

INSIGNEG Institute for *in silico* Medicine

Multiscale VPH models: better predictive accuracy or increased explanatory power? Reflection on the hip fractures problem

Marco Viceconti, Pinaki Bhattacharya and Xinshan Li

The University Of Sheffield.

Fragility fractures by gender

Hip fracture is a mechanic event

ISM: long journey to clinical use

Control the experiment

Predicting strain

Predicting Strength

Sheffield cohort

- 50 English women aged over 50 with acute hip fracture
- 50 women pair matched for height, weight, and age
- DXA, CT scan, FRAX risk, etc.

Yang L, Udall WJ, McCloskey EV, Eastell R. Osteoporos Int. 2014; 25:251-263

Predicting risk of fracture

Dual X-ray Absorptiometry (DXA)

- aBMD: average Areal Bone Mineral Density over selected regions of interest (i.e. femoral neck)
- T-score for standardised ROIs
- Z-score for standardised ROIs

radiation dose

- DXA → 0.001 mSv, Pelvic CT → 6 mSv
- CT2S protocol → < 4.8 mSv (male), < 3.2 mSv (female); greater reductions possible
- Female > 50: death risk for hip fracture 2.8%
- Risk reduction with QCT-SSFE 0.0784%
- Risk increase due to radiation 0.0080%
- Risk-benefit ratio is positive

Viceconti M, et al. Are CT-based finite element model predictions of femoral bone strength clinically useful? *Curr Osteoporos Rep*. 2018, 16(3):216-223

Clinical studies: Strength end point

Viceconti M, et al. Are CT-based finite element model predictions of femoral bone strength clinically useful? *Curr Osteoporos Rep*. 2018, 16(3):216-223

INSIGNEO

© INSIGNEO 2018

SSFE cost-effective for clinical trials

	aBMD	QCT-SSFE
%SEE	75%	82%
Average femoral strength (N)	3265	3265
Standard deviation of predictor (N)	3054	2199
% strength diff. to be detected	20%	20%
α-error	0.05	0.05
b-power	80%	80%
Number of patients per group	123	64
Number of patients in the study	246	128
Fixed costs for trial (£5,000 patient)	£1,230,000.00	£640,000.00
Cost of imaging (£62 DXA; £78 CT)	£15,252.00	£9,984.00
Cost of simulation (£250)	£-	£32,000.00
Total cost	£1,245,252.00	£681,984.00

Viceconti M, et al. Are CT-based finite element model predictions of femoral bone strength clinically useful? *Curr Osteoporos Rep.* 2018, 16(3):216-223

INSIGNEO

© INSIGNEO 2018

CT2S service

INSIGNEO

CT2S Service Computed Tornography To Strength No account? Contact us

About the Service

Detailed information regarding the service and the modelling pipeline:

SCT2S Service Disclaimer

CT2S Service Description

CT Scan Protocol

- CT Service Presentation
- CT2S Example Report

http://ct2s.insigneo.org

Non-invasive bone strength estimation

The CT2S service provides an estimate of the strength of human bone, using non-invasive medical imaging. A user uploads a computed tomography (CT) scan of the anatomy, and receives back a set of values that characterise the strength of the bone under a series of common loading conditions.

The service operates by creating a patient-specific finite element model of the bone, using a state of the art image-processing pipeline. This very precise model of the patient's anatomy is then examined under a range of highly realistic simulated loading conditions, including walking, running, stair-climbing and failing, and the fracture load is computed in each case. Data summarising the identified fracture strength is returned to the user.

Bone strength is clinically important in many circumstances, as an indicator of health - particularly in the ageing population, in fracture risk assessment to stratify patients for prophylaxis, and in efficacy determination for both physiotherapeutic and pharmacological interventions. Until now however, strength could only be measured destructively, and clinical practice has been obliged to rely on surrogate biomarkers, typically area/Bone Mineral Density (aBMD) derived from dual energy X-ray absorptiometry. This measure, although relevant to bone characterisation, is in practice a poor predictor of bone strength.

INSIGNEO

Sign In

Clinical use: cost-effectiveness

	DXA-T-score	QCT-SSFE	Dual pathway
N. of patients referred to secondary care	1,000	1,000	1,000
Patients considered at risk and treated	367	602	633
Patients not treated	633	398	286
Patients who fracture under treatment	147	241	253
Patients who fracture without treatment	316	199	143
Total patients who fracture	463	440	396
Risk assessment costs	£1,255,000	£2,610,000	£1,899,184
Preventive pharma treatment cost	£2,644,898	£4,334,694	£4,555,102
Costs of hip fracture treatment (direct)	£7,552,151	£7,169,553	£6,454,261
Total cost hip fractures (direct costs)	£11,452,049	£14,114,247	£12,908,547
Costs of hip fracture treatment (indirect)	£4,801,282	£4,558,045	£4,103,298
Total cost hip fractures (total cost of care)	£16,253,331	£18,672,292	£17,011,845
Direct costs saved x 1000 patients	£-	-£2,662,197.96	-£1,456,497.96
Full costs saved x 1000 patients	£-	-£2,418,961.22	-£758,514.29
Fractures avoided by new pathway	-	23	67

Viceconti M, *et al.* Are CT-based finite element model predictions of femoral bone strength clinically useful? *Curr Osteoporos Rep.* 2018, 16(3):216-223

INSIGNEO

© INSIGNEO 2018

QCT-SSFE: price point?

- Current cost US\$ 372
 - Price: CT2S service, not for clinical use; VirtuOs \$86 (subsidised)
- Cost-effective ICER < £20,000
 - Criterion NICE UK NHS; may vary in other countries
- SSFE target US\$ 100
 - Increment of cost per Quality-Adjusted Life Year (QALY) achieved £14,656

Business might not be viable

Predicting the risk of hip fracture

ARF0 fall simulator

β

α

Multiscale model

G, E

Organ-scale model

- Multiscale model of fall, body-floor dumping, femur deformation
- Full stochastic modelling of fall
- Stochastic modelling of uncertain variables (i.e. soft tissue dumping)
- Accuracy 0.82 → 0.84

 (θ_i)

 θ_i

Body-floor

impact model

 $F \ge S?$

 θ_{f}

 $m \mid H$

Ground-skeleton

force transfer model

 η_I

 $\ddot{\theta}_i \mid \eta_P$

F*

Conclusions

- QCT-SSFE models are now close to 10% more accurate than DXA-aBMD in separating fractured and non fractured patients; further improvement seems difficult
- When used in interventional clinical trials QCT-SSFE is cost-effective
- When used to stratify patients by intervention, costeffectiveness analyses suggest price-point around \$100 per patient; business might not be viable
- Multiscale stochastic models of bone fracture including disease progression can be used for *in silico* clinical trials, but also to provide a differential prognosis for individual patients, which might inform more personalised treatments

Acknowledgements

VPHOP Osteoporotic Virtual Physiological

Thank You!

University Of Sheffield.

🖉 @insigneo

www.insigneo.org