$2%. U.S. DEPARTMENT OF

T e 2
.2/ENERGY

w BERKELEY LAB

Bringing Science Solutions to the World

N
rreereqrer

Jupyter + Kale:
Human-in-the-loop Interactivity In
HPC Workflows

Shreyas Cholia, Matthew Henderson,
Oliver Evans, Fernando Pérez

Lawrence Berkeley National Laboratory,

Gateways 2018 - Wednesday, September 26

What is Jupyter?

Tool for reproducible, shareable narratives, literate computing:
Notebook: Document containing code, comments, outputs.
Rich text, interactive plots, equations, widgets, etc.

eve
:’Jupyter Lorenz Differential Equations uusees A
e B Wew ket O Ke

Data Science Process

B+ x QB |(4¢ > B C Cxe ¢ Cell Toobar: | Nooe

Exploratory 0o | -
Data = Jupyter wecometoP Exploring the Lorenz System

3 In this Notebook we explore the Lorenz system of differential equations:
Analysis

x=0(y-x)

B+ xaB +¢ > hmpr-y-xt

t=~frxy

Tis s one of the classic systems in non-linear differential equations. It exhibits a range of
-~ complex behaviors as the parameters (0, f§, p) are varied, including what are known as chaotic
Raw Data - J u pyte r solutions. The system was originally developed as a simplified model for
Clean
Data Is

atmospheric convection in 1963,

C " d p d Dataset Welcome to the In (7)1 interact(Lorenz, Nefixed(10), angle=(0.,360.),
0=(0.0,50.0),B=(0.,5), p=(0.0,50.0))
ollecte rocesse This Notebook Senver va
angle 3082
WARNING S 12

Don't rely on this sen)

Algorithms '

Run some Python (

To run the code below:

1. Click on the cell to ¢

C 3 t 2. Press SHIFT+ENTER
Dat: 0 Umunlca e Make A full tutoral for using the
Product Visualize — Decisi
In [): tmatplotlib inline
Report ecisions n[==

import pandas pd

import nusmpy as np

import matplotlib

Integral part of Big (Data) Science & Superfacility:
LSST-DESC, DESI, ALS, LCLS, Materials Project...
Kale LDRD (workflows), KBase...

Generational shift in analytics for science + more:
UCB’s Data Science 8 course, entirely in Jupyter
“Pll send you a copy of my notebook”
Training events adopting notebooks (DL)

Supporting reproducibility and science outreach:

Open source code and open source science
Jupyter notebooks alongside publications (LIGO)

H1 whitened data around event

_ 3
3 —— H1 whitened h(t)
g S Template(t) ‘
2017 ACM Software System Award: “... a de facto standard for data analysis in 2 ',l” WJH i m_l |1| i ' Il ,lwk m “,l e i i
research, education, journalism and industry. Jupyter has broad impact across £ Il l W Ay .‘ '
domains and use cases. Today more than 2,000,000 Jupyter notebooks are on E,
GitHub, each a distinct instance of a Jupyter application—covering a range of R
uses from technical documentation to course materials, books and academic [A
publications.”
LIGO Binary BH-BH Merger GW Signature =
Figure from LIGO EPO/Publication Jupyter Notebook rjrr}| ﬂ

BERKELEY LAB

Jupyter Gateway Deployments

Many science gateway environments now support Jupyter
Notebooks

« Enable custom, ad-hoc analyses on scientific data

« Jupyterhub lets you deploy multi-user notebook
environments

« Jupyterlab enables integration across “apps”

« Deployments at NERSC, OSU, BNL, XFEL, TACC,
Pacific Research Platform etc.

Motivation

Improved scientific discovery and productivity through
better tools

- Enable computing

- Enhance reproducibility and collaboration

Enable exploratory data analytics, deep learning,
workflows, and more through Jupyter on NERSC and
other HPC systems.

How are scientists using Jupyter in HPC?

QA/QC Parallel/Distributed interactive
« Generate notebooks from work
HPC output e Scaling up single-node
e Human inspection notebook operations to a
o lIterate on steps parallel/distributed mode

 Request HPC nodes
o Jupyter on Master Node +

Master Workflow Controller Workers
e Setup and control job o e.g., |IPyparallel, Dask
workflows through notebook. « Live control using Notebooks

o Use batch queue to run jobs
and use notebook before &
after job steps

Our Focus

The Scientific Method as an Ongoing Process

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,
or reading

Observe

Develop Think of

Interesting
Questions —_——
Why does that
pattern occur?
Refine, Alter,
Expand, or Reject
Hypotheses Analyze

Gather Data to

Test Predictions
Relevant data can come from the
l r

Formulate
Hypotheses

What are the general

Provide a more natural

development cycle for scientists pfff.‘éif’lﬁs Control
using HPC
https:/fen.wikipedia.org/wiki/Scientific_method

e Real-time task monitoring

e Dynamic task control

e Runtime ad-hoc analyses

.......... .Seamlesscyc]ebetweencode
results and viz 7 e

BERKELEY LAB

Our approach

Leverage Jupyter architecture
- Notebooks
- Widgets
- Kernels
- Distributed Execution
Extend the Jupyter ecosystem
- Fine-grain Task Control
- Task Monitoring
- Real-time interaction

Kale: Human-in-the-loop HPC

Project Kale is a research effort focused on adapting the
Jupyter machinery for HPC workflows

View, Control, Monitor

Peptide Simulation o =

Master notebook to control workflow
Jupyter notebooks as interactive workflow steps

Realtime Monitoring of HPC jobs and output

[

L

e Interaction with workflow tasks via kernels

[

e \Widgets and dashboards for batch job management

Control and Monitor Tasks

HPC tasks are wrapped by a process
- Non-invasive to the task
The process provides (via REST API)
- Resource monitoring
— Task level + Node level
- Task control
- Start, Stop, Pause, Resume
- Extend to wrap tasks with arbitrary callouts

Not Another Workflow System

Wikipedia page on workflow systems: 100+ packages

We don’t need another workflow manager.

Instead Kale hooks into existing workflow or task execution
systems

« Fireworks, IPyParallel, Parsl etc.

Overall system

Jupyter Components

B HPC Workflow Components
1. Login La(l\JIXc,\;ArZes Workflow Submit Batch Queue [Kale Components
User -+ JupyterHub tasks Manager > Manager
(WM) (BQM)
Submit &)
Monitor Submit & (BQM) Allocate resources

Monitor and execute jobs

on nodes

Notebook

Jupyter One instance | kale Manager
HOtEbooK per user Service (KM)
Server

All jobs execute
a Kale worker

Monitoring

p A S, Shared
. t ~—. : Kale bt Disks
2. Sggrﬁi’? \F/)\?orkflow Jupyter Worl_<er Watch/Reaé‘». '
5. Monitor Workflow Workflow Servio 1 Files
Notebook
Control Contro
Task Task -/ Read/Write Files

Interact with the Gomputs Neds

Compute Node

Jupyter

6. Open Workflow
Workflow

Step Notebook
7. Control and/or
Monitor Task

Jupyter
Kernel

~

TR A
TS s reeeeer "I|
12

BERKELEY LAB

A Word About Python

« Jupyter has a close connection with Python (emerged
from IPython)

« And many of the tools in the Jupyter Ecosystem are
centered around Python

« Scientists seem to really like it to drive their workflows,
so we focus a lot of development here

« Kale can be used to wrap any arbitrary process so we
aren’t limited to Python codes (but our examples will
focus on a Python backend)

Use Case: Deep Learning on HPC

e Configure a set of Control model runs
hyperparameters — Stop poor performers

e Launch HPC model training runs — Start new models exploring

e \iew a model output dashboard different parameter spaces
with current best and worst
model runs

e Manage Distributed Training

Our approach

Wrap execution of model runs
Build the Ul with Jupyter Widgets for use in a Notebook
Features

- Configure hyperparameters

- Submit HPC runs

- Display current Best/Worst models

- Controls for model execution

Ecosystem

Task distribution and management

IPython Parallel (ipyparallel) - Hub and Controller communicate with a set of
ipyparallel engines (ipython kernels running across multiple nodes). Publish
data that is monitored via background threads and event listener.

Currently single controller bottleneck but only for notebook communication -
can use other MPI libraries like Horovod for bulk communication alongside

See also: Dask, Horovod

Live Plotting. Interactive visualization, Realtime Communication

IPyWidgets - Real-time interaction with Jupyter backend, live rendering of
data, Start/Stop Tasks

QGrid (Quantopian) - Interactive tables with sort, filter, row selection; Updated
in real time

BQPlot (Bloomberg) - Live Plotting and interaction with QGrid
Fine grained hooks into resources

...

Kale - Extends jupyter ecosystem with manager and worker service that wrap__
backend task to provide fine-grain task control and node resource monitoring EZzili

BERKELEY LAB

Jupyter architecture

Allocate nodes on Cori interactive queue and start ipyparallel or Dask

cluster
» Developed %ipcluster magic to setup within notebook

Compute nodes traditionally do not have external address
- Required network configuration / policy decisions
Distributed training communication is via MPI Horovod or Cray ML

Plugin
()
f N
é) Cori Login Node)
Cori Compute Nodes
docker
Notebook

Server Process l
ipyparallel
Controller

kernel/
ipyparallel client
\

Setting up ipyparallel cluster

Via Magic (entire workflow in notebook) or a console script

salloc --qos=interactive -N 1 -C haswell

In [1): import ipcluster magics . .
e i wbhimji@nid00032:~> ./startCluster.sh
In [2): job_name = "isc_ihpc_mnist" # Use a unique cluster ID for this job
des = 1 .
po s clusterID=cori_${SLURM_JOB_ID}
engines = 1
module = "python/3.6-anaconda-4.4" echo "Launching controller"

conda_env = "/global/cscratchl/sd/sfarrell/conda/isc-ihpc ipcontroller --ip="$headIP" \

In [3]: f%ipcluster -m $module -e $conda_env -N $nodes -J $job_name -t 01:00:00 --cluster-id=jclusterID &
sleep 20
salloc: Pending job allocation 13289619
salloc: job 13289619 queued and waiting for resources
salloc: job 13289619 has been allocated resources srun ipengine --cluster-id=$clusterID
salloc: Granted job allocation 13289619
2018-06-21 15:55:55.813 [scheduler] Scheduler started [leastload]

echo "Launching engines"

In [7): # Cluster ID taken from job ID above

H job_id = 13272466
Connect to cluster in notebook it el s tomaet i
.. ¢ Uae daiait ratils
c = ipp.Client(timeout=60, cluster_id=cluster_id) /Ak\TA
‘ “ - ‘ s coeeeeee]|"

BERKELEY LAB

Distributed Training

Kurth et al CUG 2018

Speed up training by parallelizing 30000;

across nodes, e.g. for distributed ila fﬁfLo,ovod-Mm
Stochastic Gradient Descent 250001 oee KNL Horovod-MLSL Server 2
(SGD) algorithms: 2 ogp ™ TR
« Each node computes gradients §
locally < 15000
« Summed across nodes and o
propagated to all nodes (sync) 210000.
or via parameter server (async) ©
MPI-based tools for distributed 5000
SGD now available :
« e.g Horovod and Cray PE ML 0
Plugin 0 200 400 600 800 1000

#workers

These methods/tools can scale well
to many nodes on Cori (above is for

LHC CNN used here)

https://cug.org/cug-2018-technical-program/

Build and train the model
=== Parallel notebook cell

In [8]:' $%px
config

hl, h2, h3, h4, h5 = 64, 128, 256, 256, 512

Distributed Training B,

Training config
batch_size = 128
n_epochs = 4

Build the model

Distributed training in notebooks T T

optimizer=optimizer, lr=1r,

with IPyParallel and Horovod-MPI 6 marame) — ox " g ON @VETY WoOTKEF

model.summary/()

Notebook cells specified for

Layer (type) Output Shape Param #

parallel execution using cell magic fovws Comearery o e, o 1
* MPI code in a notebook s e
Scales WeII With no noticeable conv2d_7 (Conv2D) (None, 32, 32, 256) 295168

conv2d_8 (Conv2D) (None, 16, 16, 256) 590080

overhead from the notebook Fiaveen 7 (FistEen) Home, 5576} 0

. dense_3 (Dense) (None, 512) 33554944
Infrastru Ctu re dense_4 (Dense) (None, 1) 513

Total params: 34,515,201
Trainable params: 34,515,201

Distributed training scaling Non-trainable params: 0
140000 1 —@— Batch
—4— Notebook $%px
120000 A)
Train the model
history = train model(model, train_ input=train_input, train labels=train_labels,
100000 - valid_input=valid_input, valid labels=valid_labels,
batch_size=batch_size, n_epochs=n_epochs,
2 use_horovod=True)
o 80000 - =
5 [stdout:0]
3 Train on 64000 samples, validate on 32000 samples
«» 60000 -
40000 -
Train with H d on all work
04

0 25 50 75 100 125 150 175
Number of nodes

~

o
frreereer |

BERKELEY LAB

Distributed HPO

e Hyper-parameter optimization (HPO) algorithms are used to find a

best set of possible model hyper-parameters
o Can train and evaluate many models in parallel across nodes in HPC
system
e Random Search HPO
o Evaluate model at HP sets randomly sampled from a specified HP
space
o Simple algorithm; trivially parallelizable

21

Distributed HPO - Setup

Define the hyper-parameter search points

n_hpo trials = 336

hl = np.random.choice([4, 8, 16, 32, 64], size=n _hpo trials)
Easy bUt pOWGﬁUl Setup fOr h2 = np.random.choice([4, 8, 16, 32, 64]: size=n_hpo trials)

h3 np.random.choice([8, 16, 32, 64, 128], size=n hpo trials)

random SearCh HPO conv_sizes = np.stack([hl, h2, h3], axis=1)

fc_sizes = np.random.choice([32, 64, 128, 256], size=(n_hpo_trials, 1))
lr = np.random.choice([0.0001, 0.001, 0.01], size=n_hpo_trials)

Deﬂne HP Sets to evaluate drOL.)OI:lt = np.random.rand(r-l_hpoTtrials) o . . . '
Deflne model trammg optimizer = np.random.choice(['Adadelta', 'Adam', 'Nadam'], size=n_hpo_ trials)
function

Run the HPO tasks with

load-balanced scheduler [# foad-halanced viey]_Load-balanced scheduling

lv = c.load_balanced view()

Loop over hyper-parameter sets
results = []
for ihp in range(n _hpo trials):
print('Hyperparameter trial %i conv %s fc %s dropout %.4f opt %s, lr %.4f' %
(ihp, conv_sizes[ihp], fc_sizes[ihp], dropout[ihp], optimizer[ihp], lr[ihp]))
checkpoint file = os.path.join(checkpoint dir, 'model %i.h5' % ihp)
LaunCh User-deflned tl’alnlng) result = lv_apply(build_and_train,
function and arguments input dir, n train, n_valid,
conv_sizes=conv_sizes[ihp], fc_sizes=fc sizes[ihp],
dropout=dropout[ihp], optimizer=optimizer[ihp], lr=lr[ihp],
batch_size=batch size, n_epochs=n epochs,
AsyncResult objects can be checkpoint_file=checkpoint file)
queried for status, outputs mmmmmm) results.append(result)

Hyperparameter trial 0 conv [64 16 128] fc [128] dropout 0.3234 opt Nadam, 1r 0.0100
'' Hyperparameter trial 1 conv [4 8 64] fc [64] dropout 0.6747 opt Adadelta, lr 0.0010

~

A
freeeee "'|
22

BERKELEY LAB

Distributed HPO with widgets

Notebook widgets can be added to enhance the HPO
workflow

Real-time monitoring

- View live status/summaries of HPO training tasks

- Plot detailed live information of select training runs
Enhanced interactivity

- Select best/worst performing runs

- Do further analysis in notebook

- Modify HP search space

- Start/stop runs

22 /Nloss
/Nacc

2 /val_loss

Plots update live

Table shows

different

configurations:

- Status

- Current loss
and accuracy

- Sort

training metrics
>

Can add fu rther Stop selected Restart selected
quantities to plot index Y status Y epoch Y hi Y h2 Y h3 Y dropout Y optimizerY loss~ Y valloss Y acc Y valace Y

- - 3 Ended Tra... 31 16 64 16 0.88467 Adam 2.003565... 1.689878... 0.213253... 0.682352...

a n d I n te ra ctl o n 2 Ended Tra... 31 16 8 8 0.19765 Adam 0.852827... 0.829521... 0.763855... 0.800000...
b tt 0 Ended Tra... 31 64 8 8 0.04836 Adadelta 0.157987... 0.579903... 0.944578... 0.870588...
u O ns 1 Ended Tra... 31 4 8 16 0.03825 Adadelta 0.151153... 0.585079... 0.954216... 0.864705...

Stop and Restart
Tasks

24

https://docs.google.com/file/d/1P4uSaEOkN0nM29GymjTyJCHVJDVxBF9S/preview

' .
" & .
Gy =y
5 |
e |
| R
- ¥ e ! s ¥ ' y o3 > Y epnd ¥ serteeny e Y v en ¥ - Y o '

s Soge o . ' . o= Hete £ LO1T " X '
3 g be " L ' . P A ' > ot
‘ . e ‘ - X
’ ——y ' X] - ’ a1 ot
' g) ")
r » | ' A . L Y M

frreeeeer I

BERKELEY LAB

https://docs.google.com/file/d/1L_LmrgaILkQzeR_m3ZM-j-3jjBzf5qSf/preview

Distributed HPO - Results

For LHC CNN example,
process hundreds of HP
tasks in <1hr.

Visualize model
classification performance
and runtimes

70

60

50

40

30

20

10

Best model found:

Task runtimes

«{ Distribution of
model accuracies

60 1

40

Best models

204

45 0.5 0.9 1.0

0.6 7. 0.8
e Failedto
converge

1.0
0.25 4 —— Training j —— Training 1.04
—— Validation —— Validation '
0.8
0.20
0.8
0.6
o v
2 0.15 © b=
o =1 ©
g g v 06
< 4 o V.01
0.4 >
0.10 £
I3
8
0.2 i
o 04
0.05 3
—
'—
T T T T T T T 0.0 T T T T
0 2 4 6 8 10 12 14 0 2 4 8 10 12 14 0.2
Epoch Epoch
0.0

— CNN, AUC=0.998
=== Random

~

—

Weighted ROC curve

Results competitive
with original CNN
paper using fraction of
dataset!

10 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
False positiverate e

o
frreereer

Summary

e Jupyter + Kale + Jupyter Widgets + iPyParallel can give you a
powerful platform for iterative, interactive problems on HPC

e Use of Jupyter in deep learning models and hyperparameter
optimisation experiments that need distributed HPC resources =>
clear win for science

e \We are developing software and infrastructure for this on Cori at
NERSC

e \What we're doing now:
o Demonstrating and sharing notebook-driven examples for

multiple use cases

o Capturing widgets and code as pluggable modules

Links, Acknowledgements etc.

Kale:

o https://qithub.com/Jupyter-Kale/kale

Deep Learning Examples:

o https://github.com/Jupyter-Kale/cori-intml-examples/
This work was supported by the LBL LDRD program

Contact:
o Shreyas Cholia - scholia@Ibl.gov
o Matt Henderson - mhenderson@|bl.gov

https://github.com/Jupyter-Kale/kale
https://github.com/Jupyter-Kale/cori-intml-examples/
mailto:scholia@lbl.gov
mailto:mhenderson@lbl.gov

