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Abstract

Abstract

In the past decade, long noncoding RNAs (IncRNAs) have been
increasingly recognized as important regulators of gene expression at various
levels (1). The human genome encodes thousands of IncRNAs (2), and an
increasing number of these INncRNAs have been associated with human
diseases (3). IncRNA structures are expected to play essential roles in gene
regulatory functions, but our current understanding of them remains limited.
Traditional methods for RNA structure determination each has its limitations:
biophysical approaches, such as NMR or crystallography, are not feasible for
large RNAs which are relatively more flexible; traditional chemical probing
methods often focus on small regions of single RNAs (4). To overcome these
constraints, we developed a novel method for high-throughput probing of RNA
structure using massively parallel sequencing (Mod-seq (5)). Compared to
traditional RNA structure probing methods, Mod-seq provides substantial
improvements in throughput, allowing rapid and simultaneous probing of the
whole transcriptome (5, 6). My thesis work focused on using both experimental
methods and computational methods to study the structure of human IncRNAs.
| first developed Mod-seeker, an automatic data analysis pipeline for Mod-seq

(5, 6). | then focused on studying the structure of IncRNA NEAT1, an essential



Abstract

component of mammalian nuclear paraspeckles (7, 8). Structure probing and
comparative analyses suggest lack of evidence of covariant base-pairs in
NEAT1 across mammals. However, a conserved long-range interaction was
observed that may contribute to NEAT1’s scaffolding function in paraspeckle
formation. The experiments described in this thesis suggest that IncRNAs can
have conserved cellular functions without maintaining conserved secondary
structures, even when they function as structural scaffolds. This work is one of
the first attempts to use both chemical probing and computational modelling to
study the secondary structure of IncRNAs. The case study of NEAT1 IncRNA
structure helps us understand its function in paraspeckle formation and gives

insights into the contributions of INcCRNA structures towards their functions.
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Chapter 1 Introduction

Chapter 1 Introduction

Long non-coding RNAs are a group of RNA molecules that do not encode
proteins and are longer than 200 nucleotides. Although IncRNA usually have
lower expression levels than mRNA, many are found to be important regulators
of gene expression. INcCRNA are evolutionarily young and their sequence are
often not well-conserved. Like proteins, IncRNA can form secondary and
tertiary structures, though IncRNA structures are much more flexible and
difficult to study using traditional methods for protein structure determination,
such as X-ray crystallography, NMR or Electron Microscopy. Only a few IncRNA
have secondary structure models determined by chemical probing approaches.
Determining the structure of large, flexible IncRNAs and understanding the
function and conservation of INcCRNA structures are challenging tasks. In this
chapter | first review our current understanding about IncRNA in general,
including their expression patterns, possible function mechanisms, evolutionary
features and structures. Then | summarize current methods for RNA structure
determination. Finally, | introduce IncRNA NEAT1, a scaffolding IncRNA for
paraspeckles, which is a good candidate to use as a case study to understand

IncRNA structure and its conservation.
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1.1 Long non-coding RNAs are important regulators of gene

expression

For decades, RNAs were mainly recognized as messengers mediating the
transfer of genetic information from DNA to protein. However, as we now have
a much more comprehensive annotation of the human genome, we now
recognize that a large proportion of transcribed RNAs do not encode proteins.
Some of these non-coding RNAs are highly expressed and were relatively well
studied, such as ribosomal RNA (rRNA), tRNA, snRNA snoRNA, but many
others were newly identified and annotated. Non-coding genes that are longer
than 200 nucleotides (nt) are categorized as long non-coding RNA (IncRNA).
According to Gencode version 27 release, there are 15,778 IncRNA genes in
the human genome, which is more than a quarter of the total number of human
genes (2, 9), and comparable to the total number of protein coding genes

(19,836, Gencode v27).

Although not coding for proteins, previous research has shown that IncRNA
comprise a diverse family of RNAs that can regulate gene expression in multiple
ways (10)(Table 1). Some IncRNAs are involved in chromosome regulation. For
example, the mammalian Xist (X-inactive specific transcript) gene is located on
the X-chromosome and is only expressed on the inactive chromosome. Xist

IncRNA spreads across the X chromosome from which it is transcribed, and
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Chapter 1 Introduction

mediates the inactivation of that X chromosome (11-13). Another example of a
chromosome regulatory IncRNA is HOTAIR (HOX transcript antisense RNA).
The HOTAIR gene is located within the HoxC gene cluster in chromosome 12.
When transcribed, HOTAIR recruits polycomb repressive complex 2 and

silences HoxD genes by regulating their proximal chromatin states (14).

Another class of IncRNAs (antisense IncRNA) regulates transcription by
forming duplex or triplexes with other DNA and RNA. For example, the IncRNA
ANRIL (antisense non-coding RNA in the INK4 locus) interacts with DNA to
regulate transcription (15, 16). In the cytoplasm, IncRNAs can pair with other
RNAs and also interact with proteins to stabilize mRNA (TINCR) (17), promote
mMmRNA degradation (1/2-sbsRNAs) (18), up-regulate translation (antisense

Uchl1) (19), or inhibit translation (lincRNA-p21) (20, 21).

Still other INncRNAs serve as molecular scaffolds for other RNAs and
proteins. Sno-IncRNAs, for instance, have multiple predicted binding sites for
Fox family splicing regulatory proteins, suggesting sno-IncRNAs may be
involved in alternative splicing regulation by Fox protein sequestration (22).
Another example of a scaffolding INcRNA is NEAT1. NEAT1 is not only
essential, but is also the seeding component for paraspeckle formation (7, 8,
23, 24). Further studies showed that NEAT1 IncRNA has highly organized

spatial composition, likely forming a circular scaffold for other paraspeckle
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proteins and RNAs to bind (25, 26), and regulating mRNA editing (27) ,

retention (28), and protein sequestration (29).

The RNAs discussed above are only a small number of IncRNAs whose
functional mechanisms were relatively well-studied. As a newly identified RNA
species, our understanding of IncRNA functions is far behind our ability to
annotate IncRNAs. A recent study utilized a CRISPRi-based genome-scale
screening method to identify functional INncRNA loci in human cell lines (30).
They targeted 16,401 IncRNA genes in seven different human cell lines; 499 of
these IncRNA loci are identified as functional, as they increase or decrease cell
growth. The proportion of IncRNA identified as functional is similar to that of
protein-coding genes in some cell types (31). Remarkably, 89% of these
IncRNAs only showed phenotypes in one of the seven cell types. It is
reasonable to speculate that many other IncRNAs have important functions in
other cell types, in different developmental stages, or under alternative growth
conditions. Nonetheless, our understanding about IncRNAs’ characteristics and

functions are still limited and much remains to be learned.
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Regulate  chromatin

Nuclear Chromatin, RBPS

status

Nuclear RBPs Scaffolding

Cytosplasm mRNA mRNA degradation

Cytosplasm mRNA Regulate translation

Table 1. Example of IncRNAs and their functions.
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1.2 IncRNA sequences are less conserved than mRNA

The primary sequences of INcRNAs have relatively fast evolutionary rates
(32). When using phastCons scores to calculate the nucleotide-level
conservation level, INcRNA exons are significantly less conserved than protein-
coding exons (9). A recent transcriptome-wide study of 1,898 human lincRNAs
(long intergenic non-coding RNAs) in six mammals found that only 80% of them
have orthologous transcripts expressed in chimpanzee, 63% in rhesus, 39% in
cow, 38% in mouse, and 35% in rat (33). A more recent transcriptome analysis
showed that over a thousand human IncRNA have homologs with mammals,
and only hundreds beyond mammals (34). For IncRNAs that do have orthologs
in other species, the lengths of identified stretches of conserved sequences are
also much shorter than those of mMRNAs. Compared to mRNAs, IncRNAs
undergo frequent rewiring of their exon-intron structure, rapidly losing or gaining
sequences (34). Notably, even though the majority of human IncRNAs only
have homologs in mammals or in vertebrates, IncRNAs are not unique to
vertebrates. Many IncRNA genes are found in other species including D.

melanogaster, mosquito, bee, some plants and sponges (reviewed in (32)).

Although low sequence conservation is often associated with non-
functionality, IncRNAs might be exceptional. As mentioned above, CRISPRI

screening in human cell lines identified a proportion of functional IncRNAs, and
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many others might be functional but not identified in this study due to high cell-
type specificity. The tissue-specific expression pattern of IncRNA is highly
conserved among species, with similar levels of regulatory conservation as
protein-coding genes (34). Also, different regions of IncRNA genes show
different conservation levels. INcRNA promoters are generally more conserved
than exons, and almost as conserved as protein-coding gene promoters (35),

suggesting conservation of the expression regulation of IncRNA.

The evidence above suggests that IncRNAs are under different selective
pressures than mRNAs, and likely to have other forms of conservation other
than sequence conservation. Compared to mRNAs, IncRNAs do not need to
conserve codon usage or prevent frameshift mutations. It is possible that many
IncRNAs are not functional, or their function only rely on short sequences motifs,
but the flanking sequences are less important. There are also examples of
syntenic positional conservation of IncRNAs, suggesting that transcription
through a IncRNA locus is important, but the sequences of the actual IncRNA
sequences is less important (36). Secondary or tertiary structural motifs are
also considered to be possible constraints of IncRNA conservation (37, 38),

which | will discuss in more details in next section.
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1.3 RNA structure in IncRNA function and conservation

It is well known that RNA structures are important for the function and
conservation of many small noncoding RNAs. One typical example is tRNA,
which has three hairpin loops that form the so-called three-leafed clover
structure. The three-nucleotide anti-codon, located in the middle loop of tRNA,
recognizes the coding sequence in MRNAs. Each tRNA can be charged with
its corresponding amino acid, thus allowing the genetic information in mMRNAs
to be faithfully translated into proteins via ribosomes. tRNA structure is highly
conserved across almost all species and is crucial to its function (39). Mostly
found in bacteria, riboswitches represent another group of small RNAs with
important conserved structures. A riboswitch can switch between two different
structural conformations, usually in response to the presence of its ligand, thus
regulating the activity of its host mMRNA (40). Another group of structured RNAs
are ribozymes. Similar to protein enzymes, ribozymes have catalytic activities,
which rely on their structure. The most heavily used ribozyme in human cells is
ribosomal RNA, whose secondary structures and structural-interactions with
ribosomal proteins are now well-characterized and shown to be important for
ribosomal function (41—43). Given these examples, it is natural to suspect the

same for IncRNA - that RNA structures may play a role in their functions.
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Studying the structure of IncRNA is difficult given their large size, typically
much lower expression level than mRNA, and relatively flexible structures.
Recently, a few studies chemically probed the secondary structure of several
IncRNAs (Xist (44), HOTAIR (45), lincRNAp21 (46) and ncSRA (47)), aiming to
understand how RNA structure contributes to the function of INcRNAs. These
studies generally suggested that the probed IncRNAs are structured and have
some level of secondary structure conservation. However, other studies argued
there is no statistically significant evidence for structural conservation in these
probed IncRNAs (48). A more careful study of IncRNA structure is needed to
resolve this controversy regarding function and conservation of IncRNA

structures.

1.4 Current methods for studying RNA structures

1.4.1 Traditional RNA structure determination methods

Traditional biophysical methods, such as NMR and X-ray crystallography,
have been applied to determine RNA structures. These methods are useful to
provide comprehensive, high-resolution structural information on RNA
molecules. However, their application is limited to a small number of highly-
structured and relatively short RNAs, such as group Il introns (49-51),

telomerase RNA (52), RNase P (53), and ribosomal RNAs (54). LncRNAs are
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generally much less structured and longer, which make crystallization or NMR
structure determination almost impossible. Cryo-EM can reveal an ensemble of
branching patterns of RNA molecules that is useful to confirm proposed
secondary structure models, but often insufficient to reconstruct precise
structure models on its own due to limits in spatial resolution (55). Besides,
biophysical methods are often time consuming and require extensive effort,

making them unsuitable for high-throughput INncRNA structure determination.

Currently, most large RNA structure models are generated by
computational predictions. RNA structure prediction methods are usually based
on sequence information and minimum free energy models (Mfold (56),
RNAstructure (57) ViennaRNA (58, 59) etc.) or partition function models (60,
61) (also included in RNAstructure and ViennaRNA packages) that generate
base-pair probability matrices to represent multiple possible structural
conformations of an RNA molecule. Other methods are based on finding
conserved motifs across species to predict RNA structures (GPRM (62), Pfold
(63) etc.). Although easy to perform, computational prediction often results in
multiple possible structures that need to be verified and differentiated by

experimental methods.

Chemical probing can be used to provide RNA structure information. Small
chemical molecules can react with RNA by either cleaving the RNA backbone

or covalently modifying RNA bases, so that the reverse transcription of RNA is
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blocked (Table 2). By using small chemicals that specifically react with single
stranded RNA, followed by reverse transcription and denaturing
electrophoresis, we can visualize RNA secondary structure information.
Commonly used small chemicals for RNA secondary structure probing include
DMS (modifies A and C by methylation), Kethoxal (modifies U) and CMCT
(modifies G) (64, 65). Later, a chemical probing method called selective 2’-
hydroxyl acylation analyzed by primer extension (SHAPE) (66, 67) was
developed. SHAPE reagents (e.g. NAI (68) and 1M7 (69)) modify the 2° OH
groups of RNA in a base-independent way, such that more flexible RNA
backbones are more reactive. This provides more comprehensive information
of RNA secondary structure than DMS probing. Furthermore, DMS and the
SHAPE reagent NAI can be applied both in vitro and in vivo, allowing RNA

structures to be captured in native conditions.

Unlike DMS and SHAPE probing, which probe RNA secondary structure,
hydroxyl radicals (70, 71) induce backbone cleavage according to solvent
accessibility in a secondary structure-independent manner. Therefore, hydroxyl
radical probing provides a method for RNA tertiary structure determination.
Although the mechanism of hydroxyl radical-mediated RNA backbone cleavage
is still unclear (72), it is possible that the major product will be similar to that
formed on DNA (73): an RNA strand with a 3’ or 5’ phosphate end at the site of

cleavage. The most frequent method for hydroxyl radical generation is by
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Fenton-Haber-Weiss chemistry. Hydroxyl radicals species are produced from
decomposition of hydrogen peroxide (H202) catalyzed by Fe(ll). In solution
probing experiments, Fe(ll) is chelated to EDTA to prevent its direct binding to
the nucleic acid backbone. A reducing reagent, such as ascorbic acid or
dithiothreitol, is also needed to recycle Fe(lll), which is generated during
reaction to Fe(ll). This method can only be applied to in vitro RNA probing, since
hydroxyl radicals are not cell membrane permeable. Alternatively, hydroxyl
radicals can also be generated by synchrotron X-ray radiolysis for in vivo RNA

tertiary structure probing (70).

Adenine and Cytosine  Secondary structure

Guanine Secondary structure

Uracil Secondary structure

2’-hydroxyl Secondary structure and flexibility
2’-hydroxyl Secondary structure and flexibility
Backbone cleavage Tertiary structure

Table 2. Summary of chemical reagents for RNA structure probing.
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1.4.2 High-throughput RNA structure probing by sequencing methods

With the development of chemical and enzymatic structure probing
techniques and popularization of high-throughput sequencing, several high-
throughput structure probing approaches have been developed. Kertesz et al.
(74) developed a method for high-throughput RNA secondary structure
measurement, PARS (parallel analysis of RNA structure). In the PARS method,
two different enzymes are used to digest RNA in vitro. RNase V1 cleaves
phosphodiester bonds 3’ of double-stranded RNA; S1 nuclease cleaves 3’ of
single-stranded RNA nucleotides. When digesting RNA, both enzymes leave a
5 phosphate at the cleavage point, which facilitates ligating adapters to the
digested RNA. RNA fragments generated from random fragmentation or
degradation typically have a 5" hydroxyl instead of a 5’ phosphate; thus, RNA
fragments cleaved by RNase V1 or S1 nuclease can be enriched. These
fragments are subjected to library preparation and deep sequencing. The
number of stops caused by enzymatic digestion is counted on each single base,
and a PARS score is calculated as logz(V1/S1). A higher score indicates the
nucleotide is more likely to be in a double-stranded conformation. Recently,
PARS has been applied to transcriptome-wide human RNA secondary
structure analysis (75). However, the PARS method has its limitations: it can
only work in vitro, and enzyme digestion may alter RNA structure when

digesting (76).
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There have also been several reports of high-throughput methods for
transcriptome-wide RNA secondary structure analysis in vivo and in vitro using
DMS. Ding et al. (77) developed a method called Structure-seq. In their method,
after DMS treatment, RNA molecules are reverse transcribed using random
hexamers (N6) with adapters. The reverse transcription reaction will stop at one
nucleotide before the DMS modification site. The single-stranded cDNA
product is then ligated with a 3’ single strand DNA linker to generate double
stranded DNA library using PCR. By comparing the DMS-treated sample and
the negative control, they were able to identify DMS modification sites. Rouskin
et al. (78) developed a method called DMS-seq. In this method, random
fragmentation is applied to DMS-modified RNA molecules. Fragments with
sizes between 60-70 bp are then selected for 3’ adapter ligation, following by
reverse transcription. Single-stranded cDNA products with sizes between 25-

45 bp are selected, circularized, and PCR-amplified for sequencing.

Several other modified SHAPE-based high-throughput probing protocols
were later developed. In SHAPE-MaP (79), instead of identifying sites of
reverse transcription termination, this method uses a different experimental
condition for reverse transcription after 1M7 probing, thus introducing mutations
at the modification sites. These mutations can then be identified by mutational

profiling (MaP).
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Our lab independently and contemporaneously developed a high-
throughput method for RNA secondary structure probing: Mod-seq (5, 6). In
Mod-seq, RNAs from DMS or SHAPE treated cells are randomly fragmented,
ligated to specific 5’ and 3’ adapter oligos, and reverse transcribed. One of the
challenges in sequencing-based high-throughput methods are that chemically
modified RNAs need to be enriched so only RNA fragments that can provide
structural information are sequenced. In Mod-seq, this is achieved by ligating a
5' adapter to RNA fragments before reverse transcription. Because reverse
transcription prematurely stops at modification sites, the 5’ adapter sequence
is excluded in the cDNA product. For RNA fragments without chemical
modification, reverse transcription goes through the whole sequence including
the 5’ adapter. The cDNA is then circularized and products containing the 5’
adapter sequences are reduced via subtractive hybridization. The remaining
cDNA products, which are enriched for modification caused RT stops, are PCR-
amplified for high-throughput sequencing. Since Mod-seq works both in vivo
and in vitro, it can also be used to footprint RNA-binding proteins, allowing

researchers to identify binding sites in a massively parallel manner (5, 6).
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Figure 1. Workflow of the Mod-seq method.

26



Chapter 1 Introduction

1.4.3 Computational prediction of RNA structure based on experimental

data

The experimental data obtained from RNA structure probing must be
deciphered for RNA structure determination. One way to do this is to combine
probing data and computational RNA structure prediction based on minimum
free energy (MFE) models or partition function models with constraints. That is,
nucleotides are forced to be double-stranded or single-stranded according to
probing data before calculating MFEs. Many webservers are capable of such
constrained RNA folding, including Mfold (56), RNAfold in the ViennaRNA (58,
59) package and RNAstructure (57). As chemical probing of RNA secondary
structures has become more popular, RNA structure prediction software
packages now also incorporate chemical probing data (for example, SHAPE
reactivity scores) as continuous thermodynamic parameters, instead of binary
(paired vs. unpaired) constraints (80). Incorporating chemical probing data in
this way usually increases computational time and memory usage significantly

and is often not viable for very large RNAs.

Another approach is to use probing data to choose the most “correct” fold
from an ensemble of RNA structures (81, 82). Ding et al. (82) developed the
Sfold package, which can sample thousands of possible RNA secondary
structures for a single RNA molecule, calculate clustering of these structures,

and compute the centroid structure from the clusters. They reported that the

27



Chapter 1 Introduction

centroid structure models often outperform MFE structure models in terms of
positive predictive values (ppv) and sensitivity, and are more similar to structure
models generated by comparative analysis. This method can be combined with
chemical structure probing, i.e., choosing the structure cluster with the highest
consistency with chemical probing data as the accepted structure. This
approach was recently implemented by Spasic et al. (83), and can be used to

generate alternative RNA structures based on probing data.

The original SHAPE probing quantification method was based on capillary
electrophoresis measurements (84, 85). As the development of high-
throughput sequencing aided structure probing methods, new challenges arose
to process raw sequencing data into quantitative structural information in a fast,
automatic manner. Publicly available data analysis software of high-throughput
sequencing profiling data is needed to make such methods feasible to labs that
lack of bioinformatics expertise. Several bioinformatics pipelines were
developed to address this challenge, including SeqFold (86), which is optimized
for PARS data, and StructureFold (87), which is available through the Galaxy

platform (https://usegalaxy.org). In Chapter 2, | will also describe Mod-seeker,

a bioinformatics pipeline | developed for the Mod-seq method.
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1.5 NEAT1 as a candidate for understanding the function and

conservation of IncRNA structure

NEAT1 is a IncRNA involved in paraspeckle formation (88, 89).
Paraspeckles are nuclear bodies located in the nucleous interchromatin space.
Though their function and regulatory mechanisms are not completely
understood, recent studies showed that paraspeckles are involved in multiple
gene regulatory processes, such as mRNA retention, mRNA cleavage, A-to-I
editing, and protein sequestration (27-29). Perhaps because of these
regulatory functions, NEAT1 is associated with many human diseases,

including different types of cancer and neurodegeneration diseases (90-94).

Paraspeckles contain multiple protein and RNA components. NEAT1
IncRNA is the key RNA component of the paraspeckle (88). Human NEAT1 has
two isoforms sharing the same transcription start site, but with different length.
The long NEAT1 is as long as 23,000 nt, while the short one is 3,700 nt. The
short isoform (NEAT1_S) undergoes canonical polyadenylation, while the long
isoform (NEAT1_L) is cleaved by RNase_P and forms a triple-helix at 3" end.
(95) Multiple NEAT1 binding proteins are involved in this alternative 3’ end
processing, including NUDT21-CDSF6 (CMIm complex) and HNRNPK. The
short isoform NEAT1 has 5-8 fold higher expression than the long isoform (96),

although more recent studies suggest this may be an artifact due to unbalanced
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RNA extraction because paraspeckle NEAT1_L is likely trapped in the protein
phase during normal RNA extraction (97). NEAT1 genes are found across
mammals. Although the NEAT1 gene sequence is not well conserved, it was
shown that both in human and in mouse cells, NEAT1 has conserved function,
that it is essential for paraspeckle formation. Knockdown of NEAT1 leads to a

significant decrease in paraspeckle formation (7).

NEAT1 is not only essential for paraspeckle formation, but also has a
specific spatial organization in paraspeckles. Electron microscopic analysis
combined with in situ hybridization (EM-ISH) showed that the short NEAT1 (or
the 5' end of long NEAT1) and the 3' end of long NEAT1 are localized to the
periphery of paraspeckles, while central sequences of long NEAT1 are found
within the core of paraspeckles (25). This suggests that NEAT1 RNA may be
folded end-to-end and serve as the circular skeleton of the paraspeckle, as
shown in Figure 2. Given the scaffold function of NEAT1 and its specific spatial
organization, it is reasonable to suspect NEAT1’s secondary structure is
important for its function. For this thesis, NEAT1 was chosen as a candidate for
secondary structure probing and structural conservation analysis.
Understanding the structure of NEAT1 is potentially helpful for understanding
NEAT1’s function in paraspeckle formation and may also provide general

insights into INncCRNA structures and their conservation.
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Figure 2. NEAT1 loci and paraspeckle architecture model. NEAT1 has 2
isoforms starting at the same locus; the short isoform is 3.7 k nt long, the
long isoform is 22k nt long. The current model of paraspeckle structure
suggests long isoform NEAT1 folds end-to-end, forming a circular skeleton

as a scaffold for other paraspeckle proteins and RNAs.
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My thesis work focuses on using both experimental methods and
computational methods to study the structure of human IncRNAs. The rest of
this dissertation is arranged as follows. In Chapter 2, | will describe Mod-seeker,
an automatic data analysis pipeline for high-throughput RNA secondary
structure probing method Mod-seq. This is one of the first open-sourced data
analysis packages for high-throughput sequencing based RNA secondary
structure chemical probing. In Chapter 3, | will focus on determining the
structure of INcRNA NEAT1, an essential component of mammalian nuclear
paraspeckles. In Chapter 4, | explore various computational methods to study
the conservation of INcRNA secondary structure by identifying covariant base-
pairs in NEAT1. Finally, in Chapter 5, | summarize my research on IncRNA
structure, and particularly, the structure, long-range RNA-RNA interactions and
structural conservation of NEAT1. | will also discuss both remaining and newly
identified challenges in the field of INcCRNA structure study. This thesis is the
first to probe the secondary structure of INcRNA NEAT1. The comparative
analysis of NEAT1 secondary structure provides new insight regarding the
structural conservation of IncRNA. Even though flexible INcRNA do not have
strong evidence for covariant base-pairs, they do have conserved structural
features such as conserved single stranded regions or conserved long-range

RNA-RNA interactions which may be important for their functions.
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Chapter 2 Automated data analysis of Mod-seq data using Mod-

seeker

The work presented in this chapter was published in the original Mod-seq
paper (Talkish et al., 2013) for which | am a co-author, and a Methods in

Enzymology paper (Lin et al., 201X) for which | am the first-author.

High-throughput sequencing based massive parallel RNA secondary
structure probing methods are preferable than traditional PAGE gel-based
methods or capillary electrophoresis-based methods, for they can be applied to
very long RNAs or transcriptome-wide RNA structure profiling. They also give
quantitative measurement as sequencing reads coverage, allowing for further
data processing to achieve higher signal-to-background ratio. However,
analyzing high-throughput sequencing data requires certain computational
effort and expertise. New algorithms that are specifically optimized for these
methods are in need to provide accurate RNA structural information. In this
chapter | will describe a software package, Mod-seeker, that | implemented for
Mod-seq structure probing method. Mod-seeker is an open source package that
uses Mod-seq sequencing reads as input, generates SHAPE reactivity scores
and Integrative Genomics Viewer (IGV) track files as output for easy data

visualization and other downstream analyses such as SHAPE data aided RNA
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secondary structure modeling. This work was published as part of the original

Mod-seq paper (5) and the Mod-seq protocol method paper (6).

2.1 Principal of the Mod-seq method

Mod-seq (5, 6) combines RNA secondary structure chemical probing with
high-throughput sequencing to determine RNA secondary structures in large
scale or for long RNAs. In Mod-seq, DMS or SHAPE reagents-treated RNA
molecules are purified and then randomly fragmented. Both 5’ adapters and 3’
adapters were ligated to the RNA fragments. The 5’ adapter is used as a marker
to distinguish modification stops from 5 ends generated from random
fragmentation. The 3’ adapter is used so universal primer that hybridize to 3’
adapter can be used in primer extension. For RNA fragments containing
chemical modification sites, reverse transcription prematurely stops at
modification sites during primer extension, thus, the 5’ adapter is excluded from
the cDNA product. In RNA fragments without chemical modification, reverse
transcription goes through the whole sequence, thus the 5’ adapter sequences
are present in the cDNA products. cDNAs are then circularized and products
containing 5’ adapter sequences are reduced via subtractive hybridization. The
remaining cDNA products, which are enriched for modification caused RT stops,

are PCR-amplified for high-throughput sequencing. The presence of the 5
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adapter sequence at the beginning of lllumina sequencing reads indicates full-
length reverse transcription products that do not contain chemical modification
sites. Consequently, such products must be subtracted from the analysis. Thus,
Mod-seq allows for reduced background for higher signal-to-noise ratios with

proper data processing and analysis.

2.2 Mod-seeker data analysis pipeline

Mod-seeker contains two separate scripts. “Mod-seeker-map.py” is used
to count the number of modifications at each position in each gene from each
sample. In this script, sequencing reads are first trimmed to remove 3’ and 5’
adapters using Cutadapt (98). During adapter trimming, reads beginning with a
5" adapter are removed from further analysis, as the presence of the 5’ adapter
sequence indicated there is no chemical modification on this RNA molecule.
The remaining trimmed reads are aligned to the reference sequence using
Bowtie (99), Bowtie2 (100) or Tophat (101) per the user’s choice, and short 5’
mismatches indicating untemplated nucleotides introduced during reverse
transcription are removed. Reads are then mapped to annotated genes using
samtools (102) and bedtools (103). Finally, Mod-seeker-map.py counts the
number of modifications at each position by tallying reads whose sequence

initiates 3’ to each nucleotide. In the final output files (“CountMod” files), each
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gene with modifications is represented by two lines, where the first line is a
summary of the gene and the second line records space-separated counts of

modifications at each position.

The second script, “Mod-seeker-stats.py” finds statistically significant sites
of modifications by comparing chemically-treated samples with no-treatment
controls. This script uses the Cochran-Mantel-Haenszel test (104, 105) with two
or more replicates, or a chi-squared test for cases with no replicates. The p-
values from these statistical tests are then corrected for multi-testing using
Benjamini-Hochberg control (106) to calculate adjusted p-values. In addition to
p-values from the statistical tests, the output file will also report odds ratios as
a measurement of the modification level. The odds ratio is calculated as shown

in equation (1), for a gene with length n, the odds ratio of position is:

_ T/ T;
Ok =ermper

where T; is the count of modifications at position i in chemical-treated sample,
and (; is the count of modifications at position i in control sample. Additional
data processing can be applied for further analysis. For example, the odds
ratios can be log-transformed and rescaled to mimic SHAPE scores as
described in (66, 107), and serve as input for RNAstructure to predict RNA

secondary structures.
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2.3 Evaluating normalization methods in Mod-seeker

The odds ratio in equation (1) was chosen as the preferred metric in the
Mod-seeker pipeline for a variety of reasons. First, log(odds ratio) can be
statistically tested by the Fisher’s exact test, or proximately by the chi-square
test. This will generate reliable p-values for Mod-seeker to quantitatively identify
nucleotides with statistically significant signal of chemical modification. Second,
this normalization method was validated on ribosomal RNAs and has better

performance than other tested methods.

Receiver operator curve (ROC) analysis of different data normalization
methods on S.cer ribosomal RNAs are shown in Figure 3 and summarized in
Table 3. Ribosomal RNA was chosen in this analysis since it is a large RNA
whose size is similar to other IncRNAs and whose structure is determined by
crystallography. Nucleotides are classified into modified and unmodified groups
based on their SHAPE reactivity scores under a certain threshold, the sensitivity
(true positive rate) and specificity (1 — false positive rate) varies as the threshold
changes. The area under curve (AUC) of ROC is commonly used as a
measurement of the performance of such binary classifiers, where a perfect
classifier will have AUC close to 1.0, and higher AUC is an indicator of better
performance. The odds ratio, and the log-transformed odds ratio have better

performance than the other metrics, and log transformation increases
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performance slightly. Also, Mod-seq has better performance than a similar
rRNA structure probing experiment using traditional SHAPE probing detected

by capillary electrophoresis (RSHAPE score) (42).
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Figure 3. Comparison of ROC performance for different data normalization

methods on S. cerevisiae 18S rRNA.
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Area Under Curve (AUC) in ROC

Normalization Method analysis
18s rRNA 25s rRNA

Ti/ X T
Ratio; = ———— 0.740 0.742

LG/ Y G

. In(T;) In(C;)
In(Ratio; = — 0.748 0.749
( 2 nIn(T) Y&, In(C)

T, — C; 0.684 0.713
hSHAPE score 0.705 0.704

Table 3 Summary of the ROC performance of different data normalization

methods.

2.4 Discussion

Mod-seeker is a data analysis pipeline designed and optimized for the Mod-seq

parallel structure probing method. Mod-seeker takes raw sequencing reads

from Mod-seq as input, and selects for reads lacking the 5 adapter, which

indicates that reverse transcription stopped due to a chemical modification on

a template nucleotide. Mod-seeker requires sequencing reads from both the

treated and control samples to calculate the normalized odds ratios as SHAPE

reactivity scores. At least two replicates are required in order to perform

statistical tests and call significantly modified nucleotides. RNA structure

information generated from Mod-seq and analyzed by Mod-seeker was shown
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to be highly consistent with known RNA structures (5), and the SHAPE
reactivity scores calculated using Mod-seeker can improve RNA secondary
structure modeling accuracy (108). Compared to other publicly available
packages that can process high-throughput sequencing based RNA structure
SHAPE probing data, such as SeqFold (86) and StructureFold (109), Mod-
seeker requires both treated sample and untreated samples as background
control. This allows for higher signal-to-noise ratio and can distinguish true
chemical modification sites from other reverse transcription stops introduced by
factors such as random fragmentation of RNA, alternative transcription start

sites, and premature falloff of reverse transcriptase.

Future improvements on Mod-seeker can be made for versatility and easier
integration with other bioinformatics tools. Mod-seq was shown to be able to
identify potential binding sites for RNA-binding proteins, by comparing SHAPE
profiles with and without proteins present. This function, however, is not
included in the current version of Mod-seeker. Also, Mod-seeker requires
several pre-installed packages, such as cutadapt, bowtie2, bedtools, and
samtools. Although these are commonly used packages in general
bioinformatics analyses, installing each of these individually might be
overwhelming for researchers lacking related experiences. Integration with a

python package manager such as pip will be extremely useful in this case.
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Integration with other bioinformatics toolsets, such as R-bioconductor will also

be useful.
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ABSTRACT

Paraspeckles are nuclear bodies that regulate multiple aspects of gene

expression. The long non-coding RNA (IncRNA) NEAT1 is essential for
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paraspeckle formation. NEAT1 has a highly ordered spatial organization within
the paraspeckle, such that its 5 and 3’ ends localize on the periphery of
paraspeckle, while central sequences of NEAT1 are found within the
paraspeckle core. As such, the structure of NEAT1 RNA may be important as
a scaffold for the paraspeckle. In this study, we used SHAPE probing and
computational analyses to investigate the secondary structure of human and
mouse NEAT1. We propose a secondary structural model of the shorter (3,735
nt) isoform hNEAT1_S, in which the RNA folds into four separate domains. The
secondary structures of mouse and human NEAT1 are largely different, with
the exception of several short regions that have high structural similarity. Long-
range base-pairing interactions between the 5’ and 3’ ends of the long isoform
NEAT1 (NEAT1_L) were predicted computationally and verified using an in vitro
RNA-RNA interaction assay. These results suggest that the conserved role of
NEAT1 as a paraspeckle scaffold does not require extensively conserved RNA
secondary structure and that long-range interactions among NEAT1 transcripts

may have an important architectural function in paraspeckle formation.

INTRODUCTION

Long non-coding RNAs (IncRNAs) are defined as non-protein coding

RNAs that are longer than 200 nucleotides. In the human genome, more than
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thirteen thousand IncRNAs have been annotated (9), making up a large
proportion of human genes. INcRNAs are involved in gene regulatory functions
through diverse mechanisms including chromatin binding (Xist) (12), regulating
gene transcription in cis (ANRIL) (16), and scaffolding of nuclear bodies
(NEAT1). Intriguingly, although many IncRNA have important conserved
functions, they usually have relatively low sequence conservation (9). This is
counterintuitive, as sequence conservation is often assumed to be required for
genes with important functions (110). One possible explanation is that IncRNA
preserve higher order conservation, such as conservation of secondary
structure (base pairing interactions) or tertiary structure (three-dimensional

shape of folded RNA).

Large RNAs fold into secondary structures, which then influence their
three-dimensional tertiary structures. Resolving the secondary structures of
IncRNAs in vivo is a difficult task due to their large size and low abundance in
cells. High-throughput in vivo structure probing using reverse transcription
truncation (-seq) methods requires extreme sequence depth for low abundance
IncRNAs. Till now, there is only one human IncRNA, Xist, whose structure has
been probed in vivo (111). Furthermore, IncRNAs are expressed in alternative
isoforms and bound by a variety of RNA-binding proteins in vivo, both of which
can obscure interpretation of chemical modification patterns. In vitro structure

probing interrogates an RNA’s inherent folding potential without interference by
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bound proteins or alternative transcript isoforms. Although this simplifies the
task, the large size of INcCRNA still poses a significant challenge, and only a few
IncRNA structures have been experimentally characterized in vitro (48)

(HOTAIR (45), Xist (44, 112) and ncSRA (47) RepA (113) and lincRNAp21 (46)).

NEAT1 is an especially interesting INcCRNA for structural study. It is a key
structural component of paraspeckles and is essential for paraspeckle
formation. Paraspeckles are nuclear bodies located in the nucleus
interchromatin space. Though paraspeckle functions and regulatory
mechanisms are not completely understood, recent studies showed they are
involved in multiple gene regulatory processes, such as mRNA retention,
mRNA cleavage, A-to-l editing (88) and protein sequestration (29). These
regulatory functions are responsible for several cellular responses and shown
to be associated with the pathology of multiple cancers and neurodegenerative
diseases (94, 114, 115). Deletion of NEAT1 in mice disrupts development of
female reproductive tissues, underscoring the biological importance of this

INcRNA (116, 117).

NEAT1 has two isoforms that share the same transcription start site but
have different termination sites. In humans, the short isoform NEAT1_Siis 3,735
nt long with a polyA tail. The long isoform, which is essential for paraspeckle
formation, is 22,741 ntin length and has a non-polyadenylated 3’ end produced

by RNase P cleavage (8, 95). The expression level of NEAT1_S is estimated
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to be at least five-fold higher than NEAT1_L, and even higher in many tissues
and cell types (89, 96). Though less abundant, NEAT1_L is considered to be
the key isoform for paraspeckle formation. Targeted knock down of NEAT1_L
leads to loss of paraspeckles, while de novo paraspeckle formation can be
rescued by transient expression of NEAT1 _L (23, 95). Intriguingly, NEAT1_S
can be found outside of the paraspeckle in tissue culture cells, suggesting it
may have independent biological functions (118). The two-isoform gene
structure and the function of NEAT1 in paraspeckle formation were observed in
both humans and mice. However, the sequence of NEAT1 is not well conserved
between human and mouse. This suggests higher-order conservation of
NEAT1 RNAs, such as secondary structural conservation or conserved RNA-

protein interactions.

Interestingly, evidence has emerged indicating that the specific structural
conformation of NEAT1 might be important for paraspeckle architecture. EM-
ISH (electron microscopy-in situ hybridization) studies using DNA probes to the
5" and 3’ ends of NEAT1_L RNA showed that NEAT1_L has a highly ordered
spatial organization within the paraspeckle (114). The 5 and 3’ ends of
NEAT1_L were localized to the paraspeckle periphery, while the central region
of NEAT1_L was found within the paraspeckle core. Since the 5 end of
NEAT1_L is identical to NEAT1_S, the short isoform NEAT1_S should also

localize to the periphery of paraspeckle. Based on these observations, an
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ultrastructural paraspeckle model was proposed with two salient features. First,
NEAT1_L folds end-to-end. Secondly, multiple folded NEAT1_L and NEAT1_S
molecules are regularly organized in the cross sections of paraspeckle, forming
a circular skeleton. However, the actual secondary structure of NEAT1 has not
yet been characterized. The nature of the spatial organization of NEAT1 and its

contribution to paraspeckle architecture is yet to be understood.

Here, we combined high-throughput RNA structure probing (Mod-seq) (5)
with computational analyses to investigate the structural features of NEAT1.
Mapping and comparing the structures of human and mouse NEAT1_S
revealed two short regions of similar SHAPE reactivity, and phylogenetic
comparisons found relatively little evidence for conservation of RNA secondary
structure. Computational analysis identified putative long-range RNA-RNA
base paring interactions between NEAT1_L’s 5" and 3’ ends, which commonly
exist in all analyzed mammals NEAT1 sequence. We propose that the NEAT1
IncRNA has maintained its function as a paraspeckle scaffold with little
structural conservation, and identify a strong propensity for long-range

intramolecular base-pairing that may contribute to scaffolding the paraspeckle.
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MATERIAL AND METHODS

In vitro transcription

hNEAT1_S and mNEAT1_S plasmids were generously provided by Dr.
Gérard Pierron (25) and Dr. Lingling Chen (119), respectively. PCR primers
were designed for both full length NEAT1 RNA and short segments, and the
SP6 promoter sequence was included in the forward primers. The DNA
template for in vitro transcription was amplified from the plasmids using Phusion
high-fidelity polymerase and purified by agarose gel extraction. The RNA was
in vitro transcribed using Promega RiboMAX large scale RNA production
systems (SP6), as described in the manufacturer’s instructions. Briefly, 200-
500 ng cDNA template, 4 yL 5X SP6 buffer, 4 yL 25 mM rNTPs and 2 uL SP6
enzyme mix were mixed in a 20 pL reaction and incubated at 37 °C for 3.5
hours. 0.5 pyL RQ1 RNase-Free DNase (1u/uL) were added to each reaction
and incubated at 37 °C for 15 min to destroy DNA template. 0.5 uL proteinase
K (20 mg / ml) was then added to reaction and incubated at 37 °C for 1 hour to

destroy SP6 transcriptase and RQ1 DNase.

Non-denaturing purification of RNA

A non-denaturing purification was adapted from Somarowthu et al. (45) to

maintain the co-transcriptionally folded structure for SHAPE probing
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experiments. Briefly, after proteinase K treatment, the RNA was diluted with
200 pL 1X SHAPE buffer (111mM NaCl, 111 mM HEPES, 6.67 mM MgClz),
transferred to Amicon Ultra 100K column and centrifuged at 14,000 g for 10 min
to concentrate the RNA sample to approximately 30 pL. This dilution /
concentration step was repeated for a total of two rounds. The purified RNA
was then collected by centrifuging the column upside down 2 min at 1,000g.
The RNAs were verified on a TapeStation. The RNAs were kept on ice and

were immediately used for SHAPE probing

1M7 Synthesis Procedure

We synthesized 1M7 using a novel procedure. In brief, 2-Amino-4-
nitrobenzoic acid was converted to 2-((Ethoxycarbonyl)amino)-4-nitrobenzoic
acid through the addition of ethyl chloroformate by reflux for 1 hr.  This product
was converted to 7-Nitro-1H-benzo[d][1,3]oxazine-2,4-dione by heating at 65°C
in the presence of thionylchloride for 30 minutes, cooled to room temperature
and washed with chloroform. The 7-Nitro-1H-benzo[d][1,3]oxazine-2,4-dione
dissolved in DMF was then treated with potassium carbonate and iodomethane,
similar to published methods (29), yielding an orange precipitate containing
both 1M7 and a hydrolyzed contaminant (as determined by NMR). Pure 1M7
(light yellow in color) hydrolizes to 2-(methylamino)-4-nitrobenzoic acid (orange

in color). Published synthesis methods describe an orange product that is likely
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contaminated with the hydrolysis product. We purified 1M7 by fractional
crystallization from ethyl acetate/hexane where the contaminant crystallized
first to yield (40%) of orange crystals, mp 256-258°C. 1M7 crystallized second
to yield (50%) of light yellow crystals, mp 206- 208°C. 1M7 was resuspended
in DMSO at 65 mM and stored at -80 °C. The solution retained a light yellow
color that turned bright orange when mixed with the RNA sample in SHAPE

buffer.

In vitro SHAPE probing with 1M7

RNA secondary structure probing was performed using 1M7 as the SHAPE
reagent, as described in Mortimer et al. (69). 2 pmoles RNA product were
diluted in 13.3 pL 1 x SHAPE buffer, incubated at 37 °C for 5 min. 1.7 yL 1M7
(65 mM, in DMSO) were then added into each reaction, continue incubation at
37 °C for 70 s. The control samples were incubated with same volume of DMSO
instead of 1M7. 1M7 probed RNA was then purified using ethanol precipitation

method.

Mod-seq library preparation and data processing by mod-seeker pipeline

Probed RNA samples were pooled together for Mod-seq library
preparation. At least 2 replicates were sequenced for 1M7 treated samples and

negative control samples (Supplementary Table S1). Mod-seq libraries were
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generated as previously described (6) and sequenced with an lllumina Miseq
sequencer. Sequencing reads were aligned to hNEAT1 or mNEAT1 sequences
and replicates were combined for further analysis after checking for correlations.
The SHAPE reactivity score is calculated using the equation: SHAPE Reactivity
= Normalized Count(Treated) — a * Normalized Count(Ctrl), as described in
Spitale et al.(120). Parameter a was set to 0.35 by using in vitro transcribed
and probed Tetrahymena P4P6 domain (121) (Supplementary Figure S1) as

a positive control.

RNA secondary structure modeling

RNA secondary structure models with or without SHAPE probing
constraints were generated using RNAstructure software (Linux text interface
64bit, version 5.8.1; default parameters) (57). SHAPE reactivity scores were
used as constraints for RNA secondary structure predictions. To generate RNA
secondary structure models of NEAT1 segments, partition functions (60) were
first calculated with the “partition” command in RNAstructure; the “max expect”
structures (122) were used as RNA structure models, which was calculated
using the “MaxExpect” command. For full length hNEAT1_S and mNEAT1_S
structure modeling, partition function predictions are computationally intense,

so minimum free energy structures were instead calculated with the “Fold”
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command in RNAstructure. Structure models were stored in ct files and

visualized with VARNA (v3.92) (123).

Comparing structures of full length NEAT1 and 3S shotgun segments

To compare structures of full length NEAT1 and segments, we calculated
Pearson’s correlations of their SHAPE reactivity scores between segments and
the corresponding regions in full length NEAT1_S. A similar correlation analysis

was done in sliding windows with a window size of 60 nt and a step size of 1 nt.

Infernal alignment and covariation analysis

To identify conserved secondary structure in NEAT1_S, we first used
Infernal (default parameters) (124) to generate improved multiple alignments of
regions in NEAT1_S as described in Chillon and Pyle (45). Multiple alignments
of 99 vertebrates were downloaded from UCSC genome browser database
(125), where 64 sequences have alignments to human NEAT1_S region.
Covariation models were built using Infernal cmbuild on 8 sequences including
hNEAT1_S and mNEAT1_S, and then calibrated with cmcalibrate. Improved
multiple alignments across 64 species were then generated using cmsearch
and cmalign. Finally, covariant base pairs were identified with both R2R (126)
using a 15% threshold (45, 113) and R-scape using default parameters (48).

To compare R-scape results from NEAT1 to those of well-characterized
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structured RNAs, we subsampled sequence alignments to have similar
numbers of sequences in each alignment (~50) and pairwise sequence identity
(average ~68%). For covariation score analysis, R-scape’s default scoring
metric (APC G-test statistics) was used. With Infernal improved alignments of
hNEAT1_S and mNEAT1_S, we calculated Pearson’s correlation coefficients
of SHAPE reactivity scores in each region after aligning SHAPE scores to their

sequence alignment.

Generating synthetic NEAT1 alignments with random mutations

For each Infernal aligned region, the hNEAT1_S sequence was used as
an ancestor sequence to build random synthetic alignments. In each round of
sequence generation, 2 child sequences were generated from their parent
sequence, where point mutations were introduced at random for each
nucleotide position with a fixed mutation rate (probability). After 7 rounds, 128
sequences were generated. 50 out of 128 sequences were randomly selected
to build each synthetic alignment. This simulation was repeated 100 times each
with mutation rates ranging from 0.5% to 5% to generate random null alignment
models with average pairwise identity ranging from 60% to 95%. These null
alignments were used directly for R2R analyses, or realigned with Infernal

before R2R analyses.
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RNA-RNA interaction prediction

Prediction of long-range interactions in NEAT1 was done with RNAduplex
(59, 127). The sequence of NEAT1_S and the rest of NEAT1_L sequence (after
trimming off NEAT1_S sequence) were used as input. In sliding window
analyses, NEAT1_L sequence was separated into 120 nt long windows with a
step size of 40 nt. The pairwise minimum free energy of each duplex was then

predicted using RNAduplex using default parameters.

In vitro gel shift assay

NEAT1 segment templates were generated by PCR from genomic DNA
(HEK genomic DNA for hNEAT1 and mouse kidney genomic DNA for mMNEAT1).
After in vitro transcription with SP6, the predicted interacting NEAT1 segments
were treated with RQ DNase and purified with phenol chloroform extraction and
ethanol precipitation as described in RiboMax SP6 kit (Promega). An RNA gel
shift experiment was adapted from Gavazzi et al. (128). Briefly, 2 pmol of each
RNA segment were mixed in 8 yL Hz20, incubated at 90 °C for 2 min and then
chilled on ice. 4 pyL 3x pairing buffer (50 mM Sodium Cacodylate, 40 mM KCI,
0.5/2/6 mM MgClz2) and 0.25U SUPERase-in was added into each reaction and
incubated at 37 °C for 30 min. RNA duplexes were then assayed by agarose

electrophoresis. The duplexes were electrophoresed through a 3% agarose
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gel in TBM buffer (45 mM Tris, 43 mM borate, 2 mM MgClz, pH 8.3) for 1 hour

at4 °C.

eCLIP data analysis

eCLIP RNA-binding protein binding site data was downloaded from
ENCODE (129) in narrowPeak format. Protein binding sites on NEAT1 were
filtered using bedtools intersect. To map the binding sites of TARDBP on
NEAT1_S structure, each nucleotide in NEAT1_S was assigned an eCLIP
score that equals to the highest signal value among all peaks covering that
nucleotide. A nucleotide that has no crosslinking has a score of zero.
hNEAT1_S structure model was then visualized by VARNA and colored by
eCLIP scores. For hierarchy clustering analysis, eCLIP score on each
nucleotide was filtered such that it has enough signal enrichment (signal value
greater than 3), and is statistically significant (p-value smaller that 1e-5), and
has significant binding sites in both replicates. The mean scores of the two
replicates were then used in clustering analysis, where correlation was used as

distance matrix with average-link clustering algorithm.
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RESULTS

In vitro secondary structure probing of human NEAT1_S

We first used Mod-seq (5) (Figure 4) to probe the in vitro structure of the
3,735 nt human NEAT1 short isoform (hNEAT1_S). Large RNAs often adopt
multiple structural folds after heat denaturation and refolding in vitro. To avoid
this, we purified in vitro transcribed NEAT1_S under non-denaturing conditions
designed to preserve its co-transcriptionally folded structure (45). hANEAT1_S
RNA was probed with 1M7 (69), and modification sites were identified using
Mod-seq. SHAPE reactivity scores for each nucleotide were then calculated as
previously described (120), where higher scores suggest structural flexibility
(Supplementary Figure S2). Although modeling long RNA structures with Mod-
seq has not been validated, Mod-seq measures SHAPE reactivity accurately
(Supplementary Figure S1) and SHAPE reactivity data have been used to

model many long RNA secondary structures (4448, 112, 113, 130, 131).
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hNEAT1 L |} 227 kb
hNEAT1_S |IINSIZKE

~ ~ non-denaturing
purification
— —_— —
+/- 1M7
Introducing SP6 promoter cDNA template  in vitro transcription modification

through PCR

=@  p  High throughput sequencing
Mod-seq library and data processing

Figure 4. Overview of NEAT1 secondary structure probing. cDNA
templates of NEAT1 regions were generated by PCR using primers that
incorporated the SP6 promoter sequence. NEAT1 RNA was then
generated by SP6 in vitro transcription. After non-denaturing RNA
purification, RNAs were probed with the SHAPE reagent, 1M7. The
negative controls were treated with DMSO only. Mod-seq libraries were
then made and sequenced to an average combined depth of ~ 100 reverse
transcriptase stops per nucleotide. SHAPE reactivity was calculated by
comparing reverse transcriptase stops from 1M7 treated and untreated

control samples
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We investigated the domain structure of NEAT1_S using an approach
similar to the 3S shotgun method (132). In this approach, full length NEAT1_S
was divided into 13 overlapping ~500 nt segments (Figure 5A and
Supplementary Table S2). Each segment was in vitro transcribed and SHAPE
probed individually using the same non-denaturing method that we used in full
length NEAT1_S probing. If nucleotides within a segment exhibit similar SHAPE
reactivity to that seen in the context of full length RNA, they likely form base-
pairs within a sub-domain with relatively independent and stable local structure.
The similarity of SHAPE scores between each segment and full length
NEAT1_S was measured by Pearson’s correlation (Figure 5B), finding that
most regions appear to have stable local structures. To identify boundaries
between local structures, we also evaluated Pearson’s correlations in 60-
nucleotide sliding windows across NEAT1_S (Figure 5C). These results
indicate that hNEAT1_S has primarily local base-pairing interactions when

prepared under non-denaturing conditions.
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Figure 5. Identification of local stable structures in hNEAT1_S. A).
lllustration of gene locus of hNEAT1_S and hNEAT1_L. The secondary
structure of full length hNEAT1_S and 13 ~500 nucleotide sub-segments
were probed in vitro. B). Scatter plots showing the correlation of SHAPE
reactivity scores in each segment with the corresponding region in full
length hNEAT1_S. C). Pearson’s correlations of SHAPE reactivity scores
between full length hANEAT1_S and each segment were calculated using a
60-nucleotide sliding window with 1 nucleotide step size. The correlations
of hNEAT1_S and even number segments are shown in red, while the
correlations of ANEAT1_S and odd number segments are shown in orange.
The blue line indicates the larger correlation of the two (odd vs even
segments). Odd and even segment boundaries are marked as upper
dashed lines. The lower dashed lines indicate boundaries of identified
structural domains. D). Secondary structure models in ANEAT1_S. Shared
base-pairs between full length hNEAT1 and the 500 nucleotide sub-
segments are marked in red. The four structural domains are highlighted

with colors.
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To identify stable local sub-domains of hNEAT1_S, we compared the
secondary structure models of each segment with the 100 lowest free energy
structures of full length hANEAT1_S and searched for shared base-pairs (Figure
5D). 696 shared base-pairs were identified in total, accounting for 57.7% of all
base pairs in the full length hNEAT1_S structure. By manually clustering
adjacent shared base-pairs, we demarcated 4 domains in hNEAT1_S that have
relatively stable local structures, as highlighted by colors (Figure 5D). Domain |
encompasses most of the 5’ end of NEAT1_S, while domains I, lll and IV are
more separated. Domain IV marks a folded 3' end. The separation of domains
is also observed in the sliding window correlation analysis (Figure 5C), where
the correlation of SHAPE reactivity scores is higher within each domain, but
drops in junction regions between domains. These results support a model in

which NEAT1 folds into a modular multi-domain RNA.

Phylogenetic analyses of NEAT1 secondary structure conservation

We used phylogenetic analyses to investigate the conservation of the
NEAT1_S structure. We first used Infernal (124) to generate improved
mammalian multiple alignments of NEAT1_S using our SHAPE-constrained
structure model. As it is possible that only small subdomains of NEAT1_S have
conserved structure, we applied Infernal to compact helical regions from the

domains defined using the 3S shotgun procedure (see methods; Table 4). For
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12 of 14 subdomains, Infernal identified at least 40 out of 64 mammalian
species with significant alignment to human NEAT1_S. Two regions in domain
[l (nt 2470-2609 and nt 3199-3316) had only 12 and 25 alignments,

respectively, and the former one only had alignments within primates.

We applied R2R (126) and R-scape (48) to evaluate the conservation of
NEAT1_S secondary structure. R2R classifies base-pairs as covarying if at
least one compensatory mutation is present in an alignment, given there are
less non-canonical base pairs than a user-defined threshold. R-scape uses a
background null distribution to identify statistically significant covariant base-
pairs, but performance depends on the number of alignments used and their
average pairwise identity. Some IncRNAs have covariant base-pairs identified
by R2R (45, 113) but many failed the statistical tests in R-scape (48). Similarly,
R2R identified many more covariant base pairs than R-scape on NEAT1_S
(Figure 11 1 and J, see details in Chapter 4). However, R2R may be too liberal
and / or R-scape too conservative for analysis of NEAT1_S structural
conservation. Further analyses suggest R2R is prone to false-positive
covariation calls on NEAT1_S (Figure 11 D and E, see details in Chapter 4),
and that R-scape has reasonably strong performance on well-structured RNAs
(tRNA, riboswitches, TERC, etc.) after matching alignment number and
pairwise identity to that of NEAT1_S (Figure 12, see details in Chapter 4).

NEAT1_S alignments had higher R-scape co-variation scores than random null
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alignments (Figure 13 , see details in Chapter 4), however NEAT1_S had
relatively fewer significant covariant base pairs (E value < 0.05; Figure 12, see
details in Chapter 4).These results suggest that NEAT1_S is under less
selective pressure for specific RNA structures than well-known highly-

structured RNAs.

SHAPE probing of mouse NEAT1_S identifies few structurally similar

regions

Since most human IncRNAs only exist in mammals and are much younger
than structured small non-coding RNAs, the R-scape E-value significance
threshold of 0.05 may be too stringent for IncRNAs. In addition, it is possible
that IncRNAs like NEAT1 have conserved single-stranded regions that would
be undetectable using R-scape. To experimentally evaluate the conservation
of NEAT1 structure, we compared the in vitro structures of human NEAT1_S
and mouse NEAT1_S. A secondary structural model of mNEAT1_S was
determined using the same pipeline for ANEAT1_S (Supplementary Figure S3).
Both full-length mMNEAT1_S and 12 overlapping segments (Supplementary
Table S2) were in vitro transcribed and probed with 1M7, and their SHAPE
reactivity profiles were assayed by Mod-seq. We compared the SHAPE
reactivity profiles of hNEAT1_S and mNEAT1_S using the Infernal derived

mammalian NEAT1_S sequence alignment to align their SHAPE scores. Out
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of 10 regions with well-defined sequence alignments, 5 had significantly
positive correlations (nt 514 — 680, nt 901- 1036, nt 1037-1268, nt 1269-1467,
nt 1710-1833) (Table 1). The nt 514-680 region had the highest correlation (R
= 0.43; Figure 6), suggesting higher structural similarity, even though R-scape
identified no covariant base pairs in this region. These results show NEAT1 has
small regions with evidence for structural similarity, while other regions have

much lower structural conservation.
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Figure 6. Comparison of SHAPE reactivity profiles. SHAPE profiles for the
region of hNEAT1_S found to have the highest correlation with the
corresponding region in mMNEAT1_S (nts 514-680). SHAPE scores (see

methods) are plotted for ANEAT1 (upper) and mNEAT1 (lower).

66



Chapter 3 Structural analyses of NEAT1 IncRNAs suggest long-range RNA interactions that may
contribute to paraspeckle architecture

Long-range RNA-RNA interactions in NEAT1

Previous studies have reported that the 5’ and 3’ ends of NEAT1 are co-
localized in the paraspeckle periphery, and speculated that this is a
consequence of interactions among RNA-binding proteins (25), We
investigated the possibility that long-range RNA-RNA interactions might
contribute to colocalization. We used RNAduplex, a software package for
predicting structure upon hybridization of two RNA, with hNEAT1_S sequence
and the remaining 19,006 nt sequence of hNEAT1_L to identify potential long-
range interactions. Surprisingly, RNAduplex predicted a large interaction of
almost the entire short ANEAT1 with the 3' end of long hNEAT1. The prediction
is similar in mouse NEAT1, with mNEAT1_S predicted to form a duplex with the
3' end sequence of mMNEAT1 L (Figure 7A and Figure 7B). To further
investigate the potential for long-range interactions, we separated human and
mouse NEAT1_L sequences into 120 nt windows and calculated the minimum
free energy of each pair of windows (Figure 7C and Figure 7D). Both in human
and mouse, duplex minimum free energy heat maps show darker colors at the
edges and corners. These long-range interaction regions in hNEAT1_L and
MmNEAT1_L have significantly lower minimum free energy (z-scores < -3) than
random pairs of NEAT1_L sequences (Supplementary Figure S4A-B). This

pattern is consistent across mammals (Supplementary FigureS4B). These
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results show that NEAT1 has a conserved inherent capacity to form long-range

interactions between its 5’ and 3’ ends.

Based on our windowed analysis of base-pairing potential, we predicted
RNA segments most likely to form long-range interactions by searching for the
best candidate segment pairs (Supplementary Table S3). Selected RNA-RNA
interactions of predicted regions were tested using an in vitro RNA-RNA gel
shift assay (Figure 7E and Supplementary Figure S5). As predicted, hNEAT1
segment 1 (nt 282 - 546) and hNEAT1 segment 2 (nt 600 - 840) formed a stable
duplex structure with segment 3 (nt 20761 - 21120). In mNEAT1, the predicted
regions also show RNA-RNA interaction ability, though the interaction seems
to be weaker than the tested hNEAT1 segments (Supplementary Figure S5).
These results show that sequences in the 5' and 3' ends of NEAT1 can form

base-pairing interactions under physiological Mg?* concentration.
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Figure 7. Putative long-range base-pairing interaction in mammalian
NEAT1 RNAs. A and B). RNAduplex analyses of NEAT1_S and NEAT1_L
predict NEAT1_S is likely to interact with the 3’ end of NEAT1_L, in both
human and mouse. C and D). RNAduplex analysis of pair-wise 120 nt
window regions of NEAT1_L. The heatmaps are colored by the predicted
minimum free energy of each RNA duplex. These predicted interactions

are significantly stronger than expected by chance along NEAT1 RNAs in
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mammals (Supplementary Figure S4). E). In vitro gel shift assay shows the
predicted interacting RNA segments (seg 1 and seg 3) form a duplex in
vitro. The duplex product is visible as a band that migrates similar to the

300 nt DNA ladder on the native agarose gel.
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Mapping RBP binding sites on the NEAT1_S secondary structure model

A recent study by West et al. (26) investigated the localization of proteins
within the paraspeckle. TARDBP was identified as a shell component that co-
localizes with the NEAT1_L 3’ and 5’ ends, while other paraspeckle proteins
such as SFPQ, NONO, FUS and PSPC1 were identified as core components
expected to associate the with middle region of NEAT1_L. Public eCLIP data
generated by the ENCORE project shows four significant clusters of TARDBP
binding sites on NEAT1. Two sites are located within NEAT1_S, while one is in
3’ end of NEAT1_L (Supplementary Figure S6 and S7). Strikingly, our predicted
long-range interacting region in each of the 5’ end and 3’ end is adjacent to a
TARDBP associated region (~40 nt apart). Thus RNA-RNA interactions and
NEAT1-TARDBP interactions could act cooperatively to stabilize a NEAT1

circular scaffold within the paraspeckle (Figure 8).
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Figure 8. Model of NEAT1’'s architectural function in scaffolding the
paraspeckle. NEAT1 L RNA folds end to end. RNA-RNA interactions
between the 5’ end and 3’ end of NEAT1_L, or between NEAT1_S and

NEAT1_L 3’end help form a circular skeleton for the paraspeckle.
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We also examined the binding sites of all 160 proteins with available
ENCODE eCLIP data. After stringent filtering, 50 out of 160 proteins have
significant binding sites on NEAT1_L. Hierarchical clustering analyses of these
binding sites are shown in (Supplementary Figure S8). Two other paraspeckle
proteins, SFPQ and NONO, are clustered together. These two proteins are
known to form dimers and localize to the core region of the paraspeckle,

consistent with their eCLIP binding sites.

DISCUSSION

It has been an intriguing mystery that IncRNA often have very little
sequence conservation even when they appear to have conserved biological
functions. One hypothesis is that secondary structures, rather than primary
sequences, are more likely to be conserved in IncRNA. In this study, we
compared the structure of human and mouse NEAT1, the IncRNA component
of paraspeckles. Our phylogenetic analyses and Mod-seq structure probing
results suggest that most of the NEAT1 secondary structure is undergoing
evolutionary drift, leaving only a few short regions of structural similarity and
very few specific base pairs with significant covariation. Thus, secondary

structure conservation alone is not sufficient to explain NEAT1’s functional

73



Chapter 3 Structural analyses of NEAT1 IncRNAs suggest long-range RNA interactions that may
contribute to paraspeckle architecture

conservation; other molecular interactions are likely important for scaffolding

the paraspeckle.

Previous studies on the organization of NEAT1 within paraspeckles
reported that the 5’ and 3’ ends are co-localized to the paraspeckle periphery.
However, the nature of co-localization is not well understood. Our
computational analyses and in vitro gel shift experiments suggest that the 5’
and 3’ ends of NEAT1 could form long-range base-pairing interactions. In the
5" end of NEAT1, the regions most likely to form such interactions (nt 282 — 546
and nt 600 — 840) flank a region of highly conserved SHAPE probing (nt 514-
680). It's possible that local structures in the interacting segments may be
required for long-range interactions with the 3’ end of NEAT1_L. Future studies,
including targeted mutation around this region, would help evaluate its role in
paraspeckle formation. Since NEAT1_S and NEAT1_L share the same
transcription start site, the NEAT1_S sequence is identical to the NEAT1 L 5
end sequence. Thus, our predicted intramolecular interaction between the 5
and 3’ ends of NEAT1 L could also occur between separate molecules of
NEAT1_S and NEAT1_L. Such interactions could form a network of RNA-

RNA basepairs that help shape the architecture of the paraspeckle (Figure 8).

Recently, several groups reported high-throughput analysis of RNA-RNA
interactions mapped by in vivo psoralen crosslinking of RNA helices (PARIS

(133), LIGR-Seq (134) and SPLASH (135) methods). Notably, 435 out of 1206
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base-pairs (36.1%) in our in vitro hANEAT1_S structure model are supported by
PARIS data (133), (Supplementary Figure S9). However, only 59 out of 298
PARIS RNA-RNA interactions were also observed in our structure model. This
discord likely stems from the fact that PARIS samples a population of
alternative or intermediate structures, while SHAPE probing of in vitro
transcribped NEAT1 assays a homogenous, single RNA transcript.
Interestingly, the PARIS data include seven crosslink reads consistent with a
long-range base-pairing interaction between the 5’ and 3’ ends of NEAT1_L (nt
3172-3190 and nt 21219-21264, Supplementary Figure S7). The fact that this
is a very small fraction of the total mapped interactions suggests that each
NEAT1 molecule may have only few intramolecular interactions in the
paraspeckle. Alternatively, as NEAT1_S is expressed 5 to 8-fold more than
NEAT1_L and can be localized as single-transcript “microspeckles” outside of
the paraspeckle (118), the PARIS data may reflect mostly intermolecular
interactions among separate NEAT1_S transcripts. Finally, the AMT psoralen
used in PARIS is biased towards crosslinking U residues in adjacent AU pairs
(136), such that long-range interactions involving GC pairs would be difficult to
identify with PARIS. In addition, some RNA-RNA interactions supported by

PARIS may require protein binding in the in vivo environment.

Previous work suggested that two other IncRNAs, repA and HOTAIR, have

conserved secondary structure supported by co-varying nucleotides in genomic
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sequence alignments (45, 113). A more recent computational analysis using R-
scape (48) reported that the apparently conserved base-pairing seen in these
IncRNAs was no more common than expected by chance. However, R-scape
may have suffered from a lack of power due to having too few alignments of
IncRNA genes. Our analyses suggest that R-Scape has the power to identify
conserved base-pairs in highly structured RNAs, even when applied to a
smaller number of alignments with mutation rates similar to those of IncCRNAs.
Furthermore, our simulations illustrate that using R2R can result in random
mutations being interpreted as evidence of co-varying base pairs. Our results
suggest R-scape, when properly evaluated for detection power, is an

appropriate tool for analysis of INcCRNA structural conservation.

As more and more genomes are sequenced, the power to identify
significant covariation with tools like R-scape will increase. However, it may be
wrong to assume that INcRNA structural conservation is comparable to that of
deeply conserved, ancient structured RNAs like tRNA, rRNA, and RNase P
RNA. Because IncRNA are relatively young (in evolutionary terms), they may
not have yet evolved as many constraints on their secondary and tertiary
structure. For example, tRNA must be recognized by multiple processing
enzymes and synthetases, in addition to their interactions with the translation
machinery, all in the space of ~ 70 nucleotides. In comparison, IncRNAs are

much longer and may have fewer sequence and structural-specific interactions.
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This would explain the observation that these RNAs have generally less

conserved structure (48).

Our comparative structural analysis on NEAT1 serves as a case study of
IncRNA structural evolution. With the exception of a few short regions, the
secondary structure of NEAT1 has changed extensively over evolutionary time.
Thus, the conserved function of NEAT1 cannot be explained solely by
conserved secondary structure. It is possible that maintaining certain small
regions of NEAT1 in single-stranded conformation, is a conserved structural
feature. This is consistent with the regions of correlated SHAPE signal we
observed in human and mouse NEAT1_S. In addition, there may be non-
canonical RNA-RNA interactions in NEAT1 (e.g. pseudoknots) that are not
accommodated by most structure modeling software. We propose a model in
which a small number of short regions in the NEAT1 RNA have important
specific base-pairs, while the rest remains structurally heterogeneous, allowing
multiple intermolecular interactions among RNA-binding proteins and separate

molecules of NEAT1 RNA.
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SUPPLEMENTARY MATERIALS

1M7 Synthesis Procedure
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((Ethoxycarbonyl)amino)-4-nitrobenzoic acid 2

2-Amino-4-nitrobenzoic acid 1 (5.46 g, 30 mmol) was dissolved in 40 mL
dry dioxane. Ethyl chloroformate (12.62 mL, 132 mmol) was added under argon.
The reaction mixture was reflux for 1 hr. After cooling to rt the solvent was
removed under reduced pressure and the residue was suspended in 50 ml of
water, suction filtered and washed with another portion of water to yield 6.86g
(90%) of a light brown solid, mp 215-218°C. 'H NMR (500 MHz, DMSO-ds) &
14.35 (s, 1H), 10.77 (s, 1H), 9.07 (d, J = 2.4 Hz, 1H), 8.18 (d, J = 8.7 Hz, 1H),
7.87 (dd, J = 8.7, 2.4 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 1.29 (t, J = 7.1 Hz,
3H).13C NMR (126 MHz, DMSO) & 168.73, 153.18, 150.76, 142.22, 133.24,

121.07, 116.35, 113.00, 61.86, 39.72, 14.70.
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7-Nitro-1H-benzo[d][1,3]oxazine-2,4-dione 4

2-((Ethoxycarbonyl)amino)-4-nitrobenzoic acid 2 (5.08 g/20 mmol) was
suspended in 10 mL thionylchloride and heated to 65 °C. Gas evolution was
observed, while the reaction mixture turned from a pasty slurry to a more liquid
consistency. About 15 min into heating the reaction mixture started to solidify.
Heating was continued until the gas evolution stopped - about 30 min. The
reaction mixture was cooled to rt. Chloroform (30 mL) was added and the solid
were filtered off. The pale yellow solid was washed with 20 ml chloroform and
dried to yield 2.5 g (60%) of 7-Nitro-1H-benzo[d][1,3]oxazine-2,4-dione 4, mp
256-258 °C. 'H NMR (500 MHz, DMSO-de) & 12.14 (d, J = 8.1 Hz, 1H), 8.16
(dd, J=8.6, 2.3 Hz, 1H), 7.97 (dd, J = 8.6, 2.3 Hz, 1H), 7.90 (d, J = 2.1 Hz, 1H).
13C NMR (126 MHz, DMSO) & 159.20, 152.38, 147.03, 142.55, 131.34, 117.73,

115.89, 110.68.

1M7 5 and 2-(methylamino)-4-nitrobenzoic acid 6

7-Nitro-1H-benzo[d][1,3]oxazine-2,4-dione 4 (1.04 g, 5 mmol) and
anhydrous postassium carbonate (828 mg, 6 mmol) was placed in a 50 ml three
neck flask. Under argon 10 mL of dry DMF as added followed by iodomethane
(0.4 ml, 6.45 mmol). The reaction mixture was stirred at rt overnight. The
reaction mixture was poured into ice-cold 1N HCI (50 ml). The orange
precipitate was filtered off and washed sequentially with water and then ether.
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NMR- analysis revealed that the product 1M7 5 was still contaminated with the
orange byproduct 2-(methylamino)-4-nitrobenzoic acid 6. 1M7 5 was purified
by fractional crystallization from ethyl acetate/hexane where the byproduct 6
crystallizes first to yield 400 mg (40%) of orange crystals, mp mp 256-258°C.
1M7 5 crystallizes second to yield 560 mg (50%) of light yellow crystals, mp
206- 208°C. 1M7 5 '"H NMR (500 MHz, DMSO-ds) d 8.26 (d, J = 8.5 Hz, 1H),
8.13 (d, J = 2.0 Hz, 1H), 8.07 (dd, J = 8.5, 2.0 Hz, 1H), 3.33 (s, 3H). 3C NMR
(126 MHz, DMSO) 6 158.36, 152.88, 147.82, 143.53, 131.60, 118.00, 117.07,

110.33, 32.58.

2-(Methylamino)-4-nitrobenzoic acid 6 '"H NMR (500 MHz, MeOD) & 8.24
(d, J=8.5Hz, 1H), 8.11 (d, J = 2.0 Hz, 1H), 8.06 (dd, J = 8.5, 2.0 Hz, 1H), 3.56
(s,3H). 2.50 (1H, NH). *C NMR (126 MHz, DMSQ) & 169.08, 152.23, 151.84,

133.72, 115.39, 108.10, 105.27, 29.78. mp 256-258°C.

The byproduct 2-Methylamino-4-nitro-benzoic acid 6 can be converted to
1M7 5 by a two-step-one pot reaction that involves the reaction with
ethyl chloroformate in dioxane to yield derivative 7 and reaction with thionyl

chlorid to acid chloride 8 and subsequent cyclization to 1M7 5.

SUPPLEMENTARY FIGURE LEGENDS

Figure S1. The secondary structure of the Tetrahymena ribozyme P4P6

domain is shown, with nucleotides colored by their SHAPE reactivity scores.
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Figure S2. The hNEAT1_S secondary structure model is shown with
nucleotides colored by their SHAPE reactivity scores. Nucleotides higher

SHAPE scores are more likely to be single-stranded.

Figure S3. The secondary structure model of MNEAT1_S is shown. Base-
pairs shared between full length mMNEAT1 and 3S shotgun segments are

marked in red. The four identified domains are highlighted in colors.

Figure S4. Putative long-range interactions in NEAT1 are more stable than
expected by chance. (A) The distribution of minimum free energy (MFE) in the
sliding window analysis of ANEAT1_L (see Figure 5C and 5D) is shown in blue,
while the MFE distribution from randomly shuffled 120 nt long NEAT1_L
sequences is shown in green. (B) RNAduplex predictions show possible long-
range interaction between 5 and 3’ ends of NEAT1_L across mammals. Z-
scores were calculated for each segment pair by comparing the actual MFE to
the background null distribution (shown in A). The heat maps are colored by the
predicted minimum free energy z-scores of each RNA duplex. Lower z-scores

(in red) support long-range interactions in mammalian species.

Figure S5. In vitro gel shift assay of predicted interacting segments in
hNEAT1_L and mNEAT1_L. Both hSeg 1 and 3, hSeg 2 and 3 form a duplex
as predicted. The predicted mouse interacting segments (mSeg 1 and 3, mSeg

2 and 3) show only faint gel shift bands.
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Figure S6. eCLIP suggested binding sites of TARDBP mapped onto the
proposed secondary structure model of ANEAT1_S. Nucleotides are colored by

ENCODE eCLIP signal values.

Figure S7. IGV genome browser tracks depicting regions with similar
SHAPE scores between hNEAT1_S and mNEAT1_S (SHAPE), regions able to
form long-range interaction verified in in vitro gel shift assay (Gel Shift), eCLIP
identified TARDBP binding sites (TARDBP), regions show long-range

crosslinking in PARIS data (PARIS), and annotations of NEAT1_S and NEAT L.

Figure S8. Clustering analysis of RNA binding proteins’ binding sites on
hNEAT1. The heatmap is colored by ENCODE eCLIP signal values. eCLIP
scores on each nucleotide were filtered to show only nucleotides with high
signal enrichment (> 3) and statistical significance (P < 1e-5) in both available

replicates.

Figure S9. Comparison of the hNEAT1_S in vitro SHAPE probing inferred
structure with published in vivo PARIS data. Basepairs supported by PARIS

data are colored in blue.

SUPPLEMENTARY TABLE LEGENDS

Table S1. Summary of sequencing runs.
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Table S2. Positions of ANEAT1_S and mNEAT1_S segments used in the

3S shotgun method.

Table S3. Predicted long range interactions for 120 nucleotide long
windows in hNEAT1 L and mNEAT1 L. The “Mutual Mini” column shows
window pairs whose interaction provides the lowest potential free energy of all

pairs involving those windows.
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SUPPLEMENTARY FIGURES

Figure S1

SHAPE score

.

00 04 1.0

Without SHAPE Sensitivity: 43 / 54 = 79.63% With SHAPE Sensitivity: 47 / 54 = §7.04%
PPV: 44 /51 = 86.27% PPV: 48 /53 = 90.57%

150

z’ﬂ..

Pair present in both predicted and accepted structure (Green).
Pair present in predicted structure only (Red).
Pair present in accepted structure only (Black).

85



Chapter 3 Structural analyses of NEAT1 IncRNAs suggest long-range RNA interactions that may
contribute to paraspeckle architecture

Figure S2
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Figure S3
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Figure S5
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Figure S6
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Figure S7
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Figure S8
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Figure S9
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Chapter 4 NEAT1 as a test case for evaluating secondary

structural conservation of IncRNAs.

This chapter expands on the phylogenetic analyses of NEAT1 structure

published in Lin et al., 2018, which is included in the supplementary material.

There is an ongoing debate in the field regarding the conservation of
INcRNA structure. Only a few IncRNA secondary structures have been
chemically probed, including Xist (44, 111), HOTAIR (45), ncSRA (137)
lincRNAp21 (46) and RepA (113). In these studies, the authors often claimed
that the probed IncRNA has a well-defined secondary structure that shows a
significant degree of phylogenetic conservation via the presence of covarying
base pairs. However, the covariation analyses performed in these studies
generally lacked statistical control. In 2016, another study developed a
statistical method (R-scape) testing for significant covarying base-pairs (48).
Using R-scape, they suggested that t