
IMPORTANT: This is the GrainSizeTools script manual for pre-2.0 versions only. For versions
2.0+ go to https://marcoalopez.github.io/GrainSizeTools/ and see online documentation.

Manual version:
v33

Release date:
2018/06/12

Author:
Marco A. Lopez-Sanchez

License:
This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License (CC BY-NC-SA 4.0)

Table of contents
Requirements
Scope
Getting Started: A step-by-step tutorial

Open and running the script

A brief note on the organization of the script

Using the script to visualize and estimate the grain size
Loading the data and extracting the areas of the grain profiles
Estimating the apparent diameters from the areas of the grain profiles
Obtaining apparent grain size measures
Estimating differential stress using piezometric relations (paleopiezometry)
Estimating a robust confidence interval
Derive the actual 3D distribution of grain sizes from thin sections
Comparing different grain size populations using box plots
Other methods of interest

GST script quick tutorial
Loading the data and extracting the areas of the grain profiles

Estimating the apparent diameters from the areas of the grain profiles

Obtaining an unidimensional value of grain size (paleopiezo/wattmetry studies)

Derive the actual 3D grain size distribution from the apparent grain size distribution

How to measure the areas of the grain profiles with ImageJ
Previous considerations on Grain Boundary Maps

Measuring the areas of the grain profiles

List of useful references

FAQs

http://creativecommons.org/licenses/by-sa/4.0/

Requirements

GrainSizeTools script requires Python 2.7.x (legacy) or 3.5+ versions and the scientific libraries Numpy, Scipy,
Pandas and Matplotlib. We recommend installing the Anaconda or the Enthought Canopy distributions.
Both distributions have free basic versions that include all the required the scientific packages. In case you
have space problems in your hard disk, there is a distribution named miniconda that only installs the
packages you actually need.

The approach of the script is based on the estimation of the areas of the grain profiles obtained from thin
sections. It is therefore necessary to measure them in advance and save the results in a txt/csv file. For this
task, we highly encourage you to use the ImageJ application or one of their different flavours (see here).
These are public-domain image processing programs widely used for scientific research that runs on
Windows, macOS, and Linux platforms. This documentation contains a quick tutorial on how to measure
the areas of the grain profiles with ImageJ, see the Table of Contents. The combined use of ImageJ and
GrainSizeTools script is intended to ensure that all data processing steps are done through free and
open-source programs/scripts that run under any operating system.

https://www.python.org/
http://www.numpy.org/
http://www.scipy.org/
http://pandas.pydata.org/
http://matplotlib.org/
https://www.anaconda.com/download/
https://www.enthought.com/products/canopy/
http://conda.pydata.org/miniconda.html
http://rsbweb.nih.gov/ij/
http://fiji.sc/ImageJ

Scope

GrainSizeTools (GST) script is primarily targeted at anyone who wants to:

1. Visualize the distribution of apparent grain sizes and extract different statistical parameters to describe
the features of the distribution

2. Estimate differential stress via paleopizometers (New in version 1.4+!)
3. Approximate the actual 3D distribution of grain sizes from thin sections. This includes an estimate of

the volume occupied by a particular grain size fraction using the Saltykov method and the shape of
the population of grain sizes (assuming that the distribution of grain sizes is lognormal-like)

GST script only requires as input the areas of the grain profiles measured grain-by-grain in a thin section.
The script is not intended to determine the mean grain size via the planimetric (Jeffries) (i.e. the number of
grains per unit area) or intercept (the number of grains intercepted by a test line per unit length of test line)
methods. The reasons for using grain-by-grain methods over the planimetric or intercept ones in natural
rocks are detailed in Lopez-Sanchez and Llana-Fúnez (2015). Below is a brief outline of the key
assumptions to consider so that the results obtained by the script are meaningful and reliable.

Safety concerns

All this safety concerns assume that the calibration of the microscope and the scale of the
micrographs were set correctly.

Determination of apparent grain sizes using different measures of central tendency (mean,
median, peak/mode)

Unidimensional apparent grain size measures such as the arithmetic mean or the median are only
meaningful in specimens that show unimodal distributions. It is therefore key to always visualize if the
distribution shows a single peak. When you observe two or more frequency peaks (multimodal
distributions), you can use for comparative purposes the location of the frequency peaks based on the
kernel density estimate (KDE) as proposed in Lopez-Sanchez and Llana-Fúnez (2015). Despite this, when
multimodal distributions appear the best option is always to separate the different populations of grain size
using image analysis methods.

Unfortunately, no general protocol exists in the earth science community on which measure of central
tendency (a.k.a "average") grain size measure to use when using grain-by-grain methods. For example, in
the case of paleopiezometry studies, some authors have been using the arithmetic mean or the median,
and some the mode or other types of means such as the RMS or the geometric mean. In addition, some
authors applied stereological corrections and others do not, and some used logarithmic or the square root
grain sizes instead of the linear grain size. Since it seems that this is not going to change in the short term,
we propose to always report the arithmetic mean, the median, and the frequency peak. This will allow other
scientists to directly compare their data with yours without using correction factors which always involve
some assumptions. In any event, since you will have to choose one "average" measure in your study we
advise from here to follow this rule of thumb:

use arithmetic mean and standard deviation (SD) when your distribution is normal-like or
moderate-tailed. In such cases, the position of the mean, median and frequency peak should be
fairly similar. This is expected to occur when using logarithmic or square-root scales.
use median and interquartile (or interprecentil) range when your distribution is skewed (non-

http://www.solid-earth.net/6/475/2015/
http://www.solid-earth.net/6/475/2015/

normal). In such cases the position of the mean, median and frequency peak should be well
differentiated. This is expected to occur when using linear scales.
use the location of the frequency peak (KDE peak grain size) when grain size in different specimens
was measured with very different conditions (e.g. different resolutions, cut-offs...) (see Lopez-Sanchez
and Llana-Fúnez, 2015 for details), or when the distribution show complex or multimodal patterns (in
that case only for comparative purposes).

The rationale behind this rule of thumb is that the sample mean is generally more efficient than the
median, meaning that it performs better under ideal circumstances. In contrast, the median is more robust,
meaning that it performs pretty well under less than ideal circumstances. This feature makes the median
more efficient when distributions have "thick" tails as it happens in most skewed distributions. Both, the
mean and the median, are in turn more efficient "average" measures than the frequency peak but if you
want to compare grain sizes in specimens that were measured at very different conditions (e.g. different
resolutions, applying different cut-offs, etc.), then you should use the location of the frequency peak
(peak grain size) instead. This is because the frequency peak is the only "average" measure not affected
by these factors and thus the only robust estimate in such situations (Fig. 1) (Lopez-Sanchez and Llana-
Fúnez, 2015). In the end, choose between the different "average" measures is about finding a trade-off
between efficiency and robustness.

Figure 1. Two different grain size distributions from the same EBSD dataset due to applying different
cleaning protocols during grain reconstruction. Only the KDE frequency peak remains the same.
Specifically, grains with less than 4 (left) and 10 (right) pixels were removed, both common cut-offs during
EBSD grain reconstruction routines. The high cut-off imposed on the population shown on the right creates
an artificial asymmetry in the distribution of logarithmic grain sizes shifting the mean and the median to
higher values.

When grains are equant (equiaxed) or near-equant (i.e. aspect ratios mostly < 2.0) any specimen
orientation is acceptable for estimating the grain size. In such case, a single section is enough to obtain a
reliable estimate as long as you measure a minimum of grain sections (see below for details). When the
aspect ratio of grains are commonly above 2.0 and there is preferred orientation throughout the rock
volume, you will need to estimate the grain size over three orthogonal sections and then average the
results to obtain meaningful results (for every independent grain size measure). Although specimens
with equant grains accept any orientation to estimate unidimensional grain size measures, it is advisable to
use a principal section. Specifically, we promote the use of the XZ section, i.e. parallel to the lineation and
perpendicular to the foliation, since this will allow us: (i) to estimate whether the grains are far from equant
using the aspect ratio; and (ii) to provide a fairer comparison between different specimens when near-
equant grains and preferred orientation of the large axes exist.

To obtain reliable grain size estimates you should measure or your grain boundary map should contain at

http://www.solid-earth.net/6/475/2015/
http://www.solid-earth.net/6/475/2015/

least 433 grain sections. This sample size will ensure that 95 % of the time the mean grain size estimated will
have an error equal or less than ± 4 %; if you use 965 sections, a practice that we recommend here, this will
ensure the 99% of the time instead (Lopez-Sanchez and Llana-Fúnez, 2015). If you want to obtain an
accurate confidence interval for your estimates, then you need to take several representative micrographs
from the same specimen (three or more) and estimate the "average" (mean, median or peak) grain size in
each of them. Then use the confidence_interval function implemented in the script to get a robust
confidence interval. For details on how this determination works see the next section or the documentation
of the function using the command help(confidence_interval) in the console.

Regarding paleopizometry estimates, avoid using stereological methods or factors in the estimates but
directly report apparent grain size measurements. The rationale behind this is that stereological
methods/factors are built on several (ill-conditioned) geometric assumptions and the results will
always be, at best, only approximate. This means that the precision of the estimated 3D size distribution
is much poorer than the precision of the original distribution of grain profiles since the latter is based on
real data not a model.

Determination of stress via paleopiezometers

When using a piezometer relation is of paramount importance to ensure what type of grain size measure
should be used. For example, if you want to use the piezometric relation for quartz established in Stipp
and Tullis (2003), note that they used the root mean square apparent diameter not the linear nor the
logarithmic mean diameter. Also, it is important to note that the mean of the logarithmic or square-root
apparent grain size is not the same as calculating the logarithm or the square root of the mean apparent
grain size using a linear scale. For more details see the step-by-step tutorial.

It is always advisable to calculate a confidence interval for your paleopiezometry estimates, which means
that you should do at least three independent measures (i.e. from different grain size maps). Since version
1.4.4+, the GST script implements a function to estimate robust confidence intervals using the student's
t-distribution (see the step-by-step tutorial for details). This is a much robust approach than calculating
the mean plus two times the standard deviation when the sample size is small (< 10) and both, the mean
and the SD, cannot be estimated accurately.

Getting the shape of actual grain size distribution or the volume occupied by a particular
grain size fraction

Estimating the actual grain size distribution from thin sections using stereological methods requires
assuming spatial homogeneity and that grains under study are equant or near-equant. The Saltykov and
two-step methods will not provide reliable results if most of the grains show aspect ratios above 2.0,
regardless of whether a shape preference orientation exists or not. In any event, this assumption is
acceptable most of the time for the most common recrystallized (dynamically or statically) mineral phases
in crustal and mantle shear zones, which includes quartz, feldspar, olivine, and calcite, as well as ice.
However, be careful when recrystallized grains show very irregular/lobate grain boundaries (i.e. low "solidity"
values).

The Saltykov method is suitable to estimate approximately the volume of a particular grain fraction of
interest (in percentage) and to visualize the aspect of the derived 3D grain size distribution using the
histogram and a volume-weighted cumulative frequency curve. To provide reliable results, the method
requires using a few numbers of classes and a large number of individual grain measurements. Practical
experience indicates using more than 1000 grain sections and less than 20 classes. Unfortunately, the
optimal number of classes depends on the type of distribution and the range of values; and the latter can
vary largely due to presence or absence of grains with very large sizes. In conclusion, the number of
classes has to be set by a trial and error approach. This will inevitably lead to different authors using a

http://www.solid-earth.net/6/475/2015/

different number of classes across studies. Due to this, when estimating the volume of a grain size fraction
based on a single grain boundary map it is necessary to take an absolute error of ± 5 to stay safe (see
details in Lopez-Sanchez and Llana-Fúnez, 2016). If possible, take more than one representative grain
boundary map and then estimate a confidence interval as explained above in this section.

The two-step method (Lopez-Sanchez and Llana-Fúnez, 2016) is suitable for describing quantitatively the
shape of the actual 3D grain size distribution using a single parameter called the multiplicative standard
deviation (MSD) value. The method assumes that the actual grain size distribution follows a lognormal
distribution and thus it is critical to visualize first an estimate of the actual distribution of grain sizes
using the Saltykov method and ensure that the distribution is unimodal and lognormal-like. The
MSD estimate is independent of the chosen number of classes as long as the Saltykov method produces
stable results.

http://www.sciencedirect.com/science/article/pii/S0191814116301778
http://www.sciencedirect.com/science/article/pii/S0191814116301778

Getting Started: A step-by-step tutorial

Important note: Please, update to version 1.4.5. It is also advisable to update the
plotting library matplotlib to version 2.x since all the plots are optimized for such
version.

Open and running the script

First of all, make sure you have the required software and necessary Python libraries installed (see
requirements for details), and that you downloaded the latest version of the GrainSizeTools script (currently
the v1.4). If this is the case, then you need to open the script in a integrated development environment
(IDE) to interact with it (Fig. 1). For this, open the Canopy editor -if you installed the Enthought package- or
the Spyder IDE -if you installed the Anaconda package-, and open the GrainSizeTools script using
File>Open . The script will appear in the editor as shown in figure 1.

Figure 1. The editor and the Python shell (a.k.a. the console) in the the Spyder integrated development
environment (IDE). The Enthough Canopy and the Spyder IDEs are both MATLAB-like IDEs optimized for
numerical computing and data analysis using Python. They also provide a file explorer, a variable explorer,
or a history log among other interesting features.

To use the script it is necessary to run it. To do this, just click on the green "play" icon in the tool bar or go
to Run>Run file in the menu bar (Fig. 2).

https://github.com/marcoalopez/GrainSizeTools/blob/master/DOCS/Requirements.md

Figure 2. Running a script in the Enthought's Canopy (left) and Spyder (right) IDEs.

The following text will appear in the shell/console (Fig. 1):

==
Welcome to GrainSizeTools script v1.4.5
==

GrainSizeTools is a free open-source cross-platform script to visualize and
characterize
the grain size in polycrystalline materials from thin sections and estimate
differential
stresses via paleopizometers.

METHODS AVAILABLE
================== ==
Functions Description
================== ==
extract_areas Extract the areas of the grains from a text file (txt, csv or xlsx)
calc_diameters Calculate the diameter via the equivalent circular diameter
find_grain_size Estimate the apparent grain size and visualize their distribution
derive3D Estimate the actual grain size distribution via steorology methods
quartz_piezometer Estimate diff. stress from grain size in quartz using piezometers
olivine_piezometer Estimate diff. stress from grain size in olivine using piezometers
other_pizometers Estimate diff. stress from grain size in other phases
confidence_interval Estimate the confidence interval using the t distribution
================== ==

You can get information on the different methods by:
 (1) Typing help(function name) in the console. e.g. help(conf_interval)
 (2) In the Spyder IDE by writing the name of the function and clicking Ctrl + I
 (3) Visit script documentation at https://marcoalopez.github.io/GrainSizeTools/

EXAMPLES

Extracting data using the automatic mode:
>>> areas = extract_areas()

Estimate the equivalent circular diameters:
>>> diameters = calc_diameters(areas)

Estimate and visualize different apparent grain size measures
>>> find_grain_size(areas, diameters, plot='sqrt')

Estimate differential stress using piezometric relations
>>> quartz_piezometer(grain_size=5.7, piezometer='Stipp_Tullis')

Estimate the actual 3D grain size distribution from thin sections
>>> derive3D(diameters, numbins=15, set_limit=40)
>>> derive3D(diameters, numbins=15, set_limit=None, fit=True)

Once you see this text, all the tools implemented in the GrainSizeTools script will be available by typing
some commands in the shell as will be explained below.

A brief note on the organization of the script

The script is organized in a modular way using Python functions helping to modify, reuse or extend the
code. A Python function looks like this in the editor:

def calc_diameters(areas, correct_diameter=0):
 """ Calculate the diameters from the sectional areas via the equivalent circular
 diameter.

 Parameters

 areas: array_like
 the sectional areas of the grains

 correct_diameter: a positive integer or float
 this adds the width of the grain boundaries to correct the diameters. If
 correct_diameter is not declared no correction is considered.

 Returns

 A numpy array with the equivalent circular diameters
 """

 # calculate diameters via equivalent circular diameter
 diameters = 2 * sqrt(areas/pi)

 # diameter correction adding edges (if applicable)
 if correct_diameter != 0:
 diameters += correct_diameter

 return diameters

To sum up, the name following the Python keyword def , in this example calc_diameters , is the name
of the function. The sequence of names within the parentheses are the formal parameters of the function
(i.e. the inputs). In this case the function has two inputs, the parameter areas that correspond with an
array containing the areas of the grain profiles previously measured, and the parameter
correct_diameter that corresponds to a number that sometimes is required for correcting the size of the

grains. Note that in this case the default value is set by default to zero. The text between the triple
quotation marks provides information about the function, describing the conditions that must be met by
the user as well as the output obtained. This information can be accessed from the shell by using the
command help() and specifying the name of the function within the parentheses or, in the Spyder IDE,
by pressing Ctrl+I once you wrote the name of the function. Below, it is the code block.

The names of the Python functions in the script are self-explanatory and each one has been implemented
to perform a single task. Although there are a lot of functions within the script, we will only need to call less
than four functions to obtain the results.

Using the script to visualize and estimate the grain size

Loading the data and extracting the areas of the grain profiles

The first step requires to load the areas of the grain profiles measured in the thin section. It is therefore
assumed that they were previously estimated using the ImageJ or similar software, and that the results were
saved as a txt, csv, or xlsx (Fig. 3). If you do not know how to do this, then go to the section How to
measure the grain profile areas with ImageJ.

Figure 3. Tabular-like files obtaining from the ImageJ app. At left, the tab-separated txt file. At right, the csv
comma-separated version.

People usually perform different types of measures at the same time in the ImageJ application ultimately
obtained a text file with the data in a spreadsheet-like form (Fig. 3). In this case, we need to extract the
information corresponding to the column named 'Area', which is the one that contains the areas of the
grain profiles. To do this, the script implements a function named extract_areas that automatically do
this for us. To invoke this function we write in the shell:

>>> areas = extract_areas()

where areas is just a name for a Python object, known as variable, in which the data extracted will be
stored into memory. This will allow us to access and manipulate later the areas of the grain profiles using
other functions. Almost any name can be used to create a variable in Python. As an example, if you want
to load several datasets, you can name them areas1 , areas2 or my_data1 , my_data2 and so on. In
Python, variable names can contain upper and lowercase letters (the language is case-sensitive), digits and
the special character _, but cannot start with a digit. In addition, there are some special keywords reserved
for the language (e.g. True, False, if, else, etc.). Do not worry about it, the shell will highlight the word if you
are using one of these. The function extract_areas is responsible for automatically extracting the areas
from the dataset and loading them into the variable defined. Since the script version 1.3.1, you do not
need to introduce any parameter/input within the parentheses. Once you press the Enter key, a new
window will pop up showing a file selection dialog so that you can search and open the file that contains
the dataset. Then, the function will automatically extract the information corresponding to the areas of the
grains profiles and store them into the variable. To check that everything is ok, the shell will return the first
and last rows of the dataset and the first and last values of the areas extracted as follows:

https://github.com/marcoalopez/GrainSizeTools/blob/master/DOCS/imageJ_tutorial.md

>>> areas = extract_areas()

 Area Circ. AR Round Solidity
0 1 157.25 0.680 1.101 0.908 0.937
1 2 2059.75 0.771 1.314 0.761 0.972
2 3 1961.50 0.842 1.139 0.878 0.972
3 4 5428.50 0.709 1.896 0.528 0.947
4 5 374.00 0.699 1.515 0.660 0.970
...
 Area Circ. AR Round Solidity
2656 2657 452.50 0.789 1.235 0.810 0.960
2657 2658 1081.25 0.756 1.446 0.692 0.960
2658 2659 513.50 0.720 1.493 0.670 0.953
2659 2660 277.75 0.627 1.727 0.579 0.920
2660 2661 725.00 0.748 1.351 0.740 0.960

column extracted = [157.25 2059.75 1961.5 ..., 513.5 277.75 725.]
n = 2661

The data stored in any variable can be viewed at any time by invoking its name in the shell and pressing
the Enter key. Furthermore, both the Canopy and Spyder IDEs have a specific variable explorer to visualize
the variables loaded in the current session. The automatic mode assumes that the column containing the
areas of the grain profiles is named 'Area' in the text file (as shown in Fig. 3), which is the default name
used by the ImageJ application. If the name of the column is different you can specify it as follows:

>>> areas = extract_areas(file_path='auto', col_name='areas')

In this example, we introduced two different inputs/parameters within the parentheses. The first one is
responsible for defining the file path. In this case it is set by default to 'auto', which means that the
automatic mode showed above is on. The second one is the column name (col_name), in this example set
to 'areas' instead of the default 'Area' . Note that different inputs/parameters are comma-separated.

Another option, which was the only one available in old versions (< v1.3.1), is to introduce the
inputs/parameters manually. For this write in the shell:

>>> areas = extract_areas('C:/...yourFileLocation.../nameOfTheFile.csv', col_name='areas')

in this case we define the file location path in quotes, either single or double, following by the column
name if required. If the column name is 'Areas' you just need to write the file path. To avoid problems in
Windows OS do not use single backslashes to define the filepath but forward slashes (e.g.
"C:/yourfilelocation.../nameofthefile.txt") or double backslashes.

In the case that the user extracted and stored the areas of the grains in a different form from the one
proposed here, this is either in a txt or csv file but without a spreadsheet-like form (Fig. 4), there is a
Python/Numpy built-in method named np.genfromtxt() that can be used to load text data in txt or csv
into a variable in a similar way. For example:

>>> areas = np.genfromtxt('C:/yourFileLocation/nameOfTheFile.txt')

In case you need to skip the first or any other number of lines because there is text or complementary
information, then use the skip_header parameter as follows:

>>> areas = np.genfromtxt('C:/yourFileLocation/nameOfTheFile.txt', skip_header=1)

In this example, skip_header=1 means that the first line in the txt file will be ignored.

Figure 4. A txt file without spreadsheet-like form. The first line, which is informative, has to be ignored
when loading the data

Estimating the apparent diameters from the areas of the grain profiles

The second step is to convert the areas into diameters via the equivalent circular diameter. This is done by a
function named calc_diameters . To invoke this function we write in the shell:

>>> diameters = calc_diameters(areas)

The parameter declared within the parenthesis are the name of the variable that contains the areas of the
grain profiles. Also, we need to define a new variable to store the diameters estimated from the areas,
diameters in this example. In some cases, we would need to correct the size of the grain profiles (Fig. 5).

For this, you need to add a new parameter within the parentheses:

>>> diameters = calc_diameters(areas, correct_diameter=0.05)

This example means that for each apparent diameter calculated from the sectional areas, 0.05 will be
added. If the parameter correct_diameter is not declared within the function, as in the first example, it is
assumed that no diameter correction is needed.

Figure 5. Example of correction of sizes in a grain boundary map. The figure is a raster showing the grain
boundaries (in white) between three grains. The squares are the pixels of the image. The boundaries are
two pixel wide, approximately. If, for example, each pixel corresponds to 1 micron, we will need to add 2
microns to the diameters estimated from the equivalent circular areas.

Once we estimated and stored the apparent grain sizes, we have several choices: (1) estimate an
unidimensional value of grain size for paleopiezometry/paleowattmetry studies, or (2) derive the actual 3D
grain size distribution from the population of apparent grain sizes using the Saltykov method (Saltykov,
1967; Sahagian and Proussevitch, 1998) or an extension of the Saltykov method named the two-step
method (Lopez-Sanchez and Llana-Fúnez, 2016).

Obtaining apparent grain size measures

For this, we need to call the function find_grain_size . This function returns several grain size measures
and plots, depending on your needs. The default mode returns a frequency vs apparent grain size plot
together with the mean, median, and frequency peak grain sizes; the latter using a Gaussian kernel density
estimator (see details in Lopez-Sanchez and Llana-Fúnez 2015). Other parameters of interest are also
provided, such as the bin size, the number of classes, the method used to estimate the bin size, and the
bandwidth used for the Gaussian kde according to the Silverman rule (Silverman 1986). As stated in Lopez-
Sanchez and Llana-Fúnez 2015, to obtain consistent results a minimum of 433 measured grain
profiles are required (error < 4% at a 95% confidence), although we recommend to measure a minimum
of 965 when possible (99% confidence).

To estimate a 1D apparent grain size value we write in the shell:

>>> find_grain_size(areas, diameters)

First note that contrary to what was shown so far, the function is called directly in the shell since it is no

http://www.solid-earth.net/6/475/2015/se-6-475-2015.html
http://www.solid-earth.net/6/475/2015/se-6-475-2015.html

longer necessary to store any data into an object/variable. The inputs are the arrays containing the areas
and diameters. After pressing the Enter key, the shell will display something like this:

NUMBER WEIGHTED APPROACH (linear apparent grain size):

Mean grain size = 35.79 microns
Standard deviation = xx (1-sigma)
Median grain size = 32.53 microns
Interquartile range (IQR) = 23.98

HISTOGRAM FEATURES
The modal interval is 27.02 - 31.52
The number of classes are 35
The bin size is 4.5 according to the scott rule

GAUSSIAN KERNEL DENSITY ESTIMATOR FEATURES
KDE peak (peak grain size) = 25.24 microns
Bandwidth = 4.01 (Silverman rule)

Also, a new window with a plot will appear. The plots will show the apparent grain size distribution and the
location of the different grain size measures (Fig. 6). You can save the plots by clicking the floppy disk icon
in the tool bar as bitmap (8 file types to choose) or to post-editing in vector image (5 file types to choose).
Another interesting option is to modify the appearance of the plot within the Matplotlib environment
before saving by clicking on the configuration icon in the toolbar.

Although we promote the use of frequency vs apparent grain size linear plot (Fig. 6a), the function allows
to use other options such as the logarithmic and square-root grain sizes (Figs. 6c, d) or the area-weighted
grain size (e.g. Berger et al. 2011) (Fig. 6b). The advantages and disadvantages of the area weighted plot are
explained in detail in Lopez-Sanchez and Llana-Fúnez 2015. To do this, we need to specify the type of plot
as follows:

>>> find_grain_size(areas, diameters, plot='area')

in this example setting to use the area-weighted plot. The name of the different plots available are 'lin'

for the linear number-weighted plot (the default), 'area' for the area-weighted plot (as in the example
above), 'sqrt' for the square-root grain size plot, and 'log' for the logarithmic grain size plot. Note
that the selection of different scales also implies to obtain different grain size estimations. Last, it is very
important to note that the mean of the square root or logarithmic grain sizes is not the same as the
square root or the logarithm of the grain size mean!

The function includes different plug-in methods to estimate an "optimal" bin size, including an automatic
mode. The default automatic mode 'auto' use the Freedman-Diaconis rule when using large datasets (>
1000) and the Sturges rule for small datasets. Other available rules are the Freedman-Diaconis 'fd' , Scott
'scott' , Rice 'rice' , Sturges 'sturges' , Doane 'doane' , and square-root 'sqrt' bin sizes. For

more details on the methods see here. We encourage you to use the default method 'auto' . Empirical
experience indicates that the 'doane' and 'scott' methods work also pretty well when you have a
lognormal- or a normal-like distributions, respectively. To specify the method we write in the shell:

>>> find_grain_size(areas, diameters, plot='lin', binsize='doane')

note that you have to define first the type of plot you want and that the type of plot will change the
appearance of your distribution (Fig. 6). You can also use and ad hoc bin/class size of type integer or float

http://www.solid-earth.net/6/475/2015/se-6-475-2015.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html

(i.e. an irrational number) as follows:

>>> find_grain_size(areas, diameters, plot='lin', binsize=10.0)

The user-defined bin size can be any number of type integer or float (i.e. an irrational number).

Figure 6. Different apparent grain size vs frequency plots of the same population returned by the
find_grain_size function. These include the number-weighted grain size distribution using linear (upper
left), square root (upper right), or logarithmic (lower left) scales, and area-weighted distributions (lower
right)

Estimating differential stress using piezometric relations (paleopiezometry)

The script includes several functions for estimating differential stress from apparent grain size (i.e. using
piezometric relations). This includes mineral phases such as quartz, calcite, olivine and albite (other phases
will be added in the future). The function requires measuring the grain size as equivalent circular diameters
and entering the apparent grain sizes in microns. There are three different functions for this:
quartz_piezometer for quartz, olivine_piezometer for olivine, and other_piezometers for other

mineral phases. We provide some examples below:

>>> quartz_piezometer(grain_size=5.7, piezometer='Stipp_Tullis')
Ensure that you have entered the apparent grain size as the root square mean!

differential stress = 169.16 MPa

>>> olivine_piezometer(grain_size=35, piezometer='Jung_Karato')
Ensure that you have entered the apparent grain size as the linear scale mean!

differential stress = 208.8 MPa

>>> other_piezometers(grain_size=5.7, piezometer='calcite_Rutter_SGR')
Ensure that you have entered the apparent grain size as the mean!

differential stress = 175.72 MPa

It is key to note that different piezometers require entering different types of apparent grain sizes to
provide meaningful estimates of differential stress. For example, the piezometer relation of Stipp and Tullis
(2003) requires entering the grain size as the square root mean grain size from equivalent circular
diameters with no stereological correction (i.e. mean sqrt apparent grain size), and so on. Table 1 show all
the implemented piezometers in GrainSizeTools v1.4.2 and the apparent grain size required for each one.
Despite some piezometers were originally calibrated using linear intercepts (LI), the script will always require
entering a specific apparent grain size measured as equivalent circular diameters (ECD), the script will
automatically convert this ECD value to linear intercepts using the De Hoff and Rhines (1968) empirical
relation.

Table 1. Relation of piezometers put in the GrainSizeTools script and the apparent grain size required to
obtain meaningful differential stress estimates

Piezometer
Apparent
grain size†

DRX
mechanism

Phase Reference

'Stipp_Tullis' RMS mean Regimes 2,
3

Quartz Stipp & Tullis
(2003)

'Stipp_Tullis_BLG' RMS mean Regime 1
(BLG)

Quartz Stipp & Tullis
(2003)

'Holyoke' RMS mean Regimes 2,
3

Quartz Holyoke and
Kronenberg
(2010)

'Holyoke_BLG' RMS mean Regime 1
(BLG)

Quartz Holyoke and
Kronenberg
(2010)

'Shimizu' ‡ Median in
log scale

SGR +
GBM

Quartz Shimizu (2008)

'Cross' and
'Cross_hr'

RMS mean BLG, SGR Quartz Cross et al. (2017)

'Twiss' § Mean Regimes 2,
3

Quartz Twiss (1977)

'calcite_Rutter_SGR' Mean SGR Calcite Rutter (1995)

'calcite_Rutter_GBM' Mean GBM Calcite Rutter (1995)

'calcite_Rutter_GBM' Mean GBM Calcite Rutter (1995)

'albite_PostT_BLG' § Median in
linear scale

BLG Albite Post and Tullis
(1999)

'VanderWal_wet' § Mean Olivine,
wet

Van der Wal et al.
(1993)

'Jung_Karato' § Mean BLG Olivine,
wet

Jung & Karato
(2001)

† Apparent grain size measured as equivalent circular diameters (ECD) with no stereological correction and
reported in microns either in linear, square root or logarithmic scales
‡ Shimizu piezometer requires to provide the temperature during deformation in K
§ These piezometers were originally calibrated using linear intercepts (LI) instead of ECD

For more details on the piezometers and the assumption made use the command help() in the console
as follows:

>>> help(quartz_piezometer)

The constant values as put in the script are described in Table 2 below.

Table 2. Parameters relating the apparent size of dynamically recrystallized grains and the differential stress
using a relation in the form d = Aσ-p or σ = Bd-m

Reference phase DRX A†,‡ p† B†,‡ m†

Stipp and Tullis
(2003)

quartz Regimes
2, 3

3630.8 1.26 669.0 0.79

Stipp and Tullis
(2003)

quartz Regime 1 78 0.61 1264.1 1.64

Holyoke &
Kronenberg (2010)§

quartz Regimes
2, 3

2451 1.26 490.3 0.79

Holyoke &
Kronenberg (2010)§

quartz Regime 1 39 0.54 883.9 1.85

Shimizu (2008) quartz SGR +
GBM

1525 1.25 352 0.8

Cross et al. (2017)¶ quartz Regimes
2, 3

8128.3 1.41 593.0 0.71

Cross et al. (2017)¶ quartz,
hr

Regimes
2, 3

16595.9 1.59 450.9 0.63

Twiss (1977) quartz Regimes
2, 3

12.3 1.47 5.5 0.68

Jung and Karato
(2001)

olivine,
wet

BLG 25704 1.18 5461.03 0.85

Van der Wal et al.
(1993)

olivine,
wet

0.0148 1.33 0.0425 0.75

Rutter (1995) calcite SGR 2026.8 1.14 812.83 0.88

Rutter (1995) calcite GBM 7143.8 1.12 2691.53 0.89

Post and Tullis
(1999)

albite BLG 55 0.66 433.4 1.52

† B and m relate to A and p as follows: B = A1/p and m = 1/p

‡ A and B are in [μm MPap, m] excepting Twiss (1977) in [mm MPap, m] and Van der Wal et al. (1993) in [m

MPap, m]
§ Holyoke and Kronenberg (2010) is a linear recalibration of the Stipp and Tullis (2003) piezometer
¶ Cross et al. (2017) reanalysed the samples of Stipp and Tullis (2003) using EBSD data for reconstructing the
grains. Specifically, they use grain maps with a 1 μm and a 200 nm (hr - high resolution) step sizes . This is
the preferred piezometer for quartz when grain size data comes from EBSD maps

Estimating a robust confidence interval

As pointed out in the scope section, the optimal approach is to obtain several measures of stress or grain
sizes and then estimate a confidence interval. Since v1.4.4+, the script implements a function called
confidende_interval for this. The script assume that the sample size is small (< 10) and hence it uses the

student's t-distribution with n-1 degrees of freedom to estimate a robust confidence interval. For large
datasets the t-distribution approaches the normal distribution so you can also use this method for large
datasets. The function has two inputs, the dataset, required, and the confidence interval, optional and set at
0.95 by default. For example:

>>> my_results = [165.3, 174.2, 180.1]
>>> confidence_interval(data=my_results, confidence=0.95)

The function will return the following information in the console:

Confidence set at 95.0 %
Mean = 173.2 ± 18.51
Max / min = 191.71 / 154.69
Coefficient of variation = 10.7 %

The coefficient of variation express the confidence interval in percentage respect to the mean and thus it
can be used to compare errors between samples with different mean values.

Derive the actual 3D distribution of grain sizes from thin sections

The function responsible to unfold the distribution of apparent grain sizes into the actual 3D grain size
distribution is named derive3D . The script implements two methods to do this, the Saltykov and the two-
step methods. The Saltykov method is the best option for exploring the dataset and for estimating the
volume of a particular grain size fraction. The two-step method is suitable to describe quantitatively the
shape of the grain size distribution assuming that they follow a lognormal distribution. This means that the
two-step method only yield consistent results when the population of grains considered are completely
recrystallized or when the non-recrystallized grains can be previously discarded using shape descriptors or
any other relevant paramater such as the density of dislocations. It is therefore necessary to check first
whether the linear distribution of grain sizes is unimodal and lognormal-like (i.e. skewed to the right as in
the example shown in figure 7). For more details see Lopez-Sanchez and Llana-Fúnez (2016).

Applying the Saltykov method

To derive the actual 3D population of grain sizes using the Saltykov method (Saltykov, 1967; Sahagian and
Proussevitch, 1998), we need to call the function derive3D as follows:

>>> derive3D(diameters, numbins=14)

Since the Saltykov method uses the histogram to derive the actual 3D grain size distribution, the inputs are
an array containing the population of apparent diameters of the grains and the number of classes. If the
number of classes is not declared is set to ten by default. The user can use any positive integer value.
However, it is usually advisable to choose a number not exceeding 20 classes (see later for details). After
pressing the Enter key, the function will return something like this in the shell:

sample size = 2661
bin size = 11.26

A file named Saltykov_output.csv containing the midpoints and the class frequencies,
was generated

The text indicates the sample size, the bin size, and that a tabular-like csv file containing different numerical
values was generated. Also, a window will pop up showing two plots (Fig 7). On the left it is the frequency
plot with the estimated 3D grain size distribution in the form of a histogram, and on the right the volume-
weighted cumulative density curve. The latter allows the user to estimate qualitatively the percentage of
volume occupied by a defined fraction of grain sizes. If the user wants to estimate quantitatively the
volume of a particular grain fraction (i.e. the volume occupied by a fraction of grains less or equal to a
certain value) we need to add a new parameter within the function as follows:

>>> derive3D(diameters, numbins=12, set_limit=40)

In the example above, the grain fraction is set to 40 microns, which means that the script will also return an
estimation of the percentage of volume occupied by all the grain fractions up to 40 microns. A new line
will appear in the shell:

volume fraction (up to 40 microns) = 22.8 %

As a cautionary note, if we use a different number of bins/classes, in this example set randomly at 12, we

http://www.sciencedirect.com/science/article/pii/S0191814116301778

will obtain slightly different volume estimates. This is normal due to the inaccuracies of the Saltykov
method. In any event, Lopez-Sanchez and Llana-Fúnez (2016) proved that the absolute differences
between the volume estimations using a range of classes between 10 and 20 are below ±5. This means that
to stay safe we should always take an absolute error margin of ±5 in the volume estimations.

Figure 7. The derived 3D grain size distribution and the volume-weighted cumulative grain size
distribution using the Saltykov method.

Lastly, due to the nature of the Saltykov method, the smaller the number of classes the better the
numerical stability of the method, and the larger the number of classes the better the approximation of the
wanted distribution. Ultimately, the strategy to follow is about finding the maximum number of classes (i.e.
the best resolution) that produces stable results. Based on experience, previous works proposed to use
between 10 to 15 classes (e.g. Exner 1972), although depending on the quality and the size of the dataset it
seems that it can be used safely up to 20 classes or even more (e.g. Heilbronner and Barret 2014, Lopez-
Sanchez and Llana-Fúnez 2016). Yet, no method (i.e. algorithm) appears to be generally best for choosing
an optimal number of classes (or bin size) for the Saltykov method. Hence, the only way to find the
maximum number of classes with consistent results is to use a trial and error strategy and observe if the
appearance is coherent or not. As a last cautionary note, the Saltykov method requires large samples (n
~ 1000 or larger) to obtain consistent results, even when using a small number of classes.

Applying the two-step method

To estimate the shape of the 3D grain size distribution, the derive3D function implements a method
called "the two-step method" (Lopez-Sanchez and Llana-Fúnez, 2016). This method assumes that the
actual 3D population of grain sizes follows a lognormal distribution, a common distribution observed in
recrystallized aggregates. Hence, make sure that the aggregate or the studied area within the
rock/alloy/ceramic is completely recrystallized. The method applies a non-linear least squares algorithm to
fit a lognormal distribution on top of the Saltykov method using the midpoints of the different classes. The
method return two parameters, the MSD and the theoretical median, both enough to fully describe a
lognormal distribution at their original (linear) scale, and the uncertainty associated with these estimates
(see details in Lopez-Sanchez and Llana-Fúnez, 2016). In addition, it also returns a frequency plot showing
the probability density function estimated (Fig. 8). In particular, the MSD value allows to describe the shape
of the lognormal distribution independently of the scale (i.e. the range) of the grain size distribution, which
is very convenient for comparative purposes. To apply the two-step method we need to invoke the
function derive3D as follows:

>>> derive3D(diameters, numbins=15, set_limit=None, fit=True)

Note that in this case we include a new parameter named fit that it is set to True with the "T"

capitalized (it is set to False by default). The function will return something like this in the shell:

sample size = 2661
bin size = 10.44

Optimal coefficients:
MSD (shape) = 1.69 ± 0.07
Median (location) = 35.51 ± 1.73 (caution: not fully realiable)

A file named twoStep_output.csv containing the midpoints, class frequencies,
and cumulative volumes was generated

Sometimes, the least squares algorithm will fail at fitting the lognormal distribution to the unfolded data
(e.g. Fig. 8b). This is due to the algorithm used to find the optimal MSD and median values, the
Levenberg–Marquardt algorithm (Marquardt, 1963), only converges to a global minimum when their initial
guesses are already somewhat close to the final solution. Based on our experience in quartz aggregates,
the initial guesses were set by default at 1.2 and 25.0 for the MSD and median values respectively. However,
if the algorithm fails it is possible to change the default values by adding a following parameter:

>>> derive3D(diameters, numbins=15, set_limit=None, fit=True, initial_guess=True)

When the initial_guess parameter is set to True , the script will ask to set a new starting values for
both parameters (it also indicates which are the default ones). Based in our experience, a useful strategy is
to let the MSD value in its default value (1.2) and decreasing the median value every five units until the
fitting procedure yield a good fit (e.g. 25 -> 20 -> 15...) (Fig. 8).

Figure 8. Plots obtained using the two-step method. At left, an example with the lognormal pdf well fitted to
the data points. The shadow zone is the trust region for the fitting procedure. At right, an example with a
wrong fit due to the use of unsuitable initial guess values. Note the discrepancy between the data points
and the line representing the best fitting.

Comparing different grain size populations using box plots

Box (or box-and-whisker) plot is a non-parametric method to display numerical datasets through their
quartiles and median, being a very efficient way for comparing unimodal datasets graphically. Figure 9
show the different elements represented in a typical box plot.

https://en.wikipedia.org/wiki/Box_plot

Figure 9. Box plot elements

To create a box plot using the Matplotlib library we need to create first a variable with all the data sets to
represent. For this we create a Python list as follows (variable names have been chosen for convenience):

>>> all_data = [dataset1, dataset2, dataset3, dataset4] # Note that a Python list is a list
of elements within brackets separated by commas

Then we create the plot (Fig. 10):

>>> plt.boxplot(all_data)
>>> plt.show() # write this and click return if the plot did not appear automatically

To create a more convenience plot (Fig. 10) we propose using the following optional parameters:

First make a list specifying the labels of the samples (this is optional). Ensure that
the number of items in the brackets coincide with the number of datasets to plot.
>>> label_list = ['SampleA', 'SampleB', 'SampleC', 'SampleD']
Then make the plot ading the following instructions
>>> plt.boxplot(all_data, vert=False, meanline=True, showmeans=True, labels=label_list)
>>> plt.xlabel('apparent diameter (μm)') # add the x-axis label
>>> plt.show() # write this and click return if the plot did not appear automatically

The parameters defined in the boxplot are:

vert : if False makes the boxes horizontal instead of vertical (it is True by default).
meanline and showmeans : if True will show the location of the mean within the plots.
labels : add labels to the different datasets.

Figure 10. Box plot comparing four unimodal datasets obtained from the same sample but located in
different places along the thin section. At left, a box plot with the default appearance. At right, the same box
plot with the optional parameters showing above. Dashed lines are the mean. Note that the all the datasets
show similar median, means, IQRs, and whisker locations. In contrast, the fliers (points) approximately
above 100 microns vary greatly.

Other methods of interest

Obtain common descriptive statistic parameters

>>> mean(array_name) # Estimate the mean
>>> std(array_name) # Estimate the standard deviation
>>> np.sqrt(mean(diameters**2)) # Estimate the root mean square (RMS) mean
>>> median(array_name) # Estimate the median
>>> iqr(array_name) # Estimate the interquartile range

Merging datasets

A useful Numpy method to merge two or more datasets is called hstack() , which stack arrays in
sequence as follows (please, note the use of double parenthesis):

>>> np.hstack((name of the array1, name of the Array2,...))

As an example if we have two different datasets and we want to merge the areas and the diameters
estimated in a single variable we write into the Python shell (variable names are just random examples):

>>> all_areas = np.hstack((areas1, areas2))
>>> all_diameters = np.hstack((diameters1, diameters2))

Note that in this example we merged the original datasets into two new variables named all_areas and
all_diameters respectively. Therefore, we do not overwrite any of the original variables and we can used

them later if required. In contrast, if you use a variable name already defined:

>>> areas1 = np.hstack((areas1, areas2))

The variable areas1 is now a new array with the values of the two datasets, and the original dataset stored
in the variable areas1 no longer exists since these variables (strictly speaking Numpy arrays) are mutable
Python objects.

Loading several datasets: the fastest (appropriate) way

If you need to load a large number of datasets, you probably prefer not having to search across multiple
folders in the file dialog window or to manually specify the absolute file paths of each file. Python
establishes by default a current working directory in which all the files can be accessed directly by
specifying just the name of the file (or a relative path if they are in a sub-folder). For example, if the current
working directory is c:/user/yourname , you no longer need to specify the entire file path for the files
stored within this directory. For example, to load a csv file named 'my_sample.csv' stored in that location
you just need to write:

>>> areas = extract_areas('my_sample.csv')

When you run the script for the first time, your current working directory will appear in the Python shell.
Also, you can retrieve your current working directory at any time by typing in the shell os.getcwd() , as
well as to modify it to another path using the function os.chdir('new default path') . The same rules
apply when using the np.genfromtxt method.

Note: usually the current working directory is the same directory where the script is located
(although this depends on the Python environment you have installed). Hence, sometimes
it is a good idea to locate the scrip in the same directory where the datasets are located.

GST script quick tutorial

This is a quick tutorial showing typical commands to interact with the GST script in the shell.
You can copy and paste the command lines directly into the shell. Variable names have
been chosen for convenience, but you can use any other name if desired.
The commands below require the v1.4.3 or higher.

Loading the data and extracting the areas of the grain profiles

The automatic (preferred) mode
areas = extract_areas()

Using the automatic mode but defining a column name different from the default 'Area'
areas = extract_areas(file_path='auto', col_name='the name of the column to be extracted')

The manual mode: Defining the file path
areas = extract_areas('C:/...yourFileLocation.../nameOfTheFile.csv')

Loading data from a single-column text file (the skip_header parameter is optional)
areas = np.genfromtxt('C:/yourFileLocation/nameOfTheFile.txt', skip_header=1)

Estimating the apparent diameters from the areas of the grain profiles

Estimating the equivalent circular diameter from the grain profiles areas
diameters = calc_diameters(areas)

Using the diameter correction
diameters = calc_diameters(areas, correct_diameter=0.05) # 0.05 microns will be added

Obtaining apparent grain size measures

Default mode (linear grain size distribution, automatic bin size or number of classes)
find_grain_size(areas, diameters)

Using the area-weighted grain size with automatic bin size
find_grain_size(areas, diameters, plot='area')

Using the logarithmic grain size with automatic bin size
find_grain_size(areas, diameters, plot='log')

Using the square-root grain size with automatic bin size
find_grain_size(areas, diameters, plot='sqrt')

Using a specific plug-in method for estimating the optimal bin size or number of classes
Plug-in methods include: Freedman-Diaconis:'fd', Scott:'scott', Rice:'rice',
Sturges:'sturges', Doane:'doane', and square-root:'sqrt' bin sizes
find_grain_size(areas, diameters, plot='lin', binsize='doane')

Using an ad hoc bin size
find_grain_size(areas, diameters, plot='lin', binsize=10.0)

Estimate differential stresses using paleopizometers

Estimate differential stress using quartz and the piezometric
piezometer of Stipp and Tullis (2003)
quartz_piezometer(grain_size=9.0, piezometer='Stipp_Tullis')

Estimate differential stress using olivine and the piezometric
piezometer of Jung and Karato (2001)
olivine_piezometer(grain_size=9.0, piezometer='Jung_Karato')

Estimate differential stress in other mineral/materials
piezometer of Rutter (1995)
other_piezometer(grain_size=9.0, piezometer='calcite_Rutter_SGR')

Derive the actual 3D grain size distribution from the apparent grain size distribution

Using the Saltykov method with ad hoc number of classes
if numbins is not declared is set to ten classes by default
derive3D(diameters, numbins=12)

Estimating the volume of a particular grain size fraction
derive3D(diameters, numbins=12, set_limit=40)

Using the two-step method
derive3D(diameters, numbins=12, set_limit=None, fit=True)

Using ad hoc initial guess values for correcting a wrong fit
The script will ask you about the new guessing values
derive3D(diameters, numbins=12, set_limit=None, fit=True, initial_guess=True)

How to measure the areas of the grain profiles with ImageJ

Before you start: This tutorial assumes that you have installed the ImageJ application. If this
is not the case, go here to download and install it. You can also install different flavours of
the ImageJ application that will work in a similar way (see here for a summary) . As a
cautionary note, this is not a detailed tutorial on image analysis methods using ImageJ, but
a quick systematic tutorial on how to measure the areas of the grain profiles from a thin
section to later estimate the grain size and grain size distribution using the GrainSizeTools
script. If you are interested in image analysis methods (e.g. grain segmentation techniques,
shape characterization, etc.) you should have a look at the list of references at the end of
this tutorial.

Previous considerations on the Grain Boundary Maps

Grain size studies in rocks are usually based on measures performed in thin sections (2D data) through
image analysis. Since the methods implemented in the GrainSizeTools script are based on the measure of
the areas of the grain profiles, the first step is therefore to obtain a grain boundary map from the thin
section (Fig. 1).

Figure 1. An example of a grain boundary map

Nowadays, these measures are mostly made on digital images made by pixels (e.g. Heilbronner and Barret
2014), also known as raster graphics image. You can obtain some information on raster graphics here. For
example, in a 8-bit grayscale image -the most used type of grayscale image-, each pixel contains three
values: information about its location in the image -their x and y coordinates- and its 'grey' value in a
range that goes from 0 (white) to 256 (black) (i.e. it allows 256 different grey intensities). In the case of a
grain boundary map (Fig. 1), we usually use a binary image where only two possible values exist, 0 for
white pixels and 1 for black pixels.

One of the key points about raster images is that they are resolution dependent, which means that each

http://imagej.nih.gov/ij/
http://fiji.sc/ImageJ
https://en.wikipedia.org/wiki/Raster_graphics

pixel have a physical dimension. Consequently, the smaller the size of the pixel, the higher the resolution.
The resolution depends on the number of pixels per unit area or length, and it is usually measured in pixel
per (square) inch (PPI) (more information about Image resolution and Pixel density). This concept is key
since the resolution of our raw image -the image obtained directly from the microscope- will limit the
precision of the measures. Known the size of the pixels is therefore essential and it will allow us to set the
scale of the image to measure of the areas of the grain profiles. In addition, it will allow us to later make a
perimeter correction when calculating the equivalent diameters from the areas of the grain profiles. So be
sure about the image resolution at every step, from the "raw" image you get from the microscope until
you get the grain boundary map.

Note: It is important not to confuse the pixel resolution with the actual spatial resolution of
the image. The spatial resolution is the actual resolution of the image and it is limited
physically not by the number of pixels per unit area/length. For example, conventional SEM
techniques have a maximum spatial resolution of 50 to 100 nm whatever the pixels in the
image recorded. Think in a digital image of a square inch in size and made of just one black
pixel (i.e. with a resolution of ppi = 1). If we double the resolution of the image, we will
obtain the same image but now formed by four black pixels instead of one. The new pixel
resolution per unit length will be ppi = 2 (or 4 per unit area), however, the spatial resolution
of the image remains the same. Strictly speaking, the spatial resolution refers to the number
of independent pixel values per unit area/length.

The techniques that make possible the transition from a raw image to a grain boundary map, known as
grain segmentation, are numerous and depend largely on the type of image obtained from the
microscope. Thus, digital images may come from transmission or reflected light microscopy, semi-
automatic techniques coupled to light microscopy such as the CIP method (e.g. Heilbronner 2000),
electron microscopy either from BSD images or EBSD grain maps, or even from electron microprobes
through compositional mapping. All this techniques produce very different images (i.e. different
resolutions, colour vs grey scale, nature of the artefacts, grain size boundary vs phase maps, etc.). The
presentation of this segmentation techniques is beyond the scope of this tutorial and the reader is referred
to the references cited at the end of this document and, particularly, to the books written by Russ (2011)
and Heilbronner and Barret (2014). This tutorial is focused instead on the features of the grain boundary
maps by itself not in how to convert the raw images to grain boundary maps using manual, automatic or
semi-automatic grain segmentation.

Once the grain segmentation is done, it is crucial to ensure that at the actual pixel resolution the grain
boundaries have a width of two or three pixels (Fig. 2). This will prevent the formation of undesirable
artefacts since when two black pixels belonging to two different grains are adjacent to each other, both
grains will be considered the same grain by the image analysis software.

https://en.wikipedia.org/wiki/Image_resolution
https://en.wikipedia.org/wiki/Pixel_density

*Figure 2. Detail of grain boundaries in a grain boundary map. The figure shows the boundaries (in white)
between three grains in a grain boundary map. The squares represent the pixels in the image. The
boundaries are two pixels wide approximately.*

Measuring the areas of the grain profiles

1. Open the grain boundary map with the ImageJ application

2. To measure the areas of the grain profiles it is first necessary to convert the grain boundary map into a
binary image. If this was not done previously, go to Process>Binary and click on Make binary .
Also, make sure that the areas of grain profiles are in black and the grain boundaries in white and not
the other way around. If not, invert the image in Edit>Invert .

3. Then, it is necessary to set the scale of the image. Go to Analize>Set Scale . A new window will
appear (Fig. 3). To set the scale, you need to know the size of a feature, such as the width of the
image, or the size of an object such as a scale bar. The size of the image in pixels can be check in the
upper left corner of the window, within the parentheses, containing the image. To use a particular
object of the image as scale the procedure is: i) Use the line selection tool in the tool bar (Fig. 3) and
draw a line along the length of the feature or scale bar; ii) go to Analize>Set Scale ; iii) the distance
of the drawn line in pixels will appear in the upper box, so enter the dimension of the object/scale bar
in the 'known distance' box and set the units in the 'Unit length' box; iv) do not check 'Global' unless
you want that all your images have the same calibration and click ok. Now, you can check in the
upper left corner of the window the size of the image in microns (millimetres or whatever) and in
pixels.

Figure 3. At left, the Set Scale window. In the upper right, the ImageJ menu and tool bars. The line selection
tool is the fifth element from the left (which is actually selected). In the bottom right, the upper left corner
of the window that contains the grain boundary map. The numbers are the size in microns and the size in
pixels (in brackets).

4. The next step requires to set the measurements to be done. For this, go to
Analize>Set Measurements and a new window will appear. Make sure that 'Area' is selected. You can

also set at the bottom of the window the desired number of decimal places. Click ok.

5. To measure the areas of our grain profiles we need to go to Analize>Analize Particles . A new
window will appear with different options (Fig. 4). The first two are for establishing certain conditions to
exclude anything that is not an object of interest in the image. The first one is based on the size of the
objects in pixels by establishing a range of size. We usually set a minimum of four pixels and the
maximum set to infinity to rule out possible artefacts hard to detect by the eye. This ultimately
depends on the quality and the nature of your grain boundary map. For example, people working
with high-resolution EBSD maps usually discard any grain with less than ten pixels. The second option
is based on the roundness of the grains. We usually leave the default range values 0.00-1.00, but again
this depends on your data and purpose. For example, the roundness parameter could be useful to
differentiate between non-recrystallized and recrystallized grains in some cases. Just below, the 'show'
drop-down menu allows the user to obtain different types of images when the particle analysis is
done. We usually set this to 'Outlines' to obtain an image with all the grains measured outlined and
numbered, which can be useful later to check the data set. Finally, the user can choose between
different options. In our case, it is just necessary to select 'Display results'. Click ok.

Figure 4. Analyze particles window showing the different options

6. After a while, several windows will appear. At least, one containing the results of the measures (Fig. 5),
and other containing the image with the grains outlined and numbered. Note that the numbers
displayed within the grains in the image correspond to the values showed in the first column of the
results. To save the image go to the ImageJ menu bar, click on File>Save As , and choose the file
type you prefer (we encourage you to use PNG or TIFF for such type of image). To save the results we
have different options. In the menu bar of the window containing the results, go to
Results>Options and a new window will appear (Fig. 6). In the third line, you can choose to save the

results as a text (.txt), csv comma-separated (.csv) or excel (.xls) file types. We encourage you to
choose either txt or csv since both are widely supported formats to exchange tabular data. Regarding
the 'Results Table Options' at the bottom, make sure that 'Save column headers' are selected since this
headers will be used by the GrainSizeTools script to automatically extract the data from the column
'Area'. Finally, in the same window go to File>Save As and choose a name for the file. You are done.

Figure 5. The results windows showing all the measures done on the grains by the ImageJ application.

Figure 6. ImageJ I/O options window.

List of useful references

Note: This list of references is not intended to be exhaustive in any way. It simply reflects some books,
articles or webpages that I find interesting on the topic. My intention is to expand this list over time.
Regarding the ImageJ application, there are many tutorials on the web, see for example here or here

Russ, J.C., 2011. The image processing handbook. CRC Press. Taylor & Francis Group

This is a general-purpose book on image analysis written by professor John C. Russ from the
Material Sciences and Engineering at North Carolina State University. Although the book is
not specifically focused on structural geology, thin sections, or even rocks, it covers a wide
variety of procedures in image analysis and contain very nice examples of image
enhancement, segmentation techniques and shape characterization. I find the text very
clear and well-written, so if you are looking for a general-purpose image analysis book, this
is the best one I known.

Heilbronner, R., Barret, S., 2014. Image Analysis in Earth Sciences. Springer-Verlag Berlin Heidelberg.
doi:10.1007/978-3-642-10343-8

This book focuses on image analysis related with Earth Sciences putting much emphasis on
methods used in structural geology. The first two chapters deals with image processing and
grain segmentation techniques using the software Image SXM, which is a different flavour of
the ImageJ family applications (see here).

Heilbronner, R., 2000. Automatic grain boundary detection and grain size analysis using polarization
micrographs or orientation images. J. Struct. Geol. 22, 969–981. doi:10.1016/S0191-8141(00)00014-6

This paper explains a simple procedure for creating grain boundary maps from thin sections
using a semi-automatic method implemented in a NIH Image macro named Lazy Grain
Boundary (LGB). NIH Image is the predecessor of ImageJ (no longer under active
development). The authors compare the results obtained using the LGB method and
manual segmentation using digital images obtained from a quartzite under light
microscopy using different techniques. Interestingly, all the steps described in the protocol
can be automated using the ImageJ software and using more sophisticated segmentation
algorithms than those originally implemented in the LGB macro (e.g. using the Canny edge
detector instead of the Sobel one).

Barraud, J., 2006. The use of watershed segmentation and GIS software for textural analysis of thin sections.
Journal of Volcanology and Geothermal Research 154, 17–33. doi:10.1016/j.jvolgeores.2005.09.017

This paper propose a workflow for grain segmentation and grain analysis that differs slightly
from other approaches referred here. For the acquisition, it uses three different images from
light microscopy with different orientations, combining them in a false-colour RGB image.
For grain segmentation it uses the anisotropic diffusion for noise reduction plus watershed
methods (both available in ImageJ).

http://imagej.nih.gov/ij/docs/index.html
http://imagej.net/Category:Tutorials
http://link.springer.com/book/10.1007%2F978-3-642-10343-8
http://fiji.sc/ImageJ
http://www.sciencedirect.com/science/article/pii/S0191814100000146
http://dx.doi.org/10.1016%2Fj.jvolgeores.2005.09.017

Frequently Asked Questions

Who is this script for?
This script is targeted at anyone who wants to: i) visualize the grain size distribution, ii) obtain a set of
apparent grain size measures to estimate the magnitude of differential stress (or rate of mechanical work) in
dynamically recrystallized rocks, and iii) estimate the actual (3D) distribution of grain sizes from thin
sections using stereological methods. The latter includes an estimate of the volume occupied by a
particular grain size fraction and a parameter to characterize the shape of the population of grain sizes
(assuming that the distribution of grain sizes follows a lognormal distribution). The stereological methods
assume that grains have equant or near-equant (AR < 2.0) shapes, which mostly include all recrystallized
grains produced during static and dynamically recrystallization. For igneous studies involving tabular grains
far from near-equant objects, we recommend other approaches such as those implemented in the
CSDCorrections software (Higgins 2000). See the references list section for details.

Why use apparent grain size measures instead of measures estimated from unfolded 3D grain size
distributions in paleopiezometry studies?
One may be tempted to use a stereological method to estimate the midpoint of the modal interval or any
other unidimensional parameter based on the actual grain size distribution rather than using the mean,
median, or frequency peak of the apparent grain size distribution. We think that there is no advantage in
doing this but serious drawbacks. The rationale behind this is that 3D grain size distributions are estimated
using a stereological model and, hence, the accuracy of the estimates depends not only in the
introduction of errors during measuring but also on the robustness of the model. Unfortunately,
stereological methods are built on "weak" geometric assumptions and the results will always be, at best,
only approximate. This means that the precision of the estimated 3D size distribution is much poorer than
the precision of the original distribution of grain profiles since the latter is based on real data. To sum up,
use stereological methods only when you need to estimate the volume occupied by a particular grain size
fraction or investigating the shape of the actual grain size distribution, otherwise use estimates based on
the apparent grain size distribution.

What measure of central tendency (mean, median, peak/mode) do I have to use?

This depends on the features of the grain size distribution. In the case of unimodal distributions the
following rule of thumb should be considered:

use mean and standard deviation (SD) when your distribution is normal-like or moderate-tailed.
In such cases, the position of the mean, median and frequency peak ("mode") should be fairly similar.
This is expected to occur when using logarithmic or square-root scales.
use median and interquartile (or interprecentil) range when your distribution is skewed (non-
normal). In such cases, the position of the mean, median and frequency peak should be well
differentiated.
use the location of the frequency peak (KDE peak grain size) when grain size in different specimens
was measured with very different conditions (e.g. different resolutions, cut-offs, etc.) or when the
distribution show complex or multimodal patterns (in that case only for comparative purposes). See
more details in the Scope section.

Last, as a rule of thumb and for future comparatives always report all of them.

What is an MSD value? What is it used for?
MSD stands for Multiplicative Standard Deviation and it is a parameter that allows to define the shape of
the grain size distribution using a single value assuming that it follows a lognormal distribution. In plain
language, the MSD value gives a measure of the asymmetry (or skewness) of the grain size distribution. For

http://doi.wiley.com/10.1111/j.1365-2818.1983.tb04255.x
https://github.com/marcoalopez/GrainSizeTools/blob/master/DOCS/Scope.md

example, an MSD value equal to one corresponds to a normal (Gaussian) distribution and values greater
than one with log-normal distributions of different shapes, being the higher the MSD value the greater the
asymmetry of the distribution (Figure a). The advantage of this approach is that by using a single
parameter we can define the shape of the grain size distribution independently of its scale (Fig. b), which is
very convenient for comparing the shape of two or more grain size distributions.

Probability density functions of selected lognormal distributions taken from Lopez-Sanchez and Llana-
Fúnez (2016). (a) Lognormal distributions with different MSD values (shapes) and the same median (4). (b)
Lognormal distributions with the same shape corresponding to an MSD value (1.5) and different medians
(note that different medians imply different scales in the horizontal and vertical directions).

Why the grain size distribution plots produced by the GST script and the classic CSD charts do not
use the same units on the y axis?
As you may noticed classic CSDs charts (Marsh, 1988) show in the vertical axis the logarithmic variation in
population density or log(frequency) in mm-4, while the stereological methods put in the GrainSizeTools
(GST) script returns plots with a linear frequency (per unit volume). This is due to the different aims of the
CSDs and the plots returned by the GST script. Originally, CSDs were built for deriving two things in
magmatic systems: i) nucleation rates and ii) crystal growth rates. In these systems, small grains are more
abundant than the large ones and the increase in quantity is typically exponential. The use of the
logarithm in the vertical axis helps to obtain a straight line with the slope being the negative inverse of the
crystal growth times the time of crystallization. Further, the intercept of the line at grain size equal to zero
allows estimating the nuclei population density. In recrystallized rocks, there is no grain size equal to zero
and we usually unknown the crystallization time, so the use of the CSDs are not optimal. Furthermore, the
use of the logarithm in the vertical axis has two main disadvantages for microstructural studies: (i) it
obscures the reading of the volume of a particular grain fraction, a common target in microtectonic
studies, and (ii) it prevents the easy identification of the features of grain size distribution, which is relevant
for applying the two-step method.

Why the sum of all frequencies in the histograms is not equal to one?
This is because the script normalized the frequencies of the different classes so that the integral over the
range is one. In other words, once the frequencies are normalized to one, the frequency values are divided
by the bin size. This means that the sum of all frequency values will not be equal to one unless the bin size
is one. We have chosen this normalization method because it allows comparing similar distributions using
a different number of classes or bin size, and it is required to properly apply the two-step method.

Is it necessary to specify the version of the script used in a publication? How can this be indicated?

Yes, it is always desirable to indicate the version of the script used. The rationale behind this is that codes
may contain bugs and versioning allow to track them and correct the results of already published studies

http://www.sciencedirect.com/science/article/pii/S0191814116301778

in case a bug is discovered later. The way to indicate the version is twofold:

The way we advise you to follow is by explicitly indicating the version in your manuscript as follows:
"...we used the GrainSizeTools script version 1.4.4..." and then use the general citation in the reference
list.

The other way is by adding a termination in the form .v plus a number in the general DOI link. This is,
instead of using the general reference of the script:

Lopez-Sanchez, Marco A. (2018): GrainSizeTools script. figshare.

https://doi.org/10.6084/m9.figshare.1383130

You can modify the doi link as follows:

Lopez-Sanchez, Marco A. (2017): GrainSizeTools script. figshare.

https://doi.org/10.6084/m9.figshare.1383130.v15 (Note the termination .v15)

To get the specific doi link, go to the script repository at
https://figshare.com/articles/GrainSizeTools_script/1383130 , find the version you used in your study,
and then click on "Cite" to obtain the full citation.

Does the script work with Python 2.7.x and 3.x versions? Which version do I choose?
Despite both Python versions are not fully compatible, GrainSizeTools script has been written to run on
both. As a rule of thumb, if you do not have previous experience with the Python language go with 3.x
versions, which is the present and future of the language. Python 2.7.x versions are still maintained for
legacy reasons, but keep in mind that their support will be discontinued in 2020. Also note that since
version 1.3, the script is only tested by the maintainer using Python 3.

I get the results but not the plots when using the Spyder IDE (ValueError: Image size of ... pixels is
too large) This issue is produced because the size of the figures returned by the script are too large to
show them inside the console using the inline mode. To fix this go to the Spyder menu bar and in
Tools>Preferences>IPython console>Graphics find Graphics backend and select Automatic and then

restart Spyder. As an alternative you can type %matplotlib auto in the console without needing to restart
Spyder but this is only valid for the current session.

Can I report bugs or submit ideas to improve the script?
Sure. If you have any problem using the script or found a bug please just let me know open an issue here
or drop me an email (my email address here: https://github.com/marcoalopez). Feedback from users is
always welcome and important to develop a better and reliable script. Lastly, you can also fork the project
and develop your own based on the GST script since it is open source and free.

https://pythonclock.org/
https://github.com/marcoalopez/GrainSizeTools/issues

References cited

Cross AJ, Prior, DJ, Stipp M and Kidder S (2017) The recrystallized grain size piezometer for quartz: An EBSD-
based calibration Geophys. Res. Lett. 44, 6667–6674. doi:10.1002/2017GL073836

Exner HE (1972) Analysis of Grain- and Particle-Size Distributions in Metallic Materials. International
Metallurgical Reviews 17, 25-42.

Heilbronner R and Barret S (2014) Image Analysis in Earth Sciences. Springer-Verlag Berlin Heidelberg.
doi:10.1007/978-3-642-10343-8

Higgins MD (2000) Measurement of crystal size distributions. American Mineralogist 85, 1105-1116. doi:
10.2138/am-2000-8-901

Holyoke CW and Kronenberg AK (2010) Accurate differential stress measurement using the molten salt cell
and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology.
Tectonophysics 494(1–2), 17–31, doi:10.1016/j.tecto.2010.08.001

Jung H and Karato S (2001) Effects of water on dynamically recrystallized grain-size of olivine. Journal of
Structural Geology 23, 1337-1344, doi:10.1016/S0191-8141(01)00005-0

Lopez-Sanchez MA and Llana-Funez S (2015) An evaluation of different measures of dynamically
recrystallized grain size for paleopiezometry or paleowattmetry studies. Solid Earth 6, 475-495. doi:
10.5194/se-6-475-2015

Lopez-Sanchez MA and Llana-Fúnez S An extension of the Saltykov method to quantify 3D grain size
distributions in mylonites. Journal of Structural Geology 93, 149-161. doi: 10.1016/j.jsg.2016.10.008

Marquardt DW (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl.
Math. 11, 431–441. doi: 10.1137/0111030

Post A and Tullis J (1999) A recrystallized grain size piezometer for experimentally deformed feldspar
aggregates. Tectonophysics 303, 159-173, doi:10.1016/S0040-1951(98)00260-1

Rutter E (1995) Experimental study of the influence of stress, temperature, and strain on the dynamic
recrystallization of Carrara marble​. Journal of Geophysical Research: Solid Earth, 100, 24651-24663. doi:
10.1029/95JB02500

Sahagian D and Proussevitch AA (1998) 3D particle size distributions from 2D observations: stereology for
natural applications. Journal of Volcanology and Geothermal Research 84, 173-196. doi: 10.1029/95JB02500

Saltykov SA (1967) The determination of the size distribution of particles in an opaque material from a
measurment of the size distribution of their secions. In: Elias, H. (Ed.), Proceedings of the Second
International Congress for STEREOLOGY. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 163–173. doi:
10.1007/978-3-642-88260-9_31

Silverman BW (1986) Density estimation for statistics and data analysis. Monographs on Statistics and
Applied Probability, Chapman and Hall, London.

Shimizu I (2008) Theories and applicability of grain size piezometers: The role of dynamic recrystallization
mechanisms. J. Struct. Geol. 30(7), 899–917, doi:10.1016/j.jsg.2008.03.004

Stipp M and Tullis J (2003) The recrystallized grain size piezometer for quartz. Geophysical Research Letters
30, 1-5. doi: 10.1029/2003GL018444

https://www.doi.org/10.1002/2017GL073836
http://www.maneyonline.com/doi/citedby/10.1179/imtlr.1972.17.1.25
https://www.doi.org/10.1007/978-3-642-10343-8
https://www.doi.org/10.2138/am-2000-8-901
https://www.doi.org/10.1016/j.tecto.2010.08.001
https://www.doi.org/10.1016/S0191-8141(01)00005-0
https://www.doi.org/10.5194/se-6-475-2015
https://www.doi.org/10.1016/j.jsg.2016.10.008
https://www.doi.org/10.1137/0111030
https://www.doi.org/10.1016/S0040-1951(98)00260-1
https://www.doi.org/10.1029/95JB02500
https://www.doi.org/10.1029/95JB02500
https://www.doi.org/10.1007/978-3-642-88260-9_31
http://ned.ipac.caltech.edu/level5/March02/Silverman/Silver_contents.html
https://www.doi.org/10.1016/j.jsg.2008.03.004
https://www.doi.org/10.1029/2003GL018444

Twiss RJ (1977) Theory and Applicability of a Recrystallized Grain Size Paleopiezometer. Pure Appl. Geophys.
PAGEOPH 115(1–2), 227–244, doi:10.1007/BF01637105

Van der Wal D, Chopra M, Drury M and Fitz-Gerald J (1993) Relationships between dynamically
recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophysical
Research Letters 20, 1479-1482, doi:10.1029/93GL01382

https://www.doi.org/10.1007/BF01637105
https://www.doi.org/10.1029/93GL01382

