Supporting Information for

Molecular Structure of the Photo-Oxidation Product of Ellagic Acid in Solution

Hisashi Tokutomi,[†] Takashi Takeda,^{†, \ddagger^*} Norihisa Hoshino,^{†, $\ddagger}and Tomoyuki Akutagawa^{†, <math>\ddagger^*$}</sup>

[†]Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan and [‡]Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

takashi@tohoku.ac.jp (T.T.), akutagawa@tohoku.ac.jp (T.A.)

Phone: +81-22-217-5653; Fax: +81-22-217-5655

Contents

- 1. UV and fluorescence spectra of EA in THF.
- 2. Time-course ¹H NMR spectra of **EA** in THF- d_8 upon photo irradiation.
- 3. Absorption spectral changes of EA by photo irradiation in CH₃OH and DMF.
- 4. Wavelength dependent absorption spectral changes of EA by photo irradiation in THF.
- 5. Crystal structure of (**Ox-EA**)(acetone)(H₂O)₂.
- 6. Atomic numbering scheme of **Ox-EA** and the selective bond-lengths.
- 7. ¹H NMR spectrum of the crude product of **EA** after photo irradiation.
- 8. ¹³C NMR spectra of **Ox-EA** in THF- d_8 .
- 9. ¹H NMR spectra of **Ox-EA** in THF- d_8 .
- 10. Theoretical DFT calculations of EA and Ox-EA.
- 11. Time-dependent UV-vis spectra of EA in THF upon photo-irradiation with rose bengal.
- 12. BHT dependent absorption spectra.
- 13. DFT calculation of the reaction intermediates [2+2]-1, [2+2]-2, and [4+2] cyclization products.
- 14. Cartesian coordinates for the optimized structures

Figure S1. UV (solid line) and fluorescence (dashed line) spectra of EA in THF.

Figure S2. Time-course 1H NMR spectra of EA in THF-d8 upon photo irradiation.

Figure S3. Absorption spectral changes of **EA** by photo irradiation in a) CH₃OH and b) DMF. After 90 min photo irradiation, there were no spectral changes of **EA**.

Figure S4. Wavelength dependent absorption spectral changes of **EA** by photo irradiation in THF. Two kinds of optical filters **I** (red: $\lambda_{ex} = 280-400$ nm) and **II** (blue: $\lambda_{ex} > 400$ nm) were used for the photoreaction.

Figure S5. Crystal structure of $(Ox-EA)(acetone)(H_2O)_2$. a) Crystallographically independent structural units of two **Ox-EA**, two acetones, and four H₂O molecules. Unit cell viewed along the b)

b axis, c) *a* axis, and d) *c* axis.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	atom	atom	distance (Å)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02	C24	1.340(17)
$\begin{array}{ccccccc} 010 & C13 & 1.239(18) \\ C1 & C16 & 1.446(19) \\ C1 & C28 & 1.42(2) \\ 027 & C12 & 1.359(16) \\ C7 & C10 & 1.41(2) \\ 018 & C26 & 1.285(17) \\ C9 & C10 & 1.394(19) \\ C12 & C13 & 1.47(2) \\ C16 & C32 & 1.479(18) \\ C26 & C28 & 1.46(2) \\ 02 & C22 & 1.327(17) \\ 03 & C10 & 1.399(17) \\ 06 & C9 & 1.450(17) \\ 09 & C14 & 1.174(18) \\ 011 & C24 & 1.295(18) \\ C1 & C22 & 1.47(2) \\ 027 & C32 & 1.372(15) \\ C7 & C28 & 1.44(2) \\ C9 & C22 & 1.32(2) \\ 024 & C26 & 1.245(16) \\ 025 & C32 & 1.218(15) \\ \end{array}$	07	C13	1.316(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	010	C13	1.239(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	C16	1.446(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	C28	1.42(2)
$\begin{array}{cccccc} C7 & C10 & 1.41(2) \\ O18 & C26 & 1.285(17) \\ C9 & C10 & 1.394(19) \\ C12 & C13 & 1.47(2) \\ C16 & C32 & 1.479(18) \\ C26 & C28 & 1.46(2) \\ O2 & C22 & 1.327(17) \\ O3 & C10 & 1.399(17) \\ O6 & C9 & 1.450(17) \\ O9 & C14 & 1.174(18) \\ O11 & C24 & 1.295(18) \\ C1 & C22 & 1.47(2) \\ O27 & C32 & 1.372(15) \\ C7 & C28 & 1.44(2) \\ C9 & C22 & 1.30(2) \\ C12 & C25 & 1.32(2) \\ O24 & C26 & 1.245(16) \\ O25 & C32 & 1.218(15) \\ \end{array}$	O27	C12	1.359(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7	C10	1.41(2)
$\begin{array}{cccccc} C9 & C10 & 1.394(19) \\ C12 & C13 & 1.47(2) \\ C16 & C32 & 1.479(18) \\ C26 & C28 & 1.46(2) \\ O2 & C22 & 1.327(17) \\ O3 & C10 & 1.399(17) \\ O6 & C9 & 1.450(17) \\ O9 & C14 & 1.174(18) \\ O11 & C24 & 1.295(18) \\ C1 & C22 & 1.47(2) \\ O27 & C32 & 1.372(15) \\ C7 & C28 & 1.44(2) \\ C9 & C22 & 1.30(2) \\ C12 & C25 & 1.32(2) \\ O24 & C26 & 1.245(16) \\ O25 & C32 & 1.218(15) \\ \end{array}$	O18	C26	1.285(17)
$\begin{array}{cccccc} C12 & C13 & 1.47(2) \\ C16 & C32 & 1.479(18) \\ C26 & C28 & 1.46(2) \\ O2 & C22 & 1.327(17) \\ O3 & C10 & 1.399(17) \\ O6 & C9 & 1.450(17) \\ O9 & C14 & 1.174(18) \\ O11 & C24 & 1.295(18) \\ C1 & C22 & 1.47(2) \\ O27 & C32 & 1.372(15) \\ C7 & C28 & 1.44(2) \\ C9 & C22 & 1.30(2) \\ C12 & C25 & 1.32(2) \\ O24 & C26 & 1.245(16) \\ O25 & C32 & 1.218(15) \\ \end{array}$	C9	C10	1.394(19)
$\begin{array}{cccccc} C16 & C32 & 1.479(18) \\ C26 & C28 & 1.46(2) \\ O2 & C22 & 1.327(17) \\ O3 & C10 & 1.399(17) \\ O6 & C9 & 1.450(17) \\ O9 & C14 & 1.174(18) \\ O11 & C24 & 1.295(18) \\ C1 & C22 & 1.47(2) \\ O27 & C32 & 1.372(15) \\ C7 & C28 & 1.44(2) \\ C9 & C22 & 1.30(2) \\ C12 & C25 & 1.32(2) \\ O24 & C26 & 1.245(16) \\ O25 & C32 & 1.218(15) \\ \end{array}$	C12	C13	1.47(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	C32	1.479(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26	C28	1.46(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02	C22	1.327(17)
$\begin{array}{cccccc} 06 & C9 & 1.450(17) \\ 09 & C14 & 1.174(18) \\ 011 & C24 & 1.295(18) \\ C1 & C22 & 1.47(2) \\ 027 & C32 & 1.372(15) \\ C7 & C28 & 1.44(2) \\ C9 & C22 & 1.30(2) \\ C12 & C25 & 1.32(2) \\ 024 & C26 & 1.245(16) \\ 025 & C32 & 1.218(15) \\ \end{array}$	03	C10	1.399(17)
O9C141.174(18)O11C241.295(18)C1C221.47(2)O27C321.372(15)C7C281.44(2)C9C221.30(2)C12C251.32(2)O24C261.245(16)O25C321.218(15)	06	C9	1.450(17)
O11C241.295(18)C1C221.47(2)O27C321.372(15)C7C281.44(2)C9C221.30(2)C12C251.32(2)O24C261.245(16)O25C321.218(15)	O9	C14	1.174(18)
C1C221.47(2)O27C321.372(15)C7C281.44(2)C9C221.30(2)C12C251.32(2)O24C261.245(16)O25C321.218(15)	011	C24	1.295(18)
O27 C32 1.372(15) C7 C28 1.44(2) C9 C22 1.30(2) C12 C25 1.32(2) O24 C26 1.245(16) O25 C32 1.218(15)	C1	C22	1.47(2)
$\begin{array}{ccccc} C7 & C28 & 1.44(2) \\ C9 & C22 & 1.30(2) \\ C12 & C25 & 1.32(2) \\ O24 & C26 & 1.245(16) \\ O25 & C32 & 1.218(15) \end{array}$	O27	C32	1.372(15)
C9 C22 1.30(2) C12 C25 1.32(2) O24 C26 1.245(16) O25 C32 1.218(15)	C7	C28	1.44(2)
C12C251.32(2)O24C261.245(16)O25C321.218(15)	C9	C22	1.30(2)
O24C261.245(16)O25C321.218(15)	C12	C25	1.32(2)
O25 C32 1.218(15)	O24	C26	1.245(16)
	025	C32	1.218(15)

Figure S6. Atomic numbering scheme of Ox-EA and the selective bond-lengths.

Figure S7. ¹H NMR spectrum of the crude product of EA after photo irradiation.

Figure S8. ¹³C NMR spectra of **Ox-EA** in THF d_8 .

Figure S9. ¹H NMR spectra of **Ox-EA** in THF d_8 .

	EA (vacuum)	EA (THF)	Ox-EA (vacuum)	Ox-EA (THF)
HOMO (eV)	-6.0859	-6.0026	-6.3536	-6.2660
LUMO (eV)	-1.8459	-1.9062	-3.0357	-3.0869
$\Delta E (eV)$	4.239	4.096	3.318	3.179

Figure S10. Theoretical DFT calculations of EA (left) and Ox-EA (right) based on

B3LYP/6-31G(d, p) basis set. HOMO and LUMO energy level of EA and Ox-EA.

Figure S11. Time-dependent UV-vis spectra of EA in THF upon photo-irradiation with rose bengal.

Figure S12. BHT dependent absorption spectra a) without BHT and b) with BHT during the

photo-irradiation of 24 h

Figure S13. Energy calculations using DFT calculation based on a B3LYP/6-31G (d, p) basis set for the reaction intermediates of [2+2]-1, [2+2]-2, and [4+2] cyclization products, respectively.

Cartesian Coordinates for optimized structures.

a. Optimized structure of EA
E(RB3LYP) = -1138.93127751 a.u.
Number of imaginary frequency: 0

Atom	Cartesian Coordinates			
No.	Element	х	Y	Z
1	С	3.444764	-0.503247	0.000205
2	С	2.939655	0.818291	0.000007
3	С	1.555257	1.002372	0.000050
4	С	0.706271	-0.108599	-0.000009
5	С	1.221115	-1.413474	0.000112
6	С	2.607309	-1.609849	0.000169
7	С	-0.706286	0.108597	-0.000028
8	С	-1.221119	1.413488	-0.000093
9	С	-0.302305	2.562888	-0.000139
10	С	-2.607299	1.609850	-0.000022
11	Н	-3.000733	2.621543	-0.000119
12	С	-3.444757	0.503236	0.000059
13	С	-2.939667	-0.818289	0.000077
14	С	-1.555255	-1.002389	0.000023

		Carte	esian Coordin	ates
Atom No.	Element	х	Y	Z
15	С	0.302344	-2.562881	-0.000092
16	Н	3.000731	-2.621545	0.000231
17	0	-1.062917	-2.281046	0.000003
18	0	1.062908	2.281053	-0.000071
19	0	0.635150	-3.723768	-0.000548
20	0	-0.635159	3.723776	-0.000190
21	0	-4.815347	0.563695	-0.000059
22	Н	-5.108318	1.483760	0.001251
23	0	-3.771917	-1.880293	0.000254
24	Н	-4.680860	-1.540726	0.000121
25	0	4.815356	-0.563693	0.000427
26	Н	5.108348	-1.483752	-0.001298
27	0	3.771905	1.880286	-0.000018
28	Н	4.680836	1.540691	-0.000478

b. Optimized structure of **Ox-EA**E(RB3LYP) = -1289.37050772 a.u.
Number of imaginary frequency: 0

Atom	Element	Cart	esian Coordin	ates
No.		Х	Y	Z
1	С	-3.207596	-0.144906	-0.089603
2	С	-0.423704	0.004105	-0.064561
3	С	-1.074976	-1.200447	0.112059

Atom	Element	Carte	sian Coordina	ates
No.		Х	Y	Z
16	0	-5.366056	-1.092953	0.206201
17	0	-5.199162	1.117871	-0.242042
18	Н	-6.164731	1.028697	-0.172819

4	С	-2.501289	-1.278023	0.122197
5	С	1.025162	0.062512	0.016459
6	С	1.818060	1.236948	0.104294
7	С	3.203804	1.149866	-0.015936
8	Н	3.797714	2.055556	0.050588
9	С	3.830088	-0.086128	-0.169718
10	С	3.087188	-1.271151	-0.146527
11	С	1.693868	-1.177977	-0.036243
12	Н	-3.004288	-2.214557	0.319212
13	С	-0.318842	-2.461599	0.254858
14	0	-0.806382	-3.541460	0.479036
15	С	-4.694351	-0.109256	-0.023529

19	0	1.034700	-2.374590	0.019402
20	0	-2.603522	1.030023	-0.397762
21	С	1.243276	2.530495	0.574373
22	0	0.355797	2.626108	1.395200
23	0	1.896960	3.603926	0.073710
24	Н	1.479779	4.380524	0.483359
25	С	-1.226488	1.150995	-0.546859
26	0	-0.808590	2.136465	-1.101165
27	0	3.677220	-2.484739	-0.224443
28	Н	4.634609	-2.342526	-0.285139
29	0	5.181276	-0.262067	-0.290967
30	Н	5.633793	0.591044	-0.280148

c. Optimized structure of [2+2]-1
E(RB3LYP) = -1289.21925001 a.u.
Number of imaginary frequency: 0

Atom	F lamant	Cart	esian Coordir	nates
No.	Element	Х	Y	Z
1	С	-3.212674	0.860786	-0.187140
2	С	-2.872221	-0.613469	-0.073629
3	С	-0.425015	0.251563	0.045061
4	С	-0.879488	1.534131	-0.024463
5	С	-2.295322	1.844533	-0.117560
6	С	0.960938	-0.052755	0.009228
7	С	1.399664	-1.384925	-0.062803
8	С	2.768250	-1.655870	-0.070596
9	Н	3.106465	-2.685172	-0.141284
10	С	3.671714	-0.597772	-0.012635
11	С	3.246885	0.749151	0.019264
12	С	1.873392	1.008788	0.015603
13	Н	-2.573283	2.891682	-0.186511
14	С	-1.380020	-0.882162	0.227395
15	0	-3.185487	-1.080599	1.278098

Atom	Flomont	Carte	esian Coordin	ates
No.	Element	Х	Y	Z
16	0	-1.734858	-1.027950	1.619775
17	0	-0.928144	-2.095337	-0.311714
18	0	1.440677	2.303342	0.018885
19	0	-3.444987	-1.368595	-1.056744
20	Н	-4.309305	-0.982634	-1.268752
21	0	-4.547544	1.020950	-0.383129
22	Н	-4.760079	1.958999	-0.490751
23	0	5.033712	-0.741917	-0.008884
24	Н	5.273084	-1.677127	-0.037968
25	0	4.135348	1.763154	0.044875
26	Н	5.025279	1.376409	0.040129
27	С	0.410113	-2.466715	-0.248460
28	0	0.689128	-3.627212	-0.419299
29	С	0.091615	2.643616	-0.056207
30	0	-0.196486	3.814721	-0.118516

d.	Optimized structure of [2+2]-2
E(R	B3LYP) = -1289.19602156 a.u.
Nu	umber of imaginary frequency: 0

Atom	F lamant	Cart	esian Coordi	nates
No.	Element	Х	Y	Z
1	С	3.314487	0.098540	-0.233673
2	С	2.652339	1.280257	-0.169567
3	С	1.197052	1.293601	-0.075905
4	С	0.476373	0.140076	-0.022472
5	С	1.147338	-1.166277	0.121698
6	С	-0.944674	0.195564	-0.014304
7	С	-1.597393	1.439572	0.040243
8	С	-3.000131	1.489038	0.082934
9	Н	-3.497162	2.452890	0.131004
10	С	-3.715266	0.304648	0.057901
11	С	-3.071811	-0.958251	-0.038348
12	С	-1.681936	-0.992459	-0.085750
13	С	-0.804100	2.668002	0.027888
14	0	-1.220090	3.797883	0.078666
15	С	0.303689	-2.317961	-0.433417

Atom	Element	Cartesian Coordinates		
No.		Х	Y	Z
16	0	0.767394	-3.314048	-0.919499
17	0	0.599561	2.504579	-0.084308
18	0	-1.059094	-2.213243	-0.276413
19	0	-5.082965	0.211864	0.096796
20	Н	-5.477254	1.092374	0.138275
21	0	-3.791350	-2.095660	-0.100701
22	Н	-4.730302	-1.852739	-0.063829
23	0	4.678844	0.145185	-0.416379
24	Н	5.097664	-0.527189	0.140534
25	0	3.273452	2.480929	-0.228985
26	Н	4.226799	2.302719	-0.274433
27	С	2.649038	-1.237568	-0.171741
28	Н	2.974535	-1.905410	-0.976039
29	0	2.850109	-1.889774	1.120646
30	0	1.466100	-1.500632	1.529124

- e. Optimized structure of [4+2]
- f. E(RB3LYP) = -1289.19112173 a.u.
- g. Number of imaginary frequency: 0

Atom	Element	Cartesian Coordinates		
No.		Х	Y	Z
1	С	3.203283	-0.382876	-0.535686
2	С	2.656492	0.838865	-0.622072
3	С	0.469411	-0.146915	0.017936
4	С	1.010324	-1.381286	0.081932

Atom	Element	Cartesian Coordinates		
No.		Х	Y	Z
16	С	0.164930	-2.562411	0.046328
17	0	0.512308	-3.712739	0.140306
18	0	-1.214515	-2.301610	-0.151393
19	0	0.883901	2.250663	0.258972

5	С	2.476164	-1.289566	0.427603
6	С	-0.917937	0.081733	-0.048256
7	С	-1.421841	1.385598	0.023877
8	С	-2.802067	1.574333	-0.036719
9	Н	-3.212782	2.577359	0.024311
10	С	-3.629808	0.458671	-0.169738
11	С	-3.127877	-0.862774	-0.222306
12	С	-1.741987	-1.045410	-0.147233
13	Н	2.956510	-2.253656	0.601351
14	С	-0.487962	2.519290	0.202751
15	0	-0.826065	3.671715	0.285855

20	0	-4.995229	0.522480	-0.245800
21	Н	-5.294944	1.438160	-0.178922
22	0	-3.955262	-1.920834	-0.328682
23	Н	-4.865666	-1.585757	-0.352690
24	0	4.338693	-0.738495	-1.229719
25	Н	4.988403	-1.111593	-0.616418
26	0	3.094575	1.914377	-1.311383
27	Н	3.930507	1.659475	-1.733354
28	С	1.431011	0.972878	0.257657
29	0	1.882526	0.717258	1.655891
30	0	2.504712	-0.613412	1.750863