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Abstract

Machine learning models have led to remarkable progress in visual recognition. A key driving
factor for this progress is the abundance of labeled data. Over the years, researchers have spent
a lot of effort curating visual data and carefully labeling it. However, moving forward, it seems
impossible to annotate the vast amounts of visual data with everything that we care about. This
reliance on exhaustive labeling is a key limitation in the rapid deployment of computer vision
systems in the real world. Our current systems also scale poorly to the large number of concepts
and are passively spoon-fed supervision and data.

In this thesis, we explore methods that enable visual learning without exhaustive supervision.
Our core idea is to model the natural regularity and repetition in the visual world in our learning
algorithms as their inductive bias. We observe recurring patterns in the visual world - a person
always lifts their foot before taking a step, dogs are similar to other furry creatures than to furniture
etc. This natural regularity in visual data also imposes regularities on the semantic tasks and models
that operate on it - a dog classifier must be similar to classifiers of furry animals than to furniture
classifiers. We exploit this abundant natural structure or ‘supervision’ in the visual world in the
form of self-supervision for our models, modeling relationships between tasks and labels, and
modeling relationships in the space of classifiers. We show the effectiveness of these methods on
both static images and videos across varied tasks such as image classification, object detection,
action recognition, human pose estimation etc. However, all these methods are still passively fed
supervision and thus lack agency: the ability to decide what information they need and how to get
it. To this end, we propose having an interactive learners that ask for supervision when needed
and can also decide what samples they want to learn from.
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Chapter 1

Introduction

We are so familiar with seeing, that it takes a leap of imagination to
realise that there are problems to be solved.

R. L. GREGORY in Eye and Brain: the psychology of seeing, 1966

“The summer vision project is an attempt to use our summer workers effectively in the
construction of a significant part of a visual system.” This was the famous ‘Summer Vision’
project [313] at MIT that called for figure-ground analysis and region-description (both problems
are a major chunk of visual recognition) to be solved in a single summer. This internship post and
the quote at the beginning of this chapter by R. L. Gregory tell us that perception is such an obvious
skill for human that it takes some thinking to appreciate how involved it truly is. It takes even
more thinking to then see how making machines ‘see’ is indeed a hard problem. Unsurprisingly, a
single summer internship did not suffice to solve this grand challenge of machine vision, in the
45 years since, machine learning models have made tremendous headway. For tasks like object
recognition and image classification, we have seen algorithms reduce error rates by more than
3 times in the last 5 years, and in some cases even surpass human level performance. A major
driving force behind this progress is the availability of large scale exhaustive supervision. Tireless
data curation efforts led by researchers have let us train high capacity machine learning models
with impressive performance. This trend of curating larger datasets and ever larger models has
served the recognition community well. However, this begs the question - is the way to solve scene
understanding or visual recognition to collect data for all the things we care about? Is computer
vision mainly about data curation, manual annotation, and ‘spoon-feeding’ such data to machine
learning models?

1.1 Why not just datasets?

To understand if we can ‘solve’ computer vision simply by scaling out the data curation and
labeling task, we need to first look at the scale of the data we would want to label. A simple way
to limit the scope of this problem is to only consider visual data on the web. This gives us a good
estimate of the size of data and number of categories.
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Scale of data and classes: With the availability of cheap visual sensors in smartphones etc., the
amount of visual data on the web has grown tremendously. Figure 1.1 shows us we upload 400
million pictures every day and 300 hours of video content every minute to just the popular media
sharing platforms. To put these numbers in perspective, Facebook adds a full ImageNet sized
dataset to itself every hour and YouTube does this every 13 minutes. ImageNet [351] is one of
the largest vision datasets with 14 million images and 22k categories, and took about 19 man
years to label. Even this large dataset pales in comparison to just internet images. Another rough
estimate [408], shows us that there are about 8 million ‘tags’ or visual concepts on the web, which
is again massive compared to ImageNet or any similar vision dataset. Thus, setting up an army of
annotators to label this ever growing size of visual data with all the categories we care about is
practically impossible.

Rare occurrences: A major difficulty in deploying recognition systems in the real world is the
long tail of visual categories or events. As has been empirically demonstrated [419], the number
of atypical events is very large and follows the Zipf’s law (too many categories are atypical and
have less data). This makes it difficult to both curate and label such data. It also poses additional
demands of sample efficiency on our learning methods. We cannot always expect to have a large
amount of pristinely labeled data to learn a visual concept.

Artificially balanced datasets: Vision datasets have been artificially balanced to handle the long
tail of visual data. As an example (Figure 1.2) the number of giraffes in the real world is about
100,0001 compared to the human population at roughly 7 billion. So, in the real world, the ratio
of giraffes to humans is about 10−5. In the benchmark COCO dataset [251], this ratio is about 0.1.
This makes it so that giraffes in COCO are more frequent than dogs are in the real world (ratio of
dogs to humans in the world is 0.005)! This ‘balance’ makes it convenient for us to train recognition
algorithms, but it imposes artificial distributional priors on our models. A machine vision model

1International Union for Conservation of Nature, 2015
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Figure 1.1: A comparison of the number of images and concepts in vision datasets and on the web. (a) ImageNet, which
took about 19 man years to label, is one of the largest publicly available labeled datasets with about 22k categories. The
size of this dataset pales in comparison to the volume of web data. (b) Additionally, a conservative estimate shows that
there are roughly 8 million tags (categories) on web data. So even the largest dataset can hardly keep up with the ever
growing number of visual concepts or ‘things we care about’.

7



Real World COCO dataset
Data Sources

100

101

102

103

104

105

Ra
ti

o 
of

 h
um

an
s 

to
 g

ir
af

fe
s

Figure 1.2: The distribution mismatch in the real world and vision datasets. Vision datasets, like COCO [251], are
artificially balanced. While this makes training and optimization easy, it creates artificially high occurrences of some
classes. As an example, the ratio of humans to giraffes in the real world is 105, whereas in COCO it is 10.

is in for a surprise when it finds the real (boring) world with so few giraffes! Such an artificial
balancing has also made it hard for us to appreciate the long tail of categories.

1.2 Generalization, interaction and sample efficiency

Spoon-feeding or passive supervision is an effective technique for training models. On the one
hand, we have made immense progress on ‘closed-world’ scenarios where we know the categories
and their distributions apriori. On the other hand, passive learning just by itself does not create
models that can generalize to unseen test distributions or environments in the ‘open-world’. This
generalization requires two key components missing from current line of research - 1) Interactive
learning where models can ask for information and decide when and how to get it. 2) Sample efficient
learning where models can learn from a few samples. Both these components are necessary for
real world agents that will encounter unseen concepts and cannot be ‘taught’ everything before-
hand. These agents should learn about atypical events quickly without repeated demonstration,
displaying high sample efficiency.

1.3 Thesis Contributions

In this thesis, we study methods that reduce the need for exhaustive human supervision. Such
methods have seen renewed interest in the light of data hungry deep learning techniques. Tra-
ditional fully supervised algorithms require copious amounts of data and labels to adapt to new
tasks. This is because they treat data and labels as mere monolithic vectors with no structure. The
high capacity models used have little inductive bias and thus need a lot of data to generalize well.
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Figure 1.3: Visual data is structured - a possum appears more like a dog than a chair. The tasks or labels defined for
visual data determine some semantic groupings which also have an underlying structure, e.g., furry animals are similar
to pets than furniture. The classifier space w is designed to capture similarity in the data, feature and label space. It can
be viewed as a ‘dual’ of the feature space φ(x). This structure implies that a possum classifier is more similar to a dog
classifier than a chair classifier. In this thesis we propose to use such structure in visual data, labels and classifiers to
reduce the need for human supervision.

Modeling the underlying inductive biases can adapt models to changing tasks without exhaustive
supervision or re-training. We show how such techniques can be applied to both static images and
videos. As we show in our work, modeling these inductive biases often leads to more interpretable
models which is an often desired property. We propose to capture various forms of inductive biases
- in the data, task, model and label space to reduce the need for supervision. As we illustrate in
Figure 1.3, in this thesis we explore the following axes of inductive biases or structure to reduce the
need for supervision:

1. Natural temporal supervision in data: Video data offers a natural and powerful source of
free supervision in the form of temporal constraints. We use these temporal constraints and
sequential nature of video to learn visual representations [288] by predicting the order of frames
in a video. We show that the learned representation can be used for tasks such as human pose
estimation and action recognition. We also show [285] how such constraints can help us start
from a handful of labels to label orders of magnitude more data (100×).

2. Relationships between tasks: The structure of the visual world translates into structure in
the various semantic tasks it affords. Treating tasks independently ignores their relationships
and shared information. We propose a simple and principled way to use multiple sources of
supervision using Multi-task Learning in ConvNets [286]. Our proposed mechanism, called
‘cross-stitch units’, helps explore many different ConvNet architectures for Multi-task Learning
without training all of them. It also improves performance for classes with little data.

3. Relationships between labels: A natural extension of exploring structure in task space, is to
look deeper and find structure within a single task. Labels from a single task impose structure
by capturing rich relationships. We propose [289] a way to model the structure in labels and
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the annotation process to enable the use of noisy labels. We show significant gains over the
state-of-the-art and paves the way for efficient use of noisy labels. This modeling also results in
interpretable and more accurate classifiers.

4. Structure in model space: Since visual classifiers operate on structured visual data, they nat-
urally capture certain inductive biases in the data. We explore such properties in the model
space to compose classifiers for novel unseen classes [290], and to create surprisingly simple yet
performant data augmentation techniques for instance detection [89].

While exploring this structure in the data, label and model space reduces the need for supervi-
sion, it still does not make our models ‘independent’. Our current algorithms are passive in nature:
we curate and feed data into them to train them. These models have no control over what data is
input to them or how many times they need to ‘revise’ such data. We propose to explore strategies
to enable agents to be both interactive so that they can ask for supervision, and also be sample
efficient so that they do not need to revisit easy examples over and over again.

Interactive Learning: Our current models lack agency: the ability to explore the world and acquire
knowledge that fills the gaps. As agents are exposed to the world beyond the datasets they were
trained on, they will need to adapt and acquire supervision without being spoon fed. As humans,
we have the ability to go to unseen environments, e.g., a foreign country where people speak
a different language, and still be able to go about our tasks such as navigation etc. and ask for
guidance when needed using say gestures. We want active and interactive agents that can model
what they know and what they do not know so that they can ask for supervision when needed.
We first explore conversational agents that can ask engaging questions about images and propose
a task named Visual Question Generation (VQG) [298]. We show that this task requires visual
understanding and contextual understanding. Using the lessons learned in this work, we then
explore a visual learning framework which allows an agent to ask the oracle for supervision it
needs. This framework, which we call Learning by Asking (LBA) [291], shows the sample efficiency
and strong generalization abilities of interactive learners.

1.4 Thesis Organization

This thesis is organized in four sections that show how we can reduce supervision by exploring
structure in (I) data, (II) labels and tasks, (III) classifiers and (IV) interaction. These sections are
summarized below.

Part I: Structure in Visual Data - In Chapters 2 and Chapters 3 we explore the natural supervision
available in videos. As videos naturally define a sequence over images, they help impose constraints
on our models and representations. In Chapter 2, we use the temporal constraints in video for
semi-supervised learning of object detectors. We start with a handful of positive bounding boxes in
videos and train object detectors using them. We use these detectors to label more data in videos,
using temporal constraints to remove false positives and iteratively grow the set of bounding
boxes. We show how the temporal constraints help label orders of magnitude more diverse data.
In Chapter 3, we use the temporal constraints in video to learn a feature representation in a self-
supervised fashion. We predict whether a set of images form a valid sequence from a video and
use this as our learning signal. We show that a feature representation learned in this way helps
learn better action recognition and human pose estimation models.
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Part II: Structure in Labels and Tasks - The tasks we use in computer vision depend on visual
data and also capture regularity. In Chapter 5, we show how to model such relationships between
tasks using Multi-task Learning. We propose a mechanism called ‘cross-stitch’ unit that helps learn
and combine feature representations across different tasks in ConvNet. The relationships between
tasks are modeled implicitly by the unit as it learns to combine the representations. We show that
such a unit helps improve performance across tasks and in particular helps tasks with little data.
We consider pairs of tasks like surface normal prediction and semantic segmentation; and object
detection and attribute prediction. In particular we show that reasoning about surface geometry
helps understand how to label pixels with semantic classes - flat upward facing surfaces are more
likely to tables than bags; and knowing about the object class helps understand what attributes
it may have - horses are more likely to have saddles than do sheep. In Chapter 6, we show an
efficient way to perform inference across multiple tasks while leveraging the benefit of multiple
types of supervision. We propose a system called Mainstream that is performant and scales to
many different tasks on video analysis.

In Chapter 4, we show how the structure in visual data transfers to structure in labels. In
particular, we show that using such structure we can learn visual classifiers from noisy image
level descriptions or labels. The ‘noise’ in these descriptions or labels is not random but captures
the human reporting bias when we talk about visual data. We are not likely to mention the color
‘yellow’ while talking about bananas, but likely to mention it when talking about apples. We
model such peculiarities in this label noise and show that we can not only model it in the learning
algorithm but that it also helps learn ‘clean’ visual classifiers.

Part III: Structure in Classifiers - In Chapters 7 and 8 we show how to use the properties of
classifiers to reduce supervision. In Chapter 7, we exploit the property of current instance detection
models to show a surprisingly simple technique to synthesize data for them. We notice that for
texture rich instances, the models focus more on local appearance rather than global appearance.
We show that we can ‘cut’ instances from real images and ‘paste’ them in new real scenes while
ensuring local realism to generate large amounts of data that can train detectors effectively. Our
technique is both simple and outperforms existing synthesis techniques for instance detection.
In Chapter 8, we show that the space of classifiers has underlying structure that can be used to
compose them. We learn a transformation that takes classifiers of attributes and objects and can
compose them together to get a classifier of attribute object pairs. Our transformation models both
compositionality and contextuality of visual concepts and can generalize to unseen pairs and even
triples of combinations.

Part IV: Interactive Learning - In Chapters 9 and 10, we explore ways to move away from all
the passively supervised models explored thus far. In Chapter 9, we propose the task of Visual
Question Generation (VQG) in which an agent must ask engaging questions about images. We
show that such questions need visual understanding and common sense. Using the lessons learned
from question generation, in Chapter 10 we explore interactive agents that can ask for supervision
rather than working with a fixed dataset alone. We study these agents in the setting of Visual
Question Answering (VQA) and propose a framework called Learning by Asking (LBA).

The relevant publication list for each chapter is as follows

1. Chapter 2 - Watch and Learn: Semi-supervised learning of object detectors from video [285]
(CVPR 2015)
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2. Chapter 3 - Shuffle and Learn: Unsupervised learning using Temporal Order Verification [288]
(ECCV 2016)

3. Chapter 4 - Seeing through the Human Reporting Bias: Visual classifiers from Noisy Human-
centric Labels [289] (CVPR 2016)

4. Chapter 5 - Cross Stitch Networks for Multi-task learning [286] (CVPR 2016)

5. Chapter 6 - Mainstream: Dynamic Stem-Sharing for Multi-Tenant Video Processing [2] (USENIX
ATC 2018)

6. Chapter 7 - Cut Paste and Learn: Surprisingly Easy Texture Synthesis [89] (ICCV 2017)

7. Chapter 8 - From Red Wine to Red Tomato: Composition with Context [290] (CVPR 2017)

8. Chapter 9 - Visual Question Generation [298] (ACL 2016)

9. Chapter 10 - Learning by Asking [291] (CVPR 2018)
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Part I

Structure in Visual Data
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Chapter 2

Temporal Constraints for Semi-Supervised Learn-
ing of Detectors

In actuality, virtually all learning phenomena resulting from direct
experiences can occur on a vicarious basis through observation of other

people’s behaviour and its consequences for them.

ALBERT BANDURA in Social Learning Theory, 1991

In this section we use the temporal structure in visual data (videos) to learn with minimal
human supervision. As the quote in the beginning of this chapter tells us, it is natural for humans
to learn by simply observing or watching other people and objects. We take inspiration from this
and focus on how temporal constraints given from video can help us ‘watch’ (track objects, remove
false positive detections) and ‘learn’ (improve detectors by using tracked objects). We present a
scalable semi-supervised learning framework to learn object detectors from a few manual labels.
We focus on video data for two reasons - 1) It provides natural temporal supervison. 2) Large scale
video datasets are hard to annotate and curate.

The human effort required for labeling vision datasets is huge, e.g., ImageNet [79] required 19
man-years to label bounding boxes in the 1.2 million images harvested from the internet. Consider
the scale of internet videos – YouTube has 300 hours of video uploaded every minute. It seems
unlikely that human per-image labeling will scale to this amount of data. Given this scale of data
and the associated annotation problems [305, 456], which are more pronounced in videos, it is
no surprise that richly annotated large video recognition datasets are hard to find. In fact, the
available video datasets [212, 273, 305, 384] lack the kind of annotations offered by benchmark
image datasets [79, 95, 251]. In this chapter, we wish to automatically increase the amount of
labeled data in videos using Semi-Supervised Learning (SSL).

Visual data and especially video has intrinsic spatiotemporal regularity. In this chapter, we
capitalize on this spatiotemporal regularity in videos to learn object detectors from a few labels.
Our goal is to start with a few annotated examples, and label more examples automatically using
Semi-Supervied Learning (SSL). However, a major challenge for any kind of SSL technique is to
constrain the learning process to avoid semantic drift, i.e., added noisy samples cause the learner
to drift away from the true concept. Recent work [57, 61, 83, 370] has shown ways to constrain this
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Figure 2.1: We present a novel formulation of semi-supervised learning for automatically learning object detectors from
videos. Our method works with long video to automatically learn bounding box level annotations for multiple object
instances. It does not assume exhaustive labeling of every object instance in the input videos, and from a handful of
labeled instances can automatically label hundreds of thousands of instances.

learning process for images. We present an approach to constrain the semi-supervised learning
process [370] in videos. Our technique constrains the SSL process by using multiple weak cues -
appearance, motion, temporal etc., in video data and automatically learns diverse new examples.

Intuitively, algorithms dealing with videos should use appearance and temporal cues using
detection and tracking, respectively. One would expect a simple combination of detection and
tracking to constitute a semi-supervised framework that would prevent drift since both of these
processes would ideally cancel each others’ errors. However, as we show in our experiments
(Sec. 2.3), a naïve combination of these two techniques performs poorly. In the long run, the
errors in both detection and tracking are amplified in a coupled system. We can also consider
pure detection approaches or pure tracking approaches for this problem. However, pure detection
ignores temporal information while pure tracking tends to stray away over a long duration.

We present a scalable framework that discovers objects in video using SSL (see Figure 2.1). It
tackles the challenging problem of localizing new object instances in long videos starting from
only a few labeled examples. In addition, we present our algorithm in a realistic setting of “sparse
labels” [305], i.e., in the few initial “labeled” frames, not all objects are annotated. This setting,
traditonally called Positive Unlabeld (PU) learning [93, 247, 256], relaxes the assumption that in a
given frame, all object instances have been exhaustively annotated. It implies that we do not know
if any unannotated region in the frame belongs to the object category or the background, and thus
cannot use any region from our input as negative data. While much of the past work has ignored
this type of sparse labeling (and lack of explicit negatives), we show ways to overcome this handicap.
Figure 2.2 presents an overview of our algorithm. Our proposed algorithm is different from the
rich body of work on tracking-by-detection. Firstly, we do not attempt to solve the problem of data
association. Our framework does not try to identify whether it has seen a particular instance before.
Secondly, since it works in the regime of sparse annotations, it does not assume that negative data
can be sampled from around the current box. Thirdly, we limit expensive computation to a subset
of the input frames to scale to a million frames.
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Contributions: We present a semi-supervised learning framework that localizes multiple unknown
objects in videos. Starting from few sparsely labeled objects, it iteratively labels new and useful
training examples in the videos. Our key contributions are: 1) We tackle the SSL problem for
discovering multiple objects in sparsely labeled videos; 2) We present an approach to constrain SSL
by combining multiple weak cues in videos and exploiting decorrelated errors by modeling data
in multiple feature spaces. We demonstrate its effectiveness as compared to traditional tracking-
by-detection approaches; 3) Given the redundancy in video data, we need a method that can
automatically determine the relevance of training examples to the target detection task. We present
a way to include relevance and diversity of the training examples in each iteration of the SSL process,
leading to a scalable incremental learning algorithm.

Fe
at

ur
e 1

 

Feature 2 

(a) Sparse labeled frames 

(b) Unlabeled videos (c) Decorrelated Errors 

(d) Reliable Tracking (e) New labeled examples (f) Selected Positives 

Object 
detection Object 

Detectors 

Figure 2.2: Our approach selects samples by iteratively discovering new boxes by a careful fusion of detection, robust
tracking, relocalization and multi-view modeling of positive data. It shows how an interplay between these techniques
can be used to learn from large scale unlabeled video corpora.

2.1 Background

The availability of web scale image and video data has made semi-supervised learning more
popular in recent years. In the case of images, many methods [75, 113] rely on image similarity
measures, and try to assign similar labels to close-by unlabeled images. However, in the case of real-
world images, obtaining good image similarity is hard and hence the simple approaches become
less applicable. One major body of work [57, 61, 83, 228, 370] tries to overcome this difficulty by
leveraging the use of a set of pre-defined attributes for image classes [61, 370] and additionally
web-supervision and text [57, 83]. While these methods have good performance for images, they
are not applicable to videos mainly because they treat each image independently and do not use
video constraints. One major reason for the success of attribute based methods for SSL was the
relatively cheap supervision required for attributes (per image level tag). In the same spirit, weakly
supervised video approaches use tags available with internet videos.

Weakly supervised video algorithms have gained popularity largely due to the abundance of
video level tags on the internet. The input is a set of videos with video level tags (generally a video
belongs to an object category), and the algorithm discovers the object (if present) in the video. These
methods, while effective, assume a maximum of one dominant object per video [257, 326, 401, 431].
Some of them additionally assume dominant motion [326] or appearance saliency [242, 257, 326,
401, 431] for the object of interest. The methods of video co-segmentation [53, 128, 153, 201] can be
considered a subset of weakly supervised methods. They make a strong assumption that multiple
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videos contain the exact same object in majority of the frames. This assumption of at most one
salient object in a video is rarely satisfied by internet or real world videos. When this assumption
does not hold, methods cannot strongly rely on motion based foreground/background clustering
or on appearance saliency. Our proposed work deals with multiple objects and can even discover
static object instances without strongly relying on motion/appearance saliency. However, we do
require richer bounding box annotations by way of a few sparsely labeled instances. A concurrent
work [249] utilizes weakly labeled video for improving detection.

A relevant thread of work which also uses bounding box annotations is that of tracking-by-
detection. It has a long and rich history in computer vision and the reader is referred to [312] for a
survey. The tracking-by-detection algorithms start with bounding box annotation(s) of the object(s)
to track the object(s) over a long period of time. The underlying assumption is that negative data
can be sampled from around the object [26, 148, 162, 206, 355, 396, 404] to distinguish between the
object and background. This is not valid in the case of sparsely labeled videos because the unmarked
regions may contain more instances of the same object, rather than background.

Other tracking-by-detection methods [37, 135, 324] do not sample negative data from the input
video. They do so at the cost of using a detector trained on additional training data, e.g., [324]
uses a DPM [111] trained on images from PASCAL [95]. In contrast, we do not use such additional
training data for our method. This allows us to work on object categories which are not in standard
datasets.

Multi-object tracking-by-detection approaches also focus on solving the problem of data as-
sociation - given object locations across multiple frames, determine which locations belong to the
same object. Data association is critical for long term tracking, and is also very challenging [37]. In
contrast, our goal is not to track over long periods, but to get short and reliable tracking. Moreover,
we do not require these short tracklets to be associated with each other, and thus have minimal
need for data association.

To summarize, our SSL framework operates in a less restrictive domain compared to existing
work in weakly labeled object discovery and tracking-by-detection. The key differences are: 1) We
localize multiple objects in a single frame as opposed to zero or one objects. 2) We do not assume
strong motion or appearance saliency of objects, thus discovering static object instances as well.
3) We operate in the regime of sparsely labeled videos. Thus, in any given frame, all the unmarked
region may contain instances of the object. This does not allow using negative data from the input
frame. 4) We do not need explicit negative data or any pre-trained object models. 5) Finally, the aim of
our approach is very different from tracking approaches. We do not want to track objects over a
long period of time, but want short reliable tracklets.

2.2 Approach

2.2.1 Approach Overview

There are two ways to detect objects in videos – either using detection in individual frames or
tracking across frames. In a semi-supervised framework, detection plays the role of constraining
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Figure 2.3: Sparsely labeled positives (as shown in the top row) are used to train Exemplar detectors [270]. Since we do
not assume exhaustive labeling of each instance in the image, we cannot sample negative data from around the input
boxes. When these detectors (trained without domain negatives) are used, they may learn background features (like the
co-occuring yellow stripes or road divider) and give high confidence false positives (bottom row). We address this issue
by exploiting decorrelated errors (Section 2.2.2)

the system by providing an appearance prior for the object, while tracking generalizes by providing
newer views of the object. So one could imagine a detection and tracking combination, in which
one tracks from confident detections and then updates the detector using the tracked samples.
However, as we show in our experiments (Section 2.3), such a naïve combination does not impose
enough constraints for SSL. In contrast, our approach builds on top of this basic combination of
detection and tracking to correct their mistakes.

Our algorithm starts with a few sparsely annotated video frames (L) and iteratively discovers
new instances in the large unlabeled set of videos (U). Simply put, we first train detectors on
annotated objects, followed by detection on input videos. We determine good detections (removing
confident false positives) which serve as starting points for short-term tracking. The short-term
tracking aims to label new and unseen examples reliably. Amongst these newly labeled examples,
we identify good and diverse examples which are used to update the detector without re-training
from scratch. We iteratively repeat this fusion of tracking and detection to label new examples. We
now describe our algorithm (illustrated in Figure 2.2).

Sparse Annotations (lack of explicit negatives): We start with a few sparsely annotated frames
in a random subset of U . Sparse labeling implies that unlike other approaches [206], we do not
assume exhaustively annotated input, and thus cannot sample negatives from the vicinity of labeled
positives. We use random images from the internet as negative data for training object detectors on
these sparse labels [369]. We use these detectors to detect objects on a subset of the video, e.g., every
30 frames. Training on a few positives without domain negatives can result in high confidence false
positives as shown in Figure 2.3. Removing such false positives is important because if we track
them, we will add more bad training examples, thus degrading the detector’s performance over
iterations.

Temporally consistent detections: We first remove detections that are temporally inconsistent
using a smoothness prior on the motion of detections.

Decorrelated errors: To remove high confidence false positives (see Figure 2.3), we rely on the
principle of decorrelated errors (similar to multi-view SSL [348, 379]). The intuition is that the detector
makes mistakes that are related to its feature representation [428], and a different feature represen-

18



tation would lead to different errors. Thus, if the errors in different feature spaces are decorrelated,
one can correct them and remove false positives. This gives us a filtered set of detections.

Reliable tracking: We track these filtered detections to label new examples. Our final goal is
not to track the object over a long period. Instead, our goal is to track reliably and label new
and hopefully diverse examples for the object detector. To get such reliable tracks we design a
conservative short-term tracking algorithm that identifies tracking failures. Traditional tracking-by-
detection approaches [135, 324] rely heavily on the detection prior to identify tracking failures. In
contrast, the goal of our tracking is to improve the (weak) detector itself. Thus, heavily relying on
input from the detector defeats the purpose of using tracking in our case.

Selection of diverse positives for updating the detector: The reliable tracklets give us a large set of
automatically labeled boxes which we use to update our detector. Previous work [326] temporally
subsamples boxes from videos, treating each box with equal importance. However, since these
boxes come from videos, a large number of them are redundant and do not have equal importance
for training our detector. Additionally, the relevance of an example added at the current iteration i
depends on whether similar examples were added in earlier iterations. One would ideally want
to train (make an incremental update) only on new and diverse examples, rather than re-train from
scratch on thousands of largely redundant boxes. We address this issue by selection and show
a way of training only on diverse, new boxes. After training detectors on diverse examples, we
repeat the SSL process to iteratively label more examples.

Stopping criterion of SSL: It is desirable to have SSL algorithms which automatically determine
when they should stop. We stop our SSL once our selection algorithm indicates that it does not
have any good candidates to select.

Training procedure: We start with a small sparsely labeled set L0 of bounding boxes and unlabeled
input videos U . At each iteration i, using models trained on Li−1, we want to label new boxes in
the input videos U , add them to our labeled set L = L ∪ Li, and iteratively repeat this procedure.

2.2.2 Detections with decorrelated errors

We train object detectors on our initial set of examples using random images from Flickr as
negatives [369]. We detect on a uniformly sampled subset of the video frames and remove the
temporally inconsistent detections.

Since the negative data for training the detectors comes from a different domain than the
positives, we still get consistent false positive detections because the detector learns the wrong
concept (see Figures 2.3 and 2.5). To remove such false positives, we perform outlier removal in a
feature space different from that of the detector. The intuition is that the errors made by learning
methods are correlated with their underlying feature representation, and thus using decorrelated
feature spaces might help correct them.

For outlier removal, we use unconstrained Least Squares Importance Fitting (uLSIF) [207].
uLSIF uses definite inliers (our labeled set Li−1) to identify outliers in unknown data. It scales well
with the size of the input and can be computed in closed form. These final filtered detections serve
as starting points for reliable short term tracking.

19



2.2.3 Reliable Tracking

We formulate a scalable tracking procedure that effectively capitalizes on priors available from
detection, color/texture consistency, objectness [11, 417] and optical flow. More importantly, our
tracking procedure is very good at identifying its own failures. This property is vital in our semi-
supervised framework since any tracking failure will add wrong examples to the labeled set leading
to quick semantic drift (see Figure 2.5). The short-term tracking produces a set of labeled examples
Li.

Our single object tracking computes sparse optical flow using Pyramidal Lucas Kanade [44]
on Harris feature points. Since we start with a small set of labeled examples, and do not perform
expensive per-frame detection, our detection prior is weak. To prevent tracking drift in such cases
we incorporate color/texture consistency by using object proposal bounding boxes [417] obtained
from a region around the tracked box. We address two failure modes of tracking:

Drift due to spurious motion: This occurs while computing optical flow on feature points which
are not on the object, e.g., points on a moving background or occlusion. To correct this, we first
divide each tracked box into four quadrants and compute the mean flow in each quadrant. We
weigh points in each quadrant by their agreement with the flow in the other quadrants. The final
dominant motion direction for the box is the weighted mean of the flow for each point. This simple
and efficient scheme helps correct the different motion of feature points not on the object.

Drift due to appearance change: This is incorporated by object detection boxes and object proposal
bounding boxes in the trellis graph formulation described below.

We formulate the tracking problem as finding the min-cost path in a graph G. At each frame we
incorporate priors in terms of bounding boxes, i.e., detection bounding boxes, tracked boxes and
object proposal bounding boxes. These boxes are the nodes in our graph and we connect nodes in
consecutive frames with edges forming a trellis graph. The edge weights are a linear combination
of the difference in dominant motions of the boxes (described above), spatial proximity and area
change. Tracking through this trellis graph G is the equivalent of finding the single min-cost path,
and is efficiently computed using Dynamic-Programming [37, 324]. As post-processing, we cut the
path as soon as the total cost exceeds a set threshold.

2.2.4 Selection algorithm:

After we label thousands of boxes Li for the current iteration, we use them for improving our
object detectors. Since video data is highly redundant, we label few diverse examples and many
redundant ones. Training a category detector on these thousands of (redundant) boxes, from scratch,
in every iteration is suboptimal. We prefer an incremental training approach that makes incremental
updates to the detector, i.e., trains only on newly added and diverse examples rather than everything.
This is especially important to prevent drift because even if we label thousands of wrong but
redundant boxes, our method picks only a few of them. We find the exemplar detectors [163, 270]
suitable for incremental learning as they are trained per bounding box.

For each labeled bounding box in Li, we compute a detection signature [196, 283, 436] using
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our exemplar detectors. Boxes where our current set of detectors do not give a high response
correspond to examples which are not explained well by the existing set of detectors. Training on
these boxes increases the coverage of our detectors. Thus, we compute similarity in this detection
signature space to greedily select a set of boxes that are neither similar to our current detectors, nor
amongst themselves.

More formally, let Li = {l1, . . . , lk} be the set of labeled boxes at iteration i and E = ∪i−1
j=0Dj

the set of boxes bn associated with the exemplar detectors from all previous iterations (0 to i− 1).
We compute the |Li| × |E| detector response matrix R. The entry R(m,n) indicates the response
of the detector associated with box bn on box lm (also called the detection signature [196]). We
row-normalize the matrix R, and denote the detection signature of box lm by its row R(m). We
initialize the set Di ⊂ Li with all the boxes lj which have a low response, i.e., none of the detectors
from the previous iterations are confident about detecting these boxes (ESVM score of < −0.8 and
IOU < 0.4).

We iteratively grow the set Di by adding detectors which minimize the following objective
criterion

t∗ = argmax
lt∈Li

∑
bp∈Di,p 6=t

JSD(R(t)||R(p)) (2.1)

Di = Di ∪ {lt∗}

This objective function favors boxes that are diverse with respect to the existing detectors using
the Jensen-Shannon Divergence (JSD) of the detection signatures. At each iteration, we limit the
number of boxes selected to 10. When this selection approach is unable to find new boxes, we
conclude that we have reached the saturation point of our SSL. This serves as our stopping criterion.

2.3 Experiments

Our algorithm has a fair number of components interacting with each other across iterations. It
is difficult to characterize the importance of each component by using the whole system at once.
For such component-wise characterization, we divide our experiments in two sets. Our first set
of ablative experiments is on a small subset of videos from VIRAT [305]. In the second set of
experiments, we demonstrate the scalability of our approach to a million frames from [305]. We
also show the generalization of our method to a different dataset (KITTI [134]). In both these cases
we evaluate the automatically labeled data in terms of quality, coverage (recall), diversity and
relevance to training an object detector. We now describe the experimental setup which is common
across all our experiments.

Datasets: Due to limited availability of large video datasets with bounding box annotations, we
picked car as our object of interest, and two video datasets with a large number of cars and related
objects like trucks, vans etc. We chose the VIRAT 2.0 Ground [305] dataset for its large number of
frames, and sparsely annotated bounding boxes over all the frames. This dataset consists of long
hours of surveillance videos (static camera) of roads and parking lots. It has 329 videos (∼1 million
frames, and ∼6.5 million annotated bounding boxes (partial ground truth) of cars. We also evaluate
on videos from the KITTI [134] dataset which were collected by a camera mounted on a moving car.
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Figure 2.4: We measure the detection performance of the ESVMs from each ablation method on our test set by computing
(left) Average Purity and (right) Recall.

Table 2.1: Our method vs. baselines (Section 2.3.1). We train an LSVM [111] on all the automatically labeled data and
compute its detection performance on a held-out, fully annotated test set (AP for IOU 0.5).

Automatic Labeling (LSVM) Ground Truth

Iteration Boot. Boot.+Sel. Det+Track O w/o Sel O w/o Outlier Ours Pascal LSVM Pascal DPM VIRAT LSVM

10 1.32 9.09 9.09 11.21 7.32 15.39 20.89 29.56 41.3830 1.94 3.03 6.59 10.83 1.41 17.68

We use the set 37 videos (∼12,500 frames) which have partial ground truth boxes (∼41,000 boxes,
small cars are not annotated).

Dataset characteristics: We chose these datasets with very different characteristics (motion, size of
object etc.) to test the generalization of our method. The VIRAT and KITTI datasets both consist of
outdoor scene videos with a static and moving camera respectively. The VIRAT dataset captures
surveillance videos of multiple cars in parking lots. The cars in this dataset are small compared to
the frame size, tightly packed together and viewed from a distance (thus no drastic perspective
effects). The KITTI dataset on the other hand, consists of videos taken by a vehicle mounted camera.
It has high motion, large objects, and perspective effects. Figure 2.3 shows examples from both the
datasets demonstrating their visual differences.

Detectors: We use the Exemplar-SVM (ESVM) [270] detectors with 5000 random images from Flickr
as negatives [369]. Since per frame detection is expensive, we detect once every 30th frame for
VIRAT, and every 10th frame for KITTI. We threshold detections at SVM score of −0.75.

Multiple feature spaces for false positive removal: We use the uLSIF [207] algorithm on Pyrami-
dal HOG (PHOG) [41] and color histogram (LAB color with 32× 16× 16 bins) features computed
on a resized box of 200 × 300 px. We set the kernel bandwidth for uLSIF by computing the 75th

percentile distance between random pairs of points.

Object proposal windows: We obtain 2000 windows per image using selective search [417].
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Figure 2.5: (a) We look at a subset of the bounding boxes used to train ESVMs across iteration. Each row corresponds to
an ablation method. The top row shows the randomly chosen initial positive bounding boxes (same for each method).
The other methods diverge quickly across iterations, thus showing that constraints are very important for maintaining
purity.

2.3.1 Ablative Analysis of each constraint

To tease apart the contributions of each component described in Section 2.2.1, we design a set of
algorithms using only a subset of the components.

Bootstrapping (Boot): In this vanilla form of SSL, we train object detectors on the initial labeled
set and perform detection. The confident detections are used as training examples for the next
iteration detectors.

Bootstrapping with Selection (Boot+Sel): This algorithm builds upon the bootstrapping approach
described above. However, diverse examples are selected (Section 2.2.4) from confident detections
to train new detectors.

Detection, Tracking and Clustering (Det+Track): In this algorithm, we use a basic combination
of detection and tracking. We start tracking from the confident ESVM detections to label new
examples. We then use WHO (or ELDA) [163] clustering [283] on these boxes to select training
examples for the new detectors. For clustering, we use WHO features on labeled boxes after
resizing, followed by k-means. We choose the best k in the range (5, 10).

Ours without outlier (O w/o Outlier): This setup uses our entire algorithm except outlier removal
(Section 2.2.2). It can roughly be thought of as Detection+Tracking+Selection.

Ours without selection (O w/o Sel): This algorithm uses our algorithm except selection (Sec-
tion 2.2.4). It uses WHO clustering for selection like Det+Track.

Ours: We use our full algorithm as detailed in Sections 2.2.1.

Ablation dataset: For these set of experiments we use an input set of 25 videos (∼170,000 frames)
and a separate test set of 17 videos (∼105,000 frames) which we fully annotated. All algorithms
start with the same sparse labels consisting of only 21 boxes spread across different videos. We run
them iteratively till 30 iterations.

Qualitative Results

Figure 2.5 shows a random set of boxes labeled by each ablation method (and used to train ESVMs
for that method), along with the initial set of 21 positive examples. We notice that as iterations
proceed, the labeling quality (especially “tightness” of the boxes) for all methods degrades. More
importantly, the other methods like Boot, Det+Track etc. show semantic drift (Figure 2.5 columns
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2-5 at iteration 20). We also notice the importance of selection, as Ours w/o Selection loses good
localization ability fairly quickly (Figure 2.5 column 6 at iterations 10-30). We believe methods
like [76] can be used to further improve the labeling quality.

ESVM Detection performance

For the input videos, we cannot measure labeling purity because of partial ground truth (refer
to supplementary material for an approximation of purity). Instead, we measure the relevance
of labeled boxes to detection. We consider detection performance on the test set as a proxy for
good labeling. We test the ESVMs selected and trained by each method across iterations on the
held out test set. A good labeling would result in an increased detection performance. Figure 2.4
shows Average Purity vs. Recall across iterations for the various methods on the test set. We use
Average Purity, which is same as Average Precision [95] but does not penalize double-detections,
since we are more interested in whether the ESVMs are good detectors individually, rather than
as an ensemble.We consider an instance correctly labeled (or pure) if its Intersection-Over-Union
(IOU) with any ground-truth instance is greater than 0.3. Our method shows a higher purity and
recall, pointing towards meaningful labeling and selection of the input data. It also shows that
every component of our method is crucial for getting good performance. We stop our method
at iteration 40 because of our stopping criterion (Section 2.2.4). We got a 2 point drop in purity
from iteration 40 to 45, proving the validity of our stopping criterion. This is important since our
algorithm would rather saturate than label noisy examples.

Training on all the automatically labeled data

In this section, we evaluate the effectiveness of all our labeled data. For each algorithm, we train
an LSVM [111] (only root filters, mixtures and positive latent updates of DPM [111]) on the data it
labeled, and test it on the held-out test set. Since it is computationally expensive to train an LSVM
on the thousands of boxes, we subsample the labeled boxes (5000 boxes in total for each method
using k-means on WHO [163] features). We sample more boxes from the earlier iterations of each
method, because their labeling purity decreases across iterations (Figure 2.4). We use the same
domain independent negatives [369] for all these LSVMs (left side in Table 2.1). Table 2.1 shows
the detection AP performance of all LSVMs (measured at IOU of 0.5 [95]) for the data labeled at
iteration 10 and 30. We see that LSVM trained on our labeled data outperforms all other LSVMs.
Our performance is close to that of an LSVM trained on the PASCAL VOC 2007 dataset [95]. This
validates the high quality of our automatically labeled data.

We also note that the performance of an LSVM trained on the ground truth boxes (VIRAT-
LSVM) (5000 boxes from ∼1 million ground truth boxes using the same k-means as above) achieves
twice the performance. The fact that all LSVMs (except the ones from PASCAL) are trained with
the same domain-independent negatives, indicates that the lack of domain-negatives is not the
major cause of this limitation. This suggests that automatic labeling has limitations compared
to human annotations. On further scrutiny of the LSVM trained on our automatically labeled
data, we found that the recall saturates after iteration 30. However, the precision was within a
few points of VIRAT-LSVM. Since we work with only the confident detections/tracklets in the
high precision/low recall regime, this behavior is not unexpected. This is also important since our
algorithm would rather saturate than label noisy positives.
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Figure 2.6: We measure the detection performance of the labeled boxes for our large scale experiments. We test the
ESVMs trained at each iteration on the held out test set and compute Average Purity and Recall. Our method outperforms
the baselines by a significant margin. It maintains purity while substantially increasing recall.
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Figure 2.7: Pose variation in automatic labeling of the KITTI dataset. For each algorithm, we plot the 3D pose distribution
of all the boxes it labels after 30 iterations. The first and last plots show pose distribution for the initial labeled boxes
and all boxes in ground truth respectively. The distribution of boxes labeled by our method is close to the ground truth
distribution.
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Figure 2.8: We look at the selected positives for each baseline method across iterations for both KITTI and VIRAT datasets.
We notice that the purity of the labeled set drops significantly as iterations proceed. This indicates that constraints
specific to video are needed to learn meaningfully over iterations.
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2.3.2 Large scale experiments

In this section, we evaluate the scalability of our algorithm to millions of frames and object instances.
We also test its generalization on two datasets with widely different characteristics - VIRAT (static
camera, small cars tightly packed) and KITTI (moving camera, high motion, large cars with
perspective effects). We use the Boot and Ours methods described in Section 2.3.1. As we described
in Section 2.1, most of the existing approaches make additional assumptions that are not applicable
in our setting, or do not have publicly available code. To make a fair comparison against existing
methods, we adapt them to our setting.

Baseline - Dense detection and association (Detect + Track): This algorithm is inspired by Geiger
et al. [135] which has state-of-the-art results on KITTI. The original algorithm uses per-frame
detections, followed by a Kalman filter and data association. We make two changes - 1) To have a
comparable detector across methods, we do not use a pre-trained DPM on PASCAL VOC 2007. We
substitute it with the ESVMs we have at the current iteration. 2) We do not use a Kalman filter and
use data association over a short term (maximum 300 frames). We select positives for the ESVMs
by k-means on WHO features [283].

Baseline - Eigen Functions: We modify the Eigen functions [113] method which was originally
designed for image classification. This method uses distances over manifolds to label unlabeled
data. We use basic detection and short term tracking to get a set of bounding boxes and use eigen
functions to classify them as positive or background. The boxes from previous iterations on which
we trained ESVMs are used as positives and random images from Flickr [369] as negative data. We
use color histogram (32× 16× 16 LAB space) and PHOG [41] features as input to eigen functions.

Datasets: Our input set consists of 312 videos (∼820,000 frames) from VIRAT. We take a held out
test set of 17 videos (∼105,000 frames) which we fully annotated. As input, all algorithms start with
the same sparse labels consisting of 43 randomly chosen bounding boxes across different videos.
For the KITTI dataset we use 30 videos (∼10,000 frames) as our input and 7 videos (∼2000 frames)
for testing. All algorithms start with the same sparse labeled 25 bounding boxes from different
videos.

Qualitative Results: We first present qualitative results in Figure 2.8. We notice the same trends as
we did in the ablation analysis, namely, bounding boxes tend to get less tight across iterations. For
the baseline methods, we notice quick divergence as an increasing number of background patches
are classified as car.

ESVM Detection Performance: Following the approach outlined in Section 2.3.1, we compute the
detection performance of the ESVMs on the held out test set. This helps us measure the relevance
of our labeling to the detection task. Figure 2.6 shows the results of these experiments. We notice
that our method outperforms the baselines on both the metrics (Average Purity and Recall). This
reinforces the fact that our constraints help arrest semantic drift.

Diversity of labeling: The KITTI dataset provides the 3D pose associated with each labeled car.
We use this 3D pose as a proxy for estimating the diversity of our labeled set. In this experiment,
we compute the pose of the examples labeled by all methods. Figure 2.7 demonstrates that our
labeling procedure covers a diverse range of poses as opposed to baseline methods. The pose
distribution of our labeling is closer to the ground truth distribution, while that of the baselines
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prefers the more “popular” poses, i.e., front/back of cars. Combined with the results of Figure 2.6,
this points towards a diverse, and high quality labeling of the data.

2.4 Discussion

In this chapter, we introduced a semi-supervised learning technique for training object detectors
from videos. Our technique addresses the detection of multiple objects without assuming ex-
haustive labeling of object instances in any input frame. In addition, we introduce constraints
like decorrelated errors, reliable tracking and diverse selection which are effective in arresting
semantic drift. Our experiments show that such an SSL approach can start with a handful of labeled
examples and label hundreds of thousands of new examples which also improve object detectors.
In the next chapter, we will see how such temporal constraints can be used to train powerful feature
representations again by simply ‘observing’ videos.
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Chapter 3

Temporal Constraints for Representation Learning

How is complex sequential material acquired, processed and
represented when there is no intention to learn?

AXEL CLEEREMANS AND JAMES MCCLELLAND in Learning the
Structure of Event Sequences, 1991

The previous Chapter 2 showed how a careful combination of tracking and detection can create
a powerful semi-supervised learning algorithm. This method still needs access to a few human
labels in order to start this tracking. In this chapter we want to explore the information available
in the temporal structure in videos without any explicit supervision. Cleeremans and McClelland
(quoted at the top) expressed wonder at the remarkable ability of humans to learn from sequential
events without any real ‘goal’ or ‘direction’ (supervision). In their experiments on human subjects,
they showed that exposure to sequential information increases sensitivity to temporal context,
provides priming and the temporal structure is encoded by anticipation of elements in the sequence.
Our work can be viewed as a computational framework that draws inspiration from their results.

What can simply watching the world in motion teach us? Videos provide an abundant source
of sequential data and temporal supervision. To study the information available in a video signal in
isolation, we ask the question: How does an agent learn from the spatiotemporal structure present
in video without using supervised semantic labels? Are the representations learned using the
unsupervised spatiotemporal information present in videos meaningful? And finally, are these
representations complementary to those learned from strongly supervised image data? In this
chapter, we explore such questions by using a sequential learning approach.

Sequential data provides an abundant source of information in the form of auditory and visual
percepts. Learning from the observation of sequential data is a natural and implicit process for
humans [64, 65, 334]. It informs both low level cognitive tasks and high level abilities like decision
making and problem solving [395]. For instance, answering the question “Where would the moving
ball go?”, requires the development of basic cognitive abilities like prediction from sequential data
like video [27].

Sequential learning is used in a variety of areas such as speech recognition, robotic path
planning, adaptive control algorithms, etc. These approaches can be broadly categorized [394] into
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two classes: prediction and verification. In sequential prediction, the goal is to predict the signal
given an input sequence. A popular application of this in Natural Language Processing (NLP)
is ‘word2vec’ by Mikolov et al. [279, 280] that learns distributional representations [118]. Using
the continuous bag-of-words (CBOW) task, the model learns to predict a missing word given a
sequence of surrounding words. The representation that results from this task has been shown to
be semantically meaningful [279]. Unfortunately, extending the same technique to predict video
frames is challenging. Unlike words that can be represented using limited-sized vocabularies, the
space of possible video frames is extremely large [85], e.g., predicting pixels in a small 256× 256
image leads to 2562×3×256 hypotheses! To avoid this complex task of predicting high-dimensional
video frames, we use sequential verification.

In sequential verification, one predicts the ‘validity’ of the sequence, rather than individual
items in the sequence. In this chapter, we explore the task of determining whether a given sequence
is ‘temporally valid’, i.e., whether a sequence of video frames are in the correct temporal order,
Figure 3.1. We demonstrate that this binary classification problem is capable of learning useful
visual representations from videos. Specifically, we explore their use in the well understood tasks
of human action recognition and pose estimation. But why are these simple sequential verification
tasks useful for learning? Determining the validity of a sequence requires reasoning about object
transformations and relative locations through time. This in turn forces the representation to
capture object appearances and deformations.

We use a Convolutional Neural Network (CNN) [239] for our underlying feature representa-
tion. The CNN is applied to each frame in the sequence and trained “end-to-end” from random
initialization. The sequence verification task encourages the CNN features to be both visually and
temporally grounded. We demonstrate the effectiveness of our unsupervised method on benchmark
action recognition datasets UCF101 [384] and HMDB51 [224], and the FLIC [358] and MPII [20] pose
estimation datasets. Using our simple unsupervised learning approach for pre-training, we show a
significant boost in accuracy over learning CNNs from scratch with random initialization. In fact,
our unsupervised approach even outperforms pre-training with some supervised training datasets.
In action recognition, improved performance can be found by combining existing supervised
image-based representations with our unsupervised representation. By training on action videos
with humans, our approach learns a representation sensitive to human pose. Remarkably, when
applied to pose estimation, our representation is competitive with pre-training on significantly
larger supervised training datasets [351].

3.1 Background

Our work uses unlabeled video sequences for learning representations. Since this source of
supervision is ‘free’, our work can be viewed as a form of unsupervised learning. Unsupervised
representation learning from single images is a popular area of research in computer vision. A
significant body of unsupervised learning literature uses hand-crafted features and clustering based
approaches to discover objects [99, 352, 382], or mid-level elements [84, 204, 246, 381, 393]. Deep
learning methods like auto-encoders [36, 306, 425], Deep Boltzmann Machines [356], variational
methods [216, 342], stacked auto-encoders [34, 240], and others [237, 435] learn representations
directly from images. These methods learn a representation by estimating latent parameters that
help reconstruct the data, and may regularize the learning process by priors such as sparsity [306].
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Figure 3.1: (a) A video imposes a natural temporal structure for visual data. In many cases, one can easily verify whether
frames are in the correct temporal order (shuffled or not). Such a simple sequential verification task captures important
spatiotemporal signals in videos. We use this task for unsupervised pre-training of a Convolutional Neural Network
(CNN). (b) Some examples of the automatically extracted positive and negative tuples used to formulate a classification
task for a CNN.

fc7

c
o
n
c
a
te

n
a
ti

o
n

fc8

Shared parameters

Input Tuple

(b) Triplet Siamese network for sequence 
verification

c
la

ss
if
ic

a
ti

o
n

AlexNet architecture

(a) Data Sampling

Frame Motion

Bias the 
sampling 
to high 
motion 

windows

𝑓𝑎

𝑓𝑏

𝑓𝑐

𝑓𝑑

𝑓𝑒

𝑓𝑏 𝑓𝑐 𝑓𝑑

Positive Tuples

𝑓𝑏𝑓𝑐𝑓𝑑

Negative Tuples

𝑓𝑏 𝑓𝑎 𝑓𝑑

𝑓𝑏 𝑓𝑒 𝑓𝑑

𝑓𝑏𝑓𝑎𝑓𝑑

𝑓𝑏𝑓𝑒𝑓𝑑

96

256

384 384 256

High 
motion 
window

T
im

e

Figure 3.2: (a) We sample tuples of frames from high motion windows in a video. We form positive and negative
tuples based on whether the three input frames are in the correct temporal order. (b) Our triplet Siamese network
architecture has three parallel network stacks with shared weights upto the fc7 layer. Each stack takes a frame as input,
and produces a representation at the fc7 layer. The concatenated fc7 representations are used to predict whether the
input tuple is in the correct temporal order.

Techniques in [85, 363] scale unsupervised learning to large image datasets showing its usefulness
for tasks such as pedestrian detection [363] and object detection [85]. In terms of using ‘context’
for learning, our work is most similar to [85] which uses the spatial context in images. While
these approaches are unsupervised, they do not use videos and cannot exploit the temporal
structure in them. Our work is most related to work in unsupervised learning from videos [157,
188, 192, 193, 296]. Traditional methods in this domain utilize the spatiotemporal continuity as
regularization for the learning process. Since visual appearance changes smoothly in videos, a
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common constraint is enforcing temporal smoothness of features [121, 147, 157, 296, 440]. Zhang et
al. [465], in particular, show how such constraints are useful for action recognition. Moving beyond
just temporal smoothness, [193] enforces additional ‘steadiness’ constraints on the features so that
the change of features across frames is meaningful. Our work, in contrast, does not explicitly impose
any regularizations on the features. Other reconstruction-based learning approaches include that
of Goroshin et al. [147] who use a generative model to predict video frames and Srivastava et
al. [387] who use LSTMs [173]. Unlike our method, these works [147, 296, 387, 403] explicitly
predict individual frames, but do not explore large image sizes or datasets. [430, 474] also consider
the task of predicting the future from videos, but consider it as their end task and do not use it for
unsupervised pre-training.

Several recent chapters [8, 192, 474] use egomotion constraints from video to further constrain
the learning. Jayaraman et al. [192] show how they can learn equivariant transforms from such
constraints. Similar to our work, they use full video frames for learning with little pre-processing.
Owens et al. [310] use audio signals from videos to learn visual representations. Another line of
work [434] uses video data to mine patches which belong to the same object to learn representations
useful for distinguishing objects. Typically, these approaches require significant pre-processing
to create this task. While our work also uses videos, we explore them in the spirit of sequence
verification for action recognition which learns from the raw video with very little pre-processing.

We demonstrate the effectiveness of our unsupervised pre-training using two extensively
studied vision tasks - action recognition and pose estimation. These tasks have well established
benchmark datasets [20, 224, 358, 384]. As it is beyond the scope of this chapter, we refer the reader
to [325] for a survey on action recognition, and [323] for a survey on pose estimation.

3.2 Approach

Our goal is to learn a feature representation using only the raw spatiotemporal signal naturally
available in videos. We learn this representation using a sequential verification task and focus on
videos with human actions. Specifically, as shown in Figure 3.1, we extract a tuple of frames from a
video, and ask whether the frames are in the correct temporal order. In this section, we begin by
motivating our use of sequential tasks and how they use the temporal structure of videos. We then
describe how positive and negative tuples are sampled from videos, and describe our model.

3.2.1 Task motivation

When using only raw videos as input, sequential verification tasks offer a promising approach to
unsupervised learning. In addition to our approach described below, several alternative tasks are
explored in Section 3.4.2. The goal of these tasks is to encourage the model to reason about the
motion and appearance of the objects, and thus learn the temporal structure of videos. Example
tasks may include reasoning about the ordering of frames, or determining the relative temporal
proximity of frames. For tasks that ask for the verification of temporal order, how many frames are
needed to determine a correct answer? If we want to determine the correct order from just two
frames, the question may be ambiguous in cases where cyclical motion is present. For example,
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consider a short video sequence of a person picking up a coffee cup. Given two frames the temporal
order is ambiguous; the person may be picking the coffee cup up, or placing it down.

To reduce such ambiguity, we propose sampling a three frame tuple, and ask whether the
tuple’s frames are correctly ordered. While theoretically, three frames are not sufficient to resolve
cyclical ambiguity [365], we found that combining this with smart sampling (Section 3.2.2) removes
a significant portion of ambiguous cases. We now formalize this problem into a classification
task. Consider the set of frames {f1, . . . , fn} from an unlabeled video V . We consider the tuple
(fb, fc, fd) to be in the correct temporal order (class 1, positive tuple) if the frames obey either
ordering b < c < d or d < c < b, to account for the directional ambiguity in video clips. Otherwise,
if b < d < c or c < b < d, we say that the frames are not in the correct temporal order (class 0,
negative tuple).

3.2.2 Tuple sampling

A critical challenge when training a network on the three-tuple ordering task is how to sample
positive and negative training instances. A naive method may sample the tuples uniformly from a
video. However, in temporal windows with very little motion it is hard to distinguish between a
positive and a negative tuple, resulting in many ambiguous training examples. Instead, we only
sample tuples from temporal windows with high motion. As Figure 3.2 shows, we use coarse frame
level optical flow [107] as a proxy to measure the motion between frames. We treat the average
flow magnitude per-frame as a weight for that frame, and use it to bias our sampling towards high
motion windows. This ensures that the classification of the tuples is not ambiguous. Figure 3.1 (b)
shows examples of such tuples.

To create positive and negative tuples, we sample five frames (fa, fb, fc, fd, fe) from a temporal
window such that a < b < c < d < e (see Figure 3.2 (a)). Positive instances are created using
(fb, fc, fd), while negative instances are created using (fb, fa, fd) and (fb, fe, fd). Additional training
examples are also created by inverting the order of all training instances, e.g., (fd, fc, fb) is positive.
During training it is critical to use the same beginning frame fb and ending frame fd while only
changing the middle frame for both positive and negative examples. Since only the middle frame
changes between training examples, the network is encouraged to focus on this signal to learn the
subtle difference between positives and negatives, rather than irrelevant features.

To avoid sampling ambiguous negative frames fa and fe, we enforce that the appearance of
the positive fc frame is not too similar (measured by SSD on RGB pixel values) to fa or fe. These
simple conditions eliminated most ambiguous examples. We provide further analysis of sampling
data in Section 3.3.1.

3.2.3 Model Parametrization and Learning

To learn a feature representation from the tuple ordering task, we use a simple triplet Siamese
network. This network has three parallel stacks of layers with shared parameters (Figure 3.2).
Every network stack follows the standard CaffeNet [195] (a slight modification of AlexNet [221])
architecture from the conv1 to the fc7 layer. Each stack takes as input one of the frames from the
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tuple and produces a representation at the fc7 layer. The three fc7 outputs are concatenated as
input to a linear classification layer. The classification layer can reason about all three frames at
once and predict whether they are in order or not (two class classification). Since the layers from
conv1 to fc7 are shared across the network stacks, the Siamese architecture has the same number
of parameters as AlexNet barring the final fc8 layer. We update the parameters of the network by
minimizing the regularized cross-entropy loss of the predictions on each tuple. While this network
takes three inputs at training time, during testing we can obtain the conv1 to fc7 representations
of a single input frame by using just one stack, as the parameters across the three stacks are shared.

3.3 Empirical ablation analysis

In this section (and in the Appendix), we present experiments to analyze the various design
decisions for training our network. In Sections 3.4 and 3.5, we provide results on both action
recognition and pose estimation.

Dataset: We report all our results using split 1 of the benchmark UCF101 [384] dataset. This dataset
contains videos for 101 action categories with ∼ 9.5k videos for training and ∼ 3.5k videos for
testing. Each video has an associated action category label. The standard performance metric for
action recognition on this dataset is classification accuracy.

Details for unsupervised pre-training: For unsupervised pre-training, we do not use the semantic
action labels. We sample about 900k tuples from the UCF101 training videos. We randomly initialize
our network, and train for 100k iterations with a fixed learning rate of 10−3 and mini-batch size
of 128 tuples. Each tuple consists of 3 frames. Using more (4, 5) frames per tuple did not show
significant improvement. We use batch normalization [186].

Details for Action Recognition: The spatial network from [376] is a well-established method of
action recognition that uses only RGB appearance information. The parameters of the spatial
network are initialized with our unsupervised pre-trained network. We use the provided action
labels per video and follow the training and testing protocol as suggested in[376, 432]. Briefly,
for training we form mini-batches by sampling random frames from videos. At test time, 25
frames are uniformly sampled from each video. Each frame is used to generate 10 inputs after
fixed cropping and flipping (5 crops × 2 flips), and the prediction for the video is an average of
the predictions across these 25 × 10 inputs. We use the CaffeNet architecture for its speed and
efficiency. We initialize the network parameters up to the fc7 layer using the parameters from the
unsupervised pre-trained network, and initialize a new fc8 layer for the action recognition task.
We finetune the network following [376] for 20k iterations with a batch size of 256, and learning
rate of 10−2 decaying by 10 after 14k iterations, using SGD with momentum of 0.9, and dropout
of 0.5. While [376] used the wider VGG-M-2048 [52] architecture, we found that their parameters
transfer to CaffeNet because of the similarities in their architectures.
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Table 3.1: We study the effect of our design choices such as temporal sampling parameters, and varying class ratios for
unsupervised pre-training. We measure the tuple prediction accuracy on a held out set from UCF101. We also show
action classification results after finetuning the models on the UCF101 action recognition task (split 1).

(a) Varying temporal sampling

τmax τmin Tuple Pred. Action Recog.

30 15 60.2 47.2
60 15 72.1 50.9
60 60 64.3 49.1

(b) Varying class ratios

Class Ratio Tuple Pred. Action Recog.
Neg Pos

0.5 0.5 52.1 38.1
0.65 0.35 68.5 45.5
0.75 0.25 72.1 50.9
0.85 0.15 67.7 48.6

3.3.1 Sampling of data

In this section we study the impact of sampling parameters described in Section 3.2.2 on the
unsupervised pre-training task. We denote the maximum distance between frames of positive tuples
by τmax = |b− d|. This parameter controls the ‘difficulty’ of positives: a very high value makes it
difficult to see correspondence across the positive tuple, and a very low value gives almost identical
frames and thus very easy positives. Similarly, we compute the minimum distance between the
frames fa and fe used for negative tuples to the other frames by τmin = min(|a− b|, |d− e|). This
parameter controls the difficulty of negatives with a low value making them harder, and a high
value making them easier.

We compute the training and testing accuracy of these networks on the tuple prediction task on
held out videos. This held out set is a union of samples using all the temporal sampling parameters.
We show results in Table 3.1 (a). We also use these networks for finetuning on the UCF101 action
recognition task. Our results show that the tuple prediction accuracy and the performance on the
action recognition task are correlated. A large temporal window for positive sampling improves
over a smaller temporal window (Rows 1 and 2), while a large window for negative sampling hurts
performance (Rows 2 and 3).

3.3.2 Class ratios in mini-batch

Another important factor when training the model is the class ratios in each mini-batch. As has
been observed empirically [139, 340], a good class ratio per mini-batch ensures that the model does
not overfit to one particular class, and helps the learning process. For these experiments, we choose
a single temporal window for sampling and vary only the ratio of positive and negative tuples
per mini-batch. We compare the accuracy of these networks on the tuple prediction task on held
out videos in Table 3.1 (b). Additionally, we report the accuracy of these networks after finetuning
on the action recognition task. These results show that the class ratio used for unsupervised pre-
training can significantly impact learning. It is important to have a larger percentage of negative
examples.
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Figure 3.3: We compute nearest neighbors using fc7 features on the UCF101 dataset. We compare these results across
three networks: pre-trained on ImageNet, pre-trained on our unsupervised task and a randomly initialized network. We
choose a input query frame from a clip and retrieve results from other clips in the dataset. Since the dataset contains
multiple clips from the same video we get near duplicate retrievals (first row). We remove these duplicates, and display
results in the second row. While ImageNet focuses on the high level semantics, our network captures the human pose.

3.3.3 What does the temporal ordering task capture?

Nearest Neighbor retrieval

We retrieve nearest neighbors using our unsupervised features on the UCF101 dataset and compare
them in Figure 3.3 to retrievals by the pre-trained ImageNet features, and a randomly initialized
network. Additional examples are shown in the supplementary materials. We pick an input
query frame from a clip and retrieve neighbors from other clips in the UCF101 dataset. Since the
UCF101 dataset has clips from the same video, the first set of retrievals (after removing frames
from the same input clip) are near duplicates which are not very informative (notice the random
network’s results). We remove these near-duplicates by computing the sum of squared distances
(SSD) between the frames, and display the top results in the second row of each query. These
results make two things clear: 1) the ImageNet pre-trained network focuses on scene semantics
2) Our unsupervised pre-trained network focuses on the pose of the person. This would seem to
indicate that the information captured by our unsupervised pre-training is complementary to that
of ImageNet. Such behavior is not surprising, if we consider our network was trained without
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semantic labels, and must reason about spatiotemporal signals for the tuple verification task.

Visualizing pool5 unit responses

We analyze the feature representation of the unsupervised network trained using the tuple predic-
tion task on UCF101. Following the procedure of [141] we show the top regions for pool5 units
alongwith their receptive field in Figure 3.4. This gives us insight into the network’s internal feature
representation and shows that many units show preference for human body parts and pose. This is
not surprising given that our network is trained on videos of human action recognition, and must
reason about human movements for the tuple ordering task.

Figure 3.4: In each row we display the top image regions for a unit from the pool5 layer. We follow the method in [141]
and display the receptive fields (marked in red boxes) for these units. As our network is trained on human action
recognition videos, many units show preference for human body parts and pose.
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3.4 Action Recognition

The previous experiments show that the unsupervised task learns a meaningful representation. In
this section we compare our unsupervised method against existing baseline methods and present
more quantitative results. We organize our experiments as follows: 1) Comparing our unsupervised
method to learning from random initialization. 2) Exploring other unsupervised baselines and
comparing our method with them. 3) Combining our unsupervised representation learning method
with a supervised image representation. Additional experiments are in the supplementary material.
We now describe the common experimental setup.

Datasets and Evaluation: We use the UCF101 [384] dataset which was also used for our ablation
analysis in Section 3.3 and measure accuracy on the 101 action classification task. Additionally, we
use the HMDB51 [224] dataset for action recognition. This dataset contains 3 splits for train/test,
each with about 3.4k videos for train and 1.4k videos for testing. Each video belongs to one of 51
action categories, and performance is evaluated by measuring classification accuracy. We follow
the same train/test protocols for both UCF101 and HMDB51 as described in Section 3.3. Note that
the UCF101 dataset is about 2.5× larger than the HMDB51 dataset.

Implementation details for pre-training: We use tuples sampled using τmax = 60 and τmin = 15
as described in Section 3.3. The class ratio of positive examples per mini-batch is 25%. The other
parameters for training/finetuning are kept unchanged from Section 3.3.

Action recognition details: As in Section 3.3, we use the CaffeNet architecture and the parameters
from [376] for both training from scratch and finetuning. We described the finetuning parameters
in Section 3.3. For training from random initialization (or ‘scratch’), we train for 80k iterations with
an initial learning rate of 10−2, decaying by a factor of 10 at steps 50k and 70k. The other training
parameters (momentum, batch size etc.) are kept the same as in finetuning. We use the improved
data augmentation scheme (different aspect-ratio, fixed crops) from [432] for all our methods and
baselines. Note that we train or finetune all the layers of the network for all methods, including
ours.

3.4.1 Unsupervised pre-training or random initialization?

In these experiments we study the advantage of unsupervised pre-training for action recognition
in comparison to learning without any pre-training. We use our tuple prediction task to train
a network starting from random initialization on the train split of UCF101. The unsupervised
pre-trained network is finetuned on both the UCF101 and HMDB51 datasets for action recognition
and compared against learning from scratch (without pre-training). We report the performance
in Table 3.2. Our unsupervised pre-training shows a dramatic improvement of +12.4% over
training from scratch in UCF101 and a significant gain of +4.7% in HMDB51. This impressive
gain demonstrates the informativeness of the unsupervised tuple verification task. On HMDB51,
we additionally finetune a network which was trained from scratch on UCF101 and report its
performance in Table 3.2 indicated by ‘UCF supervised’. We see that this network performs worse
than our unsupervised pre-trained network. The UCF101 and HMDB51 have only 23 action classes
in common [376] and we hypothesize that the poor performance is due to the scratch UCF101
network being unable to generalize to actions from HMDB51. For reference, a model pre-trained
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Table 3.2: Mean classification accuracies over the 3 splits of UCF101 and HMDB51 datasets. We compare different
initializations and finetune them for action recognition.

Dataset Initialization Mean Accuracy

UCF101 Random 38.6
(Ours) Tuple verification 50.2

HMDB51 Random 13.3
UCF Supervised 15.2

(Ours) Tuple verification 18.1

on the supervised ImageNet dataset [351] and finetuned on UCF101 gives 67.1% accuracy, and
ImageNet finetuned on HMDB51 gives an accuracy of 28.5%.

3.4.2 Unsupervised Baselines

In this section, we enumerate a variety of alternative verification tasks that use only video frames
and their temporal ordering. For each task, we use a similar frame sampling procedure to the one
described in Section 3.3.1. We compare their performance after finetuning them on the task of
action recognition. A more informative task should serve as a better task for pre-training.

Two Close: In this task two frames (fb, fd) (with high motion) are considered to be temporally
close if |b− d| < τ for a fixed temporal window τ = 30.

Two Order: Two frames (fb, fd) are considered to be correct if b < d. Otherwise they are considered
incorrect. |b− d| < 30.

Three Order: This is the original temporal ordering task we proposed in Section 3.2.1. We consider
the 3-tuple (fb, fc, fd) to be correct only if the frames obey either ordering b < c < d or b > c > d.

We also compare against standard baselines for unsupervised learning from video.

DrLim [157]: As Equation 3.1 shows, this method enforces temporal smoothness over the learned
features by minimizing the l2 distance d between representations (fc7) of nearby frames fb, fd
(positive class or c = 1), while requiring frames that are not close (negative class or c = 0) to
be separated by a margin δ. We use the same samples as in the ‘Two Close’ baseline, and set
δ = 1.0 [296].

L(fb, fd) = 1(c = 1)d(fb, fd) + 1(c = 0) max(δ − d(fb, fd), 0) (3.1)

TempCoh [296]: Similar to the DrLim method, temporal coherence learns representations from
video by using the l1 distance for pairs of frames rather than the l2 distance of DrLim.

Obj. Patch [434]: We use their publicly available model which was unsupervised pre-trained
on videos of objects. As their patch-mining code is not available, we do not do unsupervised
pre-training on UCF101 for their model.
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Table 3.3: We compare the unsupervised methods defined in Section 3.4.2 by finetuning on the UCF101 and HMDB51
Action recognition (split 1 for both). Method with * was not pre-trained on action data.

Unsup Method→ Two Two DrLim TempCoh Three Obj. Patch*
Close Order [157] [296] Order (Ours) [434]

Acc. UCF101 42.3 44.1 45.7 45.4 50.9 40.7
Acc. HMDB51 15.0 16.4 16.3 15.9 19.8 15.6

All these methods (except [434]) are pre-trained on training split 1 of UCF101 without action
labels, and then finetuned on test split 1 of UCF101 actions and HMDB51 actions. We compare
them in Table 3.3. Scratch performance for test split 1 of UCF101 and HMDB51 is 39.1% and 14.8%
respectively. The tuple verification task outperforms other sequential ordering tasks, and the
standard baselines by a significant margin. We attribute the low number of [434] to the fact that
they focus on object detection on a very different set of videos, and thus do not perform well on
action recognition.

Table 3.4: Results of using our unsupervised pre-training to adapt existing image representations trained on ImageNet.
We use unsupervised data from training split 1 of UCF101, and show the mean accuracy (3 splits) by finetuning on
HMDB51.

Initialization Mean Accuracy

Random 13.3

(Ours) Tuple verification 18.1

UCF sup. 15.2
ImageNet 28.5

(Ours) ImageNet + Tuple verification 29.9

ImageNet + UCF sup. 30.6

3.4.3 Combining unsupervised and supervised pre-training

We have thus far seen that unsupervised pre-training gives a significant performance boost over
training from random initialization. We now see if our pre-training can help improve existing image
representations. Specifically, we initialize our model using the weights from the ImageNet pre-
trained model and use it for the tuple-prediction task on UCF101 by finetuning for 10k iterations.
We hypothesize this may add complementary information to the ImageNet representation. To
test this, we finetune this model on the HMDB51 [224] action recognition task. We compare this
performance to finetuning on HMDB51 without the tuple-prediction task. Table 3.4 shows these
results.

Our results show that combining our pre-training with ImageNet helps improve the accuracy
of the model (rows 3, 4). Finally, we compare against using multiple sources of supervised data:
initialized using the ImageNet weights, finetuned on UCF101 action recognition and then finetuned
on HMDB51 (row 5). The accuracy using all sources of supervised data is only slightly better than
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the performance of our model (rows 4, 5). This demonstrates the effectiveness of our simple yet
powerful unsupervised pre-training.

3.5 Human Pose Estimation

The qualitative results from Sec 3.3.3 suggest that our network captures information about human
pose. To evaluate this quantitatively, we conduct experiments on the task of pose estimation using
keypoint prediction.

Datasets and Metrics: We use the FLIC (full) [358] and the MPII [20] datasets. For FLIC, we
consider 7 keypoints on the torso: head, 2× (shoulders, elbows, wrists). We compute the keypoint
for the head as an average of the keypoints for the eyes and nose. We evaluate the Probability of
Correct Keypoints (PCK) measure [449] for the keypoints. For MPII, we use all the keypoints on
the full body and report the PCKh@0.5 metric as is standard for this dataset.

Model training: We use the CaffeNet architecture to regress to the keypoints. We follow the
training procedure in [412]1. For FLIC, we use a train/test split of 17k and 3k images respectively
and finetune models for 100k iterations. For MPII, we use a train/test split of 18k and 2k images.
We use a batch size of 32, learning rate of 5× 10−4 with AdaGrad [88] and minimize the Euclidean
loss (l2 distance between ground truth and predicted keypoints). For training from scratch (Random
Init.), we use a learning rate of 5× 10−4 for 1.3M iterations.

Methods: Following the setup in Sec 3.4.1, we compare against various initializations of the
network. We consider two supervised initalizations - from pre-training on ImageNet and UCF101.
We consider three unsupervised initializations - our tuple based method, DrLim [157] on UCF101,
and the method of [434]. We also combine our unsupervised initialization with ImageNet pre-
training.

Our results for pose estimation are summarized in Table 3.5. Our unsupervised pre-training
method outperforms the fully supervised UCF network (Sec 3.4.1) by +7.6% on FLIC and +2.1%
on MPII. Our method is also competitive with ImageNet pre-training on both these datasets. Our
unsupervised pre-training is complementary to ImageNet pre-training, and can improve results
after being combined with it. This supports the qualitative results from Sec 3.3.3 that show our
method can learn human pose information from unsupervised videos.

3.6 Discussion

In this chapter, we studied unsupervised learning from the raw spatiotemporal signal in videos.
Our proposed method outperforms other existing unsupervised methods and is competitive with
supervised methods. A next step to our work is to explore different types of videos and use other
‘free’ signals such as optical flow. Another direction is to use a combination of CNNs and RNNs,
and to extend our tuple verification task to much longer sequences. We believe combining this with
semi-supervised methods like those presented in Chapter 2 is a promising future direction.

1Public re-implementation from https://github.com/mitmul/deeppose
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Table 3.5: Pose estimation results on the FLIC and MPII datasets.

Init. PCK for FLIC PCKh@0.5 for MPII

wri elb sho head Mean AUC Upper Full AUC

Random Init. 53.0 75.2 86.7 91.7 74.5 36.1 76.1 72.9 34.0

Tuple Verif. 69.6 85.5 92.8 97.4 84.7 49.6 87.7 85.8 47.6
Obj. Patch[434] 58.2 77.8 88.4 94.8 77.1 42.1 84.3 82.8 43.8

DrLim[157] 37.8 68.4 80.4 83.4 65.2 27.9 84.3 81.5 41.5

UCF Sup. 61.0 78.8 89.1 93.8 78.8 42.0 86.9 84.6 45.5
ImageNet 69.6 86.7 93.6 97.9 85.8 51.3 85.1 83.5 47.2

ImageNet + Tuple 69.7 87.1 93.8 98.1 86.2 52.5 87.6 86.0 49.5
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Part II

Structure in Labels and Tasks
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Chapter 4

Learning from Noisy Human-centric Web Labels

A goal of visual recognition is, therefore, not only to detect and classify
objects but also to associate with each a level of priority which we call

‘importance’.

MERRIELLE SPAIN AND PIETRO PERONA, in Some objects are more
equal than others: Measuring and predicting importance, 2008

In the previous chapters, we have seen how utilizing structure in the data space can help
us learn better representations and object detectors. All these methods are still restricted to the
categories of visual concepts in the pristinely labeled datasets (e.g., [94, 251, 351]). These datasets
have 100s to 1000s of ‘typical’ visual concepts or categories. In contrast, a conservative estimate [408]
of the number of visual tags present on Flickr, tells us that there are more than 8 million tags or
visual concepts. Thus, our current vision datasets are far from capturing the diversity and variety
of visual concepts. Scaling these supervised datasets by more than 800× the number of concepts is
an infeasible task. An alternative approach is to relax this requirement of pristinely labeled data.
The learning algorithm can be enabled to use readily-available sources of annotated data, such as
user-generated image tags or captions from social media services like Flickr or Instagram. Such
datasets easily scale to hundreds of millions of photos with millions of distinct tags [408] without
expensive curation. In this chapter, we present an approach that can leverage such freely available
tag-level supervision.

Images annotated with human-written tags [408] or captions [58] focus on the most important
or salient information in an image, as judged implicitly by the annotator. These annotations lack
information on minor objects or information that may be deemed unimportant, a phenomenon
known as reporting bias [146]. For example, Figure 4.1 illustrates two concepts (bicycle, yellow)
that are each present in two images, but only mentioned in one. The bicycle may be considered
irrelevant to the overall image in (b); and the bananas in (d) are not described as yellow because
humans often omit an object’s typical properties when referring to it [268, 439]. Following [38], we
refer to this type of labeling as human-centric annotation. Human-centric annotations have label noise
because the underlying visual concepts are not labeled pristinely. This ‘noise’ view is common in
machine learning and the human-centric (noisy) aspect of these annotations is generally considered
a nuisance. On the flip side, we can view this human-centric annotation as a core part of visual
recognition itself. Spain and Perona (quoted above) assert that human-centric predictions associate
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a ‘priority’ with visual concept predictions which is a core aspect of recognition. While humans can
exhaustively label everything, we have the ability to prioritize and describe the most important
aspects of an image. Thus, machines should also have the ability to prioritize their predictions, and
the label noise can help them learn how to do this.

Training directly on human-centric annotations does not yield a credible visual concept classifier.
Instead, it leads to a classifier that attempts to mimic the reporting bias of the annotators. To separate
reporting bias from visual ground truth, we propose to train a model that explicitly factors human-
centric label prediction into a visual presence classifier (i.e., “Is this concept visually present in
this image?”) and a relevance classifier (i.e., “Is this concept worth mentioning, given its visual
presence?”). We train all these classifiers jointly and end-to-end as multiple “heads” branching
from the same shared convolutional neural network (ConvNet) trunk [239, 375].

We demonstrate improved performance on several tasks and datasets. Our experiments on the
MS COCO Captions dataset [58] show an improvement in mean average precision (mAP) for the
learned visual classifiers when evaluated on both fully labeled data (using annotations from the
MS COCO detection benchmark [251]) and on the human generated caption data. We also show
that using such visual predictions improves image caption generation quality. Our results on the
Yahoo Flickr 100M dataset [408] demonstrate the ability of our model to learn from “in the wild”
data (noisy Flickr tags) and double the performance of the baseline classification model. Apart
from just numerical improvements, our results are interpretable and consistent with research in
psychology showing that humans tend not to mention typical attributes [268, 439] unless required
for unique identification [307, 361, 405].

4.1 Background

Label noise is ubiquitous in real world data. It can impact the training process of models and
decrease their predictive accuracy [29, 203, 301]. Since there are vast amounts of cheaply available
noisy data, learning good predictors despite the label noise is of great practical value.

The taxonomy of label noise presented in [126] differentiates between two broad categories
of noise: noise at random and statistically dependent noise. The former does not depend on the data,
while the latter does. In practice, one may encounter a combination of both types of noise.

Human-centric annotations [38] exhibit noise that is highly structured and shows statistical
dependencies on the data [38, 126, 386, 458]. It is structured in the sense that certain labels
are preferentially omitted as opposed to others. Vision researchers have studied human-centric
annotations in various settings, such as missing objects in image descriptions [38], scenes [40], and
attributes [415] and show that these annotations are noisy [38]. Much of the work on learning from
noisy labels focuses on robust algorithms [189, 271], voting methods [33], or statistical queries [214].
Some of these methods [189, 214] require access to clean oracle labels, which may not be readily
available.

Explicitly modeling label noise has received increasing attention in recent years [295, 300, 392,
445]. Many of these methods operate under the “noise at random” assumption and treat noise as
conditionally independent of the image. [236] models symmetric label noise (independent of the
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(a) A woman standing next 
to a bicycle with basket.

(b) A city street filled with lots 
of people walking in the rain.

(d) A store display that has a 
lot of bananas on sale.

(c) A yellow Vespa parked 
in a lot with other cars.

Human Label  Visual Label

Bicycle

Human Label  Visual Label

Bicycle

Human Label  Visual Label

Yellow

Human Label  Visual Label

Yellow

Figure 4.1: Human descriptions capture only some of the visual concepts present in an image. For instance, the bicycle in
(a) is described, while the bicycle in (b) is not mentioned. The Vespa in (c) is described as “yellow”, while the bananas in
(d) are not, as being yellow is typical for bananas.
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A simple classification pipeline

Figure 4.2: A simple classification model for learning from human-centric annotations. The noisy labels (banana is not
annotated as yellow) impede the learning process.

true label), which is a strong assumption for real world data. [300, 392] both model asymmetric label
noise that is conditionally independent of the image. Such an assumption ignores the input image
(and the objects therein) which directly affects the noisy annotations produced by humans [38].

Recently, Xiao et al. [445] introduced an image conditional noise model that attempts to predict
what type of noise corrupts each training sample (no noise, noise at random, and structured label
swapping noise). Unlike [445], our training algorithm does not require a small amount of cleanly
labeled training data to bootstrap parameter estimation. Our model is also specifically designed to
handle the noise found in human-centric annotations.

Bootstrapping [336], semi-supervised learning (SSL) [371, 479] and Positive Unlabeled (PU)
learning [93, 247, 256, 284] are other ways of learning from noisy labeled data. However, they
require access to clean oracle labels. SSL approaches are often computationally impractical [469, 480]
or make strong independence assumptions [113] that do not hold in human-centric annotations. Our
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Figure 4.3: Our model uses noisy human-centric annotations y for learning visually grounded classifiers without access
to the visually correct ground truth z. It uses two classifiers: a visual presence classifier v and a relevance classifier r. The
visual presence classifier v predicts whether the visual concept w is visually present in an image. The relevance classifier
r models the noise and predicts whether the concept should be mentioned or not. We combine these predictions to get
the human-centric prediction h.

approach, which trains directly on noisy labels, can serve as a starting point for these approaches.

The work described here is also consistent with research in psycholinguistics on object reference
and description. Such work demonstrates that humans store typical or “prototypical” representa-
tions of objects and their properties [347]; and this background knowledge appears to have an effect
on object description [268, 439]. People tend not to mention attributes that are obvious or typical
for an object, preferring to name attributes required for conversational relevance [223], unique
identification against alternatives [361, 418] and distinguishability [149, 218]. A similar separation
between what is observed and what is mentioned falls out naturally from our proposed model.

4.2 Approach

Our goal is to train visually grounded image classifiers for a set of visual concepts w ∈ W (e.g.,
banana, yellow, zebra) using images and their human-centric annotations. The conventional
approach to this problem, shown in Figure 4.2, is to naively apply a supervised learning algorithm:
train a classifier hw for each concept w, to predict its human-centric label yw ∈ {0, 1} (not mentioned
vs. mentioned) as a conditional probability distribution hw(yw|I), in which I is an image.

The resulting classifier would attempt to mimic human reporting bias by predicting how a
human would label the image I regardless of whether w is visually present or absent. Thus, the
predictions from each classifier hw will not be visually grounded and do not meet our goal. How
can we build classifiers that predict whether a visual concept w is present in an image and “see
through” the noise in human-centric annotations?

4.2.1 Factor decoupling

We propose to structure each concept output hw(yw|I) in terms of two classifiers vw and rw. The
first classifier vw models the conditional probability of the visual presence of the concept w in the
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image. The second classifier rw models the conditional probability of the relevance of the concept w,
conditioned on the image and whether or not w is estimated to be visually present. The human-
centric predictor is formed by marginalizing over the concept’s visual presence, as described
next.

Let zw ∈ {0, 1} be a latent (or hidden) variable indicating whether the concept w is visually
present in an image. Note that the training data only supplies human-centric labels yw; the true
values of zw are unknown during training. For instance, in Figure 4.1(a), yw = 1 and zw = 1 when
the bicycle is present and mentioned, while yw = 0 and zw = 1 in Figure 4.1(b) when the bicycle is
present but not mentioned. We refer to zw as the visual presence label.

The conditional probability of the human-centric label given an image I , hw(yw|I), can now be
computed by marginalizing over the latent visual presence label zw:

hw(yw|I) =
∑

j∈{0,1}

rw(yw|zw = j, I)vw(zw = j|I). (4.1)

An illustration of our model is shown in Figure 4.3. One important property of this formulation is
that it allows the model to assign high confidence to unlabeled visual concepts: for an unmentioned
concept (yw = 0 and zw = 1), the relevance classifier rw allows the visual presence classifier vw

to assign a high probability to the true visual label (zw = 1) while still making a prediction that
matches the human-centric label (yw = 0). This property enables the model to “see through” human
reporting bias.

To simplify notation, we drop the concept index w from y, z, h, v and r when possible. We
denote the probability values of r by:

rij = r(y = i|z = j, I), ∀(i, j) ∈ {0, 1}2. (4.2)

Another important property of the factorization in Equation (4.1) is that it provides a way to
get two different predictions for the concept w in the same image. The model can predict the visual
presence of a visual concept; or predict how a human would annotate the image. Depending on
the task at hand, one of these predictions may be more appropriate than the other, a point we
demonstrate later via experimental results.

4.2.2 Model learning and parameterization

We estimate the model parameters by minimizing the regularized log loss of hw, summed over all
concepts w, on the training data annotated with human-centric labels. Since our model includes
latent variables z for each concept and image, one approach could be to use Expectation Maximiza-
tion (EM) [77]. We choose a direct optimization approach [51] over EM for simplicity, and thus both
the model parameters and latent variable posteriors are updated and inferred online. In each SGD
minibatch, the model predicts the conditional distributions r and v, marginalizes over the values of
z, and uses the log loss of h to drive better estimates of r and v.

The conditional distributions r and v are modeled with a ConvNet [129, 239, 350]. As illustrated
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Table 4.1: mAP and PHR values on MS COCO captions ground truth (20k test images). We add our latent model to each
baseline to make predictions that are visually grounded (v) or conform to human (h) labels. POS tags are as follows:
Nouns (NN), Verbs (VB), Adjectives (JJ), Determiners (DT), Pronouns (PRP), Prepositions (IN).

Mean Average Precision Precision at Human Recall

NN VB JJ DT PRP IN Others All NN VB JJ DT PRP IN Others All
Prob 616 176 119 10 11 38 30 1000 ← Count

V
G

G
16

MILVC [102] - 41.6 20.7 23.9 33.4 20.4 22.5 16.3 34.0 52.7 32.8 40.5 40.3 32.2 33.0 24.6 45.8
MILVC + Multiple-fc8 - 41.1 20.9 23.7 33.6 21.1 22.8 16.8 33.8 51.2 32.6 40.8 41.1 31.7 33.5 27.3 45.0
MILVC + Latent (Ours) v 42.9 21.7 24.9 33.1 19.6 23.0 16.2 35.1 53.6 35.4 43.3 41.3 28.0 36.0 24.4 47.2
MILVC + Latent (Ours) h 44.3 22.3 25.8 34.4 21.8 23.6 17.3 36.3 55.5 36.3 44.7 42.9 32.1 37.3 26.4 48.9

A
le

xN
et MILVC [102] - 33.2 16.2 20.1 30.9 16.4 19.9 14.6 27.4 40.0 26.4 36.0 38.2 24.2 27.5 21.9 35.9

MILVC + Latent (Ours) v 35.6 17.7 21.9 32.4 16.9 20.7 15.2 29.4 43.9 28.3 37.5 41.2 29.2 29.9 23.3 39.0
MILVC + Latent (Ours) h 36.5 18.0 22.4 32.9 17.8 21.4 15.6 30.1 45.1 28.7 38.0 41.2 32.2 31.0 24.0 40.0

V
G

G
16

Classif. - 34.9 18.1 20.5 32.8 19.2 21.8 16.3 29.0 42.5 30.4 33.9 40.5 30.4 30.7 23.8 38.2
Classif. + Multiple-fc8 - 34.2 17.7 19.9 32.6 19.0 21.5 15.9 28.4 41.3 27.9 32.3 39.6 29.6 31.2 22.6 36.8
Classif. + Latent (Ours) v 37.7 19.6 22.0 32.6 20.2 22.0 16.3 31.2 46.3 32.9 36.8 38.9 32.3 33.1 27.0 41.5
Classif. + Latent (Ours) h 38.7 20.1 22.6 33.8 21.2 23.0 17.5 32.0 47.8 33.7 37.9 42.5 34.2 34.4 29.0 42.9

in Figure 4.3, the ConvNet trunk is shared between the two distributions (per concept) and then
branches near the output into two sets of untied parameters. We jointly train one network for all
visual concepts w ∈ W by treating learning as a multi-label classification problem. Further network
architecture details are given in Section 4.3 with experiments.

The conditional probability distribution r models transition probabilities and thus its underly-
ing joint distribution r̃ij = r̃(y = i, z = j|I) must be a valid probability distribution. To enforce
this constraint, we directly estimate the joint distribution r̃ with a softmax operation on a vector of
unnormalized scores.

For each concept w, we first compute four scores sij using four linear models parameterized by
weights mij and biases bij , and then normalize them using the softmax function to get a valid joint
distribution r̃ij :

sij = mT
ijφ(I) + bij , (4.3)

r̃ij = exp(sij)/
∑
i′j′

exp(si′j′). (4.4)

For φ(I), we use global image features computed by the shared ConvNet trunk (e.g., fc7 layer
activations from VGG16 [375]). These features capture the global image context, which is helpful in
estimating r. Each rij can then be computed from r̃ by dividing by the marginal r̃(z = j|I):

rij = r̃ij/
∑
i′

r̃i′j . (4.5)

Figure 4.3 illustrates our process of computing rij from the image. Since our operations for
estimating r̃ (and thus r) are differentiable, we can backpropagate their errors to the ConvNet,
allowing the full model to be trained end-to-end.
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Figure 4.4: We use the MS COCO dataset to display the objects with the highest reporting bias. We use the detection
labels for objects and see whether they are mentioned in the caption. The black line shows the probability of an object
not being mentioned in the caption. The distribution of sizes for objects that are missed are shown by the color bars.
Note that for many categories most unreported objects are small or medium in size (green and blue).

4.3 Experiments

We evaluate our proposed model on two datasets: Microsoft COCO [251] and a random subset
of the Yahoo Flickr Creative Commons 100M (YFCC100M) dataset [408]. The YFCC100M dataset
includes user-generated image tags, which we take as our source of human-centric annotations.
For MS COCO, we take the supplied image captions [58] as human-centric annotations. We use the
MS COCO object detection labels for dataset analysis and algorithm evaluation. These labels allow
us to verify the accuracy of trained visual presence classifiers, vw; these labels are never used for
training our model.

4.3.1 Experiments on MS COCO 1k visual concepts

Our first set of experiments use the MS COCO 1000 visual concepts from [102]. The visual concepts
are the 1000 most common words in the MS COCO captions dataset [58] and include nouns, verbs,
adjectives, and other parts of speech (see Table 4.1 for a breakdown).

For training, we generate image labels as 1000-dimensional binary vectors indicating which of
the 1000 target visual concepts are present in the any of the 5 reference captions for each training
image. The training set includes approximately 80k images. For evaluation, we follow [102] and
split the val set into equally sized val and test sets of ∼20k images each; we use the same splits as
in [102]. We report results on this 20k image test set.

Human reporting bias in image descriptions

We first analyze the annotation mismatch between the caption labels and the detection labels.
We obtain labels for the 73 objects common in both the caption and object detection labels (see
Section 4.3.1 for details). We use the notation from Section 4.2.1, and measure the human reporting
bias as r?01: the probability of an object not being mentioned in the caption ground truth (y = 0)
and being present in the detection ground truth (z = 1), over all the training images. To account for
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object size as a factor in an object not being mentioned, we split these measurements based on the
size of the bounding box (sizes as defined in [251]). Figure 4.4 shows this mismatch for the top 20
objects with the highest r?01 for values. A high r?01 value indicates that there is a large mismatch
between the caption ground truth and the detection ground truth – objects that are visually present
but not mentioned in the captions.

As observed, there is a high degree of human labeling noise in the image descriptions, with the
object with highest reporting bias mentioned roughly half as much as it appears.

Evaluating human-centric label prediction

We can evaluate our model in two ways: as a purely visual classifier (v) or as a predictor of
human-centric (h) labels. We start with the latter and evaluate our model’s predictions against the
human-centric MS COCO captions.

As a strong baseline, we use the recently proposed MILVC [102] approach. This method applies
a ConvNet (VGG16 [375] or AlexNet [221])1 in a fully-convolutional way to a large input image to
generate a 12× 12 grid of human-centric label predictions. It then uses a noisy-OR [427] to compute
a single prediction from the 144 intermediate values. During training, the noisy-OR induces a form
of multiple instance learning (MIL). Note that the baseline model estimates h labels directly without
our decomposition into relevance and visual presence factors. As a second baseline (Classif.),
we use a vanilla classification model akin to Figure 4.2, in which an ImageNet [351] pre-trained
ConvNet is fine-tuned to directly predict human-centric labels.

We also include an additional baseline variant that adds extra parameters to control for the fact
that our proposed model requires adding extra parameters. Specifically, we train a “Multiple-fc8”
model for each method (MILVC and Classif.) that has the same number of parameters as our model.
To train Multiple-fc8, we add four extra randomly initialized fc8 (linear classification) layers,
each with their own loss. At test time, we average the predictions of all the fc8 layers to get the
final prediction.

We implement two variants of our model to parallel the MILVC and Classif. baselines. In the
first variant (MILVC + Latent), v uses a noisy-OR over a 12× 12 grid of visual presence predictions,
and for r we average pool the 144 fc7 activation vectors to obtain a single 4096 dimensional φ(I)
for Equation 4.3. The second variant (Classif. + Latent) generates a 1 × 1 output for v and fc7,
and therefore omits the noisy-OR and average pooling. In both cases, h predictions are obtained
following Equation 4.1, using both r and v. Like the baselines, our model is trained to minimize the
log loss (cross-entropy loss) over h.

To train our model, we set the joint noise distribution r̃ to identity (i.e., r̃11 = r̃00 = 0.5) for
the first two epochs and then update it for the last two epochs. Table 4.1 shows mean average
precision (mAP) [94] and precision at human recall (PHR) [58] on the 20k test set. PHR is a metric
proposed in [58], and measures precision based on human agreement. Briefly, this metric uses
multiple references per image to compute a “human recall” value, an estimate of the probability
that a human will use a particular word for an image. Precision is then computed at this “human

1Unless otherwise specified, we use VGG16 for all our experiments.
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Table 4.2: Visual classification on 73 classes evaluated using fully labeled data from COCO.

MILVC [102] v h Using ground truth

mAP 63.7 66.8 66.5 76.3

recall” value to get PHR. [58] shows that for the task of predicting visual concepts, PHR is a more
stable metric than an AP metric, since it accounts for human agreement.

We report results for the 1000 visual concepts in aggregate, as well as grouped by their part-
of-speech (POS) tags, on the MS COCO test split of 20k images (Table 4.1). Our latent variable
model improves classification performance over all the baseline networks and architectures by 3
to 4 points for both metrics (mAP and PHR). Interestingly, the Multiple-fc8 model, which has
the same number of parameters as our latent model, does not show an improvement, even after
extensive tuning of learning hyperparameters. This finding makes the contribution of the proposed
model evident; the improvement is not simply due to adding extra parameters. It is worth noting
that in Table 4.1, h is a better predictor of MS COCO caption labels than v, as h directly models the
human-centric labels used for evaluation.

Evaluating visual presence prediction

The decoupling of visual presence (v) predictions and human-centric (h) label predictions allows
our model to learn better visual predictors. To demonstrate this, we use the fully-labeled ground
truth from the COCO detection annotations to evaluate the visually grounded v label predictions.

Since the 1000 visual concepts include many fine-grained visual categories (e.g., man, woman,
child) and synonyms (e.g., bike, bicycle), we manually specify a mapping from the visual
concepts to the 80 MS COCO detection categories, e.g., {bike, bicycle} → bicycle. We find that
73 of the 80 detection categories are present in the 1000 visual concepts. We use this mapping
only at evaluation time to compute the probability of a detection category as the maximum of the
probabilities of its fine-grained/synonymous categories.

Table 4.2 shows the mean average precision (mAP) of our method, as well as the baseline
on these 73 categories. As expected, using the human-centric model (h) for this task of visual
prediction hurts performance (slightly). The performance drop is less dramatic when evaluating on
these 73 classes because these classes have less label noise for large sized objects as compared to
the 1000 visual concepts. We also train a noise-free reference model using the ground-truth visual
labels from the detection dataset (i.e., the true values of the latent z labels).

Importance of conditioning on input images

A central point of this chapter (and also in [38]) is that human-centric label noise is statistically
dependent on image data. Here we demonstrate that our model is indeed improved by conditioning
the noise (relevance) distribution on the input image, in contrast to previous work [300, 392] that
estimates noise parameters without conditioning on the image.
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Table 4.3: We show the importance of conditioning the relevance r on the input image. We measure the classification
mAP on MS COCO 1k visual concepts using both the visually grounded (v) and the human-centric (h) predictions.
Conditioning on the input image shows improvement over the baseline showing that human reporting bias statistically
depends on the input image.

w/o image w/ image

MILVC [102] v h v h

mAP 34.0 34.2 34.3 35.1 36.3
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Figure 4.5: Our model modifies visually correct detections to conform to human labeling. We show this modification
for a few images of target visual concepts in the MS COCO Captions dataset. We first show the variation between h (y
axis) and v values (x axis) for each concept in a 2D histogram. After thresholding at v ≥ 0.8, we pick a representative
image from each quantile of h (h increases from left to right). As you move from left to right, the model transitions from
predicting that a human would not “speak” the word to predicting that a human would speak it. The human-centric h
predictions of concepts depend on the image context, e.g., fence at a soccer game vs. fence between a bear and a
human (first row). Our model picks up such signals to not only learn a visually correct fence predictor, but also when
a fence should be mentioned.

To better understand the importance of this conditioning, we consider a model akin to [392].
We estimate the latent distribution r without conditioning on the input image, and compare it to
our model that computes r conditioned on the image. Table 4.3 shows that mAP is significantly
improved by conditioning on the image. When not conditioned on the image, only minor gains are
achieved.

4.3.2 Experiments on Flickr image tagging

Datasets like MS COCO are curated by searching for images with specific objects [251]. In contrast,
social media websites like Flickr contain much larger collections of images that are annotated with
user-generated content such as tags, keywords, and descriptions. The words found in such data
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Figure 4.6: Our model learns clean visual predictors from noisy labels. Here we show corrected false positives: MILVC
incorrectly reports a high probability (h ≥ 0.75) for the concept, while our model correctly reports a low probability
(v ≤ 0.3); and corrected false negatives: MILVC incorrectly reports a low probability (h ≤ 0.3) for the concept, while
our model correctly reports a high probability (v ≥ 0.75). For example, consider zebra vs. zebras, and banana vs.
bananas in the last row, where our model correctly “counts” compared to the baseline. Images are from the MS COCO
Captions dataset.

exhibit the human-centric annotation properties modeled by our approach.

We test our model on this “real world” data by using a random subset of ∼89k images from
the YFCC100M dataset [408]. We ensure that these images have at least 5 and at most 30 human
annotated tags that are present in the WordNet [282] lexicon. We split this dataset into 75k training
images and 14k test images, and consider the top 1000 tags as the set of visual concepts. We train
the baseline MILVC [102] model and our model for 4 epochs following the same hyperparameters
used for MS COCO training.

Table 4.4 shows the numerical results of these models evaluated on the test set using the same

Table 4.4: mAP values on a subset of YFCC100M. We add our latent model over the MILVC baseline to make predictions
that are visually grounded (v) or that conform to human-centric (h) labels. POS tags: Nouns (NN), Verbs (VB), Adjectives
(JJ), Pronouns (PRP), Prepositions (IN).

Mean Average Precision

NN VB JJ PRP IN Others All
Count→ Prob 791 10 148 13 23 15 1000

V
G

G
16

MILVC [102] - 5.7 9.2 5.2 3.8 8.8 6.1 5.7
MILVC + Multiple-fc8 - 4.6 6.2 3.8 2.7 7.3 3.1 4.5
MILVC + Latent (Ours) v 9.8 15.1 8.9 8.3 12.4 12.4 9.8
MILVC + Latent (Ours) h 11.2 15.4 9.9 8.2 16.3 12.5 11.2
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human annotated tags. As explained in Section 4.3.1, we compare against the MILVC baseline, and
a model with the same number of parameters as ours (denoted by Multiple-fc8). Our model has
double the performance of the baseline MILVC model and increases mAP by 5.5 points.

4.3.3 Interpretability of the noise model

The relevance classifier r models human labeling noise conditioned on the image. Depending
on the image, it can enhance or suppress the visual prediction for each concept. We show such
modifications for a few visual concepts in Figure 4.5. After thresholding at v ≥ 0.8, we pick a
representative image from each quantile of h (h increases from left to right). The variation in h
values for these high confidence v ≥ 0.8 images (shown in a 2D histogram in each row) indicates
that h and v have been decoupled by our model. The images show that our model captures subtle
nuances in the ground truth, e.g., mention a hat worn by a cat, do not mention the color of a
pumpkin, definitely mention pink sheep, etc. It automatically captures that context is important for
certain objects like fence and hat, while certain attributes are worth mentioning to help distinguish
objects like the orange pillow. Such connections have been shown in both vision research [38] and
psychology [149, 361].

4.3.4 Correcting error modes by decoupling

Modeling latent noise in human-centric annotations allows us to learn clean visual classifiers. In
Figure 4.6, we compare our model’s visual presence v predictions with the baseline (MILVC) and
show a few error modes that it corrects. Our model is able to correct error modes like misspellings
(desert vs. dessert in the first row), localizes objects correctly and out of context (fridge in the
second row, net in the first row, etc.) and is better at counting (zebra, banana last row).

4.3.5 Using word detections for caption generation

We now look at the task of automatic image caption generation and show how our model can help
improve the task. We consider a basic Long Short-Term Memory (LSTM) [173] network to generate
captions. We use 1000 cells for the LSTM, and learn a 256 dimensional word embedding for the
input words. Following [87], our vocabulary consists of words with frequency ≥ 5 in the input
captions. The image features (1000 visual concept probabilities) are fed once to the LSTM as its first
hidden input. We train this LSTM over all the captions in the MS COCO caption training data for 20
epochs using [195, 302]. We use beam size of 1 for decoding. Table 4.5 shows the evaluation of the
automatically generated captions using standard captioning metrics. Using the probabilities from

Table 4.5: LSTM captioning results on MS COCO

Prob BLEU-4 ROUGE CIDEr

MILVC [102] - 27.7 51.8 89.7
MILVC + Latent (Ours) h 29.2 52.4 92.8
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our model shows an improvement for all evaluation metrics. Thus, modeling the human-reporting
bias can help downstream applications that require such human-centric predictions.

4.4 Discussion

In this chapter, we have introduced an algorithm that explicitly models reporting bias — the
discrepancy between what exists and what people mention — for image labeling. By introducing a
latent variable to capture “what is in an image” separate from “what is labeled in an image”, we
leverage human-centric annotations of images to their full potential, inferring visual concepts present
in an image separately from the visual concepts worth mentioning. We demonstrate performance
improvements over previous work on several tasks, including image classification and image
captioning. Further, the proposed model is highly interpretable, capturing which concepts may
be included or excluded based on the context and dependencies across visual concepts. Initial
inspection of the model’s predictions suggests consistency with psycholinguistic research on object
description, with typical properties noticed but not mentioned.

The algorithm and techniques discussed here pave the way for new deep learning methods
that decouple human performance from algorithmic understanding, modeling both jointly in a
network that can be trained end-to-end. Future work may explore different methods to incorporate
constraints on the latent variables, or to estimate their posteriors (such as with EM). Finally, to
fully exploit the enormous amounts of data which exist “in the wild”, algorithms that explicitly
handle noisy data are essential. So utilizing structure in the label space helps us learn from noisy
labels. In the next chapter, we will see how utilizing structure in the task space can help regularize
representations and improve performance.
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Chapter 5

Learning from Multiple Tasks (Cross-stitch Units)

Your ability to juggle many tasks will take you far.

RICH CARUANA’s Fortune Cookie, 1997

Images offer multiple types of supervisory signals or tasks, e.g., one can predict the category
of the object and attributes of the object. These multiple types of tasks can offer complementary
information which are aid learning. Figure 5.1 shows that knowing something has a saddle helps
predict it can be a horse. Thus, understanding the similarity and differences between multiple
such tasks can enable learning with limited supervision. As Rich’s fortune cookie tells us, this
ability to juggle many tasks is also a vital aspect of human learning. In this chapter, we study
how using multiple forms of supervision can help regularize feature representations and improve
performance on supervision starved categories and tasks.

In the recent recognition literature, using multiple tasks has given performance improvements,
e.g., the gains in segmentation [164] and detection [138, 139]. A key takeaway from these works is
that multiple tasks, and thus multiple types of supervision, helps achieve better performance with
the same input. But unfortunately, the network architectures used by them for multi-task learning
differ notably. There are no insights or principles for how one should choose ConvNet architectures
for multi-task learning. In this chapter, we propose a principled solution for multi-task learning.

5.0.1 Multi-task sharing: an empirical study

How should one pick the right architecture for multi-task learning? Does it depend on the final
tasks? Should we have a completely shared representation between tasks? Or should we have a
combination of shared and task-specific representations? Is there a principled way of answering
these questions?

To investigate these questions, we first perform extensive experimental analysis to understand
the performance trade-offs amongst different combinations of shared and task-specific representa-
tions. Consider a simple experiment where we train a ConvNet on two related tasks (e.g., semantic
segmentation and surface normal estimation). Depending on the amount of sharing one wants
to enforce, there is a spectrum of possible network architectures. Figure 5.2(a) shows different
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Has saddle Four legs Object location

Surface Normals Sem. Segmentation

Surface orientation Pixel labels

Figure 5.1: Given an input image, one can leverage multiple related properties to improve performance by using a
multi-task learning framework. In this chapter, we propose cross-stitch units, a principled way to use such a multi-task
framework for ConvNets.

ways of creating such network architectures based on AlexNet [221]. On one end of the spectrum
is a fully shared representation where all layers, from the first convolution (conv2) to the last
fully-connected (fc7), are shared and only the last layers (two fc8s) are task specific. An example
of such sharing is [139] where separate fc8 layers are used for classification and bounding box
regression. On the other end of the sharing spectrum, we can train two networks separately for
each task and there is no cross-talk between them. In practice, different amount of sharing tends to
work best for different tasks.

So given a pair of tasks, how should one pick a network architecture? To empirically study this
question, we pick two varied pairs of tasks:

• We first pair semantic segmentation (SemSeg) and surface normal prediction (SN). We believe
the two tasks are closely related to each other since segmentation boundaries also correspond to
surface normal boundaries. For this pair of tasks, we use NYU-v2 [374] dataset.

• For our second pair of tasks we use detection (Det) and Attribute prediction (Attr). Again
we believe that two tasks are related: for example, a box labeled as “car” would also be a
positive example of “has wheel” attribute. For this experiment, we use the attribute PASCAL
dataset [94, 106].

We exhaustively enumerate all the possible Split architectures as shown in Figure 5.2(a) for these
two pairs of tasks and show their respective performance in Figure 5.2(b). The best performance for
both the SemSeg and SN tasks is using the “Split conv4” architecture (splitting at conv4), while
for the Det task it is using the Split conv2, and for Attr with Split fc6. These results indicate two
things – 1) Networks learned in a multi-task fashion have an edge over networks trained with one
task; and 2) The best Split architecture for multi-task learning depends on the tasks at hand.

While the gain from multi-task learning is encouraging, getting the most out of it is still cum-
bersome in practice. This is largely due to the task dependent nature of picking architectures and
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Figure 5.2: We train a variety of multi-task (two-task) architectures by splitting at different layers in a ConvNet [221]
for two pairs of tasks. For each of these networks, we plot their performance on each task relative to the task-specific
network. We notice that the best performing multi-task architecture depends on the individual tasks and does not
transfer across different pairs of tasks.

the lack of a principled way of exploring them. Additionally, enumerating all possible architectures
for each set of tasks is impractical. This chapter proposes cross-stitch units, using which a single
network can capture all these Split-architectures (and more). It automatically learns an optimal
combination of shared and task-specific representations. We demonstrate that such a cross-stitched
network can achieve better performance than the networks found by brute-force enumeration.

5.1 Background

Generic Multi-task learning [46, 388] has a rich history in machine learning. The term multi-task
learning (MTL) itself has been broadly used [13, 98, 191, 345, 447, 450] as an umbrella term to
include representation learning and selection [25, 97, 209, 303], transfer learning [311, 332, 455]
etc. and their widespread applications in other fields, such as genomics [304], natural language
processing [68, 69, 260] and computer vision [15, 86, 205, 209, 328, 411, 443, 464]. In fact, many
times multi-task learning is implicitly used without reference; a good example being fine-tuning or
transfer learning [332], now a mainstay in computer vision, can be viewed as sequential multi-task
learning [46]. Given the broad scope, in this section we focus only on multi-task learning in the
context of ConvNets used in computer vision.

Multi-task learning is generally used with ConvNets in computer vision to model related tasks
jointly, e.g. pose estimation and action recognition [143], surface normals and edge labels [433], face
landmark detection and face detection [461, 466], auxiliary tasks in detection [139], related classes
for image classification [406] etc. Usually these methods share some features (layers in ConvNets)
amongst tasks and have some task-specific features. This sharing or split-architecture (as explained
in Section 5.0.1) is decided after experimenting with splits at multiple layers and picking the best
one. Of course, depending on the task at hand, a different Split architecture tends to work best,
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Figure 5.3: We model shared representations by learning a linear combination of input activation maps. At each layer
of the network, we learn such a linear combination of the activation maps from both the tasks. The next layers’ filters
operate on this shared representation.

and thus given new tasks, new split architectures need to be explored. In this chapter, we propose
cross-stitch units as a principled approach to explore and embody such Split architectures, without
having to train all of them.

In order to demonstrate the robustness and effectiveness of cross-stitch units in multi-task
learning, we choose varied tasks on multiple datasets. In particular, we select four well established
and diverse tasks on different types of image datasets: 1) We pair semantic segmentation [168,
367, 368] and surface normal estimation [90, 122, 433], both of which require predictions over all
pixels, on the NYU-v2 indoor dataset [374]. These two tasks capture both semantic and geometric
information about the scene. 2) We choose the task of object detection [111, 139, 141, 359] and
attribute prediction [3, 104, 233] on web-cross-stitch/images from the PASCAL dataset [94, 106].
These tasks make predictions about localized regions of an image.

5.2 Cross-stitch Networks

In this chapter, we present a novel approach to multi-task learning for ConvNets by proposing cross-
stitch units. Cross-stitch units try to find the best shared representations for multi-task learning.
They model these shared representations using linear combinations, and learn the optimal linear
combinations for a given set of tasks. We integrate these cross-stitch units into a ConvNet and
provide an end-to-end learning framework. We use detailed ablative studies to better understand
these units and their training procedure. Further, we demonstrate the effectiveness of these units
for two different pairs of tasks. To limit the scope of this paper, we only consider tasks which take
the same single input, e.g., an image as opposed to say an image and a depth-map [156].

5.2.1 Split Architectures

Given a single input image with multiple labels, one can design “Split architectures” as shown in
Figure 5.2. These architectures have both a shared representation and a task specific representation.
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‘Splitting’ a network at a lower layer allows for more task-specific and fewer shared layers. One
extreme of Split architectures is splitting at the lowest convolution layer which results in two
separate networks altogether, and thus only task-specific representations. The other extreme is
using “sibling” prediction layers (as in [139]), which allows for a more shared representation. Thus,
Split architectures allow for a varying amount of shared and task-specific representations.

5.2.2 Unifying Split Architectures

Given that Split architectures hold promise for multi-task learning, an obvious question is – At
which layer of the network should one split? This decision is highly dependent on the input data
and tasks at hand. Rather than enumerating the possibilities of Split architectures for every new
input task, we propose a simple architecture that can learn how much shared and task specific
representation to use.

5.2.3 Cross-stitch units

Consider a case of multi task learning with two tasks A and B on the same input image. For the
sake of explanation, consider two networks that have been trained separately for these tasks. We
propose a new unit, cross-stitch unit, that combines these two networks into a multi-task network in
a way such that the tasks supervise how much sharing is needed, as illustrated in Figure 5.3. At
each layer of the network, we model sharing of representations by learning a linear combination of
the activation maps [25, 209] using a cross-stitch unit. Given two activation maps xA, xB from layer
l for both the tasks, we learn linear combinations x̃A, x̃B (Eq 5.1) of both the input activations and
feed these combinations as input to the next layers’ filters. This linear combination is parameterized
using α. Specifically, at location (i, j) in the activation map,x̃ijA

x̃
ij

B

 =

[
αAA αAB

αBA αBB

]xijA
x
ij

B

 (5.1)

We refer to this the cross-stitch operation, and the unit that models it for each layer l as the cross-stitch
unit. The network can decide to make certain layers task specific by setting αAB or αBA to zero, or
choose a more shared representation by assigning a higher value to them.

Backpropagating through cross-stitch units. Since cross-stitch units model linear combination,
their partial derivatives for loss L with tasks A,B are computed as
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∂L

∂αAB

=
∂L

∂x̃ijB
xijA ,

∂L

∂αAA

=
∂L

∂x̃ijA
xijA (5.3)

We denote αAB, αBA by αD and call them the different-task values because they weigh the
activations of another task. Likewise, αAA, αBB are denoted by αS, the same-task values, since they
weigh the activations of the same task. By varying αD and αS values, the unit can freely move
between shared and task-specific representations, and choose a middle ground if needed.

5.3 Design decisions for cross-stitching

We use the cross-stitch unit for multi-task learning in ConvNets. For the sake of simplicity, we
assume multi-task learning with two tasks. Figure 5.4 shows this architecture for two tasks A and
B. The sub-network in Figure 5.4(top) gets direct supervision from task A and indirect supervision
(through cross-stitch units) from task B. We call the sub-network that gets direct supervision from
task A as network A, and correspondingly the other as B. Cross-stitch units help regularize both
tasks by learning and enforcing shared representations by combining activation (feature) maps.
As we show in our experiments, in the case where one task has less labels than the other, such
regularization helps the “data-starved” tasks.

conv1, pool1 conv2, pool2
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Figure 5.4: Using cross-stitch units to stitch two AlexNet [221] networks. In this case, we apply cross-stitch units
only after pooling layers and fully connected layers. Cross-stitch units can model shared representations as a linear
combination of input activation maps. This network tries to learn representations that can help with both tasks A and B.
We call the sub-network that gets direct supervision from task A as network A (top) and the other as network B (bottom).

Next, we enumerate the design decisions when using cross-stitch units with networks, and in
later sections perform ablative studies on each of them.
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Cross-stitch units initialization and learning rates: The α values of a cross-stitch unit model linear
combinations of feature maps. Their initialization in the range [0, 1] is important for stable learning,
as it ensures that values in the output activation map (after cross-stitch unit) are of the same order
of magnitude as the input values before linear combination. We study the impact of different
initializations and learning rates for cross-stitch units in Section 5.4.

Network initialization: Cross-stitch units combine together two networks as shown in Figure 5.4.
However, an obvious question is – how should one initialize the networks A and B? We can
initialize networks A and B by networks that were trained on these tasks separately, or have the
same initialization and train them jointly.

5.4 Ablative analysis

We now describe the experimental setup in detail, which is common throughout the ablation
studies.

Datasets and Tasks: For ablative analysis we consider the tasks of semantic segmentation (SemSeg)
and Surface Normal Prediction (SN) on the NYU-v2 [374] dataset. We use the standard train/test
splits from [122]. For semantic segmentation, we follow the setup from [155] and evaluate on the
41 classes using the standard metrics from their work

Setup for Surface Normal Prediction: Following [433], we cast the problem of surface normal
prediction as classification into one of 20 categories. For evaluation, we convert the model predic-
tions to 3D surface normals and apply the Manhattan-World post-processing following the method
in [433]. We evaluate all our methods using the metrics from [122]. These metrics measure the error
in the ground truth normals and the predicted normals in terms of their angular distance (measured
in degrees). Specifically, they measure the mean and median error in angular distance, in which
case lower error is better (denoted by ‘Mean’ and ‘Median’ error). They also report percentage of
pixels which have their angular distance under a threshold (denoted by ‘Within t◦’ at a threshold of
11.25◦, 22.5◦, 30◦), in which case a higher number indicates better performance.

Networks: For semantic segmentation (SemSeg) and surface normal (SN) prediction, we use
the Fully-Convolutional Network (FCN 32-s) architecture from [261] based on CaffeNet [195]
(essentially AlexNet [221]). For both the tasks of SemSeg and SN, we use RGB cross-stitch/images
at full resolution, and use mirroring and color data augmentation. We then finetune the network
(referred to as one-task network) from ImageNet [79] for each task using hyperparameters reported
in [261]. We fine-tune the network for semantic segmentation for 25k iterations using SGD (mini-
batch size 20) and for surface normal prediction for 15k iterations (mini-batch size 20) as they gave
the best performance, and further training (up to 40k iterations) showed no improvement. These
one-task networks serve as our baselines and initializations for cross-stitching, when applicable.

Cross-stitching: We combine two AlexNet architectures using the cross-stitch units as shown in
Figure 5.4. We experimented with applying cross-stitch units after every convolution activation
map and after every pooling activation map, and found the latter performed better. Thus, the
cross-stitch units for AlexNet are applied on the activation maps for pool1, pool2, pool5, fc6
and fc7. We maintain one cross-stitch unit per ‘channel’ of the activation map, e.g., for pool1 we
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Table 5.1: Initializing cross-stitch units with different α values, each corresponding to a convex combination. Higher
values for αS indicate that we bias the cross-stitch unit to prefer task specific representations. The cross-stitched network
is robust across different initializations of the units.

Surface Normal Segmentation

Angle
Distance Within t◦

(Lower
Better) (Higher Better) (Higher Better)

(αS, αD) Mean Med. 11.25 22.5 30 pixacc mIU fwIU

(0.1, 0.9)
34.6 18.8 38.5 53.7 59.4 47.9 18.2 33.3

(0.5, 0.5)
34.4 18.8 38.5 53.7 59.5 47.2 18.6 33.8

(0.7, 0.3)
34.0 18.3 38.9 54.3 60.1 48.0 18.6 33.6

(0.9, 0.1)
34.0 18.3 39.0 54.4 60.2 48.2 18.9 34.0

have 96 cross-stitch units.

5.4.1 Initializing parameters of cross-stitch units

Cross-stitch units capture the intuition that shared representations can be modeled by linear
combinations [209]. To ensure that values after the cross-stitch operation are of the same order
of magnitude as the input values, an obvious initialization of the unit is that the α values form a
convex linear combination, i.e., the different-task αD and the same-task αS to sum to one. Note
that this convexity is not enforced on the α values in either Equation 5.1 or 5.2, but serves as a
reasonable initialization. For this experiment, we initialize the networks A and B with one-task
networks that were fine-tuned on the respective tasks. Table 5.1 shows the results of evaluating
cross-stitch networks for different initializations of α values.

5.4.2 Learning rates for cross-stitch units

We initialize the α values of the cross-stitch units in the range [0.1, 0.9], which is about one to
two orders of magnitude larger than the typical range of layer parameters in AlexNet [221].
While training, we found that the gradient updates at various layers had magnitudes which were
reasonable for updating the layer parameters, but too small for the cross-stitch units. Thus, we
use higher learning rates for the cross-stitch units than the base network. In practice, this leads
to faster convergence and better performance. To study the impact of different learning rates, we
again use a cross-stitched network initialized with two one-task networks. We scale the learning
rates (wrt. the network’s learning rate) of cross-stitch units in powers of 10 (by setting the lr_mult
layer parameter in Caffe [195]). Table 5.2 shows the results of using different learning rates for
the cross-stitch units after training for 10k iterations. Setting a higher scale for the learning rate
improves performance, with the best range for the scale being 102 − 103. We observed that setting
the scale to an even higher value made the loss diverge.
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Table 5.2: Scaling the learning rate of cross-stitch units wrt. the base network. Since the cross-stitch units are initialized
in a different range from the layer parameters, we scale their learning rate for better training.

Surface Normal Segmentation

Angle
Distance Within t◦

(Lower
Better) (Higher Better) (Higher Better)

Scale Mean Med. 11.25 22.5 30 pixacc mIU fwIU

1 34.6 18.9 38.4 53.7 59.4 47.7 18.6 33.5
10 34.5 18.8 38.5 53.8 59.5 47.8 18.7 33.5
102 34.0 18.3 39.0 54.4 60.2 48.0 18.9 33.8
103 34.1 18.2 39.2 54.4 60.2 47.2 19.3 34.0

Table 5.3: We initialize the networks A, B (from Figure 5.4) from ImageNet, as well as task-specific networks. We observe
that task-based initialization performs better than task-agnostic ImageNet initialization.

Surface Normal Segmentation

Angle
Distance Within t◦

(Lower
Better) (Higher Better) (Higher Better)

Init. Mean Med. 11.25 22.5 30 pixacc mIU fwIU

ImageNet 34.6 18.8 38.6 53.7 59.4 48.0 17.7 33.4
One-task 34.1 18.2 39.0 54.4 60.2 47.2 19.3 34.0

5.4.3 Initialization of networks A and B

When cross-stitching two networks, how should one initialize the networks A and B? Should
one start with task specific one-task networks (fine-tuned for one task only) and add cross-stitch
units? Or should one start with networks that have not been fine-tuned for the tasks? We explore
the effect of both choices by initializing using two one-task networks and two networks trained on
ImageNet [79, 351]. We train the one-task initialized cross-stitched network for 10k iterations and
the ImageNet initialized cross-stitched network for 30k iterations (to account for the 20k fine-tuning
iterations of the one-task networks), and report the results in Table 5.3. Task-specific initialization
performs better than ImageNet initialization for both the tasks, which suggests that cross-stitching
should be used after training task-specific networks.

5.4.4 Visualization of learned combinations

We visualize the weights αS and αD of the cross-stitch units for different initializations in Figure 5.4.
For this experiment, we initialize sub-networks A and B using one-task networks and trained the
cross-stitched network till convergence. Each plot shows (in sorted order) the α values for all the
cross-stitch units in a layer (one per channel). We show plots for three layers: pool1, pool5 and
fc7. The initialization of cross-stitch units biases the network to start its training preferring a
certain type of shared representation, e.g., (αS, αD) = (0.9, 0.1) biases the network to learn more
task-specific features, while (0.5, 0.5) biases it to share representations. Figure 5.4 (second row)
shows that both the tasks, across all initializations, prefer a more task-specific representation for
pool5, as shown by higher values of αS. This is inline with the observation from Section 5.0.1 that
Split conv4 performs best for these two tasks. We also notice that the surface normal task prefers
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Table 5.4: We show the sorted α values (increasing left to right) for three layers. A higher value of αS indicates a strong
preference towards task specific features, and a higher αD implies preference for shared representations. More detailed
analysis in Section 5.4.4. Note that both αS and αD are sorted independently, so the channel-index across them do not
correspond.

Layer (a) αS = 0.9, αD = 0.1 (b) αS = 0.5, αD = 0.5 (c) αS = 0.1, αD = 0.9

Segmentation Surface Normal Segmentation Surface Normal Segmentation Surface Normal
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shared representations as can be seen by Figure 5.4(b), where αS and αD values are in similar range.

5.5 Experiments
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Figure 5.5: Change in performance for attribute categories over the baseline is indicated by blue bars. We sort the
categories in increasing order (from left to right) by the number of instance labels in the train set, and indicate the
number of instance labels by the solid black line. The performance gain for attributes with lesser data (towards the left)
is considerably higher compared to the baseline. We also notice that the gain for categories with lots of data is smaller.

We now present experiments with cross-stitch networks for two pairs of tasks: semantic
segmentation and surface normal prediction on NYU-v2 [374], and object detection and attribute
prediction on PASCAL VOC 2008 [94, 106]. We use the experimental setup from Section 5.4 for
semantic segmentation and surface normal prediction, and describe the setup for detection and
attribute prediction below.

Dataset, Metrics and Network: We consider the PASCAL VOC 20 classes for object detection, and
the 64 attribute categories data from [106]. We use the PASCAL VOC 2008 [94, 106] dataset for our
experiments and report results using the standard Average Precision (AP) metric. We start with the
recent Fast-RCNN [139] method for object detection using the AlexNet [221] architecture.
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Training: For object detection, Fast-RCNN is trained using 21-way 1-vs-all classification with 20
foreground and 1 background class. However, there is a severe data imbalance in the foreground
and background data points (boxes). To circumvent this, Fast-RCNN carefully constructs mini-
batches with 1 : 3 foreground-to-background ratio, i.e., at most 25% of foreground samples in a
mini-batch. Attribute prediction, on the other hand, is a multi-label classification problem with 64
attributes, which only train using foreground bounding boxes. To implement both tasks in the Fast
R-CNN framework, we use the same mini-batch sampling strategy; and in every mini-batch only
the foreground samples contribute to the attribute loss (and background samples are ignored).

Scaling losses: Both SemSeg and SN used same classification loss for training, and hence we
were set their loss weights to be equal (= 1). However, since object detection is formulated as
1-vs-all classification and attribute classification as multi-label classification, we balance the losses
by scaling the attribute loss by 1/64.

Cross-stitching: We combine two AlexNet architectures using the cross-stitch units after every
pooling layer as shown in Figure 5.4. In the case of object detection and attribute prediction, we use
one cross-stitch unit per layer activation map. We found that maintaining a unit per channel, like
in the case of semantic segmentation, led to unstable learning for these tasks.

5.5.1 Baselines

We compare against four strong baselines for the two pairs of tasks and report the results in Table 5.5
and 5.6.

Single-task Baselines: These serve as baselines without benefits of multi-task learning. First
we evaluate a single network trained on only one task (denoted by ‘One-task’) as described in
Section 5.4. Since our approach cross-stitches two networks and therefore uses 2× parameters, we
also consider an ensemble of two one-task networks (denoted by ‘Ensemble’). However, note that
the ensemble has 2× network parameters for only one task, while the cross-stitch network has
roughly 2× parameters for two tasks. So for a pair of tasks, the ensemble baseline uses ∼ 2× the
cross-stitch parameters.

Multi-task Baselines: The cross-stitch units enable the network to pick an optimal combination
of shared and task-specific representation. We demonstrate that these units remove the need for
finding such a combination by exhaustive brute-force search (from Section 5.0.1). So as a baseline,
we train all possible “Split architectures” for each pair of tasks and report numbers for the best
Split for each pair of tasks.

There has been extensive work in Multi-task learning outside of the computer vision and
deep learning community. However, most of such work, with publicly available code, formulates
multi-task learning in an optimization framework that requires all data points in memory [54, 98,
151, 235, 390, 470, 471]. Such requirement is not practical for the vision tasks we consider.

So as our final baseline, we compare to a variant of [3, 472] by adapting their method to our
setting and report this as ‘MTL-shared’. The original method treats each category as a separate
‘task’, a separate network is required for each category and all these networks are trained jointly. Directly
applied to our setting, this would require training 100s of ConvNets jointly, which is impractical.
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Table 5.5: Surface normal prediction and semantic segmentation results on the NYU-v2 [374] dataset. Our method
outperforms the baselines for both the tasks.

Surface Normal Segmentation

Angle
Distance Within t◦

(Lower
Better) (Higher Better) (Higher Better)

Method Mean Med. 11.25 22.5 30 pixacc mIU fwIU

One-task 34.8 19.0 38.3 53.5 59.2 - - -
- - - - - 46.6 18.4 33.1

Ensemble 34.4 18.5 38.7 54.2 59.7 - - -
- - - - - 48.2 18.9 33.8

Split conv4 34.7 19.1 38.2 53.4 59.2 47.8 19.2 33.8

MTL-shared 34.7 18.9 37.7 53.5 58.8 45.9 16.6 30.1

Cross-stitch
[ours] 34.1 18.2 39.0 54.4 60.2 47.2 19.3 34.0

Thus, instead of treating each category as an independent task, we adapt their method to our
two-task setting. We train these two networks jointly, using end-to-end learning, as opposed to
their dual optimization to reduce hyperparameter search.

5.5.2 Semantic Segmentation and Surface Normal Prediction

Table 5.5 shows the results for semantic segmentation and surface normal prediction on the NYUv2
dataset [374]. We compare against two one-task networks, an ensemble of two networks, and the
best Split architecture (found using brute force enumeration). The sub-networks A, B (Figure 5.4)
in our cross-stitched network are initialized from the one-task networks. We use cross-stitch units
after every pooling layer and fully connected layer (one per channel). Our proposed cross-stitched
network improves results over the baseline one-task networks and the ensemble. Note that even
though the ensemble has 2× parameters compared to cross-stitched network, the latter performs
better. Finally, our performance is better than the best Split architecture network found using brute
force search. This shows that the cross-stitch units can effectively search for optimal amount of
sharing in multi-task networks.

5.5.3 Data-starved categories for segmentation

Multiple tasks are particularly helpful in regularizing the learning of shared representations[46, 98,
406]. This regularization manifests itself empirically in the improvement of “data-starved” (few
examples) categories and tasks.

For semantic segmentation, there is a high mismatch in the number of labels per category (see
the black line in Figure 5.6). Some classes like wall, floor have many more instances than other
classes like bag, whiteboard etc. Figure 5.6 also shows the per-class gain in performance using our
method over the baseline one-task network. We see that cross-stitch units considerably improve
the performance of “data-starved” categories (e.g., bag, whiteboard).
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Figure 5.6: Change in performance (meanIU metric) for semantic segmentation categories over the baseline is indicated
by blue bars. We sort the categories (in increasing order from left to right) by the number of pixel labels in the train
set, and indicate the number of pixel labels by a solid black line. The performance gain for categories with lesser data
(towards the left) is more when compared to the baseline one-task network.

Table 5.6: Object detection and attribute prediction results on the attribute PASCAL [106] 2008 dataset

Method Detection
(mAP)

Attributes
(mAP)

One-task 44.9 -
- 60.9

Ensemble 46.1 -
- 61.1

Split conv2 44.6 61.0
Split fc7 44.8 59.7

MTL-shared 42.7 54.1

Cross-stitch [ours] 45.2 63.0

5.5.4 Object detection and attribute prediction

We train a cross-stitch network for the tasks of object detection and attribute prediction. We
compare against baseline one-task networks and the best split architectures per task (found after
enumeration and search, Section 5.0.1). Table 5.6 shows the results for object detection and attribute
prediction on PASCAL VOC 2008 [94, 106]. Our method shows improvements over the baseline
for attribute prediction. It is worth noting that because we use a background class for detection,
and not attributes (described in ‘Scaling losses’ in Section 5.5), detection has many more data
points than attribute classification (only 25% of a mini-batch has attribute labels). Thus, we see
an improvement for the data-starved task of attribute prediction. It is also interesting to note that
the detection task prefers a shared representation (best performance by Split fc7), whereas the
attribute task prefers a task-specific network (best performance by Split conv2).
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5.5.5 Data-starved categories for attribute prediction

Following a similar analysis to Section 5.5.3, we plot the relative performance of our cross-stitch
approach over the baseline one-task attribute prediction network in Figure 5.5. The performance
gain for attributes with smaller number of training examples is considerably large compared to the
baseline (4.6% and 4.3% mAP for the top 10 and 20 attributes with the least data respectively). This
shows that our proposed cross-stitch method provides significant gains for data-starved tasks by
learning shared representations.

5.6 Discussion

In this chapter, we presented cross-stitch units which are a generalized way of learning shared
representations for multi-task learning in ConvNets. Cross-stitch units model shared representa-
tions as linear combinations, and can be learned end-to-end in a ConvNet. These units generalize
across different types of tasks and eliminate the need to search through several multi-task network
architectures on a per task basis. We show detailed ablative experiments to see effects of hyper-
parameters, initialization etc. when using these units. We also show considerable gains over the
baseline methods for data-starved categories. Studying other properties of cross-stitch units, such
as where in the network should they be used and how should their weights be constrained, is an
interesting future direction.
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Chapter 6

Scaling to Multiple Tasks at Inference

The era of the cloud’s total dominance is drawing to a close. The rise of
the “internet of things” is one reason why computing is emerging from

the centralised cloud and moving to an “edge” of networks and
intelligent devices.

The Economist, 2018

In the previous chapter, we showed how using multiple tasks can help improve performance
for data-starved tasks. The ‘cross-stitch’ unit mechanism we introduced was automatically able to
find the optimal multi-task architecture for a ConvNet. At training time, this makes the architectural
search process both easy and efficient. However, at inference time, the number of parameters of
the final multi-task model scale linearly with the number of tasks. This makes inference expensive
and is a major bottleneck especially on devices which have limited computation power. In this
chapter, we see how to make efficient inference while scaling to multiple tasks. This chapter focuses
on video processing on edge devices, e.g., a parking lot camera that records video and processes
it to report open parking spots, fender benders, driver behaviors etc. These edge devices are a
common way to address bandwidth limitations, intermittent connectivity (e.g., in drones), and
real-time requirements. Applications executing at the edge, though, face tighter bounds on compute
resource availability than in datacenters. These devices have limited compute and power which
requires computationally efficient algorithms. Before tuning algorithms for these scenarios, we
should ask ourselves how widespread are these devices compared to the traditional compuing
hardware (datacenter machines) that we need to care about tuning performance for them? If one is
to believe technological predictions (quote from The Economist above), ‘edge computing’ will soon
dominate the traditional datacenter based ‘cloud computing’. Naturally, optimal video application
performance requires tuning for such limited compute resources [74, 159, 208, 462, 483].

Unfortunately, what resources will be available to the application at deployment time is often
unknown to the developer. Further, resource availability changes as additional applications arrive
and depart. Instead, individual application developers typically develop their models in isolation,
assuming either infinite resources or a predetermined resource allotment. When a number of
separately tuned models are run concurrently, resource competition forces the video stream to be
analyzed at a lower frame rate—leading to unsatisfactory results for the running applications, as
frames are dropped and events in those frames are missed. However, due to the popularity of
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Figure 6.1: Mainstream Architecture. Offline, for each task, M-Trainer takes a labeled dataset and outputs
an M-Package. M-Scheduler takes independently generated M-Packages, and chooses the task-specific
degree of specialization and frame rate. M-Scheduler deploys the unified multi-task model to M-Runner,
performing inference on the edge.

transfer learning (Sec. 6.1) [308, 333, 377, 454], contention can be reduced by eliminating redundant
computation between concurrent applications [159].

Mainstream is a new system for video processing that addresses resource contention by
dynamically tuning degrees of work sharing among concurrent applications. Specifically, it focuses
on sharing portions of DNN inference, which consumes the majority of video processing cycles.
Mainstream exploits the potential “shared stem” of computation that results from application
developers’ use of the standard DNN training approach of transfer learning. In transfer learning,
training begins with an existing, pre-trained DNN, which is then re-trained for a different task.
Typically, only a subset of the pre-trained DNN is specialized; when different applications start
with the same pre-trained DNN, Mainstream identifies the common layers and executes them only
once per frame.

A critical challenge of exploiting shared stems well is determining how much to share. Appli-
cation developers usually specialize as much of the pre-trained DNN as is necessary to achieve
high model accuracy. More specialization, however, means that less of the pre-trained DNN can be
shared. Thus, there is an explicit trade-off between the benefits of greater per-frame accuracy (via
more-specialized DNNs) and processing more frames of the input video stream (via more sharing
of less-specialized DNNs). The right choice depends on the edge device resources, the number of
concurrent applications, and their individual characteristics.

Deployment time model selection. Mainstream moves the final DNN model selection step
from application development time to deployment time, when the hardware resources and concur-
rent application mix are known. By doing so, Mainstream has the necessary information to select the
right amount of DNN specialization (and thus sharing) for each application. As applications come
and go, Mainstream can dynamically modify its choices. Previous systems like VideoStorm [462]
select models by considering each application independently. The specialization-vs-sharing trade-off,
however, can only be optimized when considering applications jointly. Joint optimization produces a
combinatorial set of options, which Mainstream navigates using application metadata and domain-
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          Sensor Frame
Ingest

Image
Transform DNN Classifier

Figure 6.2: Example computation pipeline for event detection.

specific models; the system uses this information to estimate the effects of DNN specialization and
frame sampling rate on application performance. Unlike black-box approaches, Mainstream can
jointly optimize for stem-sharing without needing to profile each combination.

Mainstream consists of three main parts (Fig. 6.1). The M-Trainer toolkit helps application
developers manage their training process to produce the information needed to allow tuning
the degree of specialization at deployment time. Current standard practice is for developers to
experiment with different model types, hyperparameters, and degrees of re-training to find the
best choice for an assumed resource allocation, discarding the trained DNN models not chosen.
M-Trainer instead keeps “less optimal” candidate DNN models, together with associated training-
time information (e.g., per-frame accuracy, event detection window). The M-Scheduler uses this
information, together with a profile of per-layer runtime on the target edge device, to determine the
best candidate for each application—including the degrees of specialization and, thus, sharing. It
efficiently searches the option space to maximize application quality (e.g., average F1 score among
the applications). The M-Runner runtime system runs the selected DNNs, sharing the identical
unspecialized layers.

Experiments with several datasets and event detection tasks on an edge node confirm the
importance of making deployment-time decisions and the effectiveness of Mainstream’s approach.
Results show that dynamic selection of shared stems can improve F1-scores by up to 87X relative
to the common approach of using fully-independent per-application DNNs (No-Sharing) and
up to 47% compared to a static approach of retraining only the last DNN layer and sharing all
others (Max-Sharing). Across a range of concurrent applications, Mainstream adaptively selects a
balance between per-frame accuracy and frame sampling rate that consistently provides superior
performance over such static approaches.

Contributions. This chapter makes three main contributions. First, it highlights the critical
importance of reducing aggregate per-frame CPU work of multiple independently developed video
processing applications via stem-sharing; No-Sharing is unable to support even three concurrent
applications on our edge node deployment. Second, it identifies the goodness trade-off between
per-frame quality and the frame sampling rate dictated by the degree of DNN specialization
(and thus the amount of sharing). Third, it describes and demonstrates the efficacy of the Main-
stream approach for automatically deploying the right degree of specialization for each submitted
application’s DNN.

6.1 Background

DNNs are a powerful tool used in computer vision tasks such as human action recognition [377],
object detection [142], scene geometry estimation [91], face recognition [400], etc. Fig. 6.2 shows a
typical computation pipeline for an image classification application. Although frame ingest and
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Figure 6.3: (a) depicts a base DNN trained from scratch for its task. (b) and (c) show two new task DNNs, fine-tuned
against the base DNN. App. #1 freezes more layers during training than App. #2. (d) shows how Mainstream runs the
applications concurrently. Layers frozen by both App. #1 and App. #2 can be shared.

image preprocessing are necessary stages of computation, they are low cost and easily shared
between concurrent applications. DNNs, on the other hand, are typically unique to each application
and computationally expensive: in one image classification application we run, the DNN inference
incurs 25X more latency than the preprocessing steps.

DNNs and transfer learning. A machine learning (ML) model is a parameterized function that
performs a task. Training is the process of learning parameter values (called weights) such that the
model will approximate the desired function with some measure of accuracy. For example, when
training an image classifier, one might examine labeled input images and use gradient descent to
find a set of weights that minimizes a loss function over the labels. Using the trained model to find
the function’s output given a new, unlabeled input is called inference.

DNNs are a class of ML models that usually have a large input space, such as the pixels of an
image. A DNN can be represented by a graph where nodes are organized into layers; each node
computes a function of its inputs, which are outputs from the previous layer.

The “deep” in DNNs refers to their many layers. Increasingly, successful applications of
DNNs have largely been the result of building models with more layers that take larger vectors of
inputs [166, 221, 375, 399]. The success of these models has hinged critically upon the arrival of
very large, labeled datasets for training [6, 78, 253].

Training these large models is notoriously hard. One often lacks sufficient labeled data or
computational resources to train such a model. Transfer learning is an alternative to training a
model from scratch. Here, a model that has already been trained on a similar task (a base DNN
as in Fig. 6.3(a)), is used as an initialization point or feature extractor for the new target DNN.
During training, a subset of the old parameters are frozen and do not change. The remaining
free parameters are then retrained on the new task with a new training dataset (Fig. 6.3(b) and
Fig. 6.3(c)). This process fine-tunes these parameters to achieve a result comparable to end-to-end
training on the entire DNN, but does so with much less data and at a much lower computational
cost. In practice, few practitioners train networks from scratch, let alone develop novel network
architectures. Transfer learning via one of a few popular neural networks is standard practice.

DNNs for image classification and event detection. Although we believe that Mainstream’s
approach is generally applicable to video stream analysis, in this chapter, we focus on applications
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Architecture Number
of Layers

ImageNet
Top-1

Accuracy (%)

InceptionV3 314 78.0
MobileNets-224 84 70.7
ResNet-50 177 75.6

Table 6.1: Top-1 accuracy of three neural networks architectures trained on the ImageNet dataset.

that use image-classification DNNs to perform event detection.

Image classification aims to assign one label from a set of categories or classes to each image.
For example, a 10-class classifier takes an input image and returns a 10-item vector of probabilities
representing the likelihood that the image belongs to each class. Top-N accuracy is the probability
that the correct label is among the top-N highest probability output labels. So, Top-1 accuracy
indicates the fraction of images that the model classifies correctly. We refer to this metric as the
per-frame accuracy in the context of video classification. Popular neural network architectures
for image classification include ResNet [166], InceptionV3 [399], and MobileNets [178]. Table 6.1
describes these three neural networks and their Top-1 accuracy achieved on the ImageNet dataset
[78]. Networks trained on ImageNet are popular base-DNNs for image classification tasks.

We define an event as a contiguous group of frames containing some visible phenomenon
that we are trying to identify: e.g., a cyclist passing by, or a puff of smoke being emitted. One
way of doing event detection is to perform image classification across a sequence of frames. An
event is detected if at least one of the contiguous frames is sampled, analyzed, and correctly
labeled. Previous works [241] have also used this existence metric to measure recall and precision
of range-based queries. (Event detection is not to be confused with object detection, where the
goal is to locate an object in a single frame. Indeed, object detection is another way of performing
event detection.) We evaluate event classification applications by measuring the event F1-score, the
harmonic mean between event recall and event precision. The event recall reports the proportion of
ground truth events identified. The event precision reports the proportion of classified events that
are true positives. Note that these metrics are relative to the detection of events across multiple
frames and are distinct from per-frame metrics (e.g., Top-1 accuracy).

6.2 Mainstream Approach: What and Why

Sharing computation between DNNs. When supporting multiple inference applications on a
single infrastructure, the common approach is to execute every application’s DNN model inde-
pendently. We refer to this as a “No Sharing” approach. To avoid redundant work, Mainstream
instead computes results for DNN layers common to multiple concurrent applications just once
and distributes the outputs of shared stems to the specialized layers of all sharing applications.
This is analogous to common subexpression elimination used in other domains, e.g., optimizing
compilers or database query planners.

Fig. 6.3 illustrates how compute sharing can be leveraged when two DNNs are fine-tuned
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Figure 6.4: Conflicting consequences of DNN compute sharing. (a) shows the frame processing rate for 1–8 concurrent
event detection applications as a function of the fraction of the InceptionV3 DNN they share, from No-Sharing on the
left to sharing all but the last layer (Max-Sharing) on the right. The experiments are run on the hardware described
in Section 6.6. (b) shows Top-1 accuracy as a function of the fraction of unspecialized layers for three popular DNN
architectures (ResNet-50 [166], InceptionV3 [399], and MobileNets-224 [178]) using six of the datasets described in
Table 6.2. We trained each classifier using all three network architectures but omitted some curves for brevity. The
horizontal axis starts from fully specialized DNNs on the left to only the last layer being specialized on the right; recall
that potential computation sharing is limited to the unspecialized layers.

from a common pre-trained model and have some unspecialized layers in common. Compute
sharing can significantly affect per-frame computation cost and improve throughput for a given
CPU resource. Fig. 6.4a quantifies this effect. It shows the throughput achieved by Mainstream
running up to eight concurrent InceptionV3-based event detection pipelines, as a function of how
many DNN layers they have in common (i.e., their common degree of specialization). With no
sharing (the left-most points), adding a second application halves throughput, which continues to
degrade geometrically as more applications are added. Moving to the right, throughput improves
as more layers are shared. When all but the last layer are shared, additional applications can be run
at very low marginal cost.

On the other hand, there are costs to enabling sharing by leaving many layers unspecialized. In
particular, the per-frame accuracy of a model may be lower when only a few layers are specialized.
Fig. 6.4b shows the effect of specialization on per-frame accuracy for several combinations of DNN
architectures and classification tasks. As expected, accuracy decreases slowly as less-specialized
networks are employed (and hence more sharing is enabled)— with a large decrease occurring only
when the fraction of the network specialized is very small. This characteristic enables Mainstream
to share large portions of the network with low accuracy loss.

Adaptive management of the sharing opportunity. Since transfer learning is so commonly
used by ML developers, and base models are shared within organizations and on the Internet,
there may be many opportunities to exploit inter-DNN redundancy in the unspecialized layers.
Most developers either use a popular default of specializing only the last layer (which is great for
sharing potential, at the potential cost of model accuracy) or determine the degree of specialization
based on the amount of training data available, since retraining too many layers without sufficient
training data leads to over-fitting. Notably, each developer decides independently.
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The problem with this approach is that the impact of sharing computation on application
quality depends on factors only known at deployment time: the set of concurrent applications
and the resources of the edge node on which they are run. Hence, Mainstream defers the decision
regarding how much specialization to employ from application development time to deployment
time.

Impact of sampling rate for event detection. Given the trade-off between per-frame accuracy
and frame processing throughput, picking the right degree of specialization is challenging. Consider
an application for monitoring environmental pollution from trains, which is being built using a
train detector we deployed. When the application detects a train coming into view, it triggers the
capture of high fidelity frames of the train’s smoke stack (for subsequent pollution analysis).

Increasing specialization to improve per-frame accuracy increases the probability of correctly
classifying frames containing trains— but reduces shared computation. This, in turn, leads to less
frequent sampling, which removes opportunities to analyze frames containing a particular view
of a train. A higher frame rate increases the probability that an event will be observed in more
frames, creating more opportunities for detection. So, the question becomes: should one sample
more frames using a less accurate model or sample fewer frames using a more accurate model?

Analytical model for event detection. The Mainstream scheduler (Sec. 6.5) navigates this
“accuracy vs. sampling rate” space by evaluating various candidate {specialization, frame rate} tuples.
To do so, however, the scheduler must be able to interpret the benefit at the application (not
per-frame) level. Hence, we propose an analytical model (sketched in Equations 6.1-6.4, below)
that approximates the event F1-score for a given DNN, given estimates of (a) event length, (b) event
frequency, (c) the correlation between frames (discussed below), (d) per-frame DNN accuracy, and
(e) DNN analysis frame rate. The frame rate (e) comes directly from the scheduler’s proposed tuple;
similarly, the accuracy (d) associated with a given specialization proposal will be available to the
scheduler (see Sec. 6.4). Values for event length (a), frequency (b), and correlation (c) can either be
measured using representative video samples, or they can be estimated by the developer.

We are able to predict the application’s F1-score by estimating the expected number of frames
per event that we will have the opportunity to analyze and computing the probability that analyzing
the set of frames will result in a detection. The expected number of frames analyzed per event
is dependent on the event length and frame rate. The per-frame Top-1 accuracy represents the
probability that we will classify any individual frame correctly. However, this does not factor in the
fact that sequential frames of an event may be correlated in some way. We therefore introduce and
estimate the inter-frame correlation, which measures the marginal benefit of analyzing more frames
of a single event.

The inter-frame correlation, corr , is based on conditional probabilities. For frames correspond-
ing to an event, if P(Xi) and P(¬Xi) are the probabilities of detecting or not detecting the event in
frame i, respectively, then P (¬X2 | ¬X1) is the probability of not detecting the event in frame X2,
given that we did not detect it in frame X1. This conditional probability can be measured empiri-
cally from training data. Relying on the Kolmogorov definition, we can calculate the probability
the event is detected in at least one of the two frames as 1− P (¬X2 | ¬X1) ∗ P (¬X1). This logic can
be extended to approximate the probability of detecting the event in N tries and to estimate recall.

To estimate recall, we calculate the probability that our DNN will correctly classify at least one
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frame of an event using the following steps:

N =

{⌈
d

stride

⌉
w.p. d−(stride%d)

stride⌊
d

stride

⌋
else

(6.1)

Pmiss_1 = 1− accuracyper−frame (6.2)

Pmiss_N = corrN−1 ∗ Pmiss_1 (6.3)
recall = 1− Pmiss_N (6.4)

We use Eq. 6.1 to calculate N , the expected number of frames of the event that the model
will process. Here, d is the event length, and stride is the inverse of the frame rate. Equation 6.3
estimates the probability the DNN misclassifies all N analyzed frames. Recall is the complement:
the probability that we correctly classify at least one frame of the event.

To estimate the false positive rate, we repeat this calculation, except that d is the number
of frames between events (derived from the event frequency), and Pmiss_1 is the probability of
true negatives. The true positive rate, the false positive rate, and the event frequency are used to
calculate the precision. The F1-score is the harmonic mean between precision and recall.

To evaluate our model, we profile an application and measure the actual recall observed
when running the event detector application (e.g., train detection) on the video stream at different
sampling rates (Fig. 6.5). This was measured by averaging the recall achieved from 10,000 trials of
sampling at each sample rate. The result is plotted by the “Profiled” line. Our analytical model
(“Mainstream Prediction”) is sufficiently accurate to describe the complex relationship between
frame sample rate and application recall. Mainstream uses this analytical model to efficiently
optimize for the trade-off between per-frame accuracy and frame rate.
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We use Mainstream for event detection but believe its approach can be generally applied to
DNN-based tasks where application quality depends not only on its model, but also on its input
sampling rate (e.g., object tracking, action recognition.)

6.3 Mainstream Architecture

We have developed Mainstream, a training and runtime system for DNN-based live analytics of
camera streams, which (a) enables efficient sharing of computation between detection applications,
(b) maximizes event F1-score across all tasks, and (c) allows each task to be independently devel-
oped, trained, and deployed. Fig. 6.1 shows the architecture of Mainstream, which consists of three
components: M-Trainer, M-Scheduler, and M-Runner.

To deploy a new application to Mainstream, the user provides a corresponding labeled training
dataset to their local instance of M-Trainer (Step 1). M-Trainer uses the dataset to train a number
of potential models, with varying numbers of specialized layers. This Model Set and associated
metadata are then assembled into an “M-Package” (Step 2). Note that these are offline steps,
performed just once per application prior to deployment, independent of all other tasks. At
runtime, M-Scheduler uses the M-Packages of all currently-deployed applications to determine, for
each application, the degree of DNN sharing and sampling rate such that, across all applications,
the event F1-score is maximized, subject to the resource limits of the edge platform (Step 3). M-
Scheduler runs in the datacenter, and is executed once for each scheduling event (e.g., a change in
the deployed set of applications, or in available hardware resources). M-Runner then executes the
selected model configuration on edge devices (Step 4) and returns app-specific results in real-time
(Step 5).

M-Runner is a relatively straightforward execution system for running visual processing
pipelines. It accepts a DAG, where each node represents a unit of independent computation, and
connections represent data flow. Fig. 6.2 illustrates the logical DAG for an image classification
application. Most of the computation is expected in the “DNN” process, which evaluates the
merged DNN of all concurrent tasks. This combined DNN, as illustrated in Fig. 6.3(d), represents
the set of models selected by M-Scheduler across all tasks. This DNN is structured as a tree, with
sets of layers branching from the shared stem. M-Runner executes the shared stem once per frame,
reducing the total processing costs of the deployed tasks.

We next describe how M-Trainer independently trains model candidates for potential sharing
(Sec. 6.4) and how M-Scheduler dynamically chooses among them (Sec. 6.5).

6.4 Distributed Sharing-Aware Training

M-Trainer produces a set of models for each task so that they can be combined dynamically at
runtime to maximize collective performance. Application developers use M-Trainer independently
at different times and locations.

One approach to sharing computation between applications would be to jointly train them us-
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ing a multi-task network. This, however, requires centralized training of applications. MCDNN [159]
proposed fine-tuning models independently and sharing the unspecialized DNN layers. This static
approach prevents M-Scheduler from dynamically tailoring stem-sharing to the available resources.
In contrast, M-Trainer generates a set of models that vary in the number of specialized layers. These
models compose an application-specific Model Set. The generation of Model Sets allows for the late
binding of the degree of specialization to deployment time, when the platform characteristics and
co-deployed applications are known.

To construct a Model Set, M-Trainer first analyzes the structure of the base DNN to identify
branchpoints, the potential boundaries between frozen and specialized layers. Using the app-specific
training data provided by the developer, M-Trainer generates a set of fine-tuned DNN models,
one per branchpoint, where layers up to the branchpoint are frozen, and the rest are specialized.
Only the models at the Pareto-optimal frontier with respect to number of layers specialized and
estimated accuracy are actually included in the M-Package. This eliminates from consideration
models that reduce accuracy, while requiring more specialization. For example, an overfitted model,
caused by specializing too many layers with insufficient training data, will not be included.

Model Sets are bundled together with application metadata into an M-Package. This metadata
includes the measured per-frame accuracy of each model (we use a portion of the data as the
validation dataset.) The expected minimum event duration, event frequency, and inter-frame
correlation are optionally measured from the training data and included in the M-Package, or
directly provided by the application developer.

The construction of the M-Package is an offline operation, which is run just once per application.
For each application, M-Trainer must train multiple models. Although training a model from scratch
can be very resource intensive, fine-tuning is much quicker. M-Trainer creates Model Sets with 15
model options in 8 hours on a single GPU (Sect. 6.6). Note that the computation for generating all
of the models is easily parallelized in a datacenter setting, and may not be significantly higher than
traditional fine-tuning. For example, to find the right number of layers to specialize in order to
maximize accuracy, one may need to generate these models anyway. The key difference here is that
intermediate runs are not discarded, and the final selection is made at run time by M-Scheduler.

As each application’s models are independently trained and analyzed, no coordination or
sharing of training data is needed between developers of different tasks. The resulting M-Package,
however, contains enough information that M-Scheduler, at run time, can optimize across the
independently-developed tasks.

6.5 Dynamic Sharing-Aware Scheduling

At each scheduling event (typically, an application submission or termination), M-Scheduler uses
the M-Packages created by the various per-application M-Trainers to produce a new overall
schedule that optimizes some global objective function, subject to resource constraints (currently,
M-Scheduler maximizes average event F1-score across applications). The schedule consists of a
DNN model selection (indicating the degree of sharing) and target frame-rate for every running
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application.1 The final schedule is a tree-like model with applications splitting from a shared stem
at potentially different branch points, with each application able to run at its own frame rate.

M-Scheduler optimization algorithm. With N applications to schedule, S possible specializa-
tion settings per application, and R frame-rate settings per application, the number of possible
schedules is (S · R)N . Although this space is large (e.g., N ≈ 10, R ≈ 10, and S ≈ 10 in our
experiments), M-Scheduler can efficiently determine a good schedule using a greedy heuristic
(Algo. 1). We compare the schedules generated by our greedy scheduler to those of an exhaustive
scheduler in >4,800 workloads each consisting of up to 10 applications, and find that the greedy
schedules are on average within 0.89% of optimal.

Algorithm 1 Scheduler optimization algorithm

function GET NEXT MOVE(schedule)
. Finds change to schedule with the highest benefit

cost
end function
function SCHEDULE(budget)

sched← GET SCHEDULE(max_sharing,min_fps)
while True do

next_move← GET NEXT MOVE(sched)
cost← cost + GET COST(next_move)
if cost < budget then

sched← UPDATE SCHEDULE(next_move)
else return sched
end if

end while
end function

Essentially, at each step of our iterative algorithm, the scheduler considers making a move
which improves the application quality of a single application by tweaking its frame rate and/or
model specialization. The algorithm greedily selects the move that yields the best ratio of benefit
to cost, defined below. Naturally, before this iterative refinement, the schedule is initialized to the
lowest cost configuration— Max-Sharing with minimum frame rate. At any iteration step, the
number of possible moves is bounded by S ·R ·N . The total number of moves per invocation of
the scheduler is similarly bounded by S ·R ·N , but in practice is much fewer as the set of potential
moves that fit within the computational budget is exhausted.

Measuring the Benefit of a Move. The benefit associated with a move captures the improve-
ment in F1-score for the application associated with that move. This value is calculated using the
analytical model presented in Sect. 6.2 and the application metadata in the M-Package.

Measuring the Cost of a Move. The cost value considered represents the computational
resources (e.g., CPU-seconds per second) consumed by a given schedule arrangement and depends
on the number of shared subgraphs, the number of task-specific subgraphs, and the intended
throughput (frame-rate) of each subgraph. The relative cost of a schedule is the sum of the
execution time of each model layer, multiplied by the desired throughput. Consider for example
a schedule with two applications, both executing at F FPS. Assume they share a compute stem

1Here, we assume that some admission control policy (outside the scope of this work) has been applied to ensure that
some schedule is feasible for the set of running applications.
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A, and then branch to specialized subgraphs B1 and B2. If CA represents the execution cost (in
CPU-seconds per frame, say) of A, and CB the execution cost of B1 and B2, then the total cost of
the schedule is F · CA + 2F · CB . Adding a third application based on the same network, using the
same branchpoint and frame rate will add another factor of F · CB to the schedule cost.

To most accurately model the compute costs (e.g., CA and CB), a forward pass execution of
the base DNN should be executed and measured once on the target hardware. Note that as cost is
relatively insensitive to the assigned model weights, each base DNN need only run one time (ever)
per target hardware, not once per trained application.

Max-Min Fairness Among Applications. Although stem-sharing improves overall system
efficiency, maximizing a global objective may lead to an inequitable allocation of resources for
individual applications. Thus, M-Scheduler can also be run in max-min fairness mode, which
maximizes the minimum benefit among applications, instead of the average. Max-min fairness is
scheduled by searching the space using dynamic programming.

X-Voting To Improve Precision. Mainstream uses voting across frames to improve precision,
and consequentially F1-score. With X-voting, Mainstream requires X consecutive positives to
identify an event. While X-voting decreases false positives, it is not guaranteed to increase precision.
For X-voting to improve precision, it must decrease false positives at a higher rate than true
positives. The ideal X-voting configuration again depends on the applications and the resources
available. A higher X incurs fewer false positives, but requires more cost to sustain high recall
(either by increasing FPS or increasing specialization). We evaluate the effect of various X-voting
configurations in Sect. 6.7.

6.6 Experimental Setup

To evaluate our system, we implement seven different event detection applications. We refer to
the set of applications as 7-HYBRID. These are listed in Table 6.2, along with the datasets we used
to train and test them. A pedestrian-detection application (PEDESTRIAN) is trained based on the
fully-labeled, publicly-available Urban Tracking video dataset [197]. Our application to classify
car models (CAR) uses the Stanford Cars image dataset [219]. Train detection (TRAIN) is based
on video of nearby train tracks that we have captured in our camera deployment, and have hand
labeled. The remaining classifiers are trained on a video of a nearby intersection, also captured in
our camera deployment. We have obtained the necessary permissions and plan to make our Trains
and Intersection video dataset available publicly. We reserve a portion of these datasets to create
synthetic video workloads for testing.

We use M-Trainer to produce a task-specific M-Package for each application. Model candi-
dates are fine-tuned using the MobileNets-224 model pretrained on ImageNet as a base DNN
(implemented in Keras [63] using TensorFlow [? ]). Each M-Package contains several models with
different degrees of fine-tuning as described in Section 6.4. We evaluate Mainstream using the
M-Packages and hold-out validation sets from our datasets. Our experiments use the applications
in Table 6.2.

Hardware. Training is performed on nodes equipped with Intel® Xeon® E5-2698Bv3 processors
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Detection Dataset Number Avg Event Min Event Event
Task Description of Images Length Length Frequency
PEDESTRIANS Urban Tracker atrium video 4538 59 2 0.63
BUS Intersection near CMU video 4762 1039 141 0.27
RED CAR Intersection near CMU video 9172 228 46 0.08
SCRAMBLE Intersection near CMU video 1500 412 382 0.16
SCHOOLBUS Intersection near CMU video 2600 854 92 0.03
TRAINS Train tracks near CMU video 3066 132 20 0.01
CARS Images of 23 car models 3042 — — —

Table 6.2: Labeled datasets used to train classifiers for event detection applications. Average and minimum event lengths
are reported in number of frames. Event length and event frequency only apply to video datasets and not CARS.

(2.0 GHz, 16 cores) and an Nvidia Titan X GPU. All end-to-end experiments use an Intel® NUC
with an Intel® Core™ i7-6770HQ processor and 32 GiB DRAM, which is intended to represent an
edge processing device. The Train and Intersection videos were captured using an Allied Vision
Manta G-1236 GigE Vision camera.

6.7 Evaluation

We evaluate our system in the context of independent DNN-based video processing applications
sharing a fixed-resource edge computer. In our evaluation, we show that Mainstream’s dynamic
approach outperforms static solutions in all of our experimental settings, across various application
workloads, computational budgets, and numbers of concurrent applications. Mainstream’s X-
voting is capable of improving F1-score but, like model specialization, must also be dynamically
configured to the resources available. In addition to our benchmarked applications, we show
an end-to-end Mainstream deployment of a train detection application used for environmental
pollution monitoring.

6.7.1 Mainstream Improves App Quality

Our goal in event detection is to maximize per-event F1-score. We compare the F1-score achieved by
Mainstream with two baselines: No-Sharing and Max-Sharing. No-Sharing is the default behavior
for a multi-tenant environment and is the approach taken by systems like TensorFlow Serving [1]
and Clipper [74]. No-Sharing maximizes classification accuracy at the cost of a reduced sampling
rate and requires no coordination between tenants. Max-Sharing is the sharing approach used by
MCDNN [159]. It uses partial-DNN sharing by fine-tuning the final layer of concurrent DNNs.
In many cases, Max-Sharing provides better F1-score relative to No-Sharing when a non-trivial
number of applications share the infrastructure; it sacrifices classification accuracy to maximize the
number of frames processed. We show, however, that Max-Sharing is less effective than making
deliberate runtime decisions about how much sharing to use.

In order to observe the effects of increasingly constrained resources without a large number
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but the last one. “Frame Rel Acc” is the relative image-level accuracy of the model deployed, compared to the best
performing model candidate. “FPS” is the average observed throughput of the deployed applications.

of distinct applications, we generate additional applications by augmenting our application set.
Each of the seven classification tasks in Table 6.2 has a corresponding “accuracy-tradeoff curve”,
which represents the relationship between per-frame accuracy and the shared stem size (Fig. 6.4b).
For each application in our experiments, we randomly choose one of the seven classifiers (and its
corresponding accuracy-tradeoff curve) and parameterize it with a different event length, event
frequency and inter-frame correlation. To capture the effects of diverse application characteristics,
the parameters are uniformly sampled from a range of possible values. Each workload consists of
up to 30 concurrent applications. In most experiments, we show the behavior averaged across 100
workloads. Our video capture rate for all experiments is 10 FPS.

Mainstream outperforms static approaches. M-Scheduler maximizes per-event F1-score by
varying the sampling rate and amount of sharing. Each additional application introduces more
resource contention, forcing the system to pick a different balance between accuracy and sampling
rate to achieve the best average F1-score.

Fig. 6.6 compares Mainstream with our baseline strategies. Mainstream delivers as much as a
87X higher per-event F1-score than No-Sharing and as much as a 47% higher score vs Max-Sharing.
Fig. 6.6 reports F1-scores averaged across 100 workloads. The relationship between the three
schedulers holds when examining individual workloads. No-Sharing exhibits low recall because of
its low throughput—the system has fewer opportunities to detect the event. Max-Sharing has high
throughput but a worse precision because the underlying model accuracy is lower—it evaluates
many frames but does so inaccurately. Mainstream outperforms by striking a balance, sometimes
choosing a more accurate model, and sometimes choosing to run at a higher throughput.

Mainstream dynamically balances precision and recall. Fig. 6.7 delves into the system effects
of Mainstream more deeply. F1-score, recall, and precision are plotted. The average application
frame rate is plotted, showing how Mainstream dynamically tailors resource usage to the workload.
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Figure 6.7: The average event F1-score (Fig. 6.7a), recall (Fig. 6.7b) and precision (Fig. 6.7c) across 100
deployed workloads are shown (solid lines) alongside the average frame-rate across applications (dotted
lines). Mainstream dynamically balances recall and precision to maximize aggregate F1-score. With high
numbers of concurrent applications, Mainstream sacrifices small amounts of both specialization and frame-
rate.

(Not shown is the varying model accuracy.) Optimizing for precision requires careful tuning of the
application frame rate. While higher FPS always leads to higher recall, it does not always lead to
higher precision. (A high frame rate may only increase false positives without increasing expected
true positives.) For instance, No-Sharing’s low frame rate and high per-frame accuracy allows it to
have the highest precision of the three approaches. When given just a few applications, Mainstream
runs specialized models, while throttling the stream rate to avoid unnecessary false positives. As
resources become scarce, many applications begin to share more of the network.

Mainstream improves upon Max-Sharing even under tight resource constraints. Fig. 6.8
shows the effect of Mainstream, Max-Sharing, and No-Sharing on a range of computational budgets.
We average the event F1-scores across 100 workloads, each with 3 applications. The right-most
points represent the scenario of running on computational resources equivalent to an Intel® NUC.
With a small workload of three applications, No-Sharing performs better than Max-Sharing, as it is
able to run expensive models at a high enough frame rate. As we decrease the available budget,
Max-Sharing’s conservative sharing approach allows it to be more scalable than No-Sharing.
However, even after the computational budget is reduced by 83%, Mainstream still improves
application performance, compared to the overly conservative Max-Sharing approach.

6.7.2 Tuned X-Voting improves F1-score

Applications that suffer from low per-frame precision will generate many false positives. An X-
voting approach can greatly decrease the incidence of false positives, as X consecutive classifications
are needed in order to report a detection. Too large a value of X can hurt recall, causing real events
to go unreported. By using X-voting and optimizing the parameter X, Mainstream can improve the
overall average event F1-score.

Fig. 6.9 shows the effects of X-voting on F1-scores as X and the number of applications are
varied, while total resources are kept fixed. With just a few concurrent applications, running at
high frame rates, 7-voting and 5-voting yield the highest F1-scores. With more resource contention,
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Figure 6.8: Mainstream improves F1-score of workloads under varying computational budgets. The rightmost points on
the X axis represent the resources available on an Intel® NUC. Even under heavy resource constraints, there is available
capacity for Mainstream to perform optimizations.

and lower throughput, 3-voting becomes the best choice as the cost of dropping true positives
outweighs the benefit of reducing false positives for higher values of X. When resources become too
constrained, this approach is less viable, e.g., 1-voting becomes the best approach at 25 concurrent
apps. Fig. 6.9 also shows the Pareto frontier of F1-scores achievable across all values of X for a
given number of concurrent applications.

6.7.3 Mainstream Deployment

We deployed our environmental pollution monitor application and nine other concurrent appli-
cations using both Mainstream and a conventional No-Sharing approach for one week on the
hardware setup described in Section 6.6. Fig. 6.10 shows the trace of both approaches on a single
train event sequence, indicating the frames analyzed. A hit represents a correct classification of the
train, a miss represents an incorrect classification. We see that Mainstream’s deployment samples
the stream more frequently, yielding many more hits (and misses) than No-Sharing; the result,
though, is that Mainstream detects the train event earlier and more confidently.

We control the false positive rate with 2-voting, requiring Mainstream to have two positive
samples before an event is classified. The false positive rate of the TRAIN video drops from 0.028
to 0.00056. No-Sharing and Mainstream achieve a 0 and a 0.00056 false positive rate, respectively.
In the analyzed deployment in Fig 6.10, we see that Mainstream still detects the train easily and
quickly.
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Figure 6.9: X-voting increases precision and helps Mainstream achieve a higher F1-score, but only if frame rate is high
enough to avoid hurting recall. Thus, the effects vary by the level of resource contention. The Pareto frontier shows the
F1-scores achievable given the dynamic selection of an optimal X-voting scheme for the resource scenario.
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Figure 6.10: Timeline of Mainstream running a train detector app with 9 concurrent applications. Our goal is to detect
the train as early as possible, before the smoke stack is out of view (end of window represented by the dotted line).
Mainstream detects the train earlier and more confidently than No-Sharing.
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6.8 Additional Background

Several recent systems have attempted to tackle the problem of optimizing execution of visual
computing pipelines.

VideoStorm [462] is a video analytics system for large-scale clusters and workloads. It ana-
lyzes resource use and application-goal-based metrics as a function of tunable parameters of the
analytics pipelines, building models for each application independently. It uses these models to
allocate resources and select parameters for deployed applications on a target platform, in order to
maximize application quality metrics. VideoStorm takes a black-box view of the applications, and
assumes that quality and resource consumption of co-deployed applications are independently
determined. Therefore, it cannot take into account computation sharing, or optimize the shar-
ing vs. degree of specialization tradeoff. In contrast, Mainstream takes a white-box approach to
modeling application quality, and can explicitly tune computation sharing to improve application
quality metrics. Compared to VideoStorm, Mainstream sacrifices some generality to solve the joint
optimization problem.

MCDNN [159] introduces a static approach to sharing DNN computation, in which each
application developer independently determines their amount of model specialization. MCDNN
opportunistically shares any identical unspecialized layers between applications. In contrast, Main-
stream’s training and scheduling components allow late binding and jointly-optimized selection
of the degrees of specialization at run time, when resource availability and co-deployed tasks are
known.

Inference serving systems. Mainstream is an inference serving system for running neural
networks on resource-constrained nodes. Other inference serving systems include Clipper [74],
NoScope [208], and TensorFlow Serving [1]. Like Mainstream, these systems optimize for latency
and throughput gains. Clipper caches results from multiple models, dynamically chooses from
the results, and optimizes the batch size. NoScope replaces expensive neural networks for object
detection with cheaper difference detectors and specialized models. TensorFlow Serving increases
throughput with batching and hardware acceleration. LASER [7] and Velox [73] are inference serv-
ing systems for non-DNN models. LASER deploys linear models while Velox deploys personalized
prediction algorithms using Apache Spark.

Unlike Mainstream, these inference serving systems do not share computation between in-
dependently trained models. They also target cluster environments. Mainstream targets edge
devices with limited resources, where achieving the right degree of DNN computation sharing is
particularly important, though such sharing would also be valuable in large data centers.

Reducing DNN inference time. Approaches to reducing DNN inference time for vision
applications can be broadly classified into those that reduce model precision [55, 71, 72, 145, 184,
330, 473], use efficient network architectures [178, 185], use anytime prediction methods [180, 182],
or employ model compression and sparsification [160, 255, 438]. All of these methods are orthogonal
to Mainstream’s adaptive DNN computation sharing technique, but share its goal of selecting the
right trade-off between per-frame quality and frame throughput.

Multi-task networks. Multi-task learning [9, 48, 217, 263, 267, 287, 329, 466] is a ML approach
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in which a single model is trained to perform multiple tasks. Using multiple tasks to train a
single model helps achieve better accuracy because of better generalization and complementary
information [48, 349]. In the context of DNNs, a multi-task network can have a varying number
of shared layers across tasks and task-specific layers [267, 287]. Multi-task learning assumes that
all of the tasks are known a priori, and that training data for all of the tasks is available for use in
a single training process. In contrast, Mainstream allows each task to be developed, trained, and
deployed independently, and avoids the need to share or expose proprietary or privacy-sensitive
training data between task developers. Note that one can run a multi-task network as a single large
application in Mainstream.

6.9 Conclusion

In this chapter, we presented Mainstream which is an efficient way to scale to multiple tasks at test
time. Mainstream adaptively orchestrates DNN stem-sharing among concurrent video processing
applications sharing the limited resources on an edge device, resulting in much higher aggregate
application quality. Experiments with several event detection tasks confirm that Mainstream
significantly increases performance to current approaches over a range of concurrency levels.
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Chapter 7

Surprisingly Easy Synthesis for Instance Detection

Immature poets imitate; mature poets steal.

T. S. ELIOT in The Sacred Wood: Essays on Poetry and Criticism,
1920

In this section we look at how structure in the model space can help us learn with limited
supervision. Imagine using an object detection system for an environment like your kitchen. Such
a system needs to not only recognize different kinds of objects but also distinguish between many
different instances of the same object category, e.g., your cup vs. my cup. With the tremendous
progress that has been made in visual recognition, as documented on benchmark detection datasets,
one may expect to easily take a state-of-the-art system and deploy it for such a setting. However,
one of the biggest drawbacks of using such a system is that it is trained only only a few typical
categories such as man, cow, sheep etc. In a personalized setting we need annotations for instances
like your cup, and typically need lots of such data to train an object detector. We believe that
collecting such annotations is a major impediment for rapid deployment of detection systems in
robotics or other personalized applications.

In this chapter, we specifically look at instance (object) detection methods and exploit a key
property of the detection models to easily synthesize training images. Region-based detectors care
more about local consistency than the full scene itself. This observation holds even more strongly
for texture rich objects and instances. In our work, we devise a simple scheme for image synthesis
- we cut object masks from simple images and paste them on background images. This simple
approach can help us synthesize large amounts of ‘new’ training data. In contrast, existing image
synthesis approaches try to solve the significantly more difficult task of synthesizing every pixel of
the full scene. This means they need to not only model local consistency but also global consistency
such as lighting, support relationships etc. Solving this full scene synthesis is challenging and these
methods have limited applications. As T. S. Eliot stated, when solving or creating masterpieces
(full scenes) is hard, it is better to steal (cut-paste) and create something.

Recently, a successful research direction to overcome this annotation barrier, is to use syn-
thetically rendered scenes and objects [213, 299, 391] to train a detection system. This approach
requires a lot of effort to make the scenes and objects realistic, ensuring high quality global and
local consistency. Moreover, models trained on such synthetic data have trouble generalizing to
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Figure 7.1: We present a simple way to rapidly generate training cut-paste/images for instance detection with minimal
human effort. We automatically extract object instance masks and render it on random background cut-paste/images to
create realistic training cut-paste/images with bounding box labels. Our results show that such data is competitive with
human curated datasets, and contains complementary information.

real data because of the change in image statistics [56, 320]. To address this, an emerging theme
of work [154] moves away from graphics based renderings to composing real cut-paste/images.
The underlying theme is to ‘paste’ real object masks in real cut-paste/images, thus reducing the
dependence on graphics renderings. Concurrent work [137] estimates scene geometry and layout
and then synthetically places object masks in the scene to create realistic training cut-paste/images.
However, the scene layout estimation step may not generalize to unseen scenes. In this chapter, we
show a simpler approach that does not require such scene geometry estimation to create training
cut-paste/images.

Our key insight is that state-of-the art detection methods like Faster-RCNN [341] and even
older approaches like DPM [110] etc. care more about local region-based features for detection than
the global scene layout. As an example, a cup detector mostly cares about the visual appearance
of the cup and its blending with the background, and not so much about where the cup occurs
in the scene: the table-top or the ground. We believe that while global consistency is important,
only ensuring patch-level realism while composing synthetic datasets should go a long way to train
these detectors. We use the term patch-level realism to refer to the observation that the bounding box
containing the pasted object looks realistic to the human eye.

However, naively placing object masks in scenes creates subtle pixel artifacts in the cut-
paste/images. As these minor imperfections in the pixel space feed forward deeper into the
layers of a ConvNet [239], they lead to noticeably different features and the training algorithm
focuses on these discrepancies to detect objects, often ignoring to model their complex visual
appearance. As our results show (Table 7.1), such models give reduced detection performance.
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Figure 7.2: We present a simple approach to rapidly synthesize datasets for instance detection. We start with a set of
cut-paste/images of the instances and background scenes. We then automatically extract the object mask and segment the
object. We paste the objects on the scenes with different blending to ensure that local artifacts are ignored by the detection
model. Our results show that this synthesized data is both competitive with real data and contains complementary
information.

Since our main goal is to create training data that is useful for training detectors, we resolve
these local imperfections and maintain patch level realism. Inspired from methods in data aug-
mentation and denoising auto encoders [425], we generate data that forces the training algorithm
to ignore these artifacts and focus only on the object appearance. We show how rendering the
same scene with the same object placement and only varying the blending parameter settings
(Section 7.4.2) makes the detector robust to these subtle pixel artifacts and improves training.
Although these cut-paste/images do not respect global consistency or even obey scene factors such
as lighting etc., training on them leads to high performance detectors with little effort. Our method
is also complementary to existing work [137, 299, 391] that ensures global consistency and can be
combined with them.

Data generated using our approach is surprisingly effective at training detection models. Our
results suggest that curated instance recognition datasets suffer from poor coverage of the visual
appearances of the objects. With our method, we are able to generate many such cut-paste/images
with different viewpoints/scales, and get a good coverage of the visual appearance of the object
with minimal effort. Thus, our performance gain is particularly noticeable when the test scenes are
different from the training scenes, and thus the objects occur in different viewpoints/scales.

7.1 Background

Instance detection is a well studied problem in computer vision. [468] provides a comprehensive
overview of the popular methods in this field. Early approaches, such as [66], heavily depend on
extracting local features such as SIFT [265], SURF [31], MSER [278] and matching them to retrieve
instances [264, 410]. These approaches do not work well for objects which are not ‘feature-rich’,
where shape-based methods [114, 171, 179] are more successful.

Modern detection methods [140, 141, 341] based on learned ConvNet features [222, 239, 378]
generalize across feature rich and feature poor objects [366]. With the availability of powerful
commodity GPUs, and fast detection algorithms [259, 335], these methods are suitable for real-time
object detection required in robotics. More recently, deep learning based approaches in computer
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vision are being adopted for the task of pose estimation of specific objects[292, 442, 460]. Improving
instance detection and pose estimation in warehouses will be signifcantly useful for the perception
pipeline in systems trying to solve the Amazon Picking Challenge[70].

The use of these powerful methods for object and instance detection requires large amounts
of annotated data. This requirement is both impractical and expensive for rapidly deploying
detection systems. Sythesizing data is one way to address this issue. [320, 391] use rendered cut-
paste/images of objects to do both object detection and pose estimation. They render 3D models of
objects from different viewpoints and place them against randomly sampled backgrounds. [299]
also highlight the importance of using photo-realsitic models in training CNNs.

There is a wide spectrum of work where rendered datasets are used for computer vision tasks.
At one end, we have datasets with cut-paste/images of single objects on random backgrounds [299,
316, 320, 391]. On the other end, there are datasets where the entire scene is rendered [130, 161, 343].
On that spectrum our work lies in between as we do not render the whole world but use real
cut-paste/images of both objects and backgrounds to compose new scenes. In this sense, our work
closely related to contemporary work from [154] which generates synthetic data for localizing text
in scenes.

Sedaghat et al. [360] show how an annotated dataset can be created for the task of object pose
estimation by taking videos by walking around the object. [169] uses synthetic data from [49] for
multi-view instance recognition. [274] use real and synthetic cut-paste/images for 2D-3D alignment.

Similarly, [56, 423] render 3D humans in scenes and use this data for pose estimation. Tasks
requiring dense annotation, such as segmentation, tracking etc. have also shown to benefit by using
such approaches [130, 161, 343, 346]. [383] shows a novel approach for collecting data of objects
in a closed domain setting. [14, 136, 229] annotate 3D points belonging to an object in the point
cloud reconstruction of a scene and propagate the label to all frames where the object is visible.
As synthetic data can be significantly different from real cut-paste/images, [416] shows a domain
adaptation approach to overcome this issue. In contrast, our work composes training scenes using
real object cut-paste/images as well as real background cut-paste/images.

The existing approaches to sythesizing datasets focus largely on ensuring global consistency
and realism [56, 137, 213, 423]. While global consistency is important, we believe that local features
matter more for training detection systems. Our approach ensures that when we train our detection
model it is invariant to local discrepancies.

7.2 Background

Instance Detection: Instance detection requires accurate localization of a particular object, e.g. a
particular brand of cereal, a particular cup etc. In contrast, generic object detection detects an entire
generic category like a cereal box or a cup (see Figure 7.3). In fact, in the instance detection scenario
correctly localizing a cereal box of some other brand is counted as a mistake. Instance detection
occurs commonly in robotics, AR/VR etc., and can also be viewed as fine-grained recognition.

Traditional Dataset Collection: Building detection datasets involves a data curation step and
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Figure 7.3: Object vs Instance Detection. Instance detection involves fine-grained recognition within the same ‘object cat-
egory’(as shown by the visually similar cups) while also detecting the same instance from different viewpoints(depicted
by the different views of the granola bars). In this example, instance recognition must distinguish amongst 6 classes: 2
types of granola bars and 4 types of coffee cups. Object detection would distinguish only amongst 2 classes: coffee cups
and granola bars.

an annotation step. Typically, data curation involves collecting internet cut-paste/images for
object detection datasets [94, 251]. However, this fails for instance datasets as finding internet
cut-paste/images of particular instances is not easy. For instance detection [380] data curation
involves placing the instances in varied backgrounds and manually collecting the cut-paste/images.
Manually collecting these cut-paste/images requires one to pay attention to ensure diversity in
cut-paste/images by placing the object in different backgrounds and collecting different viewpoints.
The annotation step is generally crowd sourced. Depending on the type of data, human annotations
can be augmented with object tracking or 3D sensor information [14, 136, 229, 383, 429].

Unfortunately, both these steps are not suitable for rapidly gathering instance annotations.
Firstly, as we show in our experiments, even if we limit ourselves to the same type of scene, e.g.,
kitchens, the curation step can lack diversity and create biases that do not hold in the test setting.
Secondly, as the number of cut-paste/images and instances increase, manual annotation requires
additional time and expense.

7.3 Approach Overview

We propose a simple approach to rapidly collect data for instance detection. Our results show that
our approach is competitive with the manual curation process, while requiring little time and no
human annotation.

Ideally, we want to capture all of the visual diversity of an instance. Figures 7.1 and 7.3 show
how a single instance appears different when seen from different views, scales, orientation and
lighting conditions. Thus, distinguishing between such instances requires the dataset to have good
coverage of viewpoints and scales of the object. Also, as the number of classes increases rapidly
with newer instances, the long-tail distribution of data affects instance recognition problems. With
synthetic data, we can ensure that the data has good coverage of both instances and viewpoints.
Figure 7.2 shows the main steps of our method:

1. Collect object instance cut-paste/images: Our approach is agnostic to the way the data is
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Figure 7.4: A few randomly chosen samples from our synthesized cut-paste/images. We describe the details of our
approach in Section 7.4.

Table 7.1: We analyze the effect of various factors in synthesizing data by generating data with different settings and
training a detector [341]. We evaluate the trained model on the GMU Dataset [136]. As we describe in Section 7.4, these
factors greatly improve the quality of the synthesized data.

2D Rot. 3D Rot. Trunc. Occl. coca coffee honey hunt’s mahatma nature nature palmolive pop pringles red mAP
cola mate bunches sauce rice v1 v2 orange secret bbq bull

Blending (Sec 7.4.2)
No blending X X X X 65.7 91.1 83.2 59.8 57.7 92.1 84.4 61.4 59.0 38.7 31.9 65.9
Gaussian Blurring X X X X 65.3 88.1 80.8 67.5 63.7 90.8 79.4 57.9 58.9 65.7 40.2 68.9
Poisson [322] X X X X 62.9 82.9 63.9 59.4 20.7 84.6 67.9 60.9 73.5 41.0 25.1 58.4
All Blend X X X X 76.0 90.3 79.9 65.4 67.3 93.4 86.6 64.5 73.2 60.4 39.8 72.4
All Blend + same image X X X X 78.4 92.7 81.8 66.2 69.8 93.0 82.9 65.7 76.0 62.9 41.2 73.7

Data Aug. (Sec 7.4.2)
No 2D Rotation X X X 63.3 90.4 81.4 63.7 54.2 91.8 82.3 59.2 71.3 68.2 41.4 69.7
No 3D Rotation X X X 73.1 90.6 83.2 63.3 55.8 93.4 82.1 65.9 64.5 45.7 33.6 68.3
No Trunc. X X X 73.4 92.1 77.8 59.9 64.6 92.4 84.6 62.0 74.2 67.4 41.7 71.8
No Occlusion X X X 63.1 84.9 74.4 64.5 50.8 76.9 67.6 55.7 69.0 58.7 28.1 63.1
All X X X X 78.4 92.7 81.8 66.2 69.8 93.0 82.9 65.7 76.0 62.9 41.2 73.7
All + Distractor X X X X 81.0 93.3 85.6 55.6 73.8 94.9 87.1 68.7 79.5 77.1 42.0 76.2

collected. We assume that we have access to object cut-paste/images which cover diverse
viewpoints and have a modest background.

2. Collect scene cut-paste/images: These cut-paste/images will serve as background cut-paste/images
in our training dataset. If the test scenes are known beforehand (like in the case of a smart-home
or a warehouse) one can collect cut-paste/images from those scenes. As we do not compute any
scene statistics like geometry or layout, our approach can readily deal with new scenes.

3. Predict foreground mask for the object: We predict a foreground mask which separates the
instance pixels from the background pixels. This gives us the object mask which can be placed
in the scenes.

4. Paste object instances in scenes: Paste the extracted objects on a randomly chosen background
image. We ensure invariance to local artifacts while placing the objects so that the training
algorithm does not focus on subpixel discrepancies at the boundaries. We add various modes of
blending and synthesize the exact same scene with different blending to make the algorithm
robust to these artifacts. We also add data augmentation to ensure a diverse viewpoint/scale
coverage.

7.4 Approach Details and Analysis

We now present additional details of our approach and provide empirical analysis of our design
choices.
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7.4.1 Collecting cut-paste/images

We first describe how we collect object/background cut-paste/images, and extract object masks
without human effort.

Images of objects from different viewpoints: We choose the objects present in Big Berkeley
Instance Recognition Dataset (BigBIRD) [380] to conduct our experiments. Each object has 600
cut-paste/images, captured by five cameras with different viewpoints. Each image also has a
corresponding depth image captured by an IR camera.

Background cut-paste/images of indoor scenes: We place the extracted objects from the Big-
BIRD cut-paste/images on randomly sampled background cut-paste/images from the UW Scenes
dataset [229]. There are 1548 cut-paste/images in the backgrounds dataset.

Foreground/Background segmentation: Once we have collected cut-paste/images of the instances,
we need to determine the pixels that belong to the instance vs. the background. We automate this by
training a model for foreground/background classification. We train a FCN network [262] (based
on VGG-16 [378] pre-trained on PASCAL VOC [94] image segmentation) to classify each image
pixel into foreground/background. The object masks from the depth sensor are used as ground
truth for training this model. We train this model using cut-paste/images of instances which are
not present in our final detection evaluation. We use [30] as a post-processing step to clean these
results and obtain an object mask. Figure 7.5 shows some of these results. In practice, we found
this combination to generalize to cut-paste/images of unseen objects with modest backgrounds
and give good quality object masks from input cut-paste/images. It also generalizes to transparent
objects, e.g., coca cola bottle, where the depth sensor does not work well.

7.4.2 Adding Objects to Images

After automatically extracting the object masks from input cut-paste/images, we paste them on
real background cut-paste/images. Naïvely pasting objects on scenes results in artifacts which the
training algorithm focuses on, ignoring the object’s visual appearance. In this section, we present
steps to generate data that forces the training algorithm to ignore these artifacts and focus only
on the object appearance. To evaluate these steps empirically, we train a detection model on our
synthesized cut-paste/images and evaluate it on a benchmark instance detection dataset (real
cut-paste/images).

Detection Model: We use the Faster R-CNN [341] method and initialize the model from a VGG-
16 [378] model pre-trained on object detection on the MSCOCO [251] dataset.

Benchmarking Dataset: After training the detection model on our synthetic cut-paste/images,
we use the GMU Kitchen dataset [136] for evaluation. There are 9 scenes in this dataset. Three
dataset splits with 6 scenes for training and 3 for testing have been provided in [136] to conduct
experiments on the GMU Kitchen dataset. We follow these splits for train/test and report the
average over them. No cut-paste/images or statistics from this dataset are used for either dataset
synthesis or training the detector. We report Mean Average Precision (mAP) at IOU of 0.5 [94] in all
our experiments.
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Figure 7.5: Given an image of a new unseen object instance, we use a ConvNet to predict foreground/background pixels.
Using these predictions we automatically obtain an object mask. This method generalizes to transparent surfaces where
traditional methods relying on depth sensors for segmentation fail (second row).

No Blending Gaussian Blurring Poisson Blending

Figure 7.6: Different blending modes used while generating datasets. These modes help the model in ignoring artifacts
arising from pasting objects on background scenes. More details in Section 7.4.2

Blending

Directly pasting objects on background cut-paste/images creates boundary artifacts. Figure 7.6
shows some examples of such artifacts. Although these artifacts seem subtle, when such cut-
paste/images are used to train detection algorithms, they give poor performance as seen in
Table 7.1. As current detection methods [341] strongly depend on local region-based features,
boundary artifacts substantially degrade their performance.

The blending step ‘smoothens’ out the boundary artifacts between the pasted object and the
background. Figure 7.6 shows some examples of blending. Each of these modes add different image
variations, e.g., Poisson blending [322] smooths edges and adds lighting variations. Although these
blending methods do not yield visually ‘perfect’ results, they improve performance of the trained
detectors. Table 7.1 lists these blending methods and shows the improvement in performance after
training on blended cut-paste/images.

To make the training algorithm further ignore the effects of blending, we synthesize the exact
same scene with the same object placement, and only vary the type of blending used. We denote
this by ‘All Blend + same image’ in Table 7.1. Training on multiple such cut-paste/images where
only the blending factor changes makes the training algorithm invariant to these blending factors
and improves performance by 8 AP points over not using any form of blending.
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Figure 7.7: Missed detections on the Active Vision Dataset [14] for a model trained on the hand-annotated GMU
Dataset [136]. The model consistently fails to detect certain viewpoints as the training data has poor viewpoint coverage
and has biases different from the test set. Each row shows a single instance.

Data Augmentation

While pasting the objects on background, we also add the following modes of data augmentation:

2D Rotation: The objects are rotated at uniformly sampled random angles in between 30 to −30
degrees to account for camera/object rotation changes. Table 7.1 shows a gain of 3 AP points by
adding this augmentation.

3D Rotation: As we can control this step, we have many cut-paste/images containing atypical 3D
rotations of the instances which is hard to find in real data. Table 7.1 shows a gain of more than
4 AP points because of this augmentation. In Section 7.5.2 and Figure 7.7, we show examples of
how a model trained on human collected data consistently fails to detect instances from certain
viewpoints because the training data has poor viewpoint coverage and different biases from the
test set. This result shows the value of being able to synthesize data with diverse viewpoints.

Occlusion and Truncation: Occlusion and truncation naturally appear in cut-paste/images. They
refer to partially visible objects (such as those in Figure 7.2). We place objects at the boundaries of
the cut-paste/images to model truncation, ensuring at least 0.25 of the object box is in the image.
To add occlusion, we paste the objects with partial overlap with each other (max IOU of 0.75). Like
other modes of augmentation, we can easily vary the amount of truncation/occlusion. As Table 7.1
shows, adding truncation/occlusion improves the result by as much as 10 AP points.

Distractor Objects: We add distractor objects in the scenes. This models real-world scenarios with
multiple distractor objects. We use additional objects from the BigBIRD dataset as distractors.
Presence of synthetic distractors also encourages the learning algorithm to not only latch on to
boundary artifacts when detecting objects but also improves performance by 3 AP points.
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Ground Truth Images

Corresponding False Positives

Figure 7.8: Examples of false positives from the UNC dataset by the detector trained on the hand-annotated bounding
boxes from the GMU dataset. Object detectors trained on hand annotated scenes also need new negatives to be able to
perform well in newer scenes.

Table 7.2: We compute the performance of training a model on synthetic data and compare it against training on real
data. We evaluate on the test split of the GMU Kitchen Dataset [136].

Dataset coca coffee honey hunt’s mahatma nature nature palmolive pop pringles red mAP
cola mate bunches sauce rice v1 v2 orange secret bbq bull

Real Images from GMU 81.9 95.3 92.0 87.3 86.5 96.8 88.9 80.5 92.3 88.9 58.6 86.3

SP-BL-SS [137] 55.5 67.9 71.2 34.6 30.6 82.9 66.2 33.1 54.3 54.8 17.7 51.7
(Ours) Synthetic Images 81.0 93.3 85.6 55.6 73.8 94.9 87.1 68.7 79.5 77.1 42.0 76.2

SP-BL-SS + Real Images [137] 82.6 92.9 91.4 85.5 81.9 95.5 88.6 78.5 93.6 90.2 54.1 85.0
(Ours) Synthetic + Real Images 88.5 95.5 94.1 88.1 90.3 97.2 91.8 80.1 94.0 92.2 65.4 88.8

7.5 Experiments

We now compare the effectiveness of our synthesized data against human annotated data on two
benchmark datasets. We first describe our common experimental setup.

Synthesized Data: We analyze our design choices in Section 7.4 to pick the best performing ones.
We use a total of 33 object instances from the BigBIRD Dataset [380] overlapping with the 11
instances from GMU Kitchen Dataset [136] and the 33 instances from Active Vision Dataset [14].
We use a foreground/background ConvNet (Section 7.4.1) to extract the foreground masks from
the cut-paste/images. The foreground/background ConvNet is not trained on instances we use to
evaluate detection. As in Section 7.4, we use backgrounds from the UW Scenes Dataset [229] We
generate a synthetic dataset with approximately 6000 cut-paste/images using all modes of data
augmentation from Section 7.4. We sample scale, rotation, position and the background randomly.
Each background appears roughly 4 times in the generated dataset with different objects. To model
occlusions we allow a maximum IOU of 0.75 between objects. For truncations, we allow at least
25% of the object box to be in the image. For each scene we have three versions produced with
different blending modes as described in Section 7.4.2. Figure 7.4 shows samples of generated
cut-paste/images. We use this synthetic data for all our experiments. The code used for generating
scenes is available at: https://goo.gl/imXRt7.
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Table 7.3: Evaluation on the entire Active Vision dataset by varying the amount of real data from the GMU Kitchen
Scenes train dataset

Dataset coca honey hunt’s mahatma nature red mAP
cola bunches sauce rice v2 bull

Real Images 57.7 34.4 48.0 39.9 24.6 46.6 41.9
Synthetic 63.0 29.3 34.2 20.5 49.0 23.0 36.5
Synthetic + Real Images 69.9 44.2 51.0 41.8 48.7 50.9 51.1

10% Real 15.3 19.1 31.6 11.2 6.1 11.7 15.8
10% Real + Syn 66.1 36.5 44.0 26.4 48.9 37.6 43.2
40% Real 55.8 31.6 47.3 27.4 24.8 41.9 38.2
40% Real + Syn 69.8 41.0 55.7 38.3 52.8 47.0 50.8
70% Real 55.3 30.6 47.9 36.4 25.0 41.2 39.4
70% Real + Syn 67.5 42.0 50.9 43.0 48.5 51.8 50.6

Model: We use a Faster R-CNN model [341] based on the VGG-16 [378] pre-trained weights on the
MSCOCO [251] detection task. We initialize both the RPN trunk and the object classifier trunk of
the network in this way. We fine-tune on different datasets (both real and synthetic) and evaluate
the model’s performance. We fine-tune all models for 25K iterations using SGD+momentum with a
learning rate of 0.001, momentum 0.9, and reduce the learning rate by a factor of 10 after 15K itera-
tions. We also use weight decay of 0.0005 and dropout of 0.5 on the fully-connected layers. We set
the value of all the loss weights (both RPN and classification) as 1.0 in our experiments. We ensure
that the model hyperparameters and random seed do not change across datasets/experiments for
consistency.

Evaluation: We report Average Precision (AP) at IOU of 0.5 in all our experiments for the task
of instance localization. Following [14], we consider boxes of size at least 50 × 30 pixels in the
cut-paste/images for evaluation.

7.5.1 Training and Evaluation on the GMU Dataset

Similar to Section 7.4, we use the GMU Kitchen Dataset[136] which contains 9 kitchen scenes with
6, 728 cut-paste/images. We evaluate on the 11 objects present in the dataset overlapping with
the BigBIRD [380] objects. We additionally report results from [137]. Their method synthesizes
cut-paste/images by accounting for global scene structure when placing objects in scenes, e.g.,
ensure that cups lie on flat surfaces like table tops. In contrast, our method does not use take into
account such global structure, but focuses on patch-level realism. We note that their method [137]
uses a different background scenes dataset for their synthesis.

Table 7.2 shows the evaluation results. We see that training on the synthetic data is competitive
with training on real cut-paste/images (rows 1 vs 3) and also outperforms the synthetic dataset
from [137] (rows 2 vs 3). Combining synthetic data with the real data shows a further improvement
for all synthetic image datasets (rows 4, 5). These results show that the data generated by our
approach is not only competitive with both real data and existing synthetic data, but also provides
complementary information. Figure 7.9 shows qualitative examples illustrating this point.
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Figure 7.9: We show qualitative detection results and mark true positives in green, false positives in red and arrows to
highlight regions. The top two rows are from the GMU Kitchen Scenes [136] and the bottom two rows from the Active
Vision Dataset [14]. (a), (b): Model trained on real data misses objects which are heavily occluded (a) or stops detecting
objects as viewpoint changes from a to b. (c), (d): Model trained on synthetic data detects occluded and truncated objects.
(e): Combining synthetic data removes false positives due to training only on real data. (g), (h): Combining real data
removes false positives due to training only on synthetic data. (f), (g): Viewpoint changes cause false negatives. (Best
viewed electronically)

7.5.2 Evaluation on the Active Vision Dataset

To test generalization across datasets, we now present experiments where we train on either our
synthetic data or the GMU Dataset [136], and evaluate on the Active Vision Dataset [14]. The Active
Vision Dataset[14] has 9 scenes and 17,556 cut-paste/images. It has 33 objects in total and 6 objects
in overlap with the GMU Kitchen Scenes. We use these 6 objects for our analysis. We do not use
this dataset for training.

We train a model trained on all the cut-paste/images from the GMU Dataset (Section 7.5.1).
This model serves as a baseline for our model trained on synthetic data. As Table 7.3 shows, by
collecting just 10% cut-paste/images and adding our synthetically generated cut-paste/images, we
are able to get more MAP than using the real cut-paste/images in the dataset without the synthetic
cut-paste/images. This highlights how useful our approach of dataset generation is in scenarios
where there is a dearth of labeled cut-paste/images. Also, the performance gap between these
datasets is smaller than in Section 7.5.1.

Failure modes of real data: Upon inspecting the errors [176] made by the GMU model, we see
that a common error mode of the detector is its failure to recognize certain views in the test-set
(see Figure 7.7). These viewpoints were sparsely present in the human annotated training data.
In contrast, our synthetic training data has a diverse viewpoint coverage. The model trained on
the synthesized cut-paste/images drastically reduces these errors. Combining the synthesized
cut-paste/images with the real cut-paste/images from GMU gives a further improvement of 10 AP
points suggesting that synthesized cut-paste/images do provide complementary information.
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Varying Real Data: We investigate the effect of varying the number of real cut-paste/images com-
bined with the synthesized data. We randomly sample different amounts of real cut-paste/images
from the GMU Dataset and combine them with the synthetic data to train the detector. As a
baseline we also train the model on varying fractions of the real data. Table 7.3 shows that by
adding synthetic cut-paste/images to just 10% of the real cut-paste/images we get a boost of 10
AP points over just using real cut-paste/images. This performance is also tantalizingly close to
the performance of combining larger fractions of real data. This result reinforces the effectiveness
and complementary nature of our approach. In the supplementary material, we present additional
such results.

7.6 Discussion

We presented a simple technique to synthesize annotated training cut-paste/images for instance
detection. Our key insights were to leverage randomization for blending objects into scenes and
to ensure a diverse coverage of instance viewpoints and scales. We showed that patch-based
realism is sufficient for training region-proposal based object detectors. Our method performs
favorably to existing hand curated datasets and captures complementary information. In a realistic
cross-domain setting we show that by combining just 10% of the available real annotations with
our synthesized data, our model performs better than using all the real annotations. From a
practical standpoint our technique affords the possibility of generating scenes with non-uniform
distributions over object viewpoints and scales without additional data collection effort. We believe
our work can be combined with existing approaches [137] that focus on global consistency for
placing objects and [213] which model realism.
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Chapter 8

Composing Visual Classifiers

It is astonishing what language can do. With a few syllables it can
express an incalculable number of thoughts.

GOTTLOB FREGE in Gedankengefüge, 1923

In Chapter 7, we exploited the region-based structure of detectors for easy data synthesis. In
this Chapter, we will try to model this structure in the classifiers and show how such modeling
can help us compose to form unseen classifiers. Such a compositional property helps us create
classifiers for visual concepts without any human supervision.

Imagine a blue elephant. Having never seen a single example of such a creature, humans
have no difficulty imagining it, or even recognizing it. Starting from Plato’s Theaetetus to the
early nineteenth century work of Gottlob Frege [125], compositionality is often regarded as a
hallmark of intelligence. The core idea is that a complex concept can be developed by combining
multiple simple concepts. In fact, the same idea has been explored in the field of computer vision
as well: in the form of attributes [103, 372] or graphical models for SVOs (subject-object-verb
triplets) [354]. While the idea of building complex concepts from simpler ones seems intuitive,
current state-of-the-art methods for recognition or retrieval follow a more data-driven approach,
where complex concepts are learned using hundreds and thousands of labeled examples instead of
being composed. Why is that?

Interestingly, even in philosophy, there is clear tension between the idea of compositionality
and the principle of contextuality. The principle of contextuality states that one cannot create a
model of a simple concept without the context. This has often been stated as one of the main
arguments against attributes: a red classifier in red wine is remarkably different from a red classifier
in red tomato or even a red car. Figure 8.1 shows more such examples.

This direct tension between compositionality and contextuality leads to the basic exploration of
this chapter: do current vision algorithms have such a compositional nature? Can we some respect
the principle of contextuality yet create compositional visual classifiers? One approach to capture
context is to use the text itself to learn how the modifiers should behave. For example, a modifier
like “red” should show similar visual modifications for related concepts like tomatoes and berries.
Approaches such as [243] have tried to use text to capture this idea and compose visual classifiers.
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snake small snake

lemon ripe lemon

elephant small elephant

coffee ripe coffee

bike old bike laptop old laptop

Figure 8.1: Visual concepts like objects and attributes are compositional. This compositionality depends on the context
and the particular instances being composed. A small elephant is much larger than a small snake! Our surprisingly
simple method models both compositionality and contextuality in order to learn visual classifiers. The results of our
approach show that it composes while respecting context.

But do we really need taxonomy and knowledge from language to capture contextuality?

In this chapter, we propose an approach that composes classifiers by directly reasoning about
them in model space. Our intuition behind this is that the model space is smooth and captures
visual similarity, i.e., tomato classifiers are closer to berry classifiers than cars. Thus, modifiers
should apply similarly to similar classifiers. One task we consider is composing attribute (adjective)
and object (noun) visual classifiers to get classifiers for (attribute, object) pairs. As Figure 8.1 shows,
the visual interpretation of attributes depends on the objects they are coupled with, e.g., a small
elephant is still much larger than a small snake. Our approach respects such contextuality because
it is conditioned on all the visual concepts and models them together, rather than in isolation. We
show that our compositional transform captures such relations between objects and attributes, and
can create visual classifiers for them.

As our experiments show, our approach is able to generalize such compositionality and
contextuality to unseen combinations of visual concepts (Section 8.3. Our approach naturally extends
beyond composing two primitives. We show results on combining subject, object and verb classifiers
to unseen combinations of subject-verb-object triples (Section 8.3.3). On all these tasks, our method
shows generalization capability beyond existing methods. Section 8.4.5 also shows our method’s
generalization to unseen primitives. Finally, in Section 8.4, we analyze the various components of
our method and its various properties.

8.1 Background

Our work is heavily influenced by the principle of compositionality. This principle has a long
standing history in the fields of philosophy, theory of mind, neuroscience, language, mathematics,
computer science, etc. As such a broad overview is beyond the scope of this thesis, we focus on
compositionality in the case of visual recognition. In its most basic form, the principle states that
new concepts can be constructed from primitive elements. This principle is relevant for statistical
learning as it paves the way for models that train with low sample complexity. Compositional
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Figure 8.2: We assume that complex visual concepts can be composed using primitive visual concepts. By observing a
few such complex concepts and their constituent visual primitives, we aim to learn a compositionality transform that
can compose unseen combinations of primitives.

models can learn primitives from large amounts of samples and then compose these primitives to
learn new concepts with limited samples [119, 150, 457, 477].

One of the earliest examples of using compositonality for visual recognition is Biederman’s
Recognition-By-Components theory [39] and Hoffman’s part theory [175]. Compositionality is an
underlying principle for many modern visual recognition systems [232]. Convolutional Neural
Networks [239] have been shown to capture feature representations at multiple semantic and part
hierarchies [459]. The parts-based systems such as Deformable Part Models [109], grammars [158,
294, 414, 448, 476, 478], and AND-OR graphs [372, 444, 475] also rely on compositionality of objects
to build recognition systems. Compositionality has also been a key building block for systems
used for visual question answering [18, 19], image captioning [22], handwritten digits [230, 231],
zero-shot detection [220], segmentation and pose estimation [414, 448].

In this chapter, we focus on compositionality to compose unseen combinations of primitive
visual concepts. This has been classically studied under the zero-shot Learning paradigm [233].
Zero-shot learning tries to generalize to new visual concepts without seeing any training examples.
Generally, these methods [10, 12, 80, 233, 276, 344, 467] rely on an underlying embedding space,
such as attributes, in order to recognize unseen categories. It is assumed that the description of
the unseen categories is explicitly known in the underlying embedding space. As such explicit
knowledge is not always available, another line of work [92, 127, 243, 266, 272, 337] relies on
the finding such similarity in the linguistic space. Specifically, they leverage distributional word
representations to capture some notion of taxonomy and similarity. However, in this work, we
do not make assumptions about the availability of such a common underlying embedding or an
external corpus of knowledge. Our aim is to explore compositionality purely in the visual domain.

Another area related to our work is that of transfer learning [47, 62, 80, 311, 318, 402], feature
embeddings [211, 353] and low-shot recognition [108, 112, 117, 409]. These methods generalize to
new categories by utilizing knowledge gained from familiar categories. Like our method, they
rely on the visual similarity of unseen classes in order to generalize existing classifiers or features.
However, unlike our method, these approaches need training examples of the ‘unseen’ classes. We
build upon the insight from [437] that meaningful transformations can be learned directly in the
model space without external sources of knowledge.
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Figure 8.3: Our method composes classifiers from different types of primitive visual concepts. At training time, we
assume access to a limited set of combinations, e.g., (large, elephant) of these primitives. We model each of these
primitives by learning linear classifiers (w) for them. We then learn a transformation network that takes these classifiers
as input and composes them to produce a classifier for their combination. At test time, we show that this transformation
can generalize to unseen combinations of primitives (Sections 8.3.2 and 8.3.3) and even unseen primitives (Section 8.4.5).

We study compositionality in visual recognition in the context of two well known problems -
objects and attributes [103, 187, 194, 315, 319], and subject-verb-object (SVO) phrases [152, 266, 354,
407]. Both these problems capture compositionality of primitive visual concepts. Contextuality is
an important aspect of composing primitives in both these problems and leads to varied visual
appearance: e.g., small elephant vs. small snake or person sitting on chair vs. person sitting on sofa.
As has been noted in [266, 354], annotations for composite or complex visual concepts are far fewer
in number than for primitive concepts. Thus, our work has important practical applications as it
can compose visual primitives to recognize unseen complex concepts.

8.2 Approach

Our goal is to compose a set of visual concept primitives to get a complex visual concept as
output. As a simple example, shown in Figure 8.2, consider the complex concepts spanned by
combinations of attributes and objects. Given existing classifiers for an attribute large and an
object elephant, we want to learn to compose them to get a classifier for the (attribute, object)
pair of large elephant.

We represent our visual primitives by classifiers trained to recognize them. We then learn a
transformation of these input visual classifiers to get a classifier that represents the complex visual
concept. As shown in Figure 8.3, we parametrize our transformation by a deep network which
accepts linear classifiers of the primitives as inputs and produces a linear classifier of the complex
visual concept as output. As multi-layered networks can capture complex non-linear functions, we
hope that such a network can learn to compose visual primitives while capturing contextuality. We
show that such a network can generalize to unseen combinations of visual primitives and compose
them.

8.2.1 Intuition

Evidence for visual compositionality exists in neuroscience and has been widely studied [4, 120].
Our intuition behind composing directly in the classifier space is that classifiers themselves repre-
sent visual similarity, e.g., a classifier of an elephant is closer to an animal classifier rather than a
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plate classifier. Thus, classifiers of ‘unseen’ combinations of classes can be composed by looking at
‘seen’ combinations using this visual similarity in classifier space.

8.2.2 Approach Details

We now describe our approach on how to compose complex visual classifiers from two or more
simple visual classifiers. Without loss of generality, we will explain the details of our approach for
the case of combining two classifiers but our approach can generalize to combine more types of
primitives as demonstrated in our experiments.

Let us assume that we want to combine two different types of primitives. We represent
these sets of primitives by (Va,Vb). These primitives are composed to form a complex primitive
represented as Vab. As an example, consider Va as the set of attributes and Vb as objects and thus
Vab consists of complex concepts formed by attribute, object pairs. We use a, b, (a, b) to denote
elements in Va,Vb,Vab respectively. Continuing our analogy of attributes and objects, a, b, (a, b) can
represent large, elephant, and (large, elephant). We assume our vocabulary consists of
M primitives of first type (Va) and N primitives of second type (Vb). We also assume we have
training data for some K complex concepts which combine one of M and N primitives.

We first train a linear classifier (SVM) for every type of primitive. Therefore, the primitive
is parametrized by the weight vector for the linear classifier. Using the training data, we obtain
weight vectors of M +N primitives. Let us represent the weight vector for primitives a ∈ Va, b ∈ Vb
as wa, wb. We can also train SVMs wab for complex concepts (a, b) ∈ Vab using the training data
available. However, since the training data for (a, b) pairs is limited compared to training data
for a and b individually, directly training individual wab classifiers is difficult (see Section 8.3 for
experiments). Instead, we want to use wa and wb to directly learn about the complex concept (a, b)
without looking at wab.

As Figure 8.3 shows, we want to learn a function T such that it transforms the weights of two
primitives (wa, wb) and outputs the weight of the complex concept (a, b):

ŵab = T (wa, wb). (8.1)

Our training data contains the pairs (wa, wb). However, at training time, we do not have all
possible combinations of (a, b) but very few combinations (K << MN ). In order to detect unseen
combinations at test time, we want to use compositionality and learn to combine two different
primitives a and b to get the combinations (a, b).

We use a multi-linear perceptron to parameterize the function T and describe the architecture
and the loss function.

Architecture: The transformation network T is a feedforward network with three fully connected
layers. We use the LeakyReLU [165] non-linearity in between the layers. Given n SVMs (for n
primitive concepts) each of dimensionality D as input, the output sizes of the three layers are
(n+ 1)D, (n+ 1

2)D and D.
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Loss Function: We compute the score between the output of the transformation T and the input
image features φ(I).

p = sigmoid
(
T (wa, wb)

>φ(I)
)

This score reflects the compatibility between the model transformation and the image. We
want this score to be high only if the image contains the complex concept (a, b) and low otherwise.
As an example, we want the score to be high only for (large, elephant) and want it to be low
for an image containing either elephant or large (not both), or neither of the two concepts.

We train the parameters of the transformation network T to minimize the binary cross entropy
loss

L(I, wa, wb) = y log(p) + (1− y) log(1− p), (8.2)

where the image label y is 1 only if the image has the complex concept (a, b) present. During
training, we train a single transformation network using positive/negative images from various
combinations of the primitives.

8.2.3 Implementation Details

We use linear SVMs, e.g., wa, wb trained on fc7 layer representations from the VGG-M-1024 [375]
ConvNet. This ConvNet was pre-trained on the ImageNet dataset [351]. The input classifiers are
1024 dimensional each. The transformation network T consists of 3 fully connected layers with
LeakyReLU [165] non-linearities. We set the slope of LeakyReLU to 0.1. We do not update the
weights of the ConvNet to ensure a fair comparison to the baselines.

At test time, we first feed in the primitive tuples and cache the classifiers of the complex
concepts. Given an image, we then run a single forward pass to get the image features and compute
the scores using the cached classifiers.

8.3 Experiments

We now quantify the performance of our method on benchmark datasets. We do so in two settings -
1) compose object and attribute classifiers on the MITStates dataset [187]; and 2) compose three
primitives subject, predicate and object classifiers on the Stanford VRD dataset [266].

8.3.1 Common Setup

We first describe the common experimental setup used for these set of experiments.

Metrics: Following [233], we measure the multi-class classification accuracy over the classes in
the test split. Existing datasets are not exhaustively labeled [266, 289] in terms of combinations of
visual concepts, i.e., a modern city can also have narrow streets and one or both of these
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Figure 8.4: We show the top retrievals on the MITStates dataset [187]. These retrievals are computed on unseen
combinations of (attribute, object) pairs. We see that our method learns to compose attributes and objects while
respecting their context. The last row shows some failure cases of our method.

labels can be missing. To account for this, we follow [351] and use the top-k classification accuracy
metric. We also report mean Average Precision [94] (mAP) by computing average precision for
each of the classes and taking the mean.

Features and Classifiers: We use the fc7 representation from the VGG-M-1024 network [375]
pre-trained on ImageNet [351]. We learn our base visual classifiers (wa, wb) as linear SVMs on these
fc7 features and choose SVM parameters by 4 fold cross-validation using liblinear [100].

Training Details: We describe the architecture for the transform network T in Section 8.2.3. We
train it for 220k iterations with a mini-batch size of 256 and momentum 0.9, with a learning rate of
0.01 dropping by a factor of 10 after 200k iterations. We form each minibatch with a ratio of 25%
positive examples sampled uniformly in the space of the complex visual concepts. The ConvNet
weights are not updated for fair comparison. The supplementary material contains additional
experiments with end-to-end learning.

Evaluation Setting: As our method does not assume prior knowledge about unseen primitives or
complex objects, it is not possible to compare against traditional zero-shot learning methods similar
to [233]. Instead, we compare against methods that can directly ‘compose’ in zero-shot settings
without knowing relations to unseen classes at training time.
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Baselines without compositionality or contextuality: These baselines do not model composition-
ality or contextuality explicitly and work directly on the predictions of the base classifiers wa, wb.
We denote them as:

• Individual: This set of baselines does not use compositionality. The probability of the complex
concept (a, b) being present in an image is considered to be the probability of only one of the
primitives a or b, i.e. p(a, b) = p(a) or p(a, b) = p(b). For three primitives a, b, c we can also
consider pairs formed by leaving one primitive out, e.g., p(a, b, c) = p(a)p(b) etc.

• Visual Product: This baseline is inspired from the VisualOnly method from [266]. It does not
model contextuality and just ‘composes’ outputs of classifiers for the primitives, by computing
their product, i.e., p(a, b) = p(a)p(b). It can be thought of as late fusion. Unfortunately, since the
detectors or training code for [266] were not available at the time of submission, we are unable
to directly compare against their implementation/results.

Baselines composing without visual classifiers: These baselines use word embeddings to capture
visual similarity, e.g., word embedding of animal is closer to elephant than chapter. They
compose using word embeddings of labels, rather than visual classifiers.

• Label Embeddings (LE): This baseline is inspired from the work of [92, 243]. To implement this
method, we modify our approach to compute the transform T on embeddings of the visual
primitives, rather than the classifiers. We use the exact same network to compute T (ea, eb),
where ea is an embedding of the primitive a. We use a 300 dimensional word embedding [280]
learned using an external corpus (Google News).

• Label Embeddings Only Regression (LEOR): This baseline is inspired from the work of [92,
354, 437]. It is implemented similar to Label Embeddings, except for the loss function. We
implement the loss function as a regression to the classifier for the complex visual concept, e.g.,
a SVM trained on (attribute, object) pairs. Thus transform T (ea, eb) is trained to minimize the
euclidean distance to the classifier wab where wab is the SVM trained directly on (a, b) pairs.

• Label Embeddings With Regression (LE+R): This baseline combines the loss function from the
LE and LEOR baselines and can be viewed as a variation of [92].

8.3.2 Composing objects and attributes

In this section, we learn the transformation on two sets of visual primitives: objects and attributes
on the MITStates dataset [187]. We first describe more details about the experimental setup and
then present results.

Task: We consider the task of predicting a relevant (attribute, object) pair for a given image in the
test set, in an image classification setting. Our test set has (attribute, object) pairs that have never
been seen together in the training set. We ensure that all objects and attributes appear individually in
the training split. We use the unseen (attribute, object) pairs for evaluation using Average Precision
and top-k accuracy as described in Section 8.3.1.

Dataset: We use the MITStates Dataset [187] which has pairs of (attribute, object) labels for images
(one label per image). It has 245 object classes, 115 attribute classes and about 53k images. We
randomly split the dataset into train and test splits such that both splits have non-overlapping
(attribute, object) pairs. The training split consists of 1292 pairs with 34k images, and the test set
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Table 8.1: Evaluating on unseen (attribute, object) pairs on the MITStates Dataset [187]. We evaluate on 700 unseen
(attribute, object) pairs on 19k images.

AP Top-k Accuracy
k → 1 2 3

Chance - 0.14 0.28 0.42

Indiv. Att. 2.2 - - -
Indiv. Obj. 9.2 - - -

Visual Product 8.8 9.8 16.1 20.6

Label Embed (LE) 7.9 11.2 17.6 22.4
LE Only Reg. (LEOR) 4.1 4.5 6.2 11.8

LE+Reg. (LE+R) 6.7 9.3 16.3 20.8

Ours 10.4 13.1 21.2 27.6

has 700 pairs with 19k images. Thus, the training and test set have non-overlapping combinations
of visual concepts (∼ 35% unseen concepts) and are suitable for ‘zero-shot’ learning. We provide
more details in the supplementary material.

Baselines: We use the baselines described in Section 8.3.1. We denote the ‘Individual’ baselines for
attributes and objects as ‘Indiv Att.’ and ‘Indiv Obj.’ respectively.

Quantitative Results: We summarize the results for our method and the baselines on the MITStates
dataset in Table 8.1. We use the unseen attribute, object pairs for evaluation. The ‘Indiv’ baseline
methods that do not model both compositionality or contextuality show poor performance. This
is to be expected as predicting a (large, elephant) using only one of large or elephant is
rather ill-posed. The Indiv Att. baseline performs the worst. We believe the reason is that attribute
images are visually very diverse compared to objects (also noted in [319]).

Table 8.1 also shows that the Visual Product baseline gives strong performance in AP, but does
not perform well on top-k accuracy. The LE baseline, has the opposite behavior, which suggests
that using multiple metrics for evaluation is helpful. We observed that methods with high AP/low
accuracy tend to get the object correct while methods with high accuracy/low AP tend to get
(attribute, object) pairs correct but generally get objects wrong. Our method shows significant
improvement over baselines across all metrics.

We also see that the LEOR and LE+R baselines both have worse performance than the LE
baseline. This suggests that using regression to wab in the loss function is not optimal. On
further inspection, we found that the wattribute,object are poorly trained because of the very few
positive examples for (attribute, object) pairs, compared to the larger number examples available
for attributes and objects individually. Thus, regressing to these poorly trained classifiers hurts
performance. We further explore this in Section 8.4.1.

Qualitative Results: Figure 8.4 shows some qualitative results of our method. For the unseen
pairs of attributes and objects, we use our transformation T to predict a classifier and retrieve the
top results on the test set. Our model shows both compositionality and contextuality for these
concepts. It also shows that our model understands the different ‘modes’ of appearances for objects.
Additional qualitative results are presented in the supplementary material.
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Table 8.2: Evaluating subject-predicate-object predictions on unseen tuples. We use the StanfordVRD Dataset [266] with
1029 unseen tuples over 1000 images for evaluation.

AP Top-k Accuracy
k → 1 2 3

Chance - 0.09 0.18 0.27

Indiv. Sub. 2.9 - - -
Indiv Pred. 0.4 - - -
Indiv. Ob. 3.7 - - -

Indiv Sub. Pred. 2.9 - - -
Indiv Pred. Ob. 3.6 - - -
Indiv Sub. Ob. 4.9 - - -

Visual Product 4.9 3.2 5.6 7.6
Label Embed (LE) 4.3 4.1 7.2 10.6

LE Only Reg.(LEOR) 0.9 1.1 1.3 1.3
LE+Reg. (LE+R) 3.9 3.9 7.1 10.4

Ours 5.7 6.3 9.2 12.7

We present further results (combining unseen primitives etc.) and analysis of our method on
this dataset in Section 8.4.

8.3.3 Beyond two primitives: Composing subject, predicate and objects

In this section, we learn our transformation on three sets of visual primitives: subject, predicate
and object. We first present additional details on the experimental setup.

Task: We predict a relevant (subject, predicate, object) tuple for a given (ground truth) bounding
box from an image. The test set has unseen tuples which are used for evaluation. We use the metrics
of Average Precision and top-k accuracy as described in Section 8.3.1.

Dataset: We use the recently published StanfordVRD [266] dataset. We use their provided train/test
splits of 4k/1k images. The dataset contains SPO subject-predicate-object (generalization of subject-
verb-object, SVO) annotations, e.g., man sitting on a chair in which the subject-predicate-
object tuple is (man, sitting on, chair). In our notation, this dataset consists of three types
of visual primitives (Va,Vb,Vc) as (subject, predicate, object) respectively. The dataset has 7701 such
tuples of which 1029 occur only in the test set. The dataset has 100 subjects and objects, and 70
predicates. We use the ground-truth bounding boxes and treat the problem as classification into
SPO tuples rather than detection.

Baselines: We use the baselines described in Section 8.3.1. For the ‘Individual’ baselines we
explicitly mention which primitives were used, e.g., ‘Indiv Predicate’ denotes that only predicate
was used, or ‘Indiv Pred. Ob.’ denotes that product of predicate and object was used.

Quantitative Results: The results for our method and baselines are summarized in Table 8.2. We
evaluate all methods on the unseen subject, predicate, object tuples on the test set. Following the
trend observed in Section 8.3.2, the ‘Indiv’ baseline methods show poor performance. Unsurpris-
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Figure 8.5: We show the top classes and the gain in AP over the Visual Product baseline on the MITStates dataset. We
show the gain for (attribute, object) pairs, and for individual objects and attributes (after averaging across pairs).

ingly, predicting a (subject, predicate, object) tuple by considering predictions of only one or two
of the primitives does not perform well. We also see that the Indiv. Sub. Ob. baseline shows
strong performance, while Indiv. Pred. shows very weak performance. Predicates show higher
visual diversity than either subjects or objects and are much more difficult to capture in visual
models [266, 354].

Additionally, in Table 8.2, the Indiv Sub. Ob. and Visual Product baselines show similar
performance. It again suggests that predicate classifiers do not generalize. Similar to Section 8.3.2,
we see that the LEOR and LE+R baselines both have worse performance than the LE baseline.
The regression loss used in both these methods regresses to a wsubject,predicate,object classifier. As
there are limited examples available for (subject, predicate, object) tuples (compared to examples
available individually for the concepts), these classifiers show poor performance (as also noted
by [266]). Our method shows improvement over all baseline methods across all metrics, suggesting
that the transformation T has some generalization.

Table 8.3: We analyze the effect of varying the loss function and initialization used to train the transform network T . We
test the network on the 700 unseen combinations

Loss Init Performance
AP Top-k Accuracy

k → 1 2 3

Cross Entropy Gauss. 9.8 10.5 17.4 23.3
Regression Gauss. 3.1 2.4 3.8 5.1

Cross Ent.+Reg. Gauss. 7.6 10.2 17.0 22.1

Cross Entropy Xavier 9.9 10.1 17.2 22.3

Cross Entropy Identity 10.4 13.2 21.2 27.6
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Table 8.4: Evaluating on unseen (attribute, object) pairs on the MITStates Dataset [187]. We vary the ratio of unseen pairs
to seen pairs and evaluate our method.

Unseen Ratio AP Top-k Accuracy
k → 1 2 3

0.1 Chance - 1.5 3.0 4.5
0.1 Visual Product 28.7 48.6 58.1 66.2
0.1 Label Embed (LE) 29.2 49.7 59.2 69.1
0.1 Ours 29.8 51.4 59.6 68.9

0.3 Chance - 0.1 0.3 0.4
0.3 Visual Product 8.8 9.8 16.1 20.6
0.3 Label Embed (LE) 7.9 11.1 17.6 22.4
0.3 Ours 10.4 13.2 21.2 27.6

0.5 Chance - 0.1 0.2 0.3
0.5 Visual Product 5.9 6.2 8.8 10.5
0.5 Label Embed (LE) 5.9 7.8 12.6 16.9
0.5 Ours 8.2 10.4 17.8 23.1

8.4 Detailed Analysis

We now present detailed analysis of our approach and quantify our architectural design decisions.
We also analyze other interesting properties of our learned transform T . For all these experiments,
we use the MITStates [187] dataset and follow the experimental setup from Section 8.3.2. We report
the results on the 700 unseen pairs from the test set.

8.4.1 Architectural decisions

We analyze the impact of our design decisions on performance of the transformation network T .

Choice of Loss Function: In Section 8.2, we described the Cross Entropy (CE) loss function
(Equation 8.2). Here, we explore a few more choices for training our method:

• Regression: This loss function is inspired from the work of [92, 437] (also used in Section 8.3).
The transform T (wlarge, welephant) is trained to minimize the euclidean distance to the classifier
w(large, elephant).

• Regression+CE: We combine the Cross Entropy and Regression Loss functions (with a loss
weight of 1 each).

Initialization: We found that using standard initialization methods like random gaussian or
xavier [144] gave low performance for our transformation network T .

Inspired from [238], we initialize the weights of our network as block diagonal identity matrices.
This has the desirable property that immediately from initialization, the network can ‘copy’ its
inputs to produce a reasonable output.

Table 8.3 summarizes the results for both these choices. We notice that the Regression loss
performs poorly by itself. As noted in Sections 8.3.2 and 8.3.3, this is because it tries to mimic
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Figure 8.6: We show the distance between the inputs of the transformation network and its output for the unseen pairs.
For visualization, we sort this distance individually for both attribute and object inputs. We provide distance between
classifiers across 3 pairs of known classes for reference. We see that the transformation modifies all the inputs.

individual classifiers trained for each complex concept, e.g., (large elephant). These classifiers
have little data available to train. Among initialization methods, our identity initialization improves
performance.

Depth of network: We found that increasing the number of layers in the transformation network T
did not give significant improvements. We opted for the minimal design that gave the best results.

8.4.2 Does the transform ‘copy’ the inputs?

We compute the distance between the inputs to the transformation network T and the produced
output, i.e., d(wa, T (wa, wb)). We compute this distance over the unseen combinations for the
MITStates dataset and show it (after sorting) in Figure 8.6. We see that the transformation changes
both inputs and does not just ‘copy’ them. In the supplementary material, we show that the
predicted ‘unseen’ pairs are different from the ‘seen’ pairs.

8.4.3 Which classes gain the most?

Figure 8.5 shows the top classes for which our method improves over the Visual Product baseline.
We see that the improvement for objects is across both man-made and natural objects. Similarly,
the attributes improved by our method have diverse visual interpretations. The pairs for which
the baseline is better are generally those where just predicting the object for the (attribute, object)
pair gives the best performance, i.e., attributes do not model much information about the object
appearance.
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Table 8.5: We evaluate our method by composing unseen attributes and objects to form unseen combinations (attributes,
objects). We use the MITStates dataset.

AP Top-k Accuracy
k → 1 2 3

Chance - 0.7 1.3 2.0
Visual Product 6.4 7.1 8.6 9.1

Label Embed (LE) 8.4 8.2 12.3 17.4
Ours 9.6 10.1 18.3 22.9

8.4.4 Varying the ratio of seen/unseen concepts

We evaluate the effect of decreasing the training data for our transformation network. We vary the
ratio of seen/unseen (attribute, object) pairs on MITStates from [0.1, 0.3, 0.5], and train our network
for each setting. We compare to the Visual Product and LE baselines from Section 8.3.1. Table 8.4
summarizes the results. We see that our algorithm is sensitive to the amount of training data
available. It also shows improvement over baseline methods in all these settings. Comparing the
performance for unseen ratios of 0.1 to 0.5, we see that our method’s gain over baselines increases
as we reduce the training data.

8.4.5 Moving from unseen combinations of primitives to unseen primitives

In this set of experiments, we randomly drop a set of object and attribute primitives from the
training set of our transform network T . The network never sees these classifiers at training
time. At test time, we evaluate on the attribute, object pairs formed by these ‘dropped’ primitives.
Concretely, we randomly drop 20% of objects and attributes: 49 of the 245 objects and 23 of the 115
attributes. We evaluate on 142 (attribute, object) pairs formed by these dropped primitives. We
report these results in Table 8.5. Our method is able to generalize to these unseen input primitives
and combine them to form the unseen pairs of concepts.

8.5 Conclusion

We presented a simple approach to compose classifiers to generate classifiers for new complex
concepts. Our experiments on composing attributes and objects show that our method respects
contextuality. We also show that our method can compose multiple primitives, and can generalize
not only to unseen combinations of primitives, but also unseen primitives. It consistently gives
better results than the baselines across different metrics and datasets. Thus, in this section we have
seen that using structure in the classifier space can help us use simple image synthesis techniques
(Chapter 7) and compose classifiers (this chapter). All of these methods help reduce the need for
human supervision.
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Part IV

Interactive Learning
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Chapter 9

Learning to Ask Questions

If you want a wise answer, ask a reasonable question.

JOHANN WOLFGANG VON GOETHE in Wilhelm Meister’s
Lehrjahre, 1830

In this section, we argue that next-generation recognition systems need to have agency — the
ability to decide what information they need and how to get it. Much of the progress is machine
learning is due to fully supervised models which are passively fed supervision. These models do
not have any control over the supervision fed to them. This is in stark contrast to the way we
humans learn — by interacting with our environment to gain information. The interactive nature of
human learning makes it sample efficient (there is less redundancy during training) and also yields
a learning curriculum (we ask for more complex knowledge as we learn).

While there are multiple ways to interact with an environment, in this thesis we focus on
interactions using natural language, i.e., a question asking-answering setup. We will study these
interactions by first proposing a way to ask questions in this Chapter. In the next Chapter 10, we
will show a self-contained agent that learns purely by interaction.

Learning to ask questions is an important task in AI and is more than a syntactic transformation
of a declarative sentence [420]. Deciding what to ask about demonstrates understanding and
as such, question generation provides an indication of machine understanding, just as some

Natural Questions:
- Was anyone injured in the

crash?
- Is the motorcyclist alive?
- What caused this accident?

Generated Caption:
- A man standing next to a
motorcycle.

Figure 9.1: Example image along with its natural questions and automatically generated caption.
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educational methods assess students’ understanding by their ability to ask relevant questions1.
Furthermore, training a system to ask a good question (not only answer a question) may imbue the
system with what appears to be a cognitive ability unique to humans among other primates [200].
Developing the ability to ask relevant and to-the-point questions can be an essential component of
any dynamic learner which seeks information. Such an ability can be an integral component of any
conversational agent, either to engage the user in starting a conversation or to elicit task-specific
information. In this chapter, we see how an agent can learn to ask questions and start an engaging
conversation about images.

Imagine someone has shared the image in Figure 9.1. What is the very first question that comes
to mind? Your question is most probably very similar to the questions listed next to the image,
expressing concern about the motorcyclist (who is not even present in the image). As you can tell,
natural questions are not about what is seen, the policemen or the motorcycle, but rather about
what is inferred given these objects, e.g., an accident or injury. As such, questions are often about
abstract concepts, i.e., events or states, in contrast to the concrete terms2 used in image captioning.
It is clear that the corresponding automatically generated caption3 for Figure 9.1 presents only a
literal description of objects.

To move beyond the literal description of image content, we introduce the novel task of Visual
Question Generation (VQG), where given an image, the system should ‘ask a natural and engaging
question’. Asking a question that can be answered simply by looking at the image would be of
interest to the Computer Vision community, but such questions are neither natural nor engaging
for a person to answer and so are not of interest for the task of VQG.

The contributions of this chapter can be summarized as follows: (1) in order to enable the VQG
research, we carefully created three datasets with a total of 75,000 questions, which range from
object- to event-centric vqg/images, where we show that VQG covers a wide range of abstract
terms including events and states (Section 9.2). (2) we collected 25,000 gold captions for our
event-centric dataset and show that this dataset presents challenges to the state-of-the-art image
captioning models (Section 9.2.3). (3) we perform analysis of various generative and retrieval
approaches and conclude that end-to-end deep neural models outperform other approaches on our
most-challenging dataset (Section 9.3). (4) we provide a systematic evaluation methodology for this
task, where we show that the automatic metric ∆BLEU strongly correlates with human judgments
(Section 9.4.3). The results show that while our models learn to generate promising questions, there
is still a large gap to match human performance, making the generation of relevant and natural
questions an interesting and promising new challenge to the community.

9.1 Background

For the task of image captioning, datasets have primarily focused on objects, e.g. Pascal VOC [96]
and Microsoft Common Objects in Context (MS COCO) [252]. MS COCO, for example, includes

1http://rightquestion.org/
2Concrete terms are the ones that can be experienced with five senses. Abstract terms refer to intangible things, such

as feelings, concepts, and qualities
3Throughout this chapter we use the state-of-the-art captioning system [101], henceforth MSR captioning system

https://www.captionbot.ai/, to generate captions.
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complex everyday scenes with 91 basic objects in 328k vqg/images, each paired with 5 captions.
Event detection is the focus in video processing and action detection, but these do not include a
textual description of the event [21, 50, 446, 452]. The number of actions in each of these datasets
is still relatively small, ranging from 40 [453] to 600 [50] and all involve human-oriented activity
(e.g. ‘cooking’, ‘gardening’, ‘riding a bike’). In our work, we are focused on generating questions
for static vqg/images of events, such as ‘fire’, ‘explosion’ or ‘snowing’, which have not yet been
investigated in any of the above datasets.

Visual Question Answering is a task where the system provides an answer to a question about
the image content. The most notable, Visual Question Answering (VQA) [24], is an open-ended
(free-form) dataset, in which both the questions and the answers are crowd-sourced, with workers
prompted to ask a visually verifiable question which will ‘stump a smart robot’. Gao et al. [132] used
similar methodology to create a visual question answering dataset in Chinese. COCO-QA (CQA)
[339], in contrast, does not use human-authored questions, but generates questions automatically
from image captions of the MS COCO dataset by applying a set of transformation rules to generate
the wh-question. The expected answers in CQA are by design limited to objects, numbers, colors,
or locations. A more in- depth analysis of VQA and CQA datasets will be presented in Section 9.2.1.

In this work, we focus on questions which are interesting for a person to answer, not questions
designed to evaluate computer vision. A recently published work on VQA, Visual7W [482],
establishes a grounding link on the object regions corresponding to the textual answer. This setup
enables a system to answer a question with visual answers (in addition to textual answers). They
collect a set of 327,939 7W multiple-choice QA pairs, where they point out that ‘where’, ‘when’ and
‘why’ questions often require high-level commonsense reasoning, going beyond spatial reasoning
required for ‘which’ or ‘who’ questions. This is more in line with the type of questions that VQG
captures, however, the majority of the questions in Visual7w are designed to be answerable by only
the image, making them unnatural for asking a human. Thus, learning to generate the questions in
VQA task is not a useful sub-task, as the intersection between VQG and any VQA questions is by
definition minimal.

Previous work on question generation from textual input has focused on two aspects: the
grammaticality [167, 293, 441] and the content focus of question generation, i.e., “what to ask
about”. For the latter, several methods have been explored: [32] create fill-in-the-blank questions,
[275] and [254] use manually constructed question templates, while [227] use crowd-sourcing to
collect a set of templates and then rank the potentially relevant templates for the selected content.
To our knowledge, neither a retrieval model nor a deep representation of textual input, presented
in our work, have yet been used to generate questions.

9.2 Data Collection Methodology

Task Definition: Given an image, the task is to generate a natural question which can potentially
engage a human in starting a conversation. Questions that are visually verifiable, i.e., that can be
answered by looking at only the image, are outside the scope of this task. For instance, in Figure 9.2,
a question about the number of horses (appearing in the VQA dataset) or the color of the field is
not of interest. Although in this chapter we focus on asking a question about an image in isolation,
adding prior context or history of conversation is the natural next step in this project.
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Figure 9.2: Example right and wrong questions for the task of VQG.

We collected the VQG questions by crowd-sourcing the task on Amazon Mechanical Turk
(AMT). We provide details on the prompt and the specific instructions for all the crowdsourcing
tasks in this chapter in the supplementary material. Our prompt was very successful at capturing
non-literal questions, as the good question in Figure 9.2 demonstrates. In the following Sections,
we describe our process for selecting the vqg/images to be included in the VQG dataset. We start
with vqg/images from MS COCO, which enables meaningful comparison with VQA and CQA
questions. Given that it is more natural for people to ask questions about event-centric vqg/images,
we explore sourcing eventful vqg/images from Flickr and from querying an image search engine.
Each data source is represented by 5,000 vqg/images, with 5 questions per image.

9.2.1 V QGcoco−5000 and V QGF lickr−5000

As our first dataset, we collected VQG questions for a sample of vqg/images from the MS COCO
dataset4. In order to enable comparisons with related datasets, we sampled 5,000 vqg/images of
MS COCO which were also annotated by the CQA dataset [339] and by VQA [24]. We name this
dataset V QGcoco−5000. Table 9.1 shows a sample MS COCO image along with annotations in the
various datasets. As the CQA questions are generated by rule application from captions, they are
not always coherent. The VQA questions are written to evaluate the detailed visual understanding
of a robot, so their questions are mainly visually grounded and literal. The table demonstrates how
different VQG questions are from VQA and CQA questions.

In Figure 9.3 we provide statistics for the various annotations on that portion of the MS COCO
vqg/images which are represented in the V QGcoco−5000 dataset. In Figure 9.3(a) we compare the
percentage of object-mentions in each of the annotations. Object-mentions are words associated
with the gold-annotated object boundary boxes5 as provided with the MS COCO dataset. Naturally,
COCO captions (green bars) have the highest percentage of these literal objects. Since object-
mentions are often the answer to VQA and CQA questions, those questions naturally contain
objects less frequently. Hence, we see that VQG questions include the mention of more of those
literal objects. Figure 9.3(b) shows that COCO captions have a larger vocabulary size, which reflects
their longer and more descriptive sentences. VQG shows a relatively large vocabulary size as well,
indicating greater diversity in question formulation than VQA and CQA. Moreover, Figure 9.3(c)
shows that the verb part of speech is represented with high frequency in our dataset.

Figure 9.3(d) depicts the percentage of abstract terms such as ‘think’ or ‘win’ in the vocabulary.
Following Ferraro et al. [115], we use a list of most common abstract terms in English [421], and

4http://mscoco.org/
5Note that MS COCO annotates only 91 object categories.
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Dataset Annotations

COCO
- A man holding a box with a large
chocolate covered donut.

CQA
- What is the man holding with a
large chocolate-covered doughnut in it?

VQA - Is this a large doughnut?

VQG

- Why is the donut so large?
- Is that for a specific celebration?
- Have you ever eaten a donut that large
before?
- Is that a big donut or a cake?
- Where did you get that?

Table 9.1: Dataset annotations on the above image.

count all the other words except a set of function words as concrete. This figure supports our
expectation that VQG covers more abstract concepts. Furthermore, Figure 9.3(e) shows inter-
annotation textual similarity according to the BLEU metric [314]. Interestingly, VQG shows the
highest inter-annotator textual similarity, which reflects on the existence of consensus among
human for asking a natural question, even for object-centric vqg/images like the ones in MS COCO.

The MS COCO dataset is limited in terms of the concepts it covers, due to its pre-specified set
of object categories. Word frequency in V QGcoco−5000 dataset, as demonstrated in Figure 9.4, bears
this out, with the words ‘cat’ and ‘dog’ the fourth and fifth most frequent words in the dataset. Not
shown in the frequency graph is that words such as ‘wedding’, ‘injured’, or ‘accident’ are at the very
bottom of frequency ranking list. This observation motivated the collection of the V QGFlickr−5000

dataset, with vqg/images appearing as the middle photo in a story-full photo album [183] on
Flickr6. The details about this dataset can be found in the supplementary material.

9.2.2 V QGBing−5000

To obtain a more representative visualization of specific event types, we queried a search engine7

with 1,200 event-centric query terms which were obtained as follows: we aggregated all ‘event’
and ‘process’ hyponyms in WordNet [282], 1,000 most frequent TimeBank events [327] and a set of
manually curated 30 stereotypical events, from which we selected the top 1,200 queries based on
Project Gutenberg word frequencies. For each query, we collected the first four to five vqg/images
retrieved, for a total of 5,000 vqg/images, having first used crowdsourcing to filter out vqg/images
depicting graphics and cartoons.

6http://www.flickr.com
7https://datamarket.azure.com/dataset/bing/search
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Figure 9.3: Comparison of various annotations on the MS COCO dataset. (a) Percentage of gold objects used in
annotations. (b) Vocabulary size (c) Percentage of verb POS (d) Percentage of abstract terms (e) Inter-annotation textual
similarity score.

A similar word frequency analysis shows that the V QGBing−5000 dataset indeed contains more
words asking about events: happen, work, cause appear in top 40 words, which was our aim in
creating the Bing dataset.

Statistics: Our three datasets together cover a wide range of visual concepts and events,
totaling 15,000 vqg/images with 75,000 questions.

Figure 9.5 draws the histogram of number of tokens in VQG questions, where the average
question length is 6 tokens. Figure 9.6 visualizes the n-gram distribution (with n=6) of questions in
the three VQG datasets8. Table 9.2 shows the statistics of the crowdsourcing task.

# all vqg/images 15,000
# questions per image 5
# all workers participated 308
Max # questions written by one worker 6,368
Average work time per worker (sec) 106.5
Median work time per worker (sec) 23.0
Average payment per question (cents) 6.0

Table 9.2: Statistics of crowdsourcing task, aggregating all three datasets.

8Please refer to our web page on http://research.microsoft.com/en-us/downloads to get a link to a
dynamic visualization and statistics of all n-gram sequences.
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Figure 9.4: Frequency graph of top 40 words in V QGcoco−5000 dataset.

Figure 9.5: Average annotation length of the three VQG datasets.

9.2.3 CaptionsBing−5000

The word frequencies of questions about the V QGBing−5000 dataset indicate that this dataset is
substantially different from the MS COCO dataset. Human evaluation results of a recent work
[413] further confirms the significant image captioning quality degradation on out-of-domain data.
To further explore this difference, we crowdsourced 5 captions for each image in the V QGBing−5000

dataset using the same prompt as used to source the MS COCO captions. We call this new dataset
CaptionsBing−5000. Table 9.3 shows the results of testing the state-of-the-art MSR captioning
system on the CaptionsBing−5000 dataset as compared to the MS COCO dataset, measured by
the standard BLEU [314] and METEOR [81] metrics. The wide gap in the results further confirms
that indeed the V QGBing−5000 dataset covers a new class of vqg/images; we hope the availability
of this new dataset will encourage including more diverse domains for image captioning.

BLEU METEOR
Bing MS COCO Bing MS COCO
0.101 0.291 0.151 0.247

Table 9.3: Image captioning results
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Figure 9.6: VQG N-gram sequences. ‘End’ token distinguishes natural ending with n-gram cut-off.

Figure 9.7: Three different generative models for tackling the task of VQG.

9.3 Models

In this Section we present several generative and retrieval models for tackling the task of VQG. For
all the forthcoming models we use the VGGNet [375] architecture for computing deep convolutional
image features. We primarily use the 4096-dimensional output the last fully connected layer (fc7)
as the input to the generative models.

9.3.1 Generative Models

Figure 9.7 represents an overview of our three generative models. The MELM model [101] is a
pipeline starting from a set of candidate word probabilities which are directly trained on vqg/im-
ages, which then goes through a maximum entropy (ME) language model. The MT model is a
Sequence2Sequence translation model [60, 397] which directly translates a description of an image
into a question, where we used the MS COCO captions and CaptionsBing−5000 as the source of
translation. These two models tended to generate less coherent sentences, details of which can be
found in the supplementary material. We obtained the best results by using an end-to-end neural
model, GRNN, as follows.

Gated Recurrent Neural Network (GRNN): This generation model is based on the state-of-
the-art multimodal Recurrent Neural Network model used for image captioning [82, 426]. First, we
transform the fc7 vector to a 500-dimensional vector which serves as the initial recurrent state to a
500-dimensional Gated Recurrent Unit (GRU). We produce the output question one word at a time
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Q. Explosion Hurricane Rain Cloud

H
um

an - What caused this explosion?
- Was this explosion an
accident?

- What caused the
damage to this city?
- What happened to
this place?

- Are those rain clouds?
- Did it rain?

G
R

N
N - How much did the fire cost?

- What is being burned here?
- What happened to
the city?
- What caused the fall?

- What kind of clouds are
these?
- Was there a bad storm?

K
N

N

- What caused this fire?
- What state was this
earthquake in? - Did it rain?

C
ap

ti
on

- A train with smoke coming
from it.

- A pile of dirt. - Some clouds in a
cloudy day.

Table 9.4: Sample generations by different systems on V QGbing−5000, in order: Humanconsensus and Humanrandom,
GRNNbing and GRNNall, KNN+minbleu−all, MSR captions. Q is the query-term.

using the GRU, until we hit the end-of-sentence token. We train the GRU and the transformation
matrix jointly, but we do not back-propagate the CNN due to the size of the training data. The
neural network is trained using Stochastic Gradient Descent with early stopping, and decoded
using a beam search of size 8. The vocabulary consists of all words seen 3 or more times in the
training, which amounts to 1942 unique tokens in the full training set. Unknown words are mapped
to to an <unk> token during training, but we do not allow the decoder to produce this token at test
time.

9.3.2 Retrieval Methods

Retrieval models use the caption of a nearest neighbor training image to label the test image
[82, 105, 174, 309]. For the task of image captioning, it has been shown that up to 80% of the
captions generated at test time by a near state-of-the-art generation approach [426] were exactly
identical to the training set captions, which suggests that reusing training annotations can achieve
good results. Moreover, basic nearest neighbor approaches to image captioning on the MS COCO
dataset are shown to outperform generation models according to automatic metrics [82]. The
performance of retrieval models of course depends on the diversity of the dataset.

We implemented several retrieval models customized for the task of VQG. As the first step,
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we compute K nearest neighbor vqg/images for each test image using the fc7 features to get a
candidate pool. We obtained the most competitive results by setting K dynamically, as opposed
to the earlier works which fix K throughout the testing. We observed that candidate vqg/images
beyond a certain distance made the pool noisy, hence, we establish a parameter calledmax-distance
which is an upper bound for including a neighbor image in the pool. Moreover, our experiments
showed that if there exists a very similar image to the test image, the candidate pool can be
ignored and that test image should become the only candidate9. For addressing this, we set a
min-distance parameter. All these parameters were tuned on the corresponding validation sets
using the Smoothed-BLEU [250] metric against the human reference questions.

Given that each image in the pool has five questions, we define the one-best question to be the
question with the highest semantic similarity10 to the other four questions. This results in a pool of
K candidate questions. The following settings were used for our final retrieval models:

– 1-NN: Set K=1, which retrieves the closest image and emits its one-best.

– K-NN+min: Set K=30 with max-distance = 0.35, and min-distance = 0.1. Among the 30
candidate questions (one-best of each image), find the question with the highest similarity
to the rest of the pool and emit that: we compute the textual similarity according the two
metrics, Smoothed-BLEU and Average-Word2Vec (gensim)11.

Table 9.4 shows a few example vqg/images along with the generations of our best performing
systems. For more examples please refer to the web page of the project.

9.4 Evaluation

While in VQG the set of possible questions is not limited, there is consensus among the natural
questions (discussed in Section 9.2.1) which enables meaningful evaluation. Although human
evaluation is the ideal form of evaluation, it is important to find an automatic metric that strongly
correlates with human judgment in order to benchmark progress on the task.

9.4.1 Human Evaluation

The quality of the evaluation is in part determined by how the evaluation is presented. For instance,
it is important for the human judges to see various system hypotheses at the same time in order
to give a calibrated rating. We crowdsourced our human evaluation on AMT, asking three crowd
workers to each rate the quality of candidate questions on a three-point semantic scale.

9At test time, the frequency of finding a train set image with distance ≤ 0.1 is 7.68%, 8.4% and 3.0% in COCO, Flickr
and Bing datasets respectively.

10We use BLEU to compute textual similarity. This process eliminates outlier questions per image.
11Average-Word2Vec refers to the sentence-level textual similarity metric where we compute the cosine similarity

between two sentences by averaging their word-level Word2Vec [281] vector representations. Here we use the GenSim
software framework [338].

127



H
um

an
c
o
n
s
e
n
s
u
s

H
um

an
r
a
n
d
o
m

G
R

N
N

X

G
R

N
N

a
ll

1-
N

N
b
le
u
−
X

1-
N

N
g
e
n
s
im
−
X

K
-N

N
+m

in
b
le
u
−
X

K
-N

N
+m

in
g
e
n
s
im
−
X

1-
N

N
b
le
u
−
a
ll

1-
N

N
g
e
n
s
im
−
a
ll

K
-N

N
+m

in
b
le
u
−
a
ll

K
-N

N
+m

in
g
e
n
s
im
−
a
ll

Human Evaluation
Bing 2.49 2.38 1.35 1.76 1.72 1.72 1.69 1.57 1.72 1.73 1.75 1.58

COCO 2.49 2.38 1.66 1.94 1.81 1.82 1.88 1.64 1.82 1.82 1.96 1.74
Flickr 2.34 2.26 1.24 1.57 1.44 1.44 1.54 1.28 1.46 1.46 1.52 1.30

Automatic Evaluation

BL
EU Bing 87.1 83.7 12.3 11.1 9.0 9.0 11.2 7.9 9.0 9.0 11.8 7.9

COCO 86.0 83.5 13.9 14.2 11.0 11.0 19.1 11.5 10.7 10.7 19.2 11.2
Flickr 84.4 83.6 9.9 9.9 7.4 7.4 10.9 5.9 7.6 7.6 11.7 5.8

M
ET

. Bing 62.2 58.8 16.2 15.8 14.7 14.7 15.4 14.7 14.7 14.7 15.5 14.7
COCO 60.8 58.3 18.5 18.5 16.2 16.2 19.7 17,4 15.9 15.9 19.5 17.5
Flickr 59.9 58.6 14.3 14.9 12.3 12.3 13.6 12.6 12.6 12.6 14.6 13.0

∆
BL

EU Bing 63.38 57.25 11.6 10.8 8.28 8.28 10.24 7.11 8.43 8.43 11.01 7.59
COCO 60.81 56.79 12.45 12.46 9.85 9.85 16.14 9.96 9.78 9.78 16.29 9.96
Flickr 62.37 57.34 9.36 9.55 6.47 6.47 9.49 5.37 6.73 6.73 9.8 5.26

Table 9.5: Results of evaluating various models according to different metrics. X represents training on the corresponding
dataset in the row. Human score per model is computed by averaging human score across multiple vqg/images, where
human score per image is the median rating across the three raters.

METEOR BLEU ∆BLEU
r 0.916 (4.8e-27) 0.915 (4.6e-27) 0.915 (5.8e-27)
ρ 0.628 (1.5e-08) 0.67 (7.0e-10) 0.702 (5.0e-11)
τ 0.476 (1.6e-08) 0.51 (7.9e-10) 0.557 (3.5e-11)

Table 9.6: Correlations of automatic metrics against human judgments, with p-values in parentheses.
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9.4.2 Automatic Evaluation

The goal of automatic evaluation is to measure the similarity of system-generated question hypothe-
ses and the crowdsourced question references. To capture n-gram overlap and textual similarity
between hypotheses and references, we use standard Machine Translation metrics, BLEU [314] and
METEOR [81]. We use BLEU with equal weights up to 4-grams and default setting of METEOR
version 1.5. Additionally we use ∆BLEU [131] which is specifically tailored towards generation
tasks with diverse references, such as conversations. ∆BLEU requires rating per reference, distin-
guishing between the quality of the references. For this purpose, we crowd-sourced three human
ratings (on a scale of 1-3) per reference and used the majority rating.

The pairwise correlational analysis of human and automatic metrics is presented in Table 9.6,
where we report on Pearson’s r, Spearman’s ρ and Kendall’s τ correlation coefficients. As this table
reveals, ∆BLEU strongly correlates with human judgment and we suggest it as the main evaluation
metric for testing a VQG system. It is important to note that BLEU is also very competitive with
∆BLEU, showing strong correlations with human judgment. Hence, we recommend using BLEU
for any further benchmarking and optimization purposes. BLEU can also be used as a proxy for
∆BLEU for evaluation purposes whenever rating per reference are not available.

9.4.3 Results

In this section, we present the human and automatic metric evaluation results of the models
introduced earlier. We randomly divided each VQG-5000 dataset into train (50%), val (25%) and
test (25%) sets. In order to shed some light on differences between our three datasets, we present the
evaluation results separately on each dataset in Table 9.5. Each model (Section 9.3.2) is once trained
on all train sets, and once trained only on its corresponding train set (represented as X in the results
table). For quality control and further insight on the task, we include two human annotations
among our models: ‘Humanconsensus’ (the same as one-best) which indicates the consensus human
annotation on the test image and ‘Humanrandom’ which is a randomly chosen annotation among
the five human annotations.

It is quite interesting to see that among the human annotations, Humanconsensus achieves
consistently higher scores than Humanrandom. This further verifies that there is indeed a common
intuition about what is the most natural question to ask about a given image. As the results of
human evaluation in Table 9.5 shows, GRNNall performs the best as compared with all the other
models in 2/3 of runs. All the models achieve their best score on V QGCOCO−5000, which was
expected given the less diverse set of vqg/images. Using automatic metrics, the GRNNX model
outperforms other models according to all three metrics on the V QGBing−5000 dataset.

Among retrieval models, the most competitive is K-NN+min_bleu_all, which performs the best
on V QGCOCO−5000 and V QGFlickr−5000 datasets according to BLEU and ∆BLEU score. This further
confirms our effective retrieval methodology for including min-distance and n-gram overlap
similarity measures. Furthermore, the boost from 1-NN to K-NN models is considerable according
to both human and automatic metrics. It is important to note that none of the retrieval models beat
the GRNN model on the Bing dataset. This additionally shows that our Bing dataset is in fact more
demanding, making it a meaningful challenge for the community.
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9.5 Discussion

In this chapter, we introduced the novel task of ‘Visual Question Generation’, where given an
image, the system is tasked with asking a natural question. This task focuses on developing the
capability to ask relevant and to-the-point questions, a key intelligent behavior that an AI system
should demonstrate. We believe that VQG is one step towards building such a system, where an
engaging question can naturally start a conversation. Another natural extension of this work is
to include question generation within a conversational system [244, 385], where the context and
conversation history affect the types of questions being asked. In the next chapter, we will see such
an extension in which an agent must ask questions in order to learn new concepts.

H
um

an

- How long did it take to
make that ice sculpture?

- Is the dog looking
to take a shower?

G
R

N
N - How long has he been

hiking? - Is this in a hotel room?

K
N

N - How deep was the
snow?

- Do you enjoy the light
in this bathroom?

Table 9.7: Examples of errors in generation. The rows are Humanconsensus, GRNNall, and KNN+minbleu−all.

130



Chapter 10

Learning by Asking Questions

[...]Plain question and plain answer make the shortest road out of most
perplexities.

MARK TWAIN in Life on the Mississippi, 1883

Chapter 9 introduced the task of Visual Question Generation (VQG) and showed how models
can be trained to ask meaningful questions. These interactive agents that can ask questions are
important for sample efficient learning that generalizes to unseen distributions. However, a major
drawback of VQG is the subjective evaluation of the generated questions. In this chapter, we
propose an interactive learning framework that has a task-driven objective evaluation of the
generated questions.

We explore interactive learners in the context of visual question answering (VQA; [23, 198, 481]).
Instead of training on a fixed, large-scale dataset, we propose an alternative interactive VQA setup
called learning-by-asking (LBA): at training time, the learner receives only images and decides what
questions to ask. Questions asked by the learner are answered by an oracle (human supervision). At
test-time, LBA is evaluated exactly like VQA using well understood metrics. Interactive learners
which can ask questions and acquire supervision are a key requirement as we move towards more
AI-complete tasks as it is extremely hard to curate and collect datasets for these tasks. As Mark
Twain said, asking questions and getting answers is a vital skill for solving complex problems in
life.

The interactive nature of LBA requires the learner to construct meta-knowledge about what it
knows and to select the supervision it needs. If successful, this facilitates more sample efficient
learning than using a fixed dataset, because the learner will not ask redundant questions.

We explore the proposed LBA paradigm in the context of the CLEVR dataset [198], which is an
artificial universe in which the number of unique objects, attributes, and relations are limited. We
opt for this synthetic setting because there is little prior work on asking questions about images:
CLEVR allows us to perform a controlled study of the algorithms needed for asking questions. We
hope to transfer the insights obtained from our study to a real-world setting.

Building an interactive learner that can ask questions is a challenging task. First, the learner

131



Agent

Oracle

Ask 
Question

Provide
Answer

Acquire 
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Interact with
environment

Figure 10.1: The Learning-by-Asking (LBA) paradigm. We present an open-world Visual Question Answering (VQA)
setting in which an agent interactively learns by asking questions to an oracle. Unlike standard VQA training, which
assumes a fixed dataset of questions, in LBA the agent has the potential to learn more quickly by asking “good” questions,
much like a bright student in a class. LBA does not alter the test-time setup of VQA.

needs to have a “language” model to form questions. Second, it needs to understand the input
image to ensure the question is relevant and coherent. Finally (and most importantly), in order to
be sample efficient, the learner should be able to evaluate its own knowledge (self-evaluate) and
ask questions which will help it to learn new information about the world. The only supervision
the learner receives from the interaction is the answer to the questions it poses.

We present and study a model for LBA that combines ideas from visually grounded lan-
guage generation [297], curriculum learning [35], and VQA. Specifically, we develop an epsilon-
greedy [398] learner that asks questions and uses the corresponding answers to train a standard
VQA model. The learner focuses on mastering concepts that it can rapidly improve upon, before
moving to new types of questions. We demonstrate that our LBA model not only asks meaningful
questions, but also matches the performance of human-curated data. Our model is also sample efficient
and by interactively asking questions it reduces the number of training samples needed to obtain
the baseline question-answering accuracy by 40%.

10.1 Background

Visual question answering (VQA) is a surrogate task designed to assess a system’s ability to
thoroughly understand images. It has gained popularity in recent years due to the release of several
benchmark datasets [23, 269, 481]. Motivated by the well-studied difficulty of analyzing results on
real-world VQA datasets [190, 331, 463], Johnson et al. [198] recently proposed a more controlled,
synthetic VQA dataset that we adopt in this work.

Current VQA approaches follow a traditional supervised learning paradigm. A large number
of image-question-answer triples are collected and a subset of this data is randomly selected for
training. Learning-by-asking (LBA) uses an alternative and more challenging setting: training
images are drawn from a distribution, but the learner decides what question it needs to ask to
learn the most. The learner receives only answer level supervision from these interactions. It
must learn to formulate questions as well as model its own knowledge to remove redundancy in
question-asking. LBA also has the potential to generalize to open-world scenarios.
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7 What size is the purple cube? 7 What color is the shiny sphere?
7 What size is the red thing in front of the yellow
cylinder?

7 What is the color of the cube to the right of the
brown thing?

Figure 10.2: Examples of invalid questions for images in the CLEVR universe. Even syntactically correct questions can
be invalid for a variety of reasons such as referring to absent objects, incorrect object properties, invalid relationships in
the scene or being ambiguous, etc.

There is also significant progress on building models for VQA using LSTMs with convolutional
networks [172, 239], stacked attention networks [451], module networks [17, 181, 199], relational
networks [357], and others [321]. LBA is independent of the backbone VQA model and can be used
with any existing architecture.

Visual question generation (VQG) was recently proposed as an alternative to image captioning
[258, 297]. Our work is related to VQG in the sense that we require the learner to generate questions
about images, however, our objective in doing so is different. Whereas VQG focuses on asking
questions that are relevant to the image content, LBA requires the learner to ask questions that are
both relevant and informative to the learner when answered. A positive side effect is that LBA
circumvents the difficulty of evaluating the quality of generated questions (which also hampers
image captioning [16]), because the question-answering accuracy of our final model directly
correlates with the quality of the questions asked.

Active learning (AL) involves a collection of unlabeled examples and a learner that selects
which samples will be labeled by an oracle [210, 248, 364, 424]. Common selection criteria include
entropy [202], boosting the margin for classifiers [5, 67] and expected informativeness [177]. Our
setting is different from traditional AL settings in multiple ways. First, unlike AL where an agent
selects the image to be labeled, in LBA the agent selects an image and generates a question. Second,
instead of asking for a single image level label, our setting allows for richer questions about objects,
relationships etc. for a single image. While [373] did use simple predefined template questions for
AL, templates offer limited expressiveness and a rigid query structure. In our approach, questions
are generated by a learned language model. Expressive language models, like those used in our
work, are likely necessary for generalizing to real-world settings. However, they also introduce a
new challenge: there are many ways to generate invalid questions, which the learner must learn to
discard (see Figure 10.2).

Exploratory learning centers on settings in which an agent explores the environment to acquire
supervision [133, 389]; it has been studied in the context of, among others, computer games
and navigation [225, 317], multi-user games [277], inverse kinematics [28], and motion planning
for humanoids [123]. Exploratory learning problems are generally framed with reinforcement
learning in which the agent receives (delayed) rewards, which are used to learn a policy that
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Figure 10.3: Our approach to the learning-by-asking setting for VQA. Given an image I, the agent generates a diverse
set of questions using a question generator g. It then filters out “irrelevant” questions using a relevance model r to
produce a list of question proposals. The agent then answers its own questions using the VQA model v. With these
predicted answers and its self-knowledge of past performance, it selects one question from the proposals to be answered
by the oracle. The oracle provides answer-level supervision from which the agent learns to ask informative questions in
subsequent iterations.

maximizes the expected rewards. A key difference in the LBA setting is that it does not have sparse
delayed rewards. Contextual multi-armed bandits [45, 234, 245] are another class of reinforcement
learning algorithms that more closely resemble the LBA setting. However, unlike bandits, online
performance is irrelevant in our setting: our aim is not to minimize regret, but to minimize the
error of the final VQA model produced by the learner.

10.2 Learning by Asking

We now formally introduce the learning-by-asking (LBA) setting. We denote an image by I, and
assume there exists a set of all possible questions Q and a set of all possible answers A. At training
time, the learner receives as input: (1) a training set of N images, Dtrain = {I1, . . . , IN}, sampled
from some distribution ptrain(I); (2) access to an oracle o(I, q) that outputs an answer a ∈ A given a
question q ∈ Q about image I; and (3) a small bootstrap set of (I, q, a) tuples, denoted Binit.

The learner receives a budget of B answers that it can request from the oracle. Using these
B oracle consultations, the learner aims to construct a function v(a|I, q) that predicts a score for
answer a to question q about image I. The small bootstrap set is provided for the learner to initialize
various model components; as we show in our experiments, training on Binit alone yields poor
results.

The challenge of the LBA setting implies that, at training time, the learner must decide which
question to ask about an image and the only supervision the oracle provides are the answers. As
the number of oracle requests is constrained by a budget B, the learner must ask questions that
maximize (in expectation) the learning signal from each image-question pair sent to the oracle.

At test time, we assume a standard VQA setting and evaluate models by their question-
answering accuracy. The agent receives as input M pairs of images and questions

Dtest ={(IN+1, qN+1), . . . , IN+M , qN+M )},

sampled from a distribution ptest(I, q). The images in the test set are sampled from the same
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distribution as those in the training set:
∑

q∈Q ptest(I, q)=ptrain(I). The agent’s goal is to maximize
the proportion of test questions that it answers correctly, that is, to maximize:

1

M

M∑
m=1

I[argmax
a

v(a|IN+m, qN+m) = o(IN+m, qN+m)].

We make no assumptions on the marginal distribution over test questions, ptest(q).

10.3 Approach

We propose a LBA agent built from three modules: (1) a question proposal module that generates
a set of question proposals for an input image; (2) a question answering module (or VQA model)
that predicts answers from (I, q) pairs; and (3) a question selection module that looks at both the
answering module’s state and the proposal module’s questions to pick a single question to ask
the oracle. After receiving the oracle’s answer, the agent creates a tuple (I, q, a) that is used as
the online learning signal for all three modules. Each of the modules is described in a separate
subsection below; the interactions between them are illustrated in Figure 10.3.

For the CLEVR universe, the oracle is a program interpreter that uses the ground-truth scene
information to produce answers. As this oracle only understands questions in the form of programs
(as opposed to natural language), our question proposal and answering modules both represent
questions as programs. However, unlike [181, 199], we do not exploit prior knowledge of the
CLEVR programming language in any of the modules; instead, it is treated as a simple means that
is required to communicate with the oracle. Figure 10.4 shows a few example images, questions
and programs from CLEVR.

When the LBA model asks an invalid question, the oracle returns a special answer indicating
(1) that the question was invalid and (2) whether or not all the objects that appear in the question
are present in the image.

10.3.1 Question Proposal Module

The question proposal module aims to generate a diverse set of questions (programs) that are
relevant to a given image. To achieve this, we employ two subcomponents: (1) a question genera-
tion model g that produces questions qg ∼ g(q|I); and (2) a question relevance model r(I, qg) that
predicts whether a generated question qg is relevant to an image I. Figure 10.2 shows examples of
irrelevant questions that need to be filtered by r. The question generation and relevance models are
used repeatedly to produce a set of question proposals, Qp ⊆ Q.

Our question generation model, g(q|I), is an image-captioning model that uses a LSTM
conditioned on image features (first hidden input) to generate a question. To increase the diversity
of generated questions, we also condition the LSTM on the “question type” while training [116]
(we use the predefined question types or families from CLEVR). Specifically, we first sample a
question type qtype uniformly at random and then sample a question from the LSTM using a beam
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Q: What color is the
tiny rubber thing?

Q: What color is the
ball?

Q: The small sphere is
what color?

Q: What is the yellow
object made of?

Q: How many large
green things are there?

A: brown A: red A: blue A: metal A: 0

Figure 10.4: Examples of programs, questions and answers from the CLEVR dataset.
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size of 1 and a sampling temperature of 1.3. For each image, we filter out all the questions that
have been previously answered by the oracle.

Our question relevance model, r(I, q), takes the questions from the generator g as input and
filters out irrelevant questions to construct a set of question proposals, Qp. The special answer
provided by the oracle whenever an invalid question is asked (as described above) serves as the
online learning signal for the relevance model. Specifically, the model is trained to predict (1)
whether or not a image-question pair is valid and (2) whether or not all objects that are mentioned
in the question are all present in the image. Questions for which both predictions are positive (i.e.,
that are deemed by the relevance model to be valid and to contain only objects that appear in the
image) are put in the question proposal set, Qp. We sample from the generator until we have 50
question proposals per image that are predicted to be valid by r(I, q).

10.3.2 Question Answering Module (VQA Model)

Our question answering module is a standard VQA model, v(a|I, q), that learns to predict the
answer a given an image-question pair (I, q). The answering module is trained online using the
supervision signal from the oracle.

A key requirement for selecting good questions to ask the oracle is the VQA model’s capability
to self-evaluate its current state. We capture the state of the VQA model at LBA round t by keeping
track of the model’s question-answering accuracy st(a) per answer a on the training data obtained
so far. The state captures information on what the answering module already knows; it is used by the
question selection module.

10.3.3 Question Selection Module

The question selection module defines a policy, π(Qp; I, s1,...,t), that selects the most informative
question to ask the oracle from the set of question proposals Qp. To select an informative question,
the question selection module uses the current state of the answering module (how well it is learning
various concepts) and the difficulty of each of the question proposals. These quantities are obtained
from the state st(a) and the beliefs of the current VQA model, v(a|I, q) for an image-question pair,
respectively.

The state st(a) contains information about the current knowledge of the answering module.
The difference in the state values at the current round, t, and a past round, t−∆, measures how fast
the answering module is improving for each answer. Inspired by curriculum learning [28, 35, 226],
we use this difference to select questions on which the answering module can improve the fastest.
Specifically, we compute the the expected accuracy improvement under the answer distribution for
each question qp ∈ Qp:

h(qp; I, s1,...,t) =
∑
a∈A

v(a|I, qp)
(
st(a)− st−∆(a)

st(a)

)
. (10.1)
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We use the expected accuracy improvement as an informativeness value that the learner uses
to pick a question that helps it improve rapidly (thereby enforcing a curriculum). In particular, our
selection policy, π(Qp; I, s1,...,t), uses the informativeness scores to select the question to ask the
oracle using an epsilon-greedy policy [398]. The greedy part of the selection policy is implemented
via argmaxqp∈Qp

h(qp; I, s1,...,t), and we set ε= 0.1 to encourage exploration. Empirically, we find
that our policy automatically discovers an easy-to-hard curriculum (see Figures 10.7 and 10.9). In
all experiments, we set ∆=20; whenever t<∆, we set st−∆(a)=0.

Interpretation as Learning Progress: The term ∆s is a first order indicator of the improvement in
the answering modules performance. This term can be interpreted as the learning progress [28] of
the answering module. As equation 10.1 shows, the informativeness score h favors question propos-
als with a high learning progress. If an answer has low learning progress, then the informativeness
for a question proposal yielding that answer will be low.

10.3.4 Training Phases

Our model is trained in three phases: (1) an initialization phase in which the generation, relevance,
and VQA models (g, r and v) are pre-trained on a small bootstrap set, Binit, of (I, q, a) tuples; (2) an
online learning-by-asking (LBA) phase in which the model learns by interactively asking questions
and updates r and v; and (3) an offline phase in which a new VQA model voffline is trained from
scratch on the union of the bootstrap set and all of the (I, q, a) tuples obtained by querying the
oracle in the online LBA phase.

Online LBA training phase. At each step in the LBA phase (see Figure 10.3), the proposal module
picks an image I from the training set Dtrain uniformly at random.1 It then generates a set of
relevant question proposals,Qp for the image. The answering module tries to answer each question
proposal. The selection module uses the state of the answering module along with the answer
distributions obtained from evaluating the answering module to pick an informative question,
q, from the question proposal set. This question is asked to the oracle o, which provides just the
answer a = o(I, q) to generate a training example (I, q, a). This training example is used to perform
a single gradient step on the parameters of the answering module v and the relevance model r. The
language generation model g remains fixed because the oracle does not provide a direct learning
signal for it. This process is repeated until the training budget of B oracle answer requests is
exhausted.

Offline VQA training phase. We evaluate the quality of the asked questions by training a VQA
model voffline from scratch on the union of the bootstrap set, Binit, and the (I, q, a) tuples generated
in the LBA phase. We find that offline training of the VQA model leads to slightly improved
question-answering accuracy and reduces variance.

10.3.5 Implementation Details

The LSTM in g has 512 hidden units. After a linear projection, the image features are fed as its first
hidden state. We input a discrete variable representing the question type as the first token into the

1A more sophisticated image selection policy may accelerate learning. We did not explore this in our study.
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LSTM before starting generation. Following [199], we use a prefix-tree program representation for
the questions.

We implement the relevance model, r, and the VQA model, v, using the stacked attention
network architecture [451] using the implementation of [199]. The only modification we make is to
concatenate the spatial coordinates to the image features before computing attention as in [357].
We do not share weights between r and v.

To generate the invalid pairs (I, q) for bootstrapping the relevance model, we permute the pairs
from the bootstrap set Binit and assume that all such permuted pairs are invalid. This provides us
with the evalid = 0 label to train r. As the bootstrap set does not have epresent labels, we only use
these labels to train r during the online LBA phase.

Our models use image features from a ResNet-101 [166] pre-trained on ImageNet [351], in
particular, from the conv4_23 layer of that network. Additional implementation details on
learning rate schedules, embedding sizes, etc. are presented in the supplementary material.

10.4 Experiments

Datasets. We evaluate our LBA approach in the CLEVR universe [198], which provides a training
set (train) with 70k images and 700k (I, q, a) tuples. We use 70k of these tuples as our bootstrap
set, Binit. We evaluate the quality of the data collected by LBA by measuring the question-answering
accuracy of the final VQA model, voffline, on the CLEVR validation (val) [198] set. Because CLEVR
train and val have identical answer and question-type distributions, which gives models trained
on CLEVR train an inherent advantage. Thus, we also measure question-answering accuracy on
the CLEVR-Humans [199] dataset, which has a different distribution; see Figure 10.10.

Models. Unless stated otherwise, we use the stacked attention model as the answering module v
and evaluate three different choices for the final offline VQA model voffline:

CNN+LSTM encodes the image using a CNN, the question using an LSTM, and predicts answers
using an MLP.

CNN+LSTM+SA extends CNN+LSTM with the stacked attention (SA) model [451] described in
Section 10.3.2. This is the same as our default answering module v.

FiLM [321] is a CNN that uses question features from a GRU [59] to modulate the image features
in each CNN layer.

Unless stated otherwise, we use CNN+LSTM+SA models in all ablation analysis experiments,
even though it has lower VQA performance than FiLM, because it trains much faster (6 hours vs. 3
days). For all voffline models, we use the training hyperparameters from their respective chapters.
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Figure 10.5: Top: CLEVR val accuracy for VQA models trained on CLEVR train (diamonds) vs. LBA-generated data
(circles). Bottom: Accuracy on CLEVR-Humans for the same set of models.

10.4.1 Quality of LBA-Generated Questions

In Figure 10.5, we compare the quality of the LBA-generated questions to CLEVR train by
measuring the question-answering accuracy of VQA models trained on both datasets. The figure
shows (top) CLEVR val accuracy and (bottom) CLEVR-Humans accuracy. Questions in CLEVR-
Humans are given in English. To apply our VQA models, which understand input in the CLEVR
programming language, we automatically translate the CLEVR-Humans questions using the
English-to-CLEVR-program model from [199]. The translation does not affect the accuracy of the
VQA models (see Section 10.4.8). From these plots, we draw four observations.

(1) Using the bootstrap set alone (leftmost point) yields poor accuracy and LBA provides a signifi-
cant learning signal.

(2) The quality of the LBA-generated training data is at least as good as that of the CLEVR train.
This is an impressive result given that CLEVR train has the dual advantage of matching the
distribution of CLEVR val and being human curated for training VQA models. Despite these
advantages, LBA matches and sometimes surpasses its performance. More importantly, LBA
shows better generalization on CLEVR-Humans which has a different answer distribution (see
Figure 10.10).

(3) LBA data is sometimes more sample efficient than CLEVR train: for instance, on both CLEVR
val and CLEVR-Humans. The CNN+LSTM+SA model only requires 60% of (I, q, a) LBA tuples to
achieve the accuracy of the same model trained on all of CLEVR train.

(4) Finally, we also observe that our LBA agents have low variance at each sampled point during
training. The shaded error bars show one standard deviation computed from 5 independent runs
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Figure 10.6: Top: Histogram of answers to questions generated by g with and without question-type conditioning.
Bottom: Percentage of invalid questions sent to the oracle.

Budget B
Generator g Relevance r 0k 70k 210k 350k 560k 630k
I None 49.4 43.2 45.4 49.8 52.9 54.7
I + qtype None 49.4 46.3 49.5 58.7 60.5 63.4
I + qtype, τ=0.3 Ours 49.4 60.6 67.4 70.2 70.8 70.1
I + qtype, τ=0.7 Ours 49.4 60.2 70.5 76.7 77.5 77.6
I + qtype, τ=1.3 Ours 49.4 60.3 71.4 76.9 79.8 78.2
I + qtype Perfect 49.4 67.7 75.7 80.0 81.2 81.1

Table 10.1: CLEVR val accuracy for six budgets B. We condition the generator on the image (I) or on the image and the
question type (I + qtype), vary the generator sampling temperatures τ , and use three different relevance models. We
re-run the LBA pipeline for each of these settings.

using different random seeds. This is an important property for drawing meaningful conclusions
from interactive training environments (c.f ., [170]).

Qualitative results. Figure 10.7 shows five samples from the LBA-generated data at various
iterations t. They provide insight into the curriculum discovered by our LBA agent. Initially, the
model asks simple questions about colors (row 1) and shapes (row 2). It also makes basic mistakes
(rightmost column of rows 1 and 2). As the answering module v improves, the selection policy π
asks more complex questions about spatial relationships and counts (rows 3 and 4).
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Budget B
voffline Model 0k 70k 210k 350k 560k 630k
CNN+LSTM 47.1 48.0 49.2 49.1 52.3 52.7
CNN+LSTM+SA 49.4 63.9 68.1 76.1 78.4 82.3
FiLM 51.2 76.2 92.9 94.8 95.2 97.3

Table 10.2: CLEVR val accuracy for three voffline models when FiLM is used as the online answering module v.

10.4.2 Analysis: Question Proposal Module

Analyzing the generator g. We evaluate the diversity of the generated questions by looking at the
distribution of corresponding answers. In Figure 10.6 (top) we use the final LBA model to generate
10 questions for each image in the training set. We plot the histogram of the answers to these
questions for generators with and without “question type” conditioning. The histogram shows
that conditioning the generator g on question type leads to better coverage of the answer space. We
also note that about 4% of the generated questions have invalid programming language syntax.

We observe in the top two rows of Table 10.1 that the increased question diversity translates into
improved question-answering accuracy. Diversity is also controlled by the sampling temperature,
τ , used in g. Rows 3-5 show that a lower temperature, which gives less diverse question proposals,
negatively impacts final accuracy.

Analyzing the relevance model r. Figure 10.6 (bottom) displays the percentage of invalid ques-
tions sent to the oracle at different time steps during online LBA training. The invalid question
rate decreases during training from 25% to 5%, even though question complexity appears to be
increasing (Figure 10.7). This result indicates that the relevance model r improves significantly
during training.

We can also decouple the effect of the relevance model r from the rest of our setup by replacing
it with a “perfect” relevance model (the oracle) that flawlessly filters all invalid questions. Table 10.1
(row 6) shows that the accuracy and sample efficiency differences between the “perfect” relevance
model and our relevance model are small, which suggests our model performs well.

10.4.3 Analysis: Question Answering Module

Thus far we have tested our policy π with only one type of answering module v, CNN+LSTM+SA.
Now, we verify that π works with other choices by implementing v as the FiLM model and
rerunning LBA. As in Section 10.4.1, we evaluate the LBA-generated questions by training the three
voffline models. The results in Table 10.2 suggest that our selection policy generalizes to a new choice
of the online VQA model v used in the answering module.
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Figure 10.7: Example questions asked by our LBA agent at different iterations (manually translated from programs
to English). Our agent asks increasingly sophisticated questions as training progresses — starting with simple color
questions and moving on to shape and count questions. We also see that the invalid questions (right column) become
increasingly complex.
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Normalized informative scores per answer type, averaged over 10k questions. See Section 10.4.4 for details.

10.4.4 Analysis: Question Selection Module

To investigate the role of the selection policy in LBA, we compare four alternatives: (1) random
selection from the question proposals; (2) using the prediction entropy of the answering module
v for each proposal after four forward passes with dropout (like in [362]); (3) using the variation
ratio [124] of the prediction; and (4) our curriculum policy from Section 10.3.3. We run LBA training
with five different random seeds and report the mean accuracy and stdev of a CNN+LSTM+SA
model for each selection policy in Figure 10.8. In line with results from prior work [362], the
entropy-based policies performs worse than random selection. By contrast, our curriculum policy
substantially outperforms random selection of questions. Figure 10.9 plots the normalized informa-
tiveness score h (Equation 10.1) and the training question-answering accuracy per answer type s(a).
These plots also provide insight into the behavior of the curriculum selection policy, π. Specifically,
we observe a delayed pattern: a peak in the the informativeness score (blue arrow) for an answer
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type is followed by an uptick in the accuracy (blue arrow) on that answer type. We also observe that
the policy’s informativeness score suggests an easy-to-hard ordering of questions: initially (after
64k requests), the selection policy prefers asking the easier color questions, but it gradually moves
on to size and shape questions and, eventually, to the difficult count questions. We emphasize
that this easy-to-hard curriculum is learned automatically without any extra supervision.

10.4.5 Varying the Size of the Bootstrap Data

We vary the size of the bootstrap set Binit used for initializing the g, r, v models and analyze its
effect on the LBA generated data. In Table 10.3 we show the accuracy of the final voffline model on
CLEVR val. A smaller bootstrap set results in reduced performance. We also see that with less
than 5% (rows 1 and 2) of the CLEVR training dataset as our bootstrap set, LBA asks questions that
can match the performance using the entire CLEVR training set. Empirically, we observed that
the generator g performs well on smaller bootstrap sets. However, the relevance model r needs
enough valid and invalid (permuted) (I, q, a) tuples in the bootstrap set to filter irrelevant question
proposals. As a result, a smaller bootstrap set affects the sample efficiency of LBA.

Budget B
|Binit| 0k 70k 140k 210k 350k 560k 630k
20k 48.2 56.4 63.5 66.9 72.6 75.8 76.2
35k 48.8 58.6 64.3 68.7 74.9 76.1 76.3
70k 49.4 61.1 67.6 72.8 78.0 78.2 79.1

Table 10.3: Accuracy on CLEVR validation data at different budgets B as a function of the bootstrap set size, |Binit|.

10.4.6 More Questions or More Images?

We investigate what is more important for learning: the number of images or the number of
questions. Specifically, we vary the size of the image set Dtrain used for the LBA setting. The results
in Table 10.4 show that our model can achieve similar results to using the full image set using only
49k of the 70k images. Using 35k images, our model achieves the same accuracy as a model trained
on the full CLEVR training set (which has 70k images).

10.4.7 Hyperparameters for Models

Generator g: We use 512 hidden units in the LSTM. Each program token is first embedded in a
32-dimensional space before being input to the LSTM. The token embedding is learned jointly with
the rest of the model. The generator is trained on the bootstrap set Binit to generate a question q
from the image I by minimizing the cross-entropy loss for generating the question sequence. The
question type is a discrete variable that can take one of 90 possible values (the CLEVR datasets
defines 90 question families [198]). The image features are input as the first hidden input. We
perform spatial max-pooling on the 1024 × 14 × 14 image features from an ImageNet [351] pre-
trained ResNet-101 [166] conv4_23 layer to get 1024 channel features. We then project the features
down to 512 dimensions using a linear projection (learned jointly with the model). The model is
optimized using SGD with a learning rate of 1.0 and momentum of 0.9 with gradients clipped at
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Budget B
Number of images 0k 70k 140k 210k 350k 560k 630k
1k 49.4 53.2 55.8 57.4 61.1 62.5 64.9
2k 49.4 53.9 57.7 65.1 66.0 68.4 69.7
5k 49.4 56.0 62.8 65.4 67.9 67.6 68.3
7k 49.4 54.2 60.1 66.4 67.5 70.6 71.3
14k 49.4 56.9 60.2 65.8 68.5 69.5 71.5
21k 49.4 56.8 61.5 68.1 68.7 69.8 73.4
35k 49.4 59.7 61.6 70.6 70.8 74.3 76.6
49k 49.4 59.5 66.9 72.7 76.7 78.1 77.2
70k 49.4 61.1 67.6 72.8 78.0 78.2 79.1
CLEVR train set (70k) 49.4 55.1 57.5 65.6 72.4 74.8 77.2

Table 10.4: Accuracy on CLEVR validation data during training as a function of the number of images used.

maximum L2-norm of 5.0. We use a mini-batch size of 64 and decay the learning rate by 0.25 every
5, 000 iterations. The model is trained for a total of 20, 000 iterations.

Relevance model r: We use the stacked-attention network implementation from [451] in our
experiments. We use Adam [215] to minimize the cross-entropy loss of this model, using a fixed
learning rate of 5e − 4. We use L2 weight decay of 4e − 5 as a regularizer. The model uses
image features from an ImageNet [351] pre-trained ResNet-101 conv4_23 layer (1024 channels).
Following [357], we concatenate spatial coordinates (two channels x and y) to these features to
finally get 1026 channel image features of spatial resolution 14× 14.

VQA model v: The stacked-attention network serves as the default choice for v. We use the same
hyperparameters as in the relevance model r, but do not share weights between v and r.

Details on Oracle: We use the oracle as implemented in [198] with the modification that it returns
the evalid and epresent labels in addition to the valid answers. The oracle uses the ground-truth scene
graph and relationships provided in CLEVR to answer questions about an image. It takes the
program as input and provides the answer. It determines invalid questions as those that do not
successfully execute on the scene graph.

10.4.8 Translation for CLEVR Humans

In Section 5.1 of the main chapter, we evaluate our models on the CLEVR Humans set. As our
models voffline are trained using programs, we translate the natural language in the CLEVR Humans
set using the language-to-program module provided by [199]. In Table 10.5, we show that such a
translation does not affect the accuracy of the models. To do so, we train models on the natural
language questions in CLEVR (rather than on the question programs), and evaluate the resulting
models on CLEVR-Humans. We compare them with models trained on the CLEVR question
programs (like in the main paper), which we evaluate on the translated [199]. The results in the
table show that both models perform similarly and, therefore, which shows that the language-to-
program translation does not impact question-answering accuracy.
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Language Model Accuracy
NLP CNN+LSTM+SA 50.1
Programs CNN+LSTM+SA 50.2
NLP FiLM 56.4
Program FiLM 56.3

Table 10.5: Accuracy of stacked attention networks (CNN+LSTM+SA) and FiLM on the CLEVR Humans validation set.
We show that testing the program on either natural language or a program translated version gives similar accuracy.
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Figure 10.10: Answer distribution of CLEVR train, LBA-generated data, and the CLEVR-Humans dataset.

10.5 Discussion

This chapter introduces the learning-by-asking (LBA) paradigm and proposes a model in this
setting. LBA moves away from traditional passively supervised settings where human annotators
provide the training data to an interactive setting where the learner seeks out the supervision it
needs. While passive supervision has driven progress in visual recognition, it does not appear well
suited for general AI tasks such as visual question answering (VQA). Curating large amounts of
diverse data which generalizes to a wide variety of questions is a difficult task. Our results suggest
that interactive settings such as LBA may help learning with higher sample efficiency. Such high
sample efficiency is crucial as we move to complex visual understanding tasks.

An important property of LBA is that it does not tie the distribution of questions and answers
seen at training time to the distribution at test time. This more closely resembles the real-world
deployment of VQA systems where the distribution of user-posed questions to the system is
unknown and difficult to characterize beforehand [43]. The CLEVR-Humans distribution in
Figure 10.10 is an example of this. This issue poses clear directions for future work [42]: we need
to develop VQA models that are less sensitive to distributional variations at test time; and not
evaluate them under a single test distribution (as in current VQA benchmarks).

A second major direction for future work is to develop a “real-world” version of a LBA system
in which (1) CLEVR images are replaced by natural images and (2) the oracle is replaced by a
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human annotator. Relative to our current approach, several innovations are required to achieve
this goal. Most importantly, it requires the design of an effective mode of communication between
the learner and the human “oracle”. In our approach, the learner uses a simple programming
language to query the oracle. A real-world LBA system needs to communicate with humans using
diverse natural language. The efficiency of LBA learners may be further improved by letting the
oracle return privileged information that does not just answer an image-question pair, but that also
explains why this is the right or wrong answer [422].
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Chapter 11

Conclusion

A conclusion is the place where you get tired of thinking.

MARTIN HENRY FISCHER in Encore: A Continuing Anthology, 1945

In this thesis, we explored the challenge of visual learning with minimal human supervision.
We believe that the techniques highlighted in this thesis are crucial in order to scale learning beyond
typical categories in fully supervised datasets. As we make progress on pattern recognition tasks
and move more towards AI-complete tasks, we need models that can learn in a sample efficient
manner, self-supervise and learn interactively. An additional and often competing requirement,
as vision systems become more ubiquitous, is that they should be more computationally efficient
- scaling to multiple tasks on cheap hardware such as edge devices (webcams etc.). We studied
these challenges in the context of visual data (both images and video) leveraging tools from a
variety of disciplines such as computer vision, machine learning, natural language processing,
psycholinguistics and computer systems. Our interdisciplinary solutions have been published at
conferences in computer vision, natural language processing, and computer systems.

We now summarize the contributions of this thesis. In Part I we used the structure in data to
learn better object detectors (Chapter 2) and powerful feature representations in a self-supervised
manner (Chapter 3). Part II used structure in the labels and tasks to learn from noisy labeled images
on the web (Chapter 4) and how to learn better multi-task architectures (Chapter 5). We addressed
the practical applications of these systems in the context of edge computing becoming necessary
and dominant. We showed how to make multi-task and multi-tenant systems practical for inference
on edge devices (Chapter 6). In Part III we showed that the structure in classifier space can be used
to easily synthesize data (Chapter 7) and compose classifiers for zero-shot recognition(Chapter 8).
Finally, in Part IV we showed the power of interactive learners that can ask questions (Chapter 9)
and learn in a sample efficient manner (Chapter 10).
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