz, 2 H) 2.88 (dd, *J*=13.50, 7.00 Hz, 1 H) 2.96 (dd, *J*=14.00, 5.97 Hz, 1 H) 4.14 - 4.23 (m, 1 H) 4.23 - 4.35 (m, 2 H) 4.93 (d, *J*=8.22 Hz, 1 H) 5.10 (s, 2 H) 6.77 (t, *J*=1.91 Hz, 1 H) 7.20 (d, *J*=7.14 Hz, 2 H) 7.23 - 7.42 (m, 8 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 28.11, 28.16, 33.51, 37.87, 38.71, 51.09, 51.41, 66.13, 66.91, 126.98, 128.14, 128.25, 128.59, 128.79, 129.20, 132.44, 136.23, 136.54, 146.29, 155.69, 166.41, 200.38. LRMS (ESI): *m/z* = 436 [M+H]<sup>+</sup>.



Figure S50: Crude <sup>1</sup>H NMR spectrum of **2h**.

### NMR yield determination:

Amount of biphenyl standard added = 1.265 mmol (195.1 mg). Peak at 7.50 ppm integration set to  $1.265 \text{ mmol} \times 4 = 5.06$  (signal corresponds to four protons) Product peak at 0.95 ppm thus corresponds to 29.08 mmol / 6 = 4.85 mmol

NMR yield = 4.85 mmol / 6.30 mmol X 100% = 77%







Figure S52: <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **2h**.



Figure S53: LCMS trace of 2h.



**Material charges: 3a** (1.00 g, 6.92 mmol),  $PdCl_2(CH_3CN)_2$  (35.9 mg, 0.138 mmol),  $P(Me)(t-Bu)_2-HBF_4$  (68.6 mg, 0.277 mmol), triethylamine (1.05 g, 1.45 mL, 10.4 mmol), water (0.25 g, 0.25 mL, 13.8 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **3c:** 0.928 g isolated as a pale yellow solid (87% yield). <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$  ppm 1.91 (t, *J* = 2.0 Hz, 3 H) 2.00 - 2.08 (m, 2 H) 2.45 - 2.51 (m, 2 H) 2.61 (tq, *J* = 6.0, 2.0 Hz, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CD<sub>3</sub>OD)  $\delta$  ppm 11.32, 22.00, 27.02, 37.29, 134.78, 146.65, 170.28, 200.37. LRMS (ESI): *m/z* = 155 [M+H]<sup>+</sup>, 196 [M+H+CH<sub>3</sub>CN]<sup>+</sup>.



Figure S54: Crude <sup>1</sup>H NMR spectrum of **3c**.

### NMR yield determination:

Amount of biphenyl standard added = 0.375 mmol (57.9 mg). Peak at 7.54 ppm integration set to 0.375 mmol X 4 = 1.50 (signal corresponds to four protons) Product peak at 2.61 ppm thus corresponds to 13.44 mmol / 2 = 6.72 mmol

NMR yield = 6.72 mmol / 6.92 mmol X 100% = 97%



**Figure S55:** <sup>1</sup>H NMR spectrum of **3c**. Peaks denoted 'methanol' correspond to residual protio solvent from CD<sub>3</sub>OD.



Figure S56:  ${}^{13}C{}^{1}H$  NMR spectrum of 3c.



Figure S57: LCMS trace of 3c.



**Material charges: 3a** (1.00 g, 6.92 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (35.9 mg, 0.138 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (68.6 mg, 0.277 mmol), triethylamine (1.05 g, 1.45 mL, 10.4 mmol), 2,2,2-trifluoroethanol (1.38 g, 1.00 mL, 13.8 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **3i**: 1.13 g isolated as a yellow oil (69% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 2.02 (t, *J* = 2.1 Hz, 3 H, C=C-*CH*<sub>3</sub>), 2.03 - 2.12 (m, 2 H), 2.48 - 2.57 (m, 2 H), 2.60 - 2.68 (m, 2 H), 4.63 (q, *J* = 8.3 Hz, 2 H, -OCH<sub>2</sub>CF<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 12.49, 21.88, 26.96, 37.60, 60.42 (q, *J* = 36.8 Hz, -OCH<sub>2</sub>CF<sub>3</sub>), 122.80 (q, *J* = 276.9 Hz, -OCH<sub>2</sub>CF<sub>3</sub>), 139.50 (-C=*C*-CH<sub>3</sub>), 141.75 (-C=*C*-CO<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>), 166.33 (-*C*O<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>), 198.74 (*C*=O). LRMS (ESI): *m/z* = 237 [M+H]<sup>+</sup>, 278 [M+H+CH<sub>3</sub>CN]<sup>+</sup>.



Figure S58: Crude <sup>1</sup>H NMR spectrum of **3i**.

#### NMR yield determination:

Amount of biphenyl standard added = 0.443 mmol (68.3 mg). Peak at 7.62 ppm integration set to 0.446 mmol X 4 = 1.77 (signal corresponds to four protons) Product peak at 4.53 ppm thus corresponds to 10.38 mmol / 2 = 5.19 mmol

NMR yield = 5.19 mmol / 6.92 mmol X 100% = 75%







Figure S60: <sup>19</sup>F NMR spectrum of **3i**.



**Figure S61:**  ${}^{13}C{}^{1}H$  NMR spectrum of **3i**.



Figure S62: LCMS trace of 3i.



47% (isolated)

**Material charges: 3a** (1.00 g, 6.92 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (35.9 mg, 0.138 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (68.6 mg, 0.277 mmol), triethylamine (1.05 g, 1.45 mL, 10.4 mmol), 2-(2-pyridyl)ethanol (1.70 g, 1.56 mL, 13.8 mmol), toluene (5.0 mL), acetonitrile (5.0 mL).

Work-up, isolation, and purification: This compound was isolated using a modification to the general procedure. The crude reaction mixture was diluted with TBME (5 mL), ethyl acetate (5 mL), brine (8 mL), and 2 M HCl (4 mL). The phases were mixed and separated; at this point, the aqueous phase was observed to be yellow. Analysis of the organic and aqueous phases by LCMS revealed considerable product in the aqueous layer. The aqueous phase was basified using sat. NaHCO<sub>3</sub>, and extracted with ethyl acetate (3 x 10 mL). The combined organic extracts were dried over MgSO<sub>4</sub>, filtered, and the solvent removed. A solution yield by <sup>1</sup>H NMR spectroscopy was performed on this crude material. At this point, selective extractions were chosen to purify this compound, rather than attempt column chromatography. The major impurities observed by LCMS were unreacted starting materials (both 3a and 2-(2-pyridyl)ethanol) and the carboxylic acid 3c, along with a small amount of 2-vinylpyridine (resulting from dehydration of the alcohol). The crude residue was redissolved in TBME (10 mL), which resulted in the precipitation of a white solid (3c). The solid 3c was removed by filtration through a small plug of Celite. The TBME layer (extract 1) was extracted with a 1:1 mixture of 2 M HCl and brine (2 x 20 mL) to separate the product from unreacted **3a**. The aqueous phase was then basified with sat. NaHCO<sub>3</sub> to a pH ~ 6, and extracted with TBME (10 mL, extract 2). LCMS analysis of the TBME layer indicated no product. The aqueous phase was then basified with 1 M NaOH to pH ~ 9, and extracted with TBME (10 mL, extract 3). LCMS analysis revealed partitioning of the desired product into the organic layer, while the pyridine-containing byproducts remained almost completely in the aqueous layer. A final extraction of the aqueous with TBME (10 mL, extract 4) was conducted, but LCMS revealed almost no product. Extract 3 was washed with water (3 x 15 mL), brine (1 x 15 mL), and dried over MgSO<sub>4</sub>. After filtration and solvent removal, **3k** was isolated as a pale yellow oil (0.843 g, 47% yield).

**3k**: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 1.81 (t, *J* = 2.0 Hz, 3 H, C=C-*CH*<sub>3</sub>), 1.93 - 2.04 (m, 2 H, -*CH*<sub>2</sub>-), 2.41 - 2.46 (m, 2 H, -*CH*<sub>2</sub>-C=C), 2.46 - 2.53 (m, 2 H, -*CH*<sub>2</sub>-C=O), 3.19 (t, *J* = 6.7 Hz, 2 H, -OCH<sub>2</sub>*CH*<sub>2</sub>Py), 4.64 (t, *J* = 6.7 Hz, 2 H, -OC*H*<sub>2</sub>CH<sub>2</sub>Py), 7.17 (ddd, *J* = 7.6, 4.9, 1.1 Hz, 1 H, Py-*H*<sup>2</sup>), 7.20 (d, *J* = 7.7 Hz, 1 H, Py-*H*<sup>4</sup>), 7.63 (td, *J* = 7.7, 1.9 Hz, 1 H, Py-*H*<sup>3</sup>), 8.56 (ddd, *J* = 5.0, 2.0, 1.0 Hz, 1 H, Py-*H*<sup>1</sup>). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 12.56, 22.15, 27.26, 37.19, 37.78, 64.31, 121.79, 123.46, 136.47, 136.96, 144.38, 149.57, 157.63, 168.39 (-*C*O<sub>2</sub>R), 199.52 (*C*=O). LRMS (ESI): *m/z* = 260 [M+H]<sup>+</sup>.



Figure S63: Crude <sup>1</sup>H NMR spectrum of **3k**.

### NMR yield determination:

Amount of biphenyl standard added = 0.763 mmol (117.6 mg). Peak at 7.47 ppm integration set to 0.763 mmol X 4 = 3.05 (signal corresponds to four protons) Product peak at 4.66 ppm thus corresponds to 8.51 mmol / 2 = 4.26 mmol

NMR yield = 4.26 mmol / 6.92 mmol X 100% = 62%







**Figure S65:**  ${}^{13}C{}^{1}H$  NMR spectrum of **3k**.



Figure S66: LCMS trace of 3k.



**Material charges:** 4a (0.900 g, 3.62 mmol),  $PdCl_2(CH_3CN)_2$  (19.0 mg, 0.072 mmol),  $P(Me)(t-Bu)_2-HBF_4$  (36.0 mg, 0.145 mmol), triethylamine (0.549 g, 0.76 mL, 5.43 mmol), methanol (0.232 g, 0.29 mL, 7.24 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). Compound isolated as a yellow oil (0.589 g, 60% yield) as a mixture of two alkene isomers (2.3:1 4b:4b' as judged by <sup>1</sup>H NMR spectroscopy).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>). **4b**: Major alkene isomer: δ ppm 2.10 (quin, *J*=6.38 Hz, 2 H) 2.50 (s, 3 H) 2.51 - 2.56 (m, 2 H) 2.67 (t, *J*=6.02 Hz, 2 H) 3.41 (s, 3 H) 7.10 - 7.15 (m, 2 H) 7.86 (s, 2 H). **4b'**: Minor alkene isomer: δ ppm 2.27 (m, 1 H) 2.47 (s, 3 H) 2.57 - 2.64 (m, 1 H) 2.71 - 2.82 (m, 1 H) 3.54 (s, 3 H) 4.43 (s, 1 H) 7.29 (d, *J*=8.22 Hz, 2 H) 7.33 - 7.37 (m, 1 H) 7.80 - 7.83 (m, 2 H).

<sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 22.03 (**4b**), 25.57 (**4b**'), 26.56 (**4b**+**4b**', ArC(O)CH<sub>3</sub>), 27.58 (**4b**), 34.25 (**4b**'), 38.01 (**4b**), 51.94 (**4b**', -CO<sub>2</sub>CH<sub>3</sub>), 52.07 (**4b**, -CO<sub>2</sub>CH<sub>3</sub>), 54.96 (**4b**'), 127.71 (**4b**), 127.86 (**4b**'), 128.79 (**4b**'), 129.33 (**4b**), 130.44 (**4b**'), 136.10 (**4b**'), 136.25 (**4b**), 138.79 (**4b**), 139.63 (**4b**'), 140.62 (**4b**), 142.81 (**4b**'), 148.13 (**4b**), 165.49 (**4b**'), 168.32 (**4b**), 197.38 (**4b**), 197.44 (**4b**', Ar-*C*(O)Me), 197.60 (**4b**), 206.43 (**4b**', -CH<sub>2</sub>(*C*=O)-CHAr-).





Figure S67: Crude <sup>1</sup>H NMR spectrum of **4b/4b'**.

#### NMR yield determination:

Amount of biphenyl standard added = 0.460 mmol (71.0 mg). Peak at 7.47 ppm integration set to 0.460 mmol X 4 = 1.84 (signal corresponds to four protons) Product peak (**4b**) at 3.49 ppm thus corresponds to 6.31 mmol / 3 = 2.10 mmol Product isomer peak (**4b**') at 3.62 ppm thus corresponds to 2.45 mmol / 3 = 0.817 mmol

NMR yield (**4b**) = 2.10 mmol / 3.62 mmol X 100% = **58%** NMR yield (**4b'**) = 0.817 mmol / 3.62 mmol X 100% = **23%** 

Total NMR yield of 4b + 4b' = 81%



Figure S68: <sup>1</sup>H NMR spectrum of **4b/4b'**.







Figure S70: LCMS trace of 4b/4b'.



Material charges: 4a (0.900 g, 3.62 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (19.0 mg, 0.072 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (36.0 mg, 0.145 mmol), triethylamine (0.549 g, 0.76 mL, 5.43 mmol), water (0.130 g, 0.130 mL, 7.24 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **4c:** 0.826 g isolated as a tan solid (88% yield). <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) δ ppm 2.11 - 2.22 (m, 2 H) 2.55 - 2.65 (m, 2 H) 2.59 (s, 3 H) 2.78 (t, *J*=6.02 Hz, 2 H) 7.25 - 7.29 (m, 2 H) 7.91 - 7.96 (m, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CD<sub>3</sub>OD) δ ppm 21.92, 25.46, 27.42, 37.63, 127.42, 129.59, 136.08, 137.17, 140.21, 150.42, 169.80, 198.52, 198.97. LRMS (ESI): m/z = 259 [M+H]<sup>+</sup>.

Biphenyl was omitted from this preparation; therefore, no NMR yield was determined.











Figure S73: LCMS trace of 4c.



**Material charges: 5a** (1.00 g, 7.66 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (39.7 mg, 0.153 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (76.0 mg, 0.306 mmol), triethylamine (1.16 g, 1.60 mL, 11.5 mmol), benzyl alcohol (1.66 g, 1.59 mL, 15.3 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **5c**: 0.483 g isolated as a tan solid (45% yield). <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) δ ppm 2.01 (t, *J* = 2.4 Hz, 3 H) 2.46 - 2.51 (m, 2 H) 2.74 - 2.80 (m, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CD<sub>3</sub>OD) δ ppm 8.36, 26.27, 33.37, 145.84, 156.24, 166.97, 210.98. LRMS (ESI): *m/z* = 141 [M+H]<sup>+</sup>.



Figure S74: Crude <sup>1</sup>H NMR spectrum of 5c.

### NMR yield determination:

Amount of biphenyl standard added = 0.444 mmol (68.5 mg). Peak at 7.62 ppm integration set to 0.444 mmol X 4 = 1.78 (signal corresponds to four protons) Product peak at 2.01 ppm thus corresponds to 14.98 mmol / 3 = 4.99 mmol

NMR yield = 4.99 mmol / 7.66 mmol X 100% = 65%



**Figure S75:** <sup>1</sup>H NMR spectrum of **5c**. Peaks denoted 'methanol' correspond to residual protio solvent from CD<sub>3</sub>OD.



Figure S76: <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 5c.



Figure S77: LCMS trace of 5c.


**Material charges: 5a** (1.00 g, 7.66 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (39.7 mg, 0.153 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (76.0 mg, 0.306 mmol), triethylamine (1.16 g, 1.60 mL, 11.5 mmol), benzyl alcohol (1.66 g, 1.59 mL, 15.3 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **5d**: 1.25 g isolated as a white solid (71% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 2.07 (t, *J* = 2.4 Hz, 3 H, C=C-CH<sub>3</sub>), 2.44 - 2.54 (m, 2 H, -CH<sub>2</sub>-C=C), 2.73 - 2.86 (m, 2 H, -CH<sub>2</sub>-C=O), 5.32 (s, 2 H, -OCH<sub>2</sub>Ph), 7.31 - 7.50 (m, 5 H, Ph-H x 5). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 9.94, 26.45, 33.86, 66.92, 128.31, 128.52, 128.71, 135.36, 147.73, 154.14, 165.31 (*C*O<sub>2</sub>Bn), 209.74 (*C*=O). LRMS (ESI): m/z = 231 [M+H]<sup>+</sup>, 272 [M+H+CH<sub>3</sub>CN]<sup>+</sup>.



Figure S78: Crude <sup>1</sup>H NMR spectrum of 5d.

#### NMR yield determination:

Biphenyl was omitted from this preparation. Therefore, NMR yield was approximated using the total integration of the signal at 2.81 ppm (which is comprised of coincident peaks for starting material and product).

NMR yield = 2.0 / 2.55 X 100% = 78%

LCMS analysis of the crude product mixture reveals only starting material **5a** (0.71 min) and desired product **5d** (1.04 min), along with small peaks corresponding to benzyl alcohol (0.59 min) and a Pd-complex with an m/z and isotope pattern consistent with an oxidative addition complex (0.86 min). Peaks denoted 'x' are either present in blanks (0.49 min, 0.53 min) or toluene from the reaction solution (1.03 min). We are therefore confident in the 78% solution yield determined by <sup>1</sup>H NMR spectroscopy.











Figure S81:  ${}^{13}C{}^{1}H$  NMR spectrum of 5d.



Figure S82: LCMS trace of 5d.



**Material charges:** 5a (1.00 g, 7.66 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (39.7 mg, 0.153 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (76.0 mg, 0.306 mmol), triethylamine (1.16 g, 1.60 mL, 11.5 mmol), phenol (1.44 g, 15.3 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **5j**: 1.01 g isolated as a pale yellow oil that solidified upon standing (61% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 2.17 (t, *J* = 2.4 Hz, 3 H) 2.53 - 2.62 (m, 2 H) 2.88 - 3.00 (m, 2 H) 7.14 - 7.23 (m, 2 H) 7.27 - 7.35 (m, 1 H) 7.40 - 7.51 (m, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 10.11, 26.53, 33.98, 121.42, 126.32, 129.63, 149.19, 150.17, 153.39, 163.87 (-*C*O<sub>2</sub>Ph), 209.49 (*C*=O). LRMS (ESI):  $m/z = 217 [M+H]^+$ , 258 [M+H+CH<sub>3</sub>CN]<sup>+</sup>.



Figure S83: Crude <sup>1</sup>H NMR spectrum of 5j.

# NMR yield determination:

Amount of biphenyl standard added = 0.523 mmol (80.7 mg). Peak at 7.62 ppm integration set to 0.523 mmol X 4 = 2.09 (signal corresponds to four protons) Product peak at 2.95 ppm thus corresponds to 10.94 mmol / 2 = 5.47 mmol

NMR yield = 5.47 mmol / 7.66 mmol X 100% = 71%







Figure S85: <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 5j.



Figure S86: LCMS trace of 5j.



**Material charges: 6a** (1.00 g, 4.07 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (21.1 mg, 0.0814 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (40.4 mg, 0.163 mmol), triethylamine (0.618 g, 0.85 mL, 6.11 mmol), water (0.147 g, 8.14 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **6c**: 0.841 g isolated as a tan solid (81% yield). <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) δ ppm 1.98 - 2.12 (m, 2 H, -CH<sub>2</sub>-), 2.41 - 2.53 (m, 2 H, -CH<sub>2</sub>-C=C), 2.71 (t, *J* = 6.1 Hz, 2 H, -CH<sub>2</sub>-C=O), 3.88 (s, 2 H, -CH<sub>2</sub>Ar), 7.37 - 7.46 (m, 2 H, Ar-*H* x 2), 7.54 - 7.65 (m, 2 H, Ar-*H* x 2). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CD<sub>3</sub>OD) δ ppm 21.76, 27.33, 31.81, 37.41, 109.22 (-*C*=N), 118.51, 129.43, 131.57, 136.34, 145.87, 149.11, 169.70 (-*C*O<sub>2</sub>H), 199.33 (*C*=O). LRMS (ESI): *m*/*z* = 256 [M+H]<sup>+</sup>, 297 [M+H+CH<sub>3</sub>CN]<sup>+</sup>, 319 [M+Na+CH<sub>3</sub>CN]<sup>+</sup>, 533 [2M + Na]<sup>+</sup>.



Figure S87: Crude <sup>1</sup>H NMR spectrum of 6c.

# NMR yield determination:

Amount of biphenyl standard added = 0.448 mmol (69.1 mg). Peak at 7.35 ppm integration set to 0.448 mmol X 2 = 0.90 (signal corresponds to two protons) Product peak at 3.88 ppm thus corresponds to 7.15 mmol / 2 = 3.58 mmol NMR yield = 3.58 mmol / 4.07 mmol X 100% = **88%** 



**Figure S88:** <sup>1</sup>H NMR spectrum of **6c**. Peaks denoted 'methanol' correspond to residual protio solvent from CD<sub>3</sub>OD.



Figure S89: <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 6c.



Figure S90: LCMS trace of 6c.



**Material charges: 6a** (1.00 g, 4.07 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (21.1 mg, 0.0814 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (40.4 mg, 0.163 mmol), triethylamine (0.618 g, 0.85 mL, 6.11 mmol), menthol (1.27 g, 8.14 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **6f**: 1.30 g isolated as a yellow oil (81% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 0.75 (d, *J* = 6.9 Hz, 3 H) 0.84 - 0.89 (m, 3 H) 0.89 - 0.94 (m, 3 H) 0.94 - 1.02 (m, 1 H) 1.02 - 1.16 (m, 1 H) 1.40 (tt, *J* = 11.6, 3.1 Hz, 1 H) 1.45 - 1.60 (m, 1 H) 1.64 - 1.75 (m, 2 H) 1.75 - 1.86 (m, 1 H) 1.91 - 2.02 (m, 1 H) 2.02 - 2.13 (m, 2 H) 2.43 - 2.53 (m, 2 H) 2.58 - 2.73 (m, 2 H) 3.76 - 3.91 (m, 2 H) 4.83 (td, *J* = 10.9, 4.4 Hz, 1 H) 7.36 (m, *J* = 8.5 Hz, 2 H) 7.47 - 7.59 (m, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 16.00, 20.75, 21.96, 23.15, 26.24, 27.70, 31.43, 32.31, 34.03, 37.88, 40.72, 46.87, 76.02, 109.80, 119.11, 129.54, 131.98, 137.32, 145.17, 147.69, 167.64 (-CO<sub>2</sub>R), 198.48 (*C*=O). LRMS (ESI): *m/z* = 394 [M+H]<sup>+</sup>, 435 [M+H+CH<sub>3</sub>CN]<sup>+</sup>.



Figure S91: Crude <sup>1</sup>H NMR spectrum of 6f.

#### NMR yield determination:

Amount of biphenyl standard added = 0.446 mmol (68.8 mg). Peak at 7.62 ppm integration set to 0.446 mmol X 4 = 1.78 (signal corresponds to four protons) Product peak at 4.84 ppm thus corresponds to 3.77 mmol NMR yield = 3.77 mmol / 4.07 mmol X 100% = **93%** 











Figure S94: LCMS trace of 6f.



**Material charges: 6a** (1.00 g, 4.07 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (21.1 mg, 0.0814 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (40.4 mg, 0.163 mmol), triethylamine (0.618 g, 0.85 mL, 6.11 mmol), phenol (0.766 g, 8.14 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **6j:** 1.15 g isolated as a yellow oil that partially solidified upon standing (85% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  ppm 2.15 (quin, *J*=6.41 Hz, 2 H) 2.53 - 2.62 (m, 2 H) 2.87 (t, *J*=6.02 Hz, 2 H) 4.01 (s, 2 H) 7.04 - 7.11 (m, 2 H) 7.31 (tt, *J*=7.50, 1.30 Hz, 1 H) 7.38 - 7.44 (m, 2 H) 7.44 - 7.48 (m, 1 H) 7.52 - 7.58 (m, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  ppm 21.87, 27.71, 32.24, 37.95, 109.98, 119.07, 121.22, 126.56, 129.70, 129.75, 132.10, 140.09, 144.89, 145.56, 149.94, 166.25, 198.30. LRMS (ESI): m/z = 332 [M+H]<sup>+</sup>, 349 [M+NH<sub>4</sub>]<sup>+</sup>, 373 [M+H+CH<sub>3</sub>CN]<sup>+</sup>.



Figure S95: Crude <sup>1</sup>H NMR spectrum of 6j.

#### NMR yield determination:

NMR yield not determined due to peak overlap in the aromatic region obscuring the biphenyl signals.







**Figure S97:** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **6**j.



Figure S98: LCMS trace of 6j.



**Material charges: 7a** (0.90 g, 3.53 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (18.3 mg, 0.071 mmol), P(Me)(t-Bu)<sub>2</sub>-HBF<sub>4</sub> (35.0 mg, 0.141 mmol), triethylamine (0.535 g, 0.738 mL, 5.29 mmol), *N*-CBz-L-phenylalaninol (1.21 g, 4.23 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **7h:** 0.798 g isolated as a yellow oil (44% yield); a further 0.243 g of **7a** was isolated after column chromatography (27% recovered starting material). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  ppm 1.99 - 2.13 (m, 2 H) 2.45 - 2.55 (m, 2 H) 2.63 (td, J=6.00, 2.00 Hz, 2 H) 2.81 (qd, J = 13.0, 6.0 Hz, 2 H) 3.72 - 3.87 (m, 2 H) 4.11 - 4.29 (m, 3 H) 4.71 (br. d, J=7.00 Hz, 1 H) 5.00 - 5.16 (m, 2 H) 7.02 - 7.18 (m, 5 H) 7.19 - 7.22 (m, 1 H) 7.23 - 7.46 (m, 9 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  ppm 21.94, 27.62, 31.72, 37.84, 37.91, 51.08, 65.95, 66.85, 126.38, 126.87, 126.98, 128.10, 128.25, 128.57, 128.61, 128.77, 129.14, 129.56, 134.08, 136.26, 136.48, 139.03, 141.23, 145.83, 155.63, 167.81, 198.34. LRMS (ESI): m/z = 532 [M+H]<sup>+</sup>.



Figure S99: Crude <sup>1</sup>H NMR spectrum of **7h**.

#### NMR yield determination:

Amount of biphenyl standard added = 0.726 mmol (111.9 mg). Peak at 7.50 ppm integration set to 0.726 mmol X 4 = 2.90 (signal corresponds to four protons) Product peak at 4.82 ppm thus corresponds to 1.64 mmol / 0.86 = 1.91 mmol (0.86 is response factor for methine C-H signal – see <sup>1</sup>H NMR spectrum for isolated material)

NMR yield = 1.91 mmol / 3.53 mmol X 100% = 54%



Figure S100: <sup>1</sup>H NMR spectrum of **7h**.







Figure S102: LCMS trace of 7h.



8e (10 mol% Pd) 53% (NMR) 50% (isolated)

**Material charges: 8a** (1.00 g, 3.15 mmol), PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub> (82.0 mg, 0.315 mmol), P(Me)(*t*-Bu)<sub>2</sub>-HBF<sub>4</sub> (156.0 mg, 0.630 mmol), triethylamine (0.478 g, 0.66 mL, 4.72 mmol), 1-phenylethanol (0.769 g, 6.30 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **8e:** 0.684 g isolated as a yellow oil (50% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 1.56 (d, *J*=6.55 Hz, 3 H) 2.03 - 2.14 (m, 2 H) 2.46 - 2.54 (m, 2 H) 2.68 (td, *J*=6.00, 1.00 Hz, 2 H) 3.77 (s, 2 H) 5.99 (q, *J*=6.55 Hz, 1 H) 6.95 (t, *J*=8.00 Hz, 1 H) 7.13 (td, *J*=9.00, 1.50 Hz, 2 H) 7.25 - 7.30 (m, 2 H) 7.31 - 7.38 (m, 3 H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ ppm -113.86 (s, 1 F). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 21.86, 22.07, 24.73 (d, *J*=3.41 Hz, 1 C) 27.73, 37.89, 74.01, 118.67 (d, *J*=24.00 Hz, 1 C) 119.70 (d, *J*=9.54 Hz, 1 C) 125.59 (d, *J*=15.33 Hz, 1 C) 126.20 (s, 2 C) 126.99 (d, *J*=3.41 Hz, 1 C) 128.30, 128.62 (s, 2 C) 131.29 (d, *J*=4.77 Hz, 1 C) 137.15, 140.54, 147.44, 160.57 (d, *J*=250.00 Hz, 1 C) 167.20, 198.38 (s, 1 C). LRMS (ESI): m/z = 431/433 [M+H]<sup>+</sup>.



Figure S103: Crude <sup>1</sup>H NMR spectrum of 8e.

### NMR yield determination:

Amount of biphenyl standard added = 0.525 mmol (81.0 mg). Peak at 7.62 ppm integration set to 0.525 mmol X 4 = 2.10 (signal corresponds to four protons) Product peak at 3.76 ppm thus corresponds to 3.36 mmol / 2 = 1.68 mmol NMR yield = 1.68 mmol / 3.15 mmol X 100% = **53%** 

(note that this is likely a slight underestimate due to peak overlap for the internal standard signal, and the product methylene signal)

Similarly, the NMR yield of residual starting material (8a) is 23% (peak at 3.78).

The LCMS trace of the crude reaction mixture (Figure S104) also reveals the presence of the double carbonylation product (**8e''**) in ~10% yield.



Figure S104: Crude LCMS trace of 8e.



Figure S106: <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 8e.



Figure S107: <sup>19</sup>F NMR spectrum of 8e.



Figure S108: LCMS trace of 8e.



**Material charges: 8a** (1.00 g, 3.15 mmol),  $PdCl_2(CH_3CN)_2$  (82.0 mg, 0.315 mmol),  $P(Me)(t-Bu)_2-HBF_4$  (156.0 mg, 0.630 mmol), triethylamine (0.478 g, 0.66 mL, 4.72 mmol), trifluoroethanol (0.630 g, 6.30 mmol), toluene (5.0 mL), acetonitrile (5.0 mL). **8i:** 0.745 g isolated as a yellow oil (58% yield). The double-carbonylation product **8i''** was also isolated by column chromatography (0.176 g, 12% yield).

**8i**: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 2.04 - 2.16 (m, 2 H) 2.48 - 2.57 (m, 2 H) 2.70 (t, *J*=6.06 Hz, 2 H) 3.85 (s, 2 H) 4.57 (q, *J*=8.28 Hz, 2 H) 7.04 (t, *J*=8.20 Hz, 1 H) 7.13 - 7.21 (m, 2 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 21.90, 24.88 (d, *J*=3.07 Hz, 1 C) 27.55, 37.85, 60.87 (q, *J*=37.00 Hz, 1 C) 118.79 (d, *J*=25.50 Hz, 1 C) 120.04 (d, *J*=9.88 Hz, 1 C) 122.67 (q, *J*=277.00 Hz, 1 C) 125.03 (d, *J*=14.99 Hz, 1 C) 127.16 (d, *J*=3.75 Hz, 1 C) 131.69 (d, *J*=5.11 Hz, 1 C) 139.65, 144.45, 160.65 (d, *J*=250.00 Hz, 1 C) 166.07, 197.87 (s, 1 C). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ ppm -114.37 (s, 1 F, Ar-*F*) -73.55 (s, 3 F, -CH<sub>2</sub>CF<sub>3</sub>). LRMS (ESI): m/z = 409/411 [M+H]<sup>+</sup>.

**8i**": <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 2.08 - 2.17 (m, 2 H) 2.51 - 2.59 (m, 2 H) 2.73 (t, *J*=6.02 Hz, 2 H) 3.98 (s, 2 H) 4.58 (q, *J*=8.28 Hz, 2 H) 4.69 (q, *J*=8.41 Hz, 2 H) 7.25 (t, *J*=7.80 Hz, 1 H) 7.69 (dd, *J*=10.37, 1.66 Hz, 1 H) 7.76 (dd, *J*=8.02, 1.66 Hz, 1 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ ppm 21.87, 25.55 (d, *J*=3.41 Hz), 27.53, 37.79, 60.87 (q, *J*=37.00 Hz), 60.88 (q, *J*=37.00 Hz), 116.65 (d, *J*=24.60 Hz), 122.63 (q, *J*=278.00 Hz), 122.98 (q, *J*=277.50 Hz), 125.60 (d, *J*=3.40 Hz), 128.21 (d, *J*=7.83 Hz), 130.63 (d, *J*=4.09 Hz), 132.68 (d, *J*=15.33 Hz), 139.51, 144.82, 160.51 (d, *J*=247.30 Hz), 163.81 (d, *J*=2.73 Hz), 165.92, 197.78. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ ppm -115.67 (s, 1 F) -73.70 (s, 3 F) -73.58 (s, 3 F). LRMS (ESI): m/z = 457 [M+H]<sup>+</sup>.

Note that biphenyl was omitted from this preparation, so no NMR yield was determined. The LCMS trace of the crude reaction mixture (Figure S109) reveals the presence of **8a**, **8i**, and **8i**''; however, due to peak overlap, quantification cannot be established. Therefore, both **8i** and **8i**'' were isolated to quantify the amount of each product.



Figure S109: Crude LCMS trace of 8i.



Figure S110: <sup>1</sup>H NMR spectrum of 8i.



Figure S111: <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 8i.



Figure S112: <sup>19</sup>F NMR spectrum of 8i.







Figure S114: <sup>1</sup>H NMR spectrum of 8i".



Figure S116: <sup>19</sup>F NMR spectrum of 8i".



Figure S117: LCMS trace of 8i".

# Large-Scale Preparation of 1b.



Figure S118. Initial CO uptake curve, with calculated substrate (1a) mmol.





Figure S120. LCMS trace of 1b after workup.



**Figure S122.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **1b** after purification.

S104



Figure S123. LCMS trace of 1b after purification.

# **IV: Mechanistic Studies**

# **Reaction Profile Curves.**



Figure S124. Reaction progress curve for the formation of 1c.



Figure S125. Reaction progress curve for the formation of 1f.



Figure S126. Reaction progress curve for the formation of 1g.


Figure S127. Reaction progress curve for the formation of 3c.



Figure S128. Reaction progress curve for the formation of 5c.



Figure S129. Reaction progress curve for the formation of 6c.

### Reaction Progress for the Formation of 1b using $Pd[P(t-Bu)_3]_2$ as the Precatalyst

Two reactions were set up following the general procedure for using the Unchained Labs OSR (see Experimental in main text) with a reaction temperature of 70 °C using the following material charges:

"1 mol% Pd": **1a** (1.33 g, 10.2 mmol), Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> (52.3 mg, 0.102 mmol), trimethoxybenzene (internal standard, 0.33 g, 1.98 mmol), DIPEA (1.98 g, 2.67 mL, 15.3 mmol), methanol (0.40 g, 0.50 mL, 12.4 mmol), and toluene (13 mL).

"0.5 mol% Pd": **1a** (1.33 g, 10.2 mmol), Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> (26.2 mg, 0.051 mmol), trimethoxybenzene (internal standard, 0.33 g, 1.98 mmol), DIPEA (1.98 g, 2.67 mL, 15.3 mmol), methanol (0.40 g, 0.50 mL, 12.4 mmol), and toluene (13 mL).



**Figure S130.** Reaction progress curves for the formation of **1b** using  $Pd[P(t-Bu)_3]_2$  as the catalyst; apparent zero order in catalyst.

### Synthesis of 1m:



**1c** (prepared via carbonylation as above, 0.289 g, 2.06 mmol) was suspended in dichloromethane (5 mL) in a 20 mL vial containing a stir bar. Oxalyl chloride (0.20 mL, 2.29 mmol) was added carefully via syringe, followed by DMF (0.010 mL, 0.129 mmol) via micropipette. The resulting mixture was stirred at room temperature for 1.5 h. The reaction mixture was diluted with dichloromethane (5 mL) and quenched by addition of brine (10 mL). The biphasic mixture was separated, and the aqueous phase extracted with dichloromethane (2 x 5 mL). The organic phase was dried by passage through a plug of MgSO<sub>4</sub>, followed by concentration *in vacuo* to afford **1m** as a yellow oil (0.318 g, 97% yield), which was used without further purification. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  ppm 2.06 - 2.18 (m, 2 H) 2.47 - 2.57 (m, 2 H) 2.61 - 2.72 (m, 2 H) 7.00 (t, *J*=1.76 Hz, 1 H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  ppm 21.83, 25.54, 37.66, 137.57, 151.14, 169.13, 199.18.



Figure S131. <sup>1</sup>H NMR spectrum of 1m.



Figure S132. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **1m**.

### **Oxidative Addition Studies**:



In a nitrogen glovebox, **1a** (10.0 mg, 0.077 mmol) and Pd[P(t-Bu)<sub>3</sub>]<sub>2</sub> (30.0 mg, 0.059 mmol) were dissolved in  $d_8$ -toluene (1.0 mL) in an NMR tube. After initial <sup>1</sup>H and <sup>31</sup>P spectra were obtained, the tube was heated to 60 °C for one hour, followed by reacquisition of <sup>1</sup>H and <sup>31</sup>P spectra (Figure S133 and S134 respectively). The tube was then heated to 60 °C for 17 hours. The solution was removed from the tube, and the volatiles removed in vacuo. The product mixture was analyzed by <sup>1</sup>H NMR spectroscopy (CDCl<sub>3</sub>) and LCMS (Figures S135 and 136 respectively), revealing a 1.8:1 ratio of **1**I to **1a**. The Pd-containing byproducts were not characterized.



**Figure S133.** <sup>1</sup>H NMR spectrum (400 MHz, *d*<sup>8</sup>-tol) of reaction between **1a** and Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> at 1 h, 60 °C. Key signals for complex **9**: δ ppm 2.26 (m, 2 H), 2.91 (br t, *J*=5.5, Hz, 2 H), 6.54 (br dt, *J*=5.0, 1.0 Hz, 1 H).



**Figure S134.** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (162 MHz,  $d^8$ -tol) of reaction between **1a** and Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> at 1 h, 60 °C. Signals assigned as pictured.



**Figure S135.** <sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of reaction between **1a** and Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> at 17 h, 60 °C, after removal of volatiles. **1a** and **1l** as assigned.



**Figure S136.** LCMS trace of reaction between **1a** and  $Pd[P(t-Bu)_3]_2$  at 17 h, 60 °C. **1a** and **1l** as assigned.



In a nitrogen glovebox, **1m** (10.0 mg, 0.063 mmol),  $Pd[P(t-Bu)_3]_2$  (30.0 mg, 0.059 mmol), and 1,1'biphenyl (2.0 mg, 0.013 mmol) were dissolved in  $d_8$ -toluene (1.0 mL) in an NMR tube. An initial <sup>1</sup>H NMR spectrum was obtained to establish extent of reaction and calculate NMR yield of **10** (Figure 137).



Figure S137. <sup>1</sup>H NMR spectrum (400 MHz, d<sup>8</sup>-tol) of reaction between 1m and Pd[P(t-Bu)<sub>3</sub>]<sub>2</sub>. NMR yield calculated by setting biphenyl signal at 7.44 ppm to (13 μmol x 4 H) = 52 μmol, and comparing to methylene signal of 10 at 2.50 ppm: 105.37 μmol / 2 H = 52.685 μmol / 59 μmol = 89% yield. A small amount (~3%) of 9 is also present, presumably generated via decarbonylation of 10.

This tube was left to sit overnight (19 h total time), and a <sup>1</sup>H NMR spectrum obtained the next morning showed a reduction in solution yield of **10** to 81%. This tube was then returned to the glovebox, and methanol (18.8 mg, 24  $\mu$ L, 0.59 mmol) and DIPEA (76.0 mg, 102  $\mu$ L, 0.59 mmol) were added. The orange solution immediately darkened upon mixing. A <sup>1</sup>H NMR spectrum obtained after 15 minutes revealed **1b** formation in 82% yield (based on **1m** charged, Figure S138). The identity of **1b** was further confirmed by LCMS (Figure S139).



Figure S138. <sup>1</sup>H NMR spectrum (400 MHz, d<sup>8</sup>-tol) of reaction between 10 and MeOH/DIPEA. NMR yield calculated by setting biphenyl signal at 7.44 ppm to (13 μmol x 4 H) = 52 μmol, and comparing to methylene signal of 1b at 1.99 ppm: 103.54 μmol / 2 H = 51.77 μmol / 63 μmol = 82% yield.



Figure S139. LCMS trace of reaction between 10 and MeOH/DIPEA. Peak at 0.53 min corresponds to 1b.

A subsequent preparation of **10** in an NMR tube using identical reagent charges, but omitting biphenyl, was conducted to obtain <sup>1</sup>H, <sup>31</sup>P, and <sup>13</sup>C spectra for characterization (Figures S140, 141, and 142).

**10**: <sup>1</sup>H NMR (400 MHz,  $d^{8}$ -tol)  $\delta$  ppm 1.28 (d, *J*=11.2 Hz, 54 H, overlapping signals for free and ligated P(*t*-Bu)<sub>3</sub>), 1.48 - 1.57 (m, 2 H), 2.06 - 2.11 (m, 2 H), 2.50 (td, *J*=5.99, 1.52 Hz, 2 H), 7.51 (t, *J* = 1.5 Hz, 1 H). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz,  $d^{8}$ -tol)  $\delta$  ppm 75.2. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz,  $d^{8}$ -tol)  $\delta$  ppm 22.18, 26.72, 32.0, 37.89, 39.35 (d, *J* = 8.6 Hz), 137.23, 154.88 (d, *J* = 13.6 Hz), 198.11, 208.4 (br).



**Figure S140.** <sup>1</sup>H NMR spectrum (400 MHz,  $d^{8}$ -tol) of reaction between **1m** and Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> to give **10**.



**Figure S141.** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (162 MHz,  $d^8$ -tol) of reaction between **1m** and Pd[P(t-Bu)<sub>3</sub>]<sub>2</sub> to give **10**. Signals assigned as pictured.



**Figure S142.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (101 MHz,  $d^{8}$ -tol) of reaction between **1m** and Pd[P(t-Bu)<sub>3</sub>]<sub>2</sub> to give **10**.



In a nitrogen glovebox, **1a** (7.5 mg, 0.057 mmol) and 1,1'-biphenyl (3.2 mg, 0.021 mmol) were dissolved in  $d_8$ -toluene (0.5 mL) in an NMR tube topped with a septum. A 1 mL syringe was charged with a solution of Pd(PCy<sub>3</sub>)<sub>2</sub> (29.3 mg, 0.044 mmol) in  $d_8$ -toluene (0.5 mL). The materials were brought to the NMR lab, and an single-scan spectrum of the **1a**/biphenyl solution was obtained to establish relative integration for time zero. The solution of Pd(PCy<sub>3</sub>)<sub>2</sub> was added via syringe to the NMR tube, and alternating <sup>1</sup>H (single-scan) and <sup>31</sup>P{<sup>1</sup>H} NMR spectra were collected for several hours to monitor the oxidative addition reaction. Concentrations were determined by relative integration to biphenyl (**1a**, **11**-**INT**, and **11**), or calculated assuming perfect mass balance (Pd(PCy<sub>3</sub>)<sub>2</sub>).



**Figure S143.** *Top:* <sup>1</sup>H NMR spectrum (500 MHz, tol-d<sub>8</sub>) after addition of Pd(PCy<sub>3</sub>)<sub>2</sub> to **1a**. *Bottom:* Truncated 2D ROESY NMR spectrum (500 MHz, tol-d<sub>8</sub>) acquired after mixing **1a** and Pd(PCy<sub>3</sub>)<sub>2</sub>, showing chemical exchange between vinyl protons for **1a** (6.2 ppm) and **11-INT** (5.0 ppm). Cross-peaks are the same phase as the diagonal peaks, confirming exchange (and not through-space coupling).<sup>12</sup>



**Figure S144.** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum at t = 30 min, with major peaks assigned.

| Time<br>(min) | [ <b>1a</b> ] (M) | [Pd(PCy <sub>3</sub> ) <sub>2</sub> ]<br>(M) | [ <b>11-INT</b> ]<br>(M) | [ <b>11</b> ] (M) | К <sub>еq</sub><br>(М <sup>-1</sup> ) |
|---------------|-------------------|----------------------------------------------|--------------------------|-------------------|---------------------------------------|
| 0             | 0.057             | 0.045                                        | 0                        | 0.000             | n/a                                   |
| 6             | 0.035             | 0.023                                        | 0.020                    | 0.002             | 24.8                                  |
| 23            | 0.032             | 0.020                                        | 0.017                    | 0.008             | 26.6                                  |
| 31            | 0.031             | 0.019                                        | 0.016                    | 0.010             | 27.2                                  |
| 51            | 0.028             | 0.016                                        | 0.013                    | 0.016             | 29.0                                  |
| 60            | 0.028             | 0.016                                        | 0.012                    | 0.018             | 26.8                                  |
| 91            | 0.025             | 0.013                                        | 0.008                    | 0.024             | 24.6                                  |
| 99            | 0.024             | 0.012                                        | 0.008                    | 0.025             | 27.8                                  |
| 108           | 0.023             | 0.011                                        | 0.007                    | 0.027             | 27.7                                  |
| 116           | 0.022             | 0.011                                        | 0.007                    | 0.028             | 28.9                                  |
| 141           | 0.020             | 0.008                                        | 0.005                    | 0.032             | 31.3                                  |
| 167           | 0.020             | 0.008                                        | 0.004                    | 0.033             | 25.0                                  |
| 192           | 0.020             | 0.008                                        | 0.003                    | 0.034             | 18.8                                  |
| 286           | 0.014             | 0.002                                        | 0.001                    | 0.042             | 35.7                                  |
| 380           | 0.012             | 0.000                                        | 0.000                    | 0.045             | n/a                                   |

**Table S3.** Concentrations of components in oxidative addition reaction (determined by relative <sup>1</sup>H NMR signal integration to biphenyl as internal standard), and values of  $K_{eq}$  calculated for alkene coordination.

The equilibrium constant  $K_{eq} = 27(2) \text{ M}^{-1}$  was determined by averaging the values obtained between 6-167 min, with the error estimated from the standard deviation of these 11 values. The final two values were excluded due to the peak shape of the vinyl C-H for **11-INT** making integration less reliable. Including all values in the average simply increases the standard deviation from 2 to 4.

#### Characterization Data for 11.







Figure S146. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **11**.







Figure S148. LCMS trace of 11.



Figure S149. MS of peak at 1.37 min, corresponding to [11 - Cl]<sup>+</sup>.



Figure S150. Isotope pattern analysis of experimental and predicted [11 - Cl]<sup>+</sup>.



Figure S151. MS of peak at 1.42 min, corresponding to [11 - Cl - PCy<sub>3</sub> + CH<sub>3</sub>CN]<sup>+</sup>.



Figure S152. Isotope pattern analysis of experimental and predicted [11 - Cl - PCy<sub>3</sub> + CH<sub>3</sub>CN]<sup>+</sup>.

#### Characterization Data for 12.







Figure S154.  ${}^{31}P{}^{1}H$  NMR spectrum of 12.







Figure S156. LCMS trace of 12.



Figure S157. MS of peak at 1.54 min, corresponding to [12 - Cl]<sup>+</sup>.



Figure S158. Isotope pattern analysis of experimental and predicted [12 - Cl]<sup>+</sup>.

## V: X-Ray Crystallography



**Figure S159.** Thermal ellipsoid plot of **11**. Ellipsoids shown at 50% probability. Cyclohexyl rings shown in wireframe, hydrogen atoms and solvent (2-methyl THF) hidden for clarity.

A specimen of  $C_{47}H_{83}CIO_2P_2Pd$ , approximate dimensions 0.072 mm x 0.140 mm x 0.383 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The integration of the data using an orthorhombic unit cell yielded a total of 12684 reflections to a maximum  $\theta$  angle of 27.91° (0.76 Å resolution), of which 5101 were independent (average redundancy 2.487, completeness = 99.9%, R<sub>int</sub> = 1.32%, R<sub>sig</sub> = 2.01%) and 5072 (99.43%) were greater than 2 $\sigma$ (F<sup>2</sup>). The final cell constants of <u>a</u> = 14.2986(7) Å, <u>b</u> = 16.8879(8) Å, <u>c</u> = 9.6531(5) Å, volume = 2331.0(2) Å<sup>3</sup>, are based upon the refinement of the XYZ-centroids of reflections above 20  $\sigma$ (I). The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8140 and 0.9610.

The final anisotropic full-matrix least-squares refinement on F<sup>2</sup> with 275 variables converged at R1 = 3.73%, for the observed data and wR2 = 9.24% for all data. The goodness-of-fit was 1.262. The largest peak in the final difference electron density synthesis was 0.726 e<sup>-</sup>/Å<sup>3</sup> and the largest hole was -1.326 e<sup>-</sup>/Å<sup>3</sup> with an RMS deviation of 0.097 e<sup>-</sup>/Å<sup>3</sup>. On the basis of the final model, the calculated density was 1.259 g/cm<sup>3</sup> and F(000), 948 e<sup>-</sup>.

## Table S4. Sample and crystal data for 11.

| Identification code    | 11                       |         |
|------------------------|--------------------------|---------|
| Chemical formula       | $C_{47}H_{83}CIO_2P_2Pd$ |         |
| Formula weight         | 883.92 g/mol             |         |
| Temperature            | 100(2) K                 |         |
| Wavelength             | 0.71073 Å                |         |
| Crystal size           | 0.072 x 0.140 x 0.383 mm |         |
| Crystal system         | orthorhombic             |         |
| Space group            | P m n 21                 |         |
| Unit cell dimensions   | a = 14.2986(7) Å         | α = 90° |
|                        | b = 16.8879(8) Å         | β = 90° |
|                        | c = 9.6531(5) Å          | γ = 90° |
| Volume                 | 2331.0(2) Å <sup>3</sup> |         |
| Z                      | 2                        |         |
| Density (calculated)   | 1.259 g/cm <sup>3</sup>  |         |
| Absorption coefficient | 0.559 mm <sup>-1</sup>   |         |
| F(000)                 | 948                      |         |

Table S5. Data collection and structure refinement for 11.

| Theta range for data collection   | 1.87 to 27.91°                                                                |                           |  |
|-----------------------------------|-------------------------------------------------------------------------------|---------------------------|--|
| Index ranges                      | -18<=h<=11, -22<=k<=                                                          | =12, -12<=l<=12           |  |
| Reflections collected             | 12684                                                                         |                           |  |
| Independent reflections           | 5101 [R(int) = 0.0132]                                                        |                           |  |
| Max. and min. transmission        | 0.9610 and 0.8140                                                             |                           |  |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup>                                   |                           |  |
| Refinement program                | SHELXL-2014/7 (Sheldrick, 2014)                                               |                           |  |
| Function minimized                | $\Sigma w (F_o^2 - F_c^2)^2$                                                  |                           |  |
| Data / restraints / parameters    | 5101 / 71 / 275                                                               |                           |  |
| Goodness-of-fit on F <sup>2</sup> | 1.262                                                                         |                           |  |
| $\Delta/\sigma_{max}$             | 0.001                                                                         |                           |  |
| Final R indices                   | 5072 data; I>2σ(I)                                                            | R1 = 0.0373, wR2 = 0.0924 |  |
|                                   | all data                                                                      | R1 = 0.0374, wR2 = 0.0924 |  |
| Weighting scheme                  | w=1/ $[\sigma^{2}(F_{o}^{2})+6.9683P]$<br>where P= $(F_{o}^{2}+2F_{c}^{2})/3$ | ]                         |  |
| Absolute structure parameter      | 0.09(5)                                                                       |                           |  |
| Largest diff. peak and hole       | 0.726 and -1.326 eÅ <sup>-3</sup>                                             |                           |  |
| R.M.S. deviation from mean        | 0.097 eÅ <sup>-3</sup>                                                        |                           |  |

# Table S6. Bond lengths (Å) for 11.

| Pd1-C1   | 1.988(7)   | Pd1-P1   | 2.3540(11) |
|----------|------------|----------|------------|
| Pd1-P1   | 2.3540(11) | Pd1-Cl1  | 2.4147(18) |
| P1-C19   | 1.837(6)   | P1-C7    | 1.853(5)   |
| P1-C13   | 1.859(5)   | 01-C3    | 1.230(10)  |
| C1-C2    | 1.380(9)   | C1-C6    | 1.508(10)  |
| C2-C3    | 1.455(10)  | C2-H2    | 0.95       |
| C3-C4    | 1.525(12)  | C4-C5    | 1.532(13)  |
| C4-H4A   | 0.99       | C4-H4B   | 0.99       |
| C5-C6    | 1.556(12)  | C5-H5A   | 0.99       |
| C5-H5B   | 0.99       | C6-H6A   | 0.99       |
| С6-Н6В   | 0.99       | C7-C8    | 1.528(8)   |
| C7-C12   | 1.546(8)   | C7-H7    | 1.0        |
| C8-C9    | 1.535(8)   | C8-H8A   | 0.99       |
| C8-H8B   | 0.99       | C9-C10   | 1.519(9)   |
| С9-Н9А   | 0.99       | С9-Н9В   | 0.99       |
| C10-C11  | 1.514(9)   | C10-H10A | 0.99       |
| C10-H10B | 0.99       | C11-C12  | 1.531(7)   |
| C11-H11A | 0.99       | C11-H11B | 0.99       |
| C12-H12A | 0.99       | C12-H12B | 0.99       |
| C13-C18  | 1.537(7)   | C13-C14  | 1.544(7)   |
| C13-H13  | 1.0        | C14-C15  | 1.528(7)   |
| C14-H14A | 0.99       | C14-H14B | 0.99       |
| C15-C16  | 1.527(9)   | C15-H15A | 0.99       |
| C15-H15B | 0.99       | C16-C17  | 1.523(9)   |
| C16-H16A | 0.99       | C16-H16B | 0.99       |
| C17-C18  | 1.525(9)   | C17-H17A | 0.99       |
| С17-Н17В | 0.99       | C18-H18A | 0.99       |
| C18-H18B | 0.99       | C19-C20  | 1.536(8)   |
| C19-C24  | 1.545(7)   | C19-H19  | 1.0        |
| C20-C21  | 1.535(9)   | C20-H20A | 0.99       |
| C20-H20B | 0.99       | C21-C22  | 1.518(11)  |
| C21-H21A | 0.99       | C21-H21B | 0.99       |
| C22-C23  | 1.527(9)   | C22-H22A | 0.99       |
| C22-H22B | 0.99       | C23-C24  | 1.529(7)   |
| C23-H23A | 0.99       | C23-H23B | 0.99       |
| C24-H24A | 0.99       | C24-H24B | 0.99       |
| O2-C25   | 1.364(11)  | O2-C28   | 1.452(11)  |
| C25-C29  | 1.488(11)  | C25-C26  | 1.539(11)  |
| C25-H25  | 1.0        | C26-C27  | 1.561(11)  |
| C26-H26B | 0.99       | C26-H26A | 0.99       |
| C27-C28  | 1.512(11)  | C27-H27A | 0.99       |
| С27-Н27В | 0.99       | C28-H28A | 0.99       |
| C28-H28B | 0.99       | C29-H29A | 0.98       |

| C29-H29B 0.98 C29-H29C 0.98 | C29-H29B | 0.98 | C29-H29C | 0.98 |
|-----------------------------|----------|------|----------|------|
|-----------------------------|----------|------|----------|------|

## Table S7. Bond angles (°) for 11.

| C1-Pd1-P1     | 91.31(4)   | C1-Pd1-P1    | 91.31(4)   |
|---------------|------------|--------------|------------|
| P1-Pd1-P1     | 169.71(7)  | C1-Pd1-Cl1   | 172.3(2)   |
| P1-Pd1-Cl1    | 89.37(4)   | P1-Pd1-Cl1   | 89.37(4)   |
| C19-P1-C7     | 104.1(2)   | C19-P1-C13   | 109.7(2)   |
| C7-P1-C13     | 103.6(3)   | C19-P1-Pd1   | 111.37(18) |
| C7-P1-Pd1     | 109.70(18) | C13-P1-Pd1   | 117.33(17) |
| C2-C1-C6      | 119.7(6)   | C2-C1-Pd1    | 118.0(6)   |
| C6-C1-Pd1     | 122.4(5)   | C1-C2-C3     | 123.7(7)   |
| C1-C2-H2      | 118.1      | C3-C2-H2     | 118.1      |
| O1-C3-C2      | 121.8(8)   | O1-C3-C4     | 120.8(7)   |
| C2-C3-C4      | 116.6(7)   | C3-C4-C5     | 110.3(8)   |
| C3-C4-H4A     | 109.6      | C5-C4-H4A    | 109.6      |
| C3-C4-H4B     | 109.6      | C5-C4-H4B    | 109.6      |
| H4A-C4-H4B    | 108.1      | C4-C5-C6     | 109.4(8)   |
| C4-C5-H5A     | 109.8      | C6-C5-H5A    | 109.8      |
| C4-C5-H5B     | 109.8      | C6-C5-H5B    | 109.8      |
| H5A-C5-H5B    | 108.2      | C1-C6-C5     | 113.9(7)   |
| C1-C6-H6A     | 108.8      | C5-C6-H6A    | 108.8      |
| C1-C6-H6B     | 108.8      | С5-С6-Н6В    | 108.8      |
| H6A-C6-H6B    | 107.7      | C8-C7-C12    | 109.2(5)   |
| C8-C7-P1      | 113.7(4)   | C12-C7-P1    | 110.5(4)   |
| C8-C7-H7      | 107.7      | С12-С7-Н7    | 107.7      |
| P1-C7-H7      | 107.7      | C7-C8-C9     | 111.0(5)   |
| C7-C8-H8A     | 109.4      | C9-C8-H8A    | 109.4      |
| С7-С8-Н8В     | 109.4      | С9-С8-Н8В    | 109.4      |
| H8A-C8-H8B    | 108.0      | C10-C9-C8    | 110.9(5)   |
| С10-С9-Н9А    | 109.5      | C8-C9-H9A    | 109.5      |
| С10-С9-Н9В    | 109.5      | С8-С9-Н9В    | 109.5      |
| Н9А-С9-Н9В    | 108.0      | C11-C10-C9   | 112.0(6)   |
| C11-C10-H10A  | 109.2      | C9-C10-H10A  | 109.2      |
| C11-C10-H10B  | 109.2      | С9-С10-Н10В  | 109.2      |
| H10A-C10-H10B | 107.9      | C10-C11-C12  | 110.9(5)   |
| C10-C11-H11A  | 109.5      | C12-C11-H11A | 109.5      |
| C10-C11-H11B  | 109.5      | C12-C11-H11B | 109.5      |
| H11A-C11-H11B | 108.0      | C11-C12-C7   | 111.8(5)   |
| C11-C12-H12A  | 109.3      | C7-C12-H12A  | 109.3      |
| C11-C12-H12B  | 109.3      | C7-C12-H12B  | 109.3      |
| H12A-C12-H12B | 107.9      | C18-C13-C14  | 109.4(4)   |
| C18-C13-P1    | 118.5(4)   | C14-C13-P1   | 112.2(4)   |
| C18-C13-H13   | 105.2      | C14-C13-H13  | 105.2      |

| P1-C13-H13    | 105.2     | C15-C14-C13   | 111.3(5) |
|---------------|-----------|---------------|----------|
| C15-C14-H14A  | 109.4     | C13-C14-H14A  | 109.4    |
| C15-C14-H14B  | 109.4     | C13-C14-H14B  | 109.4    |
| H14A-C14-H14B | 108.0     | C16-C15-C14   | 111.4(5) |
| C16-C15-H15A  | 109.3     | C14-C15-H15A  | 109.3    |
| C16-C15-H15B  | 109.3     | C14-C15-H15B  | 109.3    |
| H15A-C15-H15B | 108.0     | C17-C16-C15   | 111.0(5) |
| C17-C16-H16A  | 109.4     | C15-C16-H16A  | 109.4    |
| C17-C16-H16B  | 109.4     | C15-C16-H16B  | 109.4    |
| H16A-C16-H16B | 108.0     | C16-C17-C18   | 111.6(5) |
| C16-C17-H17A  | 109.3     | C18-C17-H17A  | 109.3    |
| C16-C17-H17B  | 109.3     | C18-C17-H17B  | 109.3    |
| H17A-C17-H17B | 108.0     | C17-C18-C13   | 110.4(5) |
| C17-C18-H18A  | 109.6     | C13-C18-H18A  | 109.6    |
| C17-C18-H18B  | 109.6     | C13-C18-H18B  | 109.6    |
| H18A-C18-H18B | 108.1     | C20-C19-C24   | 110.7(5) |
| C20-C19-P1    | 117.2(4)  | C24-C19-P1    | 113.9(4) |
| C20-C19-H19   | 104.5     | C24-C19-H19   | 104.5    |
| P1-C19-H19    | 104.5     | C21-C20-C19   | 109.3(5) |
| C21-C20-H20A  | 109.8     | C19-C20-H20A  | 109.8    |
| C21-C20-H20B  | 109.8     | С19-С20-Н20В  | 109.8    |
| H20A-C20-H20B | 108.3     | C22-C21-C20   | 112.0(6) |
| C22-C21-H21A  | 109.2     | C20-C21-H21A  | 109.2    |
| C22-C21-H21B  | 109.2     | C20-C21-H21B  | 109.2    |
| H21A-C21-H21B | 107.9     | C21-C22-C23   | 112.0(5) |
| C21-C22-H22A  | 109.2     | C23-C22-H22A  | 109.2    |
| C21-C22-H22B  | 109.2     | C23-C22-H22B  | 109.2    |
| H22A-C22-H22B | 107.9     | C22-C23-C24   | 111.1(5) |
| C22-C23-H23A  | 109.4     | C24-C23-H23A  | 109.4    |
| C22-C23-H23B  | 109.4     | C24-C23-H23B  | 109.4    |
| H23A-C23-H23B | 108.0     | C23-C24-C19   | 110.2(5) |
| C23-C24-H24A  | 109.6     | C19-C24-H24A  | 109.6    |
| C23-C24-H24B  | 109.6     | C19-C24-H24B  | 109.6    |
| H24A-C24-H24B | 108.1     | C25-O2-C28    | 111.9(9) |
| O2-C25-C29    | 120.2(14) | O2-C25-C26    | 108.8(9) |
| C29-C25-C26   | 109.1(13) | O2-C25-H25    | 106.0    |
| C29-C25-H25   | 106.0     | C26-C25-H25   | 106.0    |
| C25-C26-C27   | 103.4(8)  | C25-C26-H26B  | 111.1    |
| C27-C26-H26B  | 111.1     | C25-C26-H26A  | 111.1    |
| C27-C26-H26A  | 111.1     | H26B-C26-H26A | 109.1    |
| C28-C27-C26   | 103.3(9)  | C28-C27-H27A  | 111.1    |
| C26-C27-H27A  | 111.1     | С28-С27-Н27В  | 111.1    |
| С26-С27-Н27В  | 111.1     | H27A-C27-H27B | 109.1    |
| O2-C28-C27    | 107.7(9)  | O2-C28-H28A   | 110.2    |

| C27-C28-H28A  | 110.2 | O2-C28-H28B   | 110.2 |
|---------------|-------|---------------|-------|
| C27-C28-H28B  | 110.2 | H28A-C28-H28B | 108.5 |
| C25-C29-H29A  | 109.5 | С25-С29-Н29В  | 109.5 |
| H29A-C29-H29B | 109.5 | C25-C29-H29C  | 109.5 |
| H29A-C29-H29C | 109.5 | H29B-C29-H29C | 109.5 |





A clear intense orange-red block-like specimen of  $C_{46.50}H_{77}CIO_2P_2Pd$ , approximate dimensions 0.105 mm x 0.144 mm x 0.166 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 6.62 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 79981 reflections to a maximum  $\theta$  angle of 27.91° (0.76 Å resolution), of which 21196 were independent (average redundancy 3.773, completeness = 99.1%, R<sub>int</sub> = 3.00%, R<sub>sig</sub> = 3.03%) and 17967 (84.77%) were greater than  $2\sigma(F^2)$ . The final cell constants of <u>a</u> = 10.5534(6) Å, <u>b</u> = 19.8212(10) Å, <u>c</u> = 23.5445(13) Å,  $\alpha$  = 70.2280(10)°,  $\beta$  = 82.9580(10)°,  $\gamma$  = 75.0460(10)°, volume = 4474.4(4) Å<sup>3</sup>, are based upon the refinement of the XYZ-centroids of 9307 reflections above 20  $\sigma$ (I) with 5.018° < 20 < 55.82°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.947. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7063 and 0.7456.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P -1, with Z = 4 for the formula unit,  $C_{46.50}H_{77}ClO_2P_2Pd$ . The final anisotropic full-matrix least-squares refinement on F<sup>2</sup> with 947 variables converged at R1 = 3.11%, for the observed data and wR2 = 7.44% for all data. The goodness-of-fit was 1.024. The largest peak in the final difference electron density synthesis was 1.311 e<sup>-</sup>/Å<sup>3</sup> and the largest hole was -0.486 e<sup>-</sup>/Å<sup>3</sup> with an RMS deviation of 0.068 e<sup>-</sup>/Å<sup>3</sup>. On the basis of the final model, the calculated density was 1.294 g/cm<sup>3</sup> and F(000), 1860 e<sup>-</sup>.

## Table S8. Sample and crystal data for 12.

| Identification code    | 12                             |                  |
|------------------------|--------------------------------|------------------|
| Chemical formula       | $C_{46.50}H_{77}CIO_2P_2Pd$    |                  |
| Formula weight         | 871.87 g/mol                   |                  |
| Wavelength             | 0.71073 Å                      |                  |
| Crystal size           | 0.105 x 0.144 x 0.166 mm       |                  |
| Crystal habit          | clear intense orange-red block |                  |
| Crystal system         | triclinic                      |                  |
| Space group            | P -1                           |                  |
| Unit cell dimensions   | a = 10.5534(6) Å               | α = 70.2280(10)° |
|                        | b = 19.8212(10) Å              | β = 82.9580(10)° |
|                        | c = 23.5445(13) Å              | γ = 75.0460(10)° |
| Volume                 | 4474.4(4) Å <sup>3</sup>       |                  |
| Z                      | 4                              |                  |
| Density (calculated)   | 1.294 g/cm <sup>3</sup>        |                  |
| Absorption coefficient | 0.582 mm <sup>-1</sup>         |                  |
| F(000)                 | 1860                           |                  |
|                        |                                |                  |

Table S9. Data collection and structure refinement for 12.

| Theta range for data collection     | 1.12 to 27.91°                                                                          |                           |
|-------------------------------------|-----------------------------------------------------------------------------------------|---------------------------|
| Index ranges                        | -13<=h<=13, -26<=k<=15, -3                                                              | 30<=l<=28                 |
| Reflections collected               | 79981                                                                                   |                           |
| Independent reflections             | 21196 [R(int) = 0.0300]                                                                 |                           |
| Coverage of independent reflections | 99.1%                                                                                   |                           |
| Absorption correction               | Multi-Scan                                                                              |                           |
| Max. and min. transmission          | 0.7456 and 0.7063                                                                       |                           |
| Structure solution technique        | direct methods                                                                          |                           |
| Structure solution program          | XT, VERSION 2014/5                                                                      |                           |
| Refinement method                   | Full-matrix least-squares or                                                            | n F <sup>2</sup>          |
| Refinement program                  | XL (Sheldrick, 2008)                                                                    |                           |
| Function minimized                  | $\Sigma w(F_o^2 - F_c^2)^2$                                                             |                           |
| Data / restraints / parameters      | 21196 / 0 / 947                                                                         |                           |
| Goodness-of-fit on F <sup>2</sup>   | 1.024                                                                                   |                           |
| $\Delta/\sigma_{max}$               | 0.004                                                                                   |                           |
| Final R indices                     | 17967 data; I>2σ(I)                                                                     | R1 = 0.0311, wR2 = 0.0707 |
|                                     | all data                                                                                | R1 = 0.0406, wR2 = 0.0744 |
| Weighting scheme                    | w=1/[ $\sigma^{2}(F_{o}^{2})+(0.0310P)^{2}+3$ .<br>where P=( $F_{o}^{2}+2F_{c}^{2}$ )/3 | 7616P]                    |
| Largest diff. peak and hole         | 1.311 and -0.486 eÅ <sup>-3</sup>                                                       |                           |
| R.M.S. deviation from mean          | 0.068 eÅ <sup>-3</sup>                                                                  |                           |

# Table S10. Bond lengths (Å) for 12.

| Pd1-Cl1  | 2.4302(5)  | Pd1-P1   | 2.3812(5)  |
|----------|------------|----------|------------|
| Pd1-P2   | 2.3581(5)  | Pd1-C1   | 1.9827(18) |
| Pd2-P3   | 2.3693(5)  | Pd2-Cl2  | 2.4243(5)  |
| Pd2-P4   | 2.3532(5)  | Pd2-C44  | 1.9752(18) |
| P1-C20   | 1.8551(19) | P1-C8    | 1.8531(19) |
| P1-C15   | 1.865(2)   | P2-C26   | 1.8462(19) |
| P2-C38   | 1.8605(19) | P2-C32   | 1.859(2)   |
| P3-C57   | 1.8423(19) | P3-C63   | 1.863(2)   |
| P3-C51   | 1.869(2)   | P4-C69   | 1.847(2)   |
| P4-C81   | 1.858(2)   | P4-C75   | 1.8629(19) |
| 01-C1    | 1.212(2)   | O3-C44   | 1.214(2)   |
| O4-C49   | 1.216(3)   | O2-C6    | 1.219(3)   |
| C1-C2    | 1.526(3)   | C2-C3    | 1.508(2)   |
| C2-C7    | 1.335(3)   | C3-H3A   | 0.99       |
| C3-H3B   | 0.99       | C3-C4    | 1.522(3)   |
| C44-C45  | 1.520(3)   | C27-H27A | 0.99       |
| С27-Н27В | 0.99       | C27-C26  | 1.536(3)   |
| C27-C28  | 1.532(3)   | C20-H20  | 1.0        |
| C20-C25  | 1.536(3)   | C20-C21  | 1.530(3)   |
| С50-Н50  | 0.95       | C50-C45  | 1.336(3)   |
| C50-C49  | 1.474(3)   | C8-H8    | 1.0        |
| C8-C9    | 1.536(3)   | C8-C13   | 1.541(3)   |
| С57-Н57  | 1.0        | C57-C62  | 1.534(3)   |
| C57-C58  | 1.539(3)   | С7-Н7    | 0.95       |
| C7-C6    | 1.474(3)   | C62-H62A | 0.99       |
| C62-H62B | 0.99       | C62-C61  | 1.529(3)   |
| C15-H15  | 1.0        | C15-C16  | 1.530(3)   |
| C15-C14  | 1.532(3)   | C16-H16A | 0.99       |
| C16-H16B | 0.99       | C16-C17  | 1.524(3)   |
| C58-H58A | 0.99       | C58-H58B | 0.99       |
| C58-C59  | 1.525(3)   | C26-H26  | 1.0        |
| C26-C31  | 1.536(3)   | C4-H4A   | 0.99       |
| C4-H4B   | 0.99       | C4-C5    | 1.525(3)   |
| C38-H38  | 1.0        | C38-C39  | 1.537(3)   |
| C38-C43  | 1.540(3)   | С33-Н33А | 0.99       |
| C33-H33B | 0.99       | C33-C32  | 1.543(3)   |
| C33-C34  | 1.531(3)   | C45-C46  | 1.507(3)   |
| C46-H46A | 0.99       | C46-H46B | 0.99       |
| C46-C47  | 1.520(3)   | С9-Н9А   | 0.99       |
| С9-Н9В   | 0.99       | C9-C10   | 1.526(3)   |
| C25-H25A | 0.99       | C25-H25B | 0.99       |
| C25-C24  | 1.530(3)   | С70-Н70А | 0.99       |
| С70-Н70В | 0.99       | C70-C69  | 1.538(3)   |

| C70-C71  | 1.528(3) | C69-H69  | 1.0      |
|----------|----------|----------|----------|
| C69-C74  | 1.531(3) | C80-H80A | 0.99     |
| C80-H80B | 0.99     | C80-C75  | 1.533(3) |
| C80-C79  | 1.530(3) | C31-H31A | 0.99     |
| C31-H31B | 0.99     | C31-C30  | 1.529(3) |
| C61-H61A | 0.99     | C61-H61B | 0.99     |
| C61-C60  | 1.523(3) | C81-H81  | 1.0      |
| C81-C82  | 1.540(3) | C81-C86  | 1.539(3) |
| C56-H56A | 0.99     | C56-H56B | 0.99     |
| C56-C51  | 1.540(3) | C56-C55  | 1.555(3) |
| C17-H17A | 0.99     | С17-Н17В | 0.99     |
| C17-C18  | 1.515(3) | C28-H28A | 0.99     |
| C28-H28B | 0.99     | C28-C29  | 1.522(3) |
| C30-H30A | 0.99     | С30-Н30В | 0.99     |
| C30-C29  | 1.526(3) | С76-Н76А | 0.99     |
| С76-Н76В | 0.99     | C76-C75  | 1.536(3) |
| C76-C77  | 1.530(3) | C13-H13A | 0.99     |
| C13-H13B | 0.99     | C13-C12  | 1.535(3) |
| C10-H10A | 0.99     | C10-H10B | 0.99     |
| C10-C11  | 1.519(3) | C21-H21A | 0.99     |
| C21-H21B | 0.99     | C21-C22  | 1.534(3) |
| С32-Н32  | 1.0      | C32-C37  | 1.535(3) |
| С39-Н39А | 0.99     | С39-Н39В | 0.99     |
| C39-C40  | 1.532(3) | C43-H43A | 0.99     |
| C43-H43B | 0.99     | C43-C42  | 1.532(3) |
| С75-Н75  | 1.0      | С59-Н59А | 0.99     |
| С59-Н59В | 0.99     | C59-C60  | 1.529(3) |
| C34-H34A | 0.99     | C34-H34B | 0.99     |
| C34-C35  | 1.523(3) | C63-H63  | 1.0      |
| C63-C68  | 1.508(3) | C63-C64  | 1.533(3) |
| C29-H29A | 0.99     | С29-Н29В | 0.99     |
| С37-Н37А | 0.99     | С37-Н37В | 0.99     |
| C37-C36  | 1.529(3) | C24-H24A | 0.99     |
| C24-H24B | 0.99     | C24-C23  | 1.525(3) |
| C12-H12A | 0.99     | C12-H12B | 0.99     |
| C12-C11  | 1.524(3) | C5-H5A   | 0.99     |
| C5-H5B   | 0.99     | C5-C6    | 1.508(3) |
| C23-H23A | 0.99     | C23-H23B | 0.99     |
| C23-C22  | 1.517(3) | C22-H22A | 0.99     |
| C22-H22B | 0.99     | C74-H74A | 0.99     |
| С74-Н74В | 0.99     | C74-C73  | 1.527(3) |
| C49-C48  | 1.508(3) | C82-H82A | 0.99     |
| C82-H82B | 0.99     | C82-C83  | 1.527(3) |
| C60-H60A | 0.99     | С60-Н60В | 0.99     |

| C18-H18A | 0.99     | C18-H18B | 0.99     |
|----------|----------|----------|----------|
| C18-C19  | 1.519(3) | C51-H51  | 1.0      |
| C51-C52  | 1.516(3) | C14-H14A | 0.99     |
| C14-H14B | 0.99     | C14-C19  | 1.538(3) |
| C11-H11A | 0.99     | C11-H11B | 0.99     |
| C42-H42A | 0.99     | C42-H42B | 0.99     |
| C42-C41  | 1.526(3) | С90-Н90  | 0.95     |
| C90-C91  | 1.376(4) | C90-C89  | 1.373(4) |
| C85-H85A | 0.99     | C85-H85B | 0.99     |
| C85-C86  | 1.531(3) | C85-C84  | 1.520(3) |
| C86-H86A | 0.99     | С86-Н86В | 0.99     |
| C35-H35A | 0.99     | C35-H35B | 0.99     |
| C35-C36  | 1.518(3) | C41-H41A | 0.99     |
| C41-H41B | 0.99     | C41-C40  | 1.518(4) |
| C47-H47A | 0.99     | С47-Н47В | 0.99     |
| C47-C48  | 1.523(3) | C52-H52A | 0.99     |
| C52-H52B | 0.99     | C52-C53  | 1.539(3) |
| C84-H84A | 0.99     | C84-H84B | 0.99     |
| C84-C83  | 1.527(3) | С77-Н77А | 0.99     |
| С77-Н77В | 0.99     | С77-С78  | 1.523(4) |
| C71-H71A | 0.99     | C71-H71B | 0.99     |
| C71-C72  | 1.521(4) | C36-H36A | 0.99     |
| С36-Н36В | 0.99     | С79-Н79А | 0.99     |
| С79-Н79В | 0.99     | C79-C78  | 1.527(3) |
| C40-H40A | 0.99     | C40-H40B | 0.99     |
| С91-Н91  | 0.95     | C91-C92  | 1.389(3) |
| C83-H83A | 0.99     | C83-H83B | 0.99     |
| C68-H68A | 0.99     | C68-H68B | 0.99     |
| C68-C67  | 1.543(3) | C48-H48A | 0.99     |
| C48-H48B | 0.99     | C78-H78A | 0.99     |
| С78-Н78В | 0.99     | C53-H53A | 0.99     |
| C53-H53B | 0.99     | C53-C54  | 1.517(4) |
| С73-Н73А | 0.99     | С73-Н73В | 0.99     |
| C73-C72  | 1.530(4) | С88-Н88  | 0.95     |
| C88-C87  | 1.388(4) | C88-C89  | 1.377(4) |
| С87-Н87  | 0.95     | C87-C92  | 1.388(4) |
| C19-H19A | 0.99     | C19-H19B | 0.99     |
| C55-H55A | 0.99     | C55-H55B | 0.99     |
| C55-C54  | 1.498(4) | С89-Н89  | 0.95     |
| C92-C93  | 1.510(4) | C66-H66A | 0.99     |
| С66-Н66В | 0.99     | C66-C67  | 1.528(4) |
| C66-C65  | 1.476(4) | C54-H54A | 0.99     |
| C54-H54B | 0.99     | C67-H67A | 0.99     |
| С67-Н67В | 0.99     | C64-H64A | 0.99     |

| C64-H64B | 0.99 | C64-C65  | 1.536(3) |
|----------|------|----------|----------|
| C65-H65A | 0.99 | C65-H65B | 0.99     |
| C72-H72A | 0.99 | С72-Н72В | 0.99     |
| С93-Н93А | 0.98 | С93-Н93В | 0.98     |
| C93-H93C | 0.98 |          |          |

## Table S11. Bond angles (°) for 12.

| P1-Pd1-Cl1   | 86.050(16)  | P2-Pd1-Cl1    | 92.008(16)  |
|--------------|-------------|---------------|-------------|
| P2-Pd1-P1    | 169.846(18) | C1-Pd1-Cl1    | 178.02(6)   |
| C1-Pd1-P1    | 94.26(5)    | C1-Pd1-P2     | 88.03(5)    |
| P3-Pd2-Cl2   | 87.825(17)  | P4-Pd2-P3     | 171.247(18) |
| P4-Pd2-Cl2   | 89.878(18)  | C44-Pd2-P3    | 91.59(6)    |
| C44-Pd2-Cl2  | 177.64(6)   | C44-Pd2-P4    | 90.36(6)    |
| C20-P1-Pd1   | 106.15(6)   | C20-P1-C15    | 102.11(9)   |
| C8-P1-Pd1    | 122.80(6)   | C8-P1-C20     | 106.17(9)   |
| C8-P1-C15    | 106.81(9)   | C15-P1-Pd1    | 110.81(6)   |
| C26-P2-Pd1   | 114.21(6)   | C26-P2-C38    | 109.05(9)   |
| C26-P2-C32   | 103.89(9)   | C38-P2-Pd1    | 116.30(6)   |
| C32-P2-Pd1   | 107.35(6)   | C32-P2-C38    | 104.84(9)   |
| C57-P3-Pd2   | 104.81(6)   | C57-P3-C63    | 105.48(9)   |
| C57-P3-C51   | 105.48(9)   | C63-P3-Pd2    | 113.19(7)   |
| C63-P3-C51   | 100.04(10)  | C51-P3-Pd2    | 126.14(8)   |
| C69-P4-Pd2   | 112.40(7)   | C69-P4-C81    | 104.16(9)   |
| C69-P4-C75   | 109.40(9)   | C81-P4-Pd2    | 108.95(7)   |
| C81-P4-C75   | 104.28(9)   | C75-P4-Pd2    | 116.60(7)   |
| O1-C1-Pd1    | 124.17(15)  | 01-C1-C2      | 117.59(16)  |
| C2-C1-Pd1    | 118.24(13)  | C3-C2-C1      | 116.88(16)  |
| C7-C2-C1     | 121.08(16)  | C7-C2-C3      | 122.01(17)  |
| C2-C3-H3A    | 109.4       | C2-C3-H3B     | 109.4       |
| C2-C3-C4     | 111.08(16)  | НЗА-СЗ-НЗВ    | 108.0       |
| C4-C3-H3A    | 109.4       | C4-C3-H3B     | 109.4       |
| O3-C44-Pd2   | 121.65(14)  | O3-C44-C45    | 117.52(16)  |
| C45-C44-Pd2  | 120.83(13)  | H27A-C27-H27B | 108.0       |
| C26-C27-H27A | 109.4       | С26-С27-Н27В  | 109.4       |
| C28-C27-H27A | 109.4       | С28-С27-Н27В  | 109.4       |
| C28-C27-C26  | 111.19(16)  | P1-C20-H20    | 105.1       |
| C25-C20-P1   | 113.40(13)  | C25-C20-H20   | 105.1       |
| C21-C20-P1   | 117.15(14)  | C21-C20-H20   | 105.1       |
| C21-C20-C25  | 109.88(16)  | C45-C50-H50   | 118.8       |
| C45-C50-C49  | 122.42(17)  | C49-C50-H50   | 118.8       |
| P1-C8-H8     | 107.5       | C9-C8-P1      | 111.01(13)  |
| С9-С8-Н8     | 107.5       | C9-C8-C13     | 111.50(16)  |
| C13-C8-P1    | 111.51(13)  | C13-C8-H8     | 107.5       |
| P3-C57-H57    | 104.8      | C62-C57-P3    | 117.29(13) |
|---------------|------------|---------------|------------|
| C62-C57-H57   | 104.8      | C62-C57-C58   | 109.78(16) |
| C58-C57-P3    | 113.99(13) | C58-C57-H57   | 104.8      |
| C2-C7-H7      | 118.6      | C2-C7-C6      | 122.79(17) |
| C6-C7-H7      | 118.6      | C57-C62-H62A  | 109.9      |
| C57-C62-H62B  | 109.9      | H62A-C62-H62B | 108.3      |
| C61-C62-C57   | 109.11(16) | C61-C62-H62A  | 109.9      |
| C61-C62-H62B  | 109.9      | P1-C15-H15    | 105.1      |
| C16-C15-P1    | 117.30(14) | C16-C15-H15   | 105.1      |
| C16-C15-C14   | 109.92(17) | C14-C15-P1    | 113.12(14) |
| C14-C15-H15   | 105.1      | C15-C16-H16A  | 109.3      |
| C15-C16-H16B  | 109.3      | H16A-C16-H16B | 108.0      |
| C17-C16-C15   | 111.65(17) | C17-C16-H16A  | 109.3      |
| C17-C16-H16B  | 109.3      | C57-C58-H58A  | 109.8      |
| C57-C58-H58B  | 109.8      | H58A-C58-H58B | 108.3      |
| C59-C58-C57   | 109.33(16) | C59-C58-H58A  | 109.8      |
| C59-C58-H58B  | 109.8      | P2-C26-H26    | 105.3      |
| C27-C26-P2    | 115.13(13) | C27-C26-H26   | 105.3      |
| C27-C26-C31   | 111.00(16) | C31-C26-P2    | 113.75(13) |
| C31-C26-H26   | 105.3      | C3-C4-H4A     | 109.5      |
| C3-C4-H4B     | 109.5      | C3-C4-C5      | 110.85(17) |
| H4A-C4-H4B    | 108.1      | C5-C4-H4A     | 109.5      |
| C5-C4-H4B     | 109.5      | P2-C38-H38    | 105.0      |
| C39-C38-P2    | 118.52(14) | C39-C38-H38   | 105.0      |
| C39-C38-C43   | 109.34(16) | C43-C38-P2    | 112.82(13) |
| C43-C38-H38   | 105.0      | H33A-C33-H33B | 107.9      |
| C32-C33-H33A  | 109.2      | C32-C33-H33B  | 109.2      |
| C34-C33-H33A  | 109.2      | C34-C33-H33B  | 109.2      |
| C34-C33-C32   | 111.95(17) | C50-C45-C44   | 121.27(17) |
| C50-C45-C46   | 121.90(17) | C46-C45-C44   | 116.82(16) |
| C45-C46-H46A  | 109.2      | C45-C46-H46B  | 109.2      |
| C45-C46-C47   | 111.84(17) | H46A-C46-H46B | 107.9      |
| C47-C46-H46A  | 109.2      | C47-C46-H46B  | 109.2      |
| C8-C9-H9A     | 109.1      | C8-C9-H9B     | 109.1      |
| H9A-C9-H9B    | 107.8      | C10-C9-C8     | 112.49(17) |
| C10-C9-H9A    | 109.1      | C10-C9-H9B    | 109.1      |
| C20-C25-H25A  | 109.7      | C20-C25-H25B  | 109.7      |
| H25A-C25-H25B | 108.2      | C24-C25-C20   | 109.99(17) |
| C24-C25-H25A  | 109.7      | C24-C25-H25B  | 109.7      |
| H70A-C70-H70B | 108.1      | C69-C70-H70A  | 109.6      |
| С69-С70-Н70В  | 109.6      | C71-C70-H70A  | 109.6      |
| С71-С70-Н70В  | 109.6      | C71-C70-C69   | 110.34(17) |
| P4-C69-H69    | 104.9      | C70-C69-P4    | 113.81(14) |
| С70-С69-Н69   | 104.9      | C74-C69-P4    | 116.27(14) |

| C74-C69-C70   | 110.82(17) | С74-С69-Н69   | 104.9      |
|---------------|------------|---------------|------------|
| H80A-C80-H80B | 108.0      | C75-C80-H80A  | 109.4      |
| С75-С80-Н80В  | 109.4      | C79-C80-H80A  | 109.4      |
| C79-C80-H80B  | 109.4      | C79-C80-C75   | 111.17(18) |
| C26-C31-H31A  | 109.7      | C26-C31-H31B  | 109.7      |
| H31A-C31-H31B | 108.2      | C30-C31-C26   | 110.05(16) |
| C30-C31-H31A  | 109.7      | C30-C31-H31B  | 109.7      |
| C62-C61-H61A  | 109.3      | C62-C61-H61B  | 109.3      |
| H61A-C61-H61B | 107.9      | C60-C61-C62   | 111.78(17) |
| C60-C61-H61A  | 109.3      | C60-C61-H61B  | 109.3      |
| P4-C81-H81    | 107.8      | C82-C81-P4    | 110.58(14) |
| C82-C81-H81   | 107.8      | C86-C81-P4    | 112.53(14) |
| C86-C81-H81   | 107.8      | C86-C81-C82   | 110.02(17) |
| H56A-C56-H56B | 108.2      | C51-C56-H56A  | 109.7      |
| C51-C56-H56B  | 109.7      | C51-C56-C55   | 109.92(19) |
| C55-C56-H56A  | 109.7      | C55-C56-H56B  | 109.7      |
| C16-C17-H17A  | 109.3      | C16-C17-H17B  | 109.3      |
| H17A-C17-H17B | 108.0      | C18-C17-C16   | 111.51(18) |
| C18-C17-H17A  | 109.3      | C18-C17-H17B  | 109.3      |
| C27-C28-H28A  | 109.3      | C27-C28-H28B  | 109.3      |
| H28A-C28-H28B | 108.0      | C29-C28-C27   | 111.61(17) |
| C29-C28-H28A  | 109.3      | C29-C28-H28B  | 109.3      |
| C31-C30-H30A  | 109.4      | C31-C30-H30B  | 109.4      |
| H30A-C30-H30B | 108.0      | C29-C30-C31   | 111.34(17) |
| C29-C30-H30A  | 109.4      | C29-C30-H30B  | 109.4      |
| H76A-C76-H76B | 108.2      | C75-C76-H76A  | 109.6      |
| С75-С76-Н76В  | 109.6      | C77-C76-H76A  | 109.6      |
| С77-С76-Н76В  | 109.6      | C77-C76-C75   | 110.09(18) |
| C8-C13-H13A   | 109.2      | C8-C13-H13B   | 109.2      |
| H13A-C13-H13B | 107.9      | C12-C13-C8    | 112.10(17) |
| C12-C13-H13A  | 109.2      | C12-C13-H13B  | 109.2      |
| C9-C10-H10A   | 109.5      | С9-С10-Н10В   | 109.5      |
| H10A-C10-H10B | 108.1      | C11-C10-C9    | 110.84(17) |
| C11-C10-H10A  | 109.5      | C11-C10-H10B  | 109.5      |
| C20-C21-H21A  | 109.7      | C20-C21-H21B  | 109.7      |
| C20-C21-C22   | 109.92(18) | H21A-C21-H21B | 108.2      |
| C22-C21-H21A  | 109.7      | C22-C21-H21B  | 109.7      |
| P2-C32-H32    | 107.9      | C33-C32-P2    | 111.79(13) |
| C33-C32-H32   | 107.9      | C37-C32-P2    | 110.36(13) |
| C37-C32-C33   | 110.69(16) | C37-C32-H32   | 107.9      |
| C38-C39-H39A  | 109.9      | С38-С39-Н39В  | 109.9      |
| H39A-C39-H39B | 108.3      | C40-C39-C38   | 109.13(18) |
| C40-C39-H39A  | 109.9      | С40-С39-Н39В  | 109.9      |
| C38-C43-H43A  | 109.5      | C38-C43-H43B  | 109.5      |

| H43A-C43-H43B | 108.1      | C42-C43-C38   | 110.66(18) |
|---------------|------------|---------------|------------|
| C42-C43-H43A  | 109.5      | C42-C43-H43B  | 109.5      |
| P4-C75-H75    | 105.6      | C80-C75-P4    | 111.51(13) |
| C80-C75-C76   | 109.64(17) | C80-C75-H75   | 105.6      |
| C76-C75-P4    | 117.97(14) | C76-C75-H75   | 105.6      |
| C58-C59-H59A  | 109.3      | C58-C59-H59B  | 109.3      |
| C58-C59-C60   | 111.81(17) | H59A-C59-H59B | 107.9      |
| C60-C59-H59A  | 109.3      | C60-C59-H59B  | 109.3      |
| C33-C34-H34A  | 109.2      | C33-C34-H34B  | 109.2      |
| H34A-C34-H34B | 107.9      | C35-C34-C33   | 111.90(17) |
| C35-C34-H34A  | 109.2      | C35-C34-H34B  | 109.2      |
| РЗ-С63-Н63    | 106.1      | C68-C63-P3    | 117.66(16) |
| C68-C63-H63   | 106.1      | C68-C63-C64   | 109.84(19) |
| C64-C63-P3    | 110.18(14) | C64-C63-H63   | 106.1      |
| C28-C29-C30   | 111.19(17) | C28-C29-H29A  | 109.4      |
| C28-C29-H29B  | 109.4      | C30-C29-H29A  | 109.4      |
| С30-С29-Н29В  | 109.4      | H29A-C29-H29B | 108.0      |
| C32-C37-H37A  | 109.3      | С32-С37-Н37В  | 109.3      |
| H37A-C37-H37B | 108.0      | C36-C37-C32   | 111.54(17) |
| С36-С37-Н37А  | 109.3      | С36-С37-Н37В  | 109.3      |
| C25-C24-H24A  | 109.3      | C25-C24-H24B  | 109.3      |
| H24A-C24-H24B | 108.0      | C23-C24-C25   | 111.64(18) |
| C23-C24-H24A  | 109.3      | C23-C24-H24B  | 109.3      |
| C13-C12-H12A  | 109.3      | C13-C12-H12B  | 109.3      |
| H12A-C12-H12B | 107.9      | C11-C12-C13   | 111.72(17) |
| C11-C12-H12A  | 109.3      | C11-C12-H12B  | 109.3      |
| C4-C5-H5A     | 109.2      | C4-C5-H5B     | 109.2      |
| H5A-C5-H5B    | 107.9      | C6-C5-C4      | 111.97(16) |
| C6-C5-H5A     | 109.2      | C6-C5-H5B     | 109.2      |
| C24-C23-H23A  | 109.5      | C24-C23-H23B  | 109.5      |
| H23A-C23-H23B | 108.1      | C22-C23-C24   | 110.69(18) |
| C22-C23-H23A  | 109.5      | С22-С23-Н23В  | 109.5      |
| C21-C22-H22A  | 109.1      | C21-C22-H22B  | 109.1      |
| C23-C22-C21   | 112.46(17) | C23-C22-H22A  | 109.1      |
| C23-C22-H22B  | 109.1      | H22A-C22-H22B | 107.8      |
| C69-C74-H74A  | 109.5      | C69-C74-H74B  | 109.5      |
| H74A-C74-H74B | 108.1      | C73-C74-C69   | 110.69(18) |
| C73-C74-H74A  | 109.5      | C73-C74-H74B  | 109.5      |
| 04-C49-C50    | 121.06(18) | O4-C49-C48    | 121.74(19) |
| C50-C49-C48   | 117.17(18) | C81-C82-H82A  | 109.4      |
| C81-C82-H82B  | 109.4      | H82A-C82-H82B | 108.0      |
| C83-C82-C81   | 111.27(18) | C83-C82-H82A  | 109.4      |
| C83-C82-H82B  | 109.4      | C61-C60-C59   | 111.42(17) |
| C61-C60-H60A  | 109.3      | C61-C60-H60B  | 109.3      |

| C59-C60-H60A  | 109.3      | С59-С60-Н60В  | 109.3      |
|---------------|------------|---------------|------------|
| H60A-C60-H60B | 108.0      | C17-C18-H18A  | 109.5      |
| C17-C18-H18B  | 109.5      | C17-C18-C19   | 110.9(2)   |
| H18A-C18-H18B | 108.0      | C19-C18-H18A  | 109.5      |
| C19-C18-H18B  | 109.5      | P3-C51-H51    | 106.1      |
| C56-C51-P3    | 112.91(15) | C56-C51-H51   | 106.1      |
| C52-C51-P3    | 113.27(15) | C52-C51-C56   | 111.75(18) |
| C52-C51-H51   | 106.1      | C15-C14-H14A  | 109.5      |
| C15-C14-H14B  | 109.5      | C15-C14-C19   | 110.61(18) |
| H14A-C14-H14B | 108.1      | C19-C14-H14A  | 109.5      |
| C19-C14-H14B  | 109.5      | C10-C11-C12   | 109.98(18) |
| C10-C11-H11A  | 109.7      | C10-C11-H11B  | 109.7      |
| C12-C11-H11A  | 109.7      | C12-C11-H11B  | 109.7      |
| H11A-C11-H11B | 108.2      | C43-C42-H42A  | 109.5      |
| C43-C42-H42B  | 109.5      | H42A-C42-H42B | 108.1      |
| C41-C42-C43   | 110.87(18) | C41-C42-H42A  | 109.5      |
| C41-C42-H42B  | 109.5      | С91-С90-Н90   | 119.6      |
| С89-С90-Н90   | 119.6      | C89-C90-C91   | 120.7(3)   |
| H85A-C85-H85B | 108.0      | C86-C85-H85A  | 109.3      |
| C86-C85-H85B  | 109.3      | C84-C85-H85A  | 109.3      |
| C84-C85-H85B  | 109.3      | C84-C85-C86   | 111.61(18) |
| C81-C86-H86A  | 109.4      | C81-C86-H86B  | 109.4      |
| C85-C86-C81   | 111.39(18) | C85-C86-H86A  | 109.4      |
| C85-C86-H86B  | 109.4      | H86A-C86-H86B | 108.0      |
| C34-C35-H35A  | 109.7      | C34-C35-H35B  | 109.7      |
| H35A-C35-H35B | 108.2      | C36-C35-C34   | 110.01(18) |
| C36-C35-H35A  | 109.7      | C36-C35-H35B  | 109.7      |
| 02-C6-C7      | 120.77(18) | 02-C6-C5      | 122.52(19) |
| C7-C6-C5      | 116.70(18) | C42-C41-H41A  | 109.3      |
| C42-C41-H41B  | 109.3      | H41A-C41-H41B | 108.0      |
| C40-C41-C42   | 111.60(18) | C40-C41-H41A  | 109.3      |
| C40-C41-H41B  | 109.3      | C46-C47-H47A  | 109.4      |
| C46-C47-H47B  | 109.4      | C46-C47-C48   | 110.96(19) |
| H47A-C47-H47B | 108.0      | C48-C47-H47A  | 109.4      |
| C48-C47-H47B  | 109.4      | C51-C52-H52A  | 109.4      |
| C51-C52-H52B  | 109.4      | C51-C52-C53   | 111.3(2)   |
| H52A-C52-H52B | 108.0      | C53-C52-H52A  | 109.4      |
| C53-C52-H52B  | 109.4      | C85-C84-H84A  | 109.5      |
| C85-C84-H84B  | 109.5      | C85-C84-C83   | 110.8(2)   |
| H84A-C84-H84B | 108.1      | C83-C84-H84A  | 109.5      |
| C83-C84-H84B  | 109.5      | С76-С77-Н77А  | 109.2      |
| С76-С77-Н77В  | 109.2      | Н77А-С77-Н77В | 107.9      |
| C78-C77-C76   | 112.2(2)   | С78-С77-Н77А  | 109.2      |
| С78-С77-Н77В  | 109.2      | C70-C71-H71A  | 109.4      |

| C70-C71-H71B  | 109.4      | H71A-C71-H71B | 108.0      |
|---------------|------------|---------------|------------|
| C72-C71-C70   | 111.1(2)   | C72-C71-H71A  | 109.4      |
| C72-C71-H71B  | 109.4      | C37-C36-H36A  | 109.4      |
| C37-C36-H36B  | 109.4      | C35-C36-C37   | 111.12(17) |
| C35-C36-H36A  | 109.4      | C35-C36-H36B  | 109.4      |
| H36A-C36-H36B | 108.0      | C80-C79-H79A  | 109.6      |
| С80-С79-Н79В  | 109.6      | H79A-C79-H79B | 108.1      |
| C78-C79-C80   | 110.13(18) | C78-C79-H79A  | 109.6      |
| С78-С79-Н79В  | 109.6      | C39-C40-H40A  | 109.1      |
| C39-C40-H40B  | 109.1      | C41-C40-C39   | 112.47(19) |
| C41-C40-H40A  | 109.1      | C41-C40-H40B  | 109.1      |
| H40A-C40-H40B | 107.8      | C90-C91-H91   | 119.4      |
| C90-C91-C92   | 121.2(2)   | C92-C91-H91   | 119.4      |
| C82-C83-H83A  | 109.4      | C82-C83-H83B  | 109.4      |
| C84-C83-C82   | 111.15(19) | C84-C83-H83A  | 109.4      |
| C84-C83-H83B  | 109.4      | H83A-C83-H83B | 108.0      |
| C63-C68-H68A  | 109.7      | C63-C68-H68B  | 109.7      |
| C63-C68-C67   | 110.0(2)   | H68A-C68-H68B | 108.2      |
| C67-C68-H68A  | 109.7      | C67-C68-H68B  | 109.7      |
| C49-C48-C47   | 111.77(18) | C49-C48-H48A  | 109.3      |
| C49-C48-H48B  | 109.3      | C47-C48-H48A  | 109.3      |
| C47-C48-H48B  | 109.3      | H48A-C48-H48B | 107.9      |
| C77-C78-C79   | 111.32(19) | C77-C78-H78A  | 109.4      |
| С77-С78-Н78В  | 109.4      | C79-C78-H78A  | 109.4      |
| C79-C78-H78B  | 109.4      | H78A-C78-H78B | 108.0      |
| C52-C53-H53A  | 109.3      | C52-C53-H53B  | 109.3      |
| H53A-C53-H53B | 108.0      | C54-C53-C52   | 111.5(2)   |
| C54-C53-H53A  | 109.3      | C54-C53-H53B  | 109.3      |
| C74-C73-H73A  | 109.4      | C74-C73-H73B  | 109.4      |
| C74-C73-C72   | 111.05(19) | H73A-C73-H73B | 108.0      |
| С72-С73-Н73А  | 109.4      | С72-С73-Н73В  | 109.4      |
| C87-C88-H88   | 119.8      | C89-C88-H88   | 119.8      |
| C89-C88-C87   | 120.5(3)   | C88-C87-H87   | 119.6      |
| C88-C87-C92   | 120.9(3)   | С92-С87-Н87   | 119.6      |
| C18-C19-C14   | 112.4(2)   | C18-C19-H19A  | 109.1      |
| C18-C19-H19B  | 109.1      | C14-C19-H19A  | 109.1      |
| C14-C19-H19B  | 109.1      | H19A-C19-H19B | 107.9      |
| C56-C55-H55A  | 109.2      | C56-C55-H55B  | 109.2      |
| H55A-C55-H55B | 107.9      | C54-C55-C56   | 112.2(2)   |
| C54-C55-H55A  | 109.2      | C54-C55-H55B  | 109.2      |
| C90-C89-C88   | 119.0(3)   | С90-С89-Н89   | 120.5      |
| C88-C89-H89   | 120.5      | C91-C92-C93   | 121.0(2)   |
| C87-C92-C91   | 117.6(3)   | C87-C92-C93   | 121.3(3)   |
| H66A-C66-H66B | 108.0      | C67-C66-H66A  | 109.5      |

| C67-C66-H66B  | 109.5      | C65-C66-H66A  | 109.5    |
|---------------|------------|---------------|----------|
| C65-C66-H66B  | 109.5      | C65-C66-C67   | 110.9(2) |
| C53-C54-H54A  | 109.6      | C53-C54-H54B  | 109.6    |
| C55-C54-C53   | 110.5(2)   | C55-C54-H54A  | 109.6    |
| C55-C54-H54B  | 109.6      | H54A-C54-H54B | 108.1    |
| C68-C67-H67A  | 109.6      | С68-С67-Н67В  | 109.6    |
| C66-C67-C68   | 110.4(2)   | C66-C67-H67A  | 109.6    |
| С66-С67-Н67В  | 109.6      | H67A-C67-H67B | 108.1    |
| C63-C64-H64A  | 109.4      | C63-C64-H64B  | 109.4    |
| C63-C64-C65   | 111.13(18) | H64A-C64-H64B | 108.0    |
| C65-C64-H64A  | 109.4      | C65-C64-H64B  | 109.4    |
| C66-C65-C64   | 111.3(2)   | C66-C65-H65A  | 109.4    |
| C66-C65-H65B  | 109.4      | C64-C65-H65A  | 109.4    |
| C64-C65-H65B  | 109.4      | H65A-C65-H65B | 108.0    |
| C71-C72-C73   | 111.3(2)   | C71-C72-H72A  | 109.4    |
| С71-С72-Н72В  | 109.4      | С73-С72-Н72А  | 109.4    |
| С73-С72-Н72В  | 109.4      | H72A-C72-H72B | 108.0    |
| C92-C93-H93A  | 109.5      | С92-С93-Н93В  | 109.5    |
| C92-C93-H93C  | 109.5      | H93A-C93-H93B | 109.5    |
| H93A-C93-H93C | 109.5      | H93B-C93-H93C | 109.5    |

## **VI: References**

- <sup>2</sup> Burns, D. J.; Lam, H. W. Angew. Chem. Int. Ed. **2014**, 53, 9931-9935.
- <sup>3</sup> Zhao, C.-L.; Yang, J.; Han, Z.-Z.; Zhang, C.-P. J. Fluorine Chem. **2017**, 204, 23-30.
- <sup>4</sup> Ramachary, D. B.; Kishor, M. J. Org. Chem. 2007, 72, 5056-5068.
- <sup>5</sup> Larionov, E.; Li, H.; Mazet, C. *Chem. Commun.* **2014**, *50*, 9816-9826.
- <sup>6</sup> Lange, G. L.; Otulakowski, J. A. J. Org. Chem. **1982**, 47, 5093-5096.
- <sup>7</sup> Agosta, W. C.; Lowrance, W. W. *Tet. Lett.* **1969**, *10*, 3053-3054.
- <sup>8</sup> Lange, G. L.; Decicco, C.; Tan, S. L.; Chamberlain, G. *Tet. Lett.* **1985**, *26*, 4707-4710.
- <sup>9</sup> Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A. H. Angew. Chem. Int. Ed. **2007**, 46, 1097-1100.
- <sup>10</sup> Jankowski, C.; Tower, R. CA1180027A, **1984**.
- <sup>11</sup> Newman, M. S.; McPherson, J. L. J. Org. Chem. **1954**, *19*, 1717-1723.
- <sup>12</sup> Claridge, T. D. W. *High-Resolution NMR Techniques in Organic Chemistry, 3rd Ed.*, Elsevier Science, **2016**.

<sup>&</sup>lt;sup>1</sup> Mewshaw, R. E. Tet. Lett. **1989**, 30, 3753-3756.