
Jupyter + Kale:
Human-in-the-loop Interactivity in
HPC Workflows

Shreyas Cholia, Matthew Henderson,
Oliver Evans, Fernando Pérez
Lawrence Berkeley National Laboratory,

Gateways 2018 - Wednesday, September 26

What is Jupyter?
Tool for reproducible, shareable narratives, literate computing:

Notebook: Document containing code, comments, outputs.
Rich text, interactive plots, equations, widgets, etc.

Why Now?
Integral part of Big (Data) Science & Superfacility:

LSST-DESC, DESI, ALS, LCLS, Materials Project…
Kale LDRD (workflows), KBase...

Generational shift in analytics for science + more:
UCB’s Data Science 8 course, entirely in Jupyter
“I’ll send you a copy of my notebook”
Training events adopting notebooks (DL)

Supporting reproducibility and science outreach:
Open source code and open source science
Jupyter notebooks alongside publications (LIGO)

2017 ACM Software System Award: “… a de facto standard for data analysis in
research, education, journalism and industry. Jupyter has broad impact across
domains and use cases. Today more than 2,000,000 Jupyter notebooks are on
GitHub, each a distinct instance of a Jupyter application—covering a range of
uses from technical documentation to course materials, books and academic
publications.”

Data 8: Foundations of Data Science

LIGO Binary BH-BH Merger GW Signature
Figure from LIGO EPO/Publication Jupyter Notebook

Jupyter Gateway Deployments

Many science gateway environments now support Jupyter
Notebooks

● Enable custom, ad-hoc analyses on scientific data
● Jupyterhub lets you deploy multi-user notebook

environments
● Jupyterlab enables integration across “apps”
● Deployments at NERSC, OSU, BNL, XFEL, TACC,

Pacific Research Platform etc.

4

Motivation

 Improved scientific discovery and productivity through
better tools
• Enable human-in-the-loop computing
• Enhance reproducibility and collaboration

Enable exploratory data analytics, deep learning,
workflows, and more through Jupyter on NERSC and
other HPC systems.

5

QA/QC
● Generate notebooks from

HPC output
● Human inspection
● Iterate on steps

Master Workflow Controller
● Setup and control job

workflows through notebook.
● Use batch queue to run jobs

and use notebook before &
after job steps

How are scientists using Jupyter in HPC?

Parallel/Distributed interactive
work

● Scaling up single-node
notebook operations to a
parallel/distributed mode

● Request HPC nodes
● Jupyter on Master Node +

Workers
○ e.g., IPyparallel, Dask

● Live control using Notebooks

6

Our Focus

Provide a more natural
development cycle for scientists
using HPC
Human-in-the-loop
● Real-time task monitoring
● Dynamic task control
● Runtime ad-hoc analyses
● Seamless cycle between code

results and viz
7

Our approach

 Leverage Jupyter architecture
• Notebooks
• Widgets
• Kernels
• Distributed Execution

 Extend the Jupyter ecosystem
• Fine-grain Task Control
• Task Monitoring
• Real-time interaction

8

Kale: Human-in-the-loop HPC
Project Kale is a research effort focused on adapting the
Jupyter machinery for HPC workflows

● Master notebook to control workflow
● Jupyter notebooks as interactive workflow steps
● Interaction with workflow tasks via kernels
● Realtime Monitoring of HPC jobs and output
● Widgets and dashboards for batch job management

9

Control and Monitor Tasks

 HPC tasks are wrapped by a process
• Non-invasive to the task

 The process provides (via REST API)
• Resource monitoring
– Task level + Node level

• Task control
– Start, Stop, Pause, Resume

• Extend to wrap tasks with arbitrary callouts

10

Not Another Workflow System

Wikipedia page on workflow systems: 100+ packages

We don’t need another workflow manager.

Instead Kale hooks into existing workflow or task execution
systems

● Fireworks, IPyParallel, Parsl etc.

11

Overall system

12

A Word About Python

13

● Jupyter has a close connection with Python (emerged
from IPython)

● And many of the tools in the Jupyter Ecosystem are
centered around Python

● Scientists seem to really like it to drive their workflows,
so we focus a lot of development here

● Kale can be used to wrap any arbitrary process so we
aren’t limited to Python codes (but our examples will
focus on a Python backend)

Use Case: Deep Learning on HPC

● Configure a set of
hyperparameters

● Launch HPC model training runs
● View a model output dashboard

with current best and worst
model runs

● Manage Distributed Training

14

 Control model runs
– Stop poor performers
– Start new models exploring

different parameter spaces

Our approach

Wrap execution of model runs
Build the UI with Jupyter Widgets for use in a Notebook

 Features
• Configure hyperparameters
• Submit HPC runs
• Display current Best/Worst models
• Controls for model execution

15

Ecosystem
Task distribution and management
IPython Parallel (ipyparallel) - Hub and Controller communicate with a set of
ipyparallel engines (ipython kernels running across multiple nodes). Publish
data that is monitored via background threads and event listener.

Currently single controller bottleneck but only for notebook communication -
can use other MPI libraries like Horovod for bulk communication alongside

See also: Dask, Horovod
Live Plotting, Interactive visualization, Realtime Communication
IPyWidgets - Real-time interaction with Jupyter backend, live rendering of
data, Start/Stop Tasks
QGrid (Quantopian) - Interactive tables with sort, filter, row selection; Updated
in real time
BQPlot (Bloomberg) - Live Plotting and interaction with QGrid
Fine grained hooks into resources
Kale - Extends jupyter ecosystem with manager and worker service that wrap
backend task to provide fine-grain task control and node resource monitoring

16

Jupyter architecture

 Allocate nodes on Cori interactive queue and start ipyparallel or Dask
cluster

• Developed %ipcluster magic to setup within notebook
 Compute nodes traditionally do not have external address

• Required network configuration / policy decisions
 Distributed training communication is via MPI Horovod or Cray ML

Plugin

17

Cori Compute Nodes
Cori Login Node

Notebook
Server Process

ipyparallel
Controller

JupyterHub
Web Server

Engine/
kernel

MPI

kernel/
ipyparallel client

Cori
Filesystems

Engine/
kernelEngine/

kernelEngine/
kernelEngine/

kernelEngine/
kernelEngine/

kernel

Setting up ipyparallel cluster

18

Use a unique cluster ID for this job

clusterID=cori_${SLURM_JOB_ID}

echo "Launching controller"

ipcontroller --ip="$headIP" \

--cluster-id=$clusterID &

sleep 20

echo "Launching engines"

srun ipengine --cluster-id=$clusterID

salloc --qos=interactive -N 1 -C haswell
wbhimji@nid00032:~> ./startCluster.sh

Via Magic (entire workflow in notebook) or a console script

Connect to cluster in notebook

Distributed Training

 Speed up training by parallelizing
across nodes, e.g. for distributed
Stochastic Gradient Descent
(SGD) algorithms:

• Each node computes gradients
locally

• Summed across nodes and
propagated to all nodes (sync)
or via parameter server (async)

 MPI-based tools for distributed
SGD now available :

• e.g Horovod and Cray PE ML
Plugin

19

These methods/tools can scale well
to many nodes on Cori (above is for
a large image version of the same
LHC CNN used here)

Kurth et al CUG 2018

https://cug.org/cug-2018-technical-program/

Distributed Training
 Distributed training in notebooks

with IPyParallel and Horovod-MPI
 Notebook cells specified for

parallel execution using cell magic
• MPI code in a notebook

 Scales well with no noticeable
overhead from the notebook
infrastructure

Parallel notebook cell

Construct model
on every worker

Train with Horovod on all workers

Distributed HPO
● Hyper-parameter optimization (HPO) algorithms are used to find a

best set of possible model hyper-parameters
○ Can train and evaluate many models in parallel across nodes in HPC

system
● Random Search HPO

○ Evaluate model at HP sets randomly sampled from a specified HP
space

○ Simple algorithm; trivially parallelizable

21

Distributed HPO - Setup

22

Easy but powerful setup for
random search HPO

 Define HP sets to evaluate
 Define model training

function
 Run the HPO tasks with

load-balanced scheduler Load-balanced scheduling

Launch user-defined training
function and arguments

AsyncResult objects can be
queried for status, outputs

Distributed HPO with widgets

23

Notebook widgets can be added to enhance the HPO
workflow

 Real-time monitoring
• View live status/summaries of HPO training tasks
• Plot detailed live information of select training runs

 Enhanced interactivity
• Select best/worst performing runs
• Do further analysis in notebook
• Modify HP search space
• Start/stop runs

24

Plots update live

Table shows
different
configurations:

- Status
- Current loss

and accuracy
- Sort

Can add further
quantities to plot
and interaction
buttons

Stop and Restart
Tasks

25

https://docs.google.com/file/d/1P4uSaEOkN0nM29GymjTyJCHVJDVxBF9S/preview

26

https://docs.google.com/file/d/1L_LmrgaILkQzeR_m3ZM-j-3jjBzf5qSf/preview

Distributed HPO - Results

 For LHC CNN example,
process hundreds of HP
tasks in <1hr.

 Visualize model
classification performance
and runtimes

27

Weighted ROC curve

Results competitive
with original CNN
paper using fraction of
dataset!

Task runtimes
Distribution of
model accuracies

Failed to
converge

Best models

Best model found:

Summary

● Jupyter + Kale + Jupyter Widgets + iPyParallel can give you a
powerful platform for iterative, interactive problems on HPC

● Use of Jupyter in deep learning models and hyperparameter
optimisation experiments that need distributed HPC resources =>
clear win for science

● We are developing software and infrastructure for this on Cori at
NERSC

● What we’re doing now:
○ Demonstrating and sharing notebook-driven examples for

multiple use cases
○ Capturing widgets and code as pluggable modules

28

Links, Acknowledgements etc.

● Kale:
○ https://github.com/Jupyter-Kale/kale

● Deep Learning Examples:
○ https://github.com/Jupyter-Kale/cori-intml-examples/

● This work was supported by the LBL LDRD program

● Contact:
○ Shreyas Cholia - scholia@lbl.gov
○ Matt Henderson - mhenderson@lbl.gov

29

https://github.com/Jupyter-Kale/kale
https://github.com/Jupyter-Kale/cori-intml-examples/
mailto:scholia@lbl.gov
mailto:mhenderson@lbl.gov

