
Jupyter + Kale:
Human-in-the-loop Interactivity in 
HPC Workflows 

Shreyas Cholia, Matthew Henderson, 
Oliver Evans, Fernando Pérez
Lawrence Berkeley National Laboratory,

Gateways 2018 - Wednesday, September 26



What is Jupyter?
Tool for reproducible, shareable narratives, literate computing:

Notebook: Document containing code, comments, outputs.
Rich text, interactive plots, equations, widgets, etc.



Why Now?
Integral part of Big (Data) Science & Superfacility:

LSST-DESC, DESI, ALS, LCLS, Materials Project…
Kale LDRD (workflows), KBase...

Generational shift in analytics for science + more:
UCB’s Data Science 8 course, entirely in Jupyter
“I’ll send you a copy of my notebook”
Training events adopting notebooks (DL)

Supporting reproducibility and science outreach:
Open source code and open source science
Jupyter notebooks alongside publications (LIGO)

2017 ACM Software System Award: “… a de facto standard for data analysis in 
research, education, journalism and industry. Jupyter has broad impact across 
domains and use cases. Today more than 2,000,000 Jupyter notebooks are on 
GitHub, each a distinct instance of a Jupyter application—covering a range of 
uses from technical documentation to course materials, books and academic 
publications.”

Data 8: Foundations of Data Science

LIGO Binary BH-BH Merger GW Signature
Figure from LIGO EPO/Publication Jupyter Notebook



Jupyter Gateway Deployments

Many science gateway environments now support Jupyter 
Notebooks

● Enable custom, ad-hoc analyses on scientific data
● Jupyterhub lets you deploy multi-user notebook 

environments
● Jupyterlab enables integration across “apps”
● Deployments at NERSC, OSU, BNL, XFEL, TACC, 

Pacific Research Platform etc.
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Motivation

 Improved scientific discovery and productivity through 
better tools
• Enable human-in-the-loop computing
• Enhance reproducibility and collaboration

Enable exploratory data analytics, deep learning, 
workflows, and more through Jupyter on NERSC and 
other HPC systems.
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QA/QC
● Generate notebooks from 

HPC output
● Human inspection
● Iterate on steps

Master Workflow Controller
● Setup and control job 

workflows through notebook.
● Use batch queue to run jobs 

and use notebook before & 
after job steps

How are scientists using Jupyter in HPC? 

Parallel/Distributed interactive 
work

● Scaling up single-node 
notebook operations to a 
parallel/distributed mode

● Request HPC nodes
● Jupyter on Master Node + 

Workers
○ e.g., IPyparallel, Dask

● Live control using Notebooks
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Our Focus

Provide a more natural 
development cycle for scientists 
using HPC
Human-in-the-loop
● Real-time task monitoring
● Dynamic task control
● Runtime ad-hoc analyses
● Seamless cycle between code 

results and viz
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Our approach

 Leverage Jupyter architecture
• Notebooks
• Widgets
• Kernels
• Distributed Execution

 Extend the Jupyter ecosystem
• Fine-grain Task Control
• Task Monitoring
• Real-time interaction
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Kale: Human-in-the-loop HPC
Project Kale is a research effort focused on adapting the 
Jupyter machinery for HPC workflows

● Master notebook to control workflow
● Jupyter notebooks as interactive workflow steps
● Interaction with workflow tasks via kernels
● Realtime Monitoring of HPC jobs and output
● Widgets and dashboards for batch job management
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Control and Monitor Tasks

 HPC tasks are wrapped by a process
• Non-invasive to the task

 The process provides (via REST API)
• Resource monitoring
– Task level + Node level

• Task control
– Start, Stop, Pause, Resume

• Extend to wrap tasks with arbitrary callouts
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Not Another Workflow System

Wikipedia page on workflow systems: 100+ packages

We don’t need another workflow manager.

Instead Kale hooks into existing workflow or task execution 
systems 

● Fireworks, IPyParallel, Parsl etc.
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Overall system
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A Word About Python 
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● Jupyter has a close connection with Python (emerged 
from IPython)

● And many of the tools in the Jupyter Ecosystem are 
centered around Python

● Scientists seem to really like it to drive their workflows, 
so we focus a lot of development here

● Kale can be used to wrap any arbitrary process so we 
aren’t limited to Python codes (but our examples will 
focus on a Python backend)



Use Case: Deep Learning on HPC

● Configure a set of 
hyperparameters

● Launch HPC model training runs
● View a model output dashboard 

with current best and worst 
model runs

● Manage Distributed Training
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 Control model runs 
– Stop poor performers
– Start new models exploring 

different parameter spaces



Our approach

Wrap execution of model runs
Build the UI with Jupyter Widgets for use in a Notebook

 Features
• Configure hyperparameters
• Submit HPC runs
• Display current Best/Worst models
• Controls for model execution
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Ecosystem
Task distribution and management 
IPython Parallel (ipyparallel) - Hub and Controller communicate with a set of 
ipyparallel engines (ipython kernels running across multiple nodes). Publish 
data that is monitored via background threads and event listener.

Currently single controller bottleneck but only for notebook communication - 
can use other MPI libraries like Horovod for bulk communication alongside 

See also: Dask, Horovod
Live Plotting, Interactive visualization, Realtime Communication
IPyWidgets - Real-time interaction with Jupyter backend, live rendering of 
data, Start/Stop Tasks
QGrid (Quantopian) - Interactive tables with sort, filter, row selection; Updated 
in real time
BQPlot (Bloomberg) - Live Plotting and interaction with QGrid
Fine grained hooks into resources
Kale - Extends jupyter ecosystem with manager and worker service that wrap 
backend task to provide fine-grain task control and node resource monitoring
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Jupyter architecture 

 Allocate nodes on Cori interactive queue and start ipyparallel or Dask 
cluster

• Developed %ipcluster magic to setup within notebook
 Compute nodes traditionally do not have external address

•  Required network configuration / policy decisions  
 Distributed training communication is via MPI Horovod or Cray ML 

Plugin
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Setting up ipyparallel cluster
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# Use a unique cluster ID for this job

clusterID=cori_${SLURM_JOB_ID}

echo "Launching controller"

ipcontroller --ip="$headIP" \

--cluster-id=$clusterID &

sleep 20

echo "Launching engines"

srun ipengine --cluster-id=$clusterID

salloc --qos=interactive -N 1 -C haswell
wbhimji@nid00032:~> ./startCluster.sh

Via Magic (entire workflow in notebook) or a console script

Connect to cluster in notebook 



Distributed Training

 Speed up training by parallelizing 
across nodes, e.g. for distributed 
Stochastic Gradient Descent 
(SGD) algorithms:

• Each node computes gradients 
locally

• Summed across nodes and 
propagated to all nodes (sync) 
or via parameter server (async)

 MPI-based tools for distributed 
SGD now available :

• e.g Horovod and Cray PE ML 
Plugin
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These methods/tools can scale well 
to many nodes on Cori (above is for 
a large image version of the same 
LHC CNN used here)

Kurth et al CUG 2018

https://cug.org/cug-2018-technical-program/


Distributed Training
 Distributed training in notebooks 

with IPyParallel and Horovod-MPI 
 Notebook cells specified for 

parallel execution using cell magic
• MPI code in a notebook

 Scales well with no noticeable 
overhead from the notebook 
infrastructure

Parallel notebook cell

Construct model 
on every worker

Train with Horovod on all workers



Distributed HPO
● Hyper-parameter optimization (HPO) algorithms are used to find a 

best set of possible model hyper-parameters
○ Can train and evaluate many models in parallel across nodes in HPC 

system
● Random Search HPO

○ Evaluate model at HP sets randomly sampled from a specified HP 
space

○ Simple algorithm; trivially parallelizable
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Distributed HPO - Setup 

22

Easy but powerful setup for 
random search HPO

 Define HP sets to evaluate
 Define model training 

function
 Run the HPO tasks with 

load-balanced scheduler Load-balanced scheduling

Launch user-defined training 
function and arguments

AsyncResult objects can be 
queried for status, outputs



Distributed HPO with widgets

23

Notebook widgets can be added to enhance the HPO 
workflow

 Real-time monitoring
• View live status/summaries of HPO training tasks
• Plot detailed live information of select training runs 

 Enhanced interactivity
• Select best/worst performing runs
• Do further analysis in notebook
• Modify HP search space
• Start/stop runs
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Plots update live

Table shows 
different 
configurations:

- Status
- Current loss 

and accuracy
- Sort

Can add further 
quantities to plot 
and interaction 
buttons

Stop and Restart 
Tasks
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https://docs.google.com/file/d/1P4uSaEOkN0nM29GymjTyJCHVJDVxBF9S/preview
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https://docs.google.com/file/d/1L_LmrgaILkQzeR_m3ZM-j-3jjBzf5qSf/preview


Distributed HPO - Results

 For LHC CNN example, 
process hundreds of HP 
tasks in <1hr.

 Visualize model 
classification performance 
and runtimes 
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Weighted ROC curve

Results competitive 
with original CNN 
paper using fraction of 
dataset!

Task runtimes
Distribution of 
model accuracies

Failed to 
converge

Best models

Best model found:



Summary

● Jupyter + Kale + Jupyter Widgets + iPyParallel can give you a 
powerful platform for iterative, interactive problems on HPC

● Use of Jupyter in deep learning models and hyperparameter 
optimisation experiments that need distributed HPC resources => 
clear win for science

● We are developing software and infrastructure for this on Cori at 
NERSC 

● What we’re doing now:
○ Demonstrating and sharing notebook-driven examples for 

multiple use cases
○ Capturing widgets and code as pluggable modules
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