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1 Greater Sydney and data sources
Greater Sydney is an urban area covering more that 12,000 square kilometres, delimited in all directions by either the Pacific
Ocean or by the several surrounding national parks. It includes the City of Sydney as well as other urban agglomerations
such as Parramatta, Penrith, Campbelltown and Gosford, for a total population of approximately 5 million (see Fig. S1(a)).
According to 2011 Census data, the working population of Greater Sydney is 1.8 million. People daily commute between
residence areas (or suburbs), where they live, and employment areas, where they work. The territory is partitioned into
270 residence areas and 2,156 employment areas. The data used for this study was provided by the Australian Bureau of
Statistics. This includes the geospatial data of the areas of employment and residence, as well as the Census data for year
2011.

The employment areas are defined by the standard Destination Zone (DZN), which was designed by the New South
Wales transport authority in order to spatially classify employment places, with the purpose of analysing commuting data
and developing transport policies. The standard Statistical Area Level 2 (SA2), as defined by the Australian Statistical
Geography Standard, was used for the residence areas. Geographical areas of level SA2 represent small communities that
closely interact socially and economically. The population of these areas can vary from 3,000 to 25,000 individuals, with
an average population of 10,000 individuals. A satellite map showing the DZN and SA2 areas partitioning Greater Sydney
is provided Fig. S1(b-d).

The Census data for year 2011 was geographically classified by the Australian Bureau of Statistics in accordance with
the both geographical areas DZN and SA2, and included the travel-to-work matrix Tij , the average weekly income Ii and
the average weekly rent Rj , for all DZN areas i and SA2 areas j. The Census data also included the amount of people who
work in food retailing stores (including supermarkets, grocery stores, meat and fish stores, fruit and vegetables stores and
liquor stores) that are located in specific SA2 areas. This data was utilised to estimate the amount of goods, matching the
services Sj available in each residence area.

The cost of travelling Cij was estimated as the Euclidean distance between the centres of the employment and residence
areas. An alternative approach would be to calculate the time of travelling using, for example, Google Maps or Open-
StreetMap data. However, in this case one needs to assemble a dataset with several Sydney transport networks (bus, rail
and ferry), in addition to the road networks. While the latter data are publicly available (e.g., OpenStreetMaps), the former
is not. Furthermore, the network connectivity needs to be augmented with price of the corresponding travels, as well as
individual preferences reflected in travel pattern data (such as Opal cards). A simpler solution based on Euclidean distances
appears to be less biased than a more sophisticated but incomplete approach.
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Figure S1: (a) Satellite image of Greater Sydney (TerraColor imagery by Earthstar Geographics LLC). The satellite image
showing the areas of residence (b), according with the standard SA2, and the areas of employment (c), according with the
standard DZN. (d) A magnification showing the employment areas of the City of Sydney, including City Business District
(CBD).

In summary, the constraints used in Eq. (2.2) and Eq. (2.3) of the Boltzmann component are produced from the Census
data, given the definition of attractiveness Aj = log(f(Pj) Sj) in terms of the population Pj and the services Sj , while the
constraint used in Eq. (2.4) is produced by the geospatial data.
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2 Calibration of the model
The model was calibrated by identifying the optimal values α̂ and γ̂ for which the output Y0

ij best matches the actual flow of
income Yij of Sydney-2011. The difference between actual and predicted flow of income was estimated as the sum of (the
absolute values of) the differences between all values of the matrices Y0

ij and Yij , which is e(Y0
ij) =

∑
i

∑
j

∣∣Y0
ij − Y ij

∣∣.
The result is shown in Fig. S2.

Figure S2: Calibration of the parameters α and γ. The horizontal axes represent values of α and γ within the considered
ranges, while the vertical axis represents the difference between the income flow Y0

ij produced by the model and the actual
income flow Yij given by Sydney-2011 Census data, calculated as e(Y0

ij) =
∑
i

∑
j

∣∣Y0
ij − Y ij

∣∣. The red dot represents
the optimal values α̂ and γ̂.

3 Thermodynamic analysis
Let us consider the state functions Xm(x) that describe a physical system over its configurations x. In a stationary state, the
Gibbs measure defines the probability of the states of the system:

p(x|θ) = 1

Z(θ)
e−βH(x,θ) =

1

Z(θ)
e−

∑
m θmXm(x), (1)

where θm are thermodynamic variables, β = 1/kbT is the inverse temperature T (kb is the Boltzmann constant), H(x, θ) is
the Hamiltonian defining the total energy at state x, and Z(θ) is the partition function [1, 2]. The Gibbs free energy of such
system is:

G(T, θm) = U(S, φm)− TS − φmθm, (2)

where U is the internal energy of the system, S is the configuration entropy and φm is an order parameter. Let us also
consider the generalised internal energy Ugen in the sense of Jaynes [3], such that

〈βUgen〉 = U(S, φm)− φmθm, (3)

where the angle brackets represent average values over the ensemble. The generalised first law holds 〈βUgen〉 = 〈βQgen〉+
〈βWgen〉, where Qgen and Wgen are, respectively, the generalised heat and the generalised work.

The Fisher information [4] measures the amount of information that an observable random variable X carries about an
unknown parameters θ = [θ1, θ2, . . . , θM ]T . If p(x|θ) is the probability of the realisation x of X given the parameters θ,
the Fisher information matrix is defined as

Fmn(θ) = E

[(
∂ ln p(x|θ)
∂θm

)(
∂ ln p(x|θ)

∂θn

)∣∣∣∣∣θ
]
, (4)
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where the function E(y) is the expected value of y. For a physical system described by the Gibbs measure in (1), the
Fisher information has several physical interpretations, e.g., it is equivalent to the thermodynamic metric tensor gmn(θ),
is proportional to the second derivative of the free entropy ψ = lnZ = −βG, and to the derivatives of the corresponding
order parameters with respect to the collective variables [1, 5, 6, 2, 7]:

Fmn(θ) = gmn(θ) =
∂2ψ

∂θm∂θn
= β

∂φm
∂θn

. (5)

Furthermore [8],

F (θ) =
d2S

dθ2
− d2〈βUgen〉

dθ2
. (6)

Under a quasi-static protocol the total entropy production is zero, and therefore any change in the configuration entropy
due to the driving process is matched by the flow of heat to the environment:

dS

dθ
=
d〈βQgen〉

dθ
. (7)

Thus, combining (6) and (7) with the first law of thermodynamics yields another important result for the generalised work
Wgen [8]:

F (θ) = −d
2〈βWgen〉
dθ2

. (8)

4 Entropy and a proxy of order parameter
A higher entropy indicates a more homogeneous distribution of the income to all suburbs, while a lower entropy indicates
a less balanced distribution of the income biased towards one or few suburbs. We observe that the entropy decreases with
both parameters α and γ (see Fig. S3). This behaviour is expected and has a clear interpretation. If the social disposition α
is low, people have modest preference for attractive suburbs and thus settle (and move their income) more homogeneously
within the region, while if α is high people tend to aggregate around the areas with the higher attractiveness. Similarly, if
travel impedance γ is low people are less concerned about high travel costs, and therefore can settle at any distance from
their work place, while if γ is high people prefer to live closer to their employment areas to incur lower commuting costs.

To formalise this intuition, one typically introduces and traces corresponding order parameters. This is however hindered
by an incomplete statistical-mechanical description of the system, and we first illustrate a simpler approach which considers
a proxy of an order parameter. Such a proxy characterises the equilibrium distribution of the services Sj , for different

Figure S3: Entropy of Y∗
ij after the services Sj have evolved to reach an equilibrium. The horizontal axes represent values

of α and γ within the considered ranges, while the vertical axis represents the entropy H(Yij) at corresponding values of α
and γ. The red dot indicates the combination of α̂ and γ̂ for which Y0

ij best matches Sydney-2011 Census data.
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Figure S4: The number of suburbs N(Sj > 10) with more than 10 units of services available, after the services Sj have
evolved to reach an equilibrium. The horizontal axes represent values of α and γ within the considered ranges, while the
vertical axis represents N(Sj > 10) at corresponding values of α and γ. The red dot indicates the combination of α̂ and γ̂
for which Y0

ij best matches Sydney-2011 Census data.

values of α and γ, in terms of the number of suburbs in which the amount of available services exceeds a threshold, i.e.,
“services-abundant” suburbs. Fig. S4 shows the number of services-abundant suburbs, that is N(Sj > 10), for different
values of α and γ, after the urban evolution has converged. Again, as with the entropy dynamics, the variation of γ does
not greatly affect the number of services-abundant suburbs. On the contrary, this number displays an abrupt change with
respect to α: for low values of the social disposition all 270 suburbs are services-abundant, but as α increases the number
of services-abundant suburbs reduces quickly past a specific value of α. At high values of social disposition approximately
120 residence areas remain services-abundant.

Fig. S3 and Fig. S4 also show the values α̂ and γ̂ which best matches Sydney-2011 Census data (the red dot on either
the entropy or the N(Sj > 10) surfaces). This value is within a close proximity to the social disposition where the abrupt
change is observed.
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