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Risk = Hazard x Exposure

Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput screening (Dix et 
al., 2007, Collins et al., 2008) + in 
vitro-in vivo extrapolation (IVIVE, 
Wetmore et al., 2012, 2015) can 
predict a dose (mg/kg bw/day) that 
might be adverse High throughput models exist to 

make predictions of exposure via 
specific, important pathways such 

as residential product use and diet

Need methods to forecast exposure for 
thousands of chemicals 
(Wetmore et al., 2015)

Toxicokinetics

NRC (1983)
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Limited Available Data for Exposure 
Estimation

Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)

Office of Research and Development
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Biomonitoring Data

The National Health and Nutrition Examination Survey (NHANES) provides targeted biomonitoring data of chemicals and 
metabolites in human blood and urine

CDC (2018)

There are hundreds of chemicals, and yet Park et al. (2012) and 
others have seen evidence for many others 
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Method 1

EPA’s Non-Targeted Analysis 
Collaborative Trial (ENTACT)

Phase 1: 
• Collaborators provided 10 mixtures of 100-400 

ToxCast chemicals each
• MS vendors provided with individual chemical 

standards 

Phase 2: Fortified reference house dust, human serum, and 
silicone wristbands

The Chemical Universe

Method 2

Suspect screening / Non-targeted analyses (SSA/NTA) present opportunities for 
new exposure data

What NTA methods are available? What is the coverage of chemical universe and 
matrices? How do methods differ in their coverage?

Sobus et al.  (2017)

Led by Jon Sobus and 
Elin Ulrich (EPA/NERL)
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What We Learned from Suspect 
Screening in House Dust

Rager et al. (2016)

M
as

s

Retention Time

947 Peaks in an American Health Homes Dust Sample
Liquid chromatography peaks 
corresponds to a chemical with an 
accurate mass and predicted 
formula:

Multiple chemicals can have the 
same mass and formula:

Is chemical A present, 
chemical B, or both?

C17H19NO3
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Oleic acid [33] Tris(2-ethylhexyl) 
trimellitate [4]

1,2-
Benzisothiazolin-

3-one [4]

Tris(2-
chloroisopropyl)phos

phate [3]

Trioctyl trimellitate 
[4]

3-Hydroxy-N-(3-
nitrophenyl)naphthalen

e-2-carboxamide [4]

Tris(2-
chloropropyl) 
phosphate [3]

Piperine [8] Calcifediol [4] Norcodeine [8]

Morphine sulfate 
pentahydrate [8]

Di(propylene glycol) 
dibenzoate [1]

N,N-diethyl-m-
toluamide 
(DEET) [4]

N,N-Dimethyldodecan-1-
amine [8] Alfacalcidol [4]

Bis(2,2,6,6-
tetramethyl-4-

piperidyl) sebacate 
[2]

1,2-
Benzenedicarboxylic 

acid, di-C6-8-branched 
alkyl esters, C7-rich [4]

Diethylene glycol 
dibenzoate [1]

2-Hydroxy-3-
phenoxypropyl prop-

2-enoate [16]
Triclocarban [1]

Vitamin D3 [1] Diglycidyl resorcinol 
ether [16]

Perfluorooctane 
sulfonic acid 
(PFOS) [7]

Perfluorooctane 
sulfonic acid 
(PFOS-K) [7]

Lauryldiethanolamin
e [3]

Detection 
Frequency

Abundance

Exposure

Toxicity

ToxPi 
Legend

Prioritizing Chemical Matches

Rager et al. (2016)
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Consensus Exposure Predictions with the SEEM Framework

• Different exposure models incorporate knowledge, assumptions, and data (MacLeod et al., 2010)

• We incorporate multiple models into consensus predictions for 1000s of chemicals within the Systematic 
Empirical Evaluation of Models (SEEM) (Wambaugh et al., 2013, 2014)

Hurricane Path 
Prediction is an 

Example of 
Integrating 

Multiple Models

• Evaluation is similar to a sensitivity analysis: What models are 
working? What data are most needed? 
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R2 ≈ 0.14

First Generation SEEM
Wambaugh et al., 2013

• Those chemicals with 
“near-field” – proximate, 
in the home, sources of 
exposure – had much 
higher rates of exposure 
than those with sources 
outside the home 
(Wallace et al.,  1986)

• The only available “high 
throughput exposure 
models in 2013 were for 
far-field sources
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R2 ≈ 0.5

Second Generation SEEM

R2 ≈ 0.5 indicates that we can predict 
50% of the chemical to chemical 
variability in median NHANES 
exposure rates

Same five predictors work for all 
NHANES demographic groups 
analyzed – stratified by age, sex, and 
body-mass index:

• Industrial and Consumer use
• Pesticide Inert
• Pesticide Active
• Industrial but no Consumer 

use
• Production Volume

Wambaugh et al. (2014)
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Wambaugh et al. (2014) R2 ≈ 0.5 indicates that we can predict 
50% of the chemical to chemical 
variability in median NHANES 
exposure rates

Same five predictors work for all 
NHANES demographic groups 
analyzed – stratified by age, sex, and 
body-mass index:

• Industrial and Consumer use
• Pesticide Inert
• Pesticide Active
• Industrial but no Consumer 

use
• Production Volume

Heuristics of Exposure



Office of Research and Development12 of 18 

“In particular, the 
assumption that 100% 
of [quantity emitted, 
applied, or ingested] 

is being applied to 
each individual use 
scenario is a very 

conservative 
assumption for many 

compound / use 
scenario pairs.”

Knowledge of Exposure Pathways Limits 
High Throughput Exposure Models
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Predicting Exposure Pathways
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Sources of Positives Sources of Negatives
Dietary 24 2523 8865 27 32 73 FDA CEDI, ExpoCast, CPDat 

(Food, Food Additive, Food 
Contact), NHANES Curation

Pharmapendium, CPDat (non-
food), NHANES Curation

Near-Field 49 1622 567 26 24 74 CPDat (consumer_use, 
building_material), ExpoCast, 
NHANES Curation

CPDat (Agricultural, Industrial), 
FDA CEDI, NHANES Curation

Far-Field 
Pesticide

94 1480 6522 21 36 80 REDs, Swiss Pesticides, 
Stockholm Convention, CPDat 
(Pesticide), NHANES Curation

Pharmapendium, Industrial 
Positives, NHANES Curation

Far Field 
Industrial

42 5089 2913 19 16 81 CDR HPV, USGS Water 
Occurrence, NORMAN PFAS, 
Stockholm Convention, CPDat 
(Industrial, Industrial_Fluid), 
NHANES Curation

Pharmapendium, Pesticide 
Positives, NHANES Curation

We use the method of Random Forests to relate chemical structure and properties to exposure pathway

Ring et al., submitted



Office of Research and Development14 of 18 

Collaboration on High Throughput Exposure Predictions
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, 
Kristin K. Isaacs, Olivier Jolliet, Hyeong-Moo Shin, Katherine A. Phillips, 

Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathways

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 Far-Field Industrial and Pesticide

EPA Pesticide Reregistration Eligibility Documents 
(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 Far-Field Pesticide

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 Far-Field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 
Far-Field (2.02)

Arnot et al. (2008) 8167 Far-Field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) Near-Field Direct (2017)

Isaacs (2017) 7511 Far-Field Industrial and Pesticide

SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential

RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential

USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016,2017) 615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 
Ernstoff et al. (2017)

8167 Dietary

Ring et al., submitted
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Pathway-Based Consensus Modeling of NHANES

Intake Rate (mg/kg BW/day) Inferred from 
NHANES Serum and Urine
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Ring et al., submitted

• New machine learning tools provide 
improved high throughput exposure 
estimates by matching chemicals to 
exposure pathways and associated 
calibrated exposure models. 

• Exposure predictors (data and 
models) have been grouped 
into four pathways (residential, 
dietary, pesticidal, and industrial) 
and calibrated via Bayesian 
multivariate regression using human 
intake rates inferred for 114 
chemicals from a large bio-
monitoring survey.

• We have evaluated and calibrated 
the models using NHANES 
biomonitoring data



Office of Research and Development16 of 18 

Consensus Modeling of Median Chemical Intake 

• New machine learning tools provide 
improved high throughput exposure 
estimates by matching chemicals to 
exposure pathways and associated 
calibrated exposure models. 

• Exposure predictors (data and 
models) have been grouped 
into four pathways (residential, 
dietary, pesticidal, and industrial) 
and calibrated via Bayesian 
multivariate regression using human 
intake rates inferred for 114 
chemicals from a large bio-
monitoring survey.

• We have evaluated and calibrated 
the models using NHANES 
biomonitoring data

Ring et al., submitted
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Selecting Candidates for Prioritization

Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetic

s

Lower
Risk

Medium 
Risk

Highe
r

Risk
Ring et al. (2017)

Chemicals Monitored by CDC NHANES

ToxCast + HTTK can estimate doses 
needed to cause bioactivity

Exposure intake 
rates  can be inferred 
from biomarkers
(Wambaugh et al., 2014)
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• A tapestry of laws covers the chemicals people are 
exposed to in the United States (Breyer, 2009)

• Most other chemicals, ranging from industrial waste to 
dyes to packing materials, are covered by the recently 
updated Toxic Substances Control Act (TSCA) and 
administered by the EPA

• New approach methodologies (NAMs) are being 
developed to prioritize these existing and new chemicals 
for testing

• New machine learning tools provide improved high 
throughput exposure estimates by matching chemicals to 
exposure pathways and associated calibrated exposure 
models. 

Conclusions

The views expressed in this presentation are those of the author and 
do not necessarily reflect the views or policies of the U.S. EPA

• Machine learning models based on chemical structure and physico-chemical properties predict whether or not each 
pathway is relevant to a library of over 680,000 chemicals, allowing an exposure estimate for each chemical based on 
the calibrated predictors. 
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