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Abstract
Brain-computer interfaces are in the process of moving from the laboratory to the

clinic. These devices act by reading neural activity and using it to directly control
a device, such as a cursor on a computer screen. Over the past two decades, much
attention has been devoted to the decoding problem: how should recorded neural
activity be translated into movement of the device in order to achieve the most pro-
ficient control? This question is complicated by the fact that learning, especially
the long-term skill learning that accompanies weeks of practice, can allow subjects
to improve performance over time. Typical approaches to this problem attempt to
maximize the biomimetic properties of the device, to limit the need for extensive
training. However, it is unclear if this approach would ultimately be superior to per-
formance that might be achieved with a non-biomimetic device, once the subject has
engaged in extended practice and learned how to use it. In this thesis, I first recast the
decoder design problem from a physical control system perspective, and investigate
how various classes of decoders lead to different types of physical systems for the
subject to control. This framework leads to new interpretations of why certain types
of decoders have been shown to perform better than others. Based on this frame-
work, I present a formal definition of the usability of a device under the assumption
that the brain acts as an optimal controller. Using ideas from optimal control theory,
it can be shown that the optimal, post-learning mapping can be written as the solu-
tion of a constrained optimization problem which maximizes this usability. I then
derive the optimal mappings for particular cases common to most brain-computer
interfaces. Results suggest that the common approach of creating biomimetic inter-
faces may not be optimal when learning is taken into account. More broadly, this
method provides a blueprint for optimal device design in general control-theoretic
contexts.

Given the optimal, post-learning mapping, successful implementation of such
brain-computer interface depends critically on the subject’s ability to learn how to
modulate the neurons controlling the device. However, the subject’s learning pro-
cess is probably the least understood aspect of the control loop. An effective training
schedule should manipulate the difficulty of the task to provide enough information
to guide improvement without overwhelming the subject. In this thesis, I introduce
a Bayesian framework for modeling the closed-loop BCI learning process that treats
the subject as a bandwidth-limited communication channel. I then develop an adap-
tive algorithm to find the optimal difficulty-schedule for performance improvement.
Simulation results demonstrate that this algorithm yields faster learning rates than
several other heuristic training schedules, and provides insight into the factors that
might affect the learning process.
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Chapter 1

Introduction

1.1 What are BCIs?

Brain-computer interfaces (BCIs), also known as brain-machine interfaces, are a powerful class
of assistive devices that may one day restore movement ability to paralyzed individuals [Lebedev
and Nicolelis, 2017, Schwartz et al., 2006]. According to a study initiated by the Christopher and
Dana Reeve Foundation [2009], approximately 1.9% of the U.S. population, or some 5, 596, 000
people, reported some form of paralysis that impacts the performance of tasks of daily living.
The leading cause of paralysis was stroke (29%), followed by spinal cord injury (23%) and mul-
tiple sclerosis (17%). When the neurons in the spinal cord are damaged, they face anatomical,
physiological, chemical, and immune system changes that hinder their attempts at regeneration.
Therefore, most of the time there is no specific treatment for brain and spinal cord injuries.
Brain-computer interfaces, however, may alleviate symptoms of paralysis by providing an alter-
nate way to actuate devices. BCIs read and translate neural activity into motor commands of
assistive devices such as a cursor on a computer screen [Aflalo et al., 2015, Carmena et al., 2003,
Gilja et al., 2012, 2015, Serruya et al., 2002, Taylor et al., 2002], a robotic arm [Chapin et al.,
1999, Collinger et al., 2013, Hochberg et al., 2006, 2012, Schwartz et al., 2006, Velliste et al.,
2008], or even paralyzed muscle tissue [Bouton et al., 2016, Ethier et al., 2012, Moritz et al.,
2008], bypassing the defective neural transmission and the muscle activation. Fig. 1.1 shows the
closed loop BCI system adopted in [Velliste et al., 2008] where a monkey was implanted with a
96 channel intracortical microelectrode “Utah” array in its primary motor cortex. The recording
array extracts information from populations of recorded single neurons. Through a BCI decoder
translating the recorded neural activity into movement commands, the monkey learned to control
a 4 degree-of-freedom robotic arm to feed itself. Ongoing BCI research is focusing on build-
ing technological bridges between neural activity and external devices in order to restore motor
function for those people with injury or disease, such as brainstem stroke or loss of a limb, which
can disconnect the cortex from its effector target. However, much work yet needs to be done to
give subjects control over artificial limbs that might rival control of the natural limb [Gilja et al.,
2012, Shenoy and Carmena, 2014]. Therefore, the design of BCI control algorithms that might
enable stable and robust control is an active area of research.
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(that is, complete the Move A period only, without being required to
home in, load, retrieve and unload). (The Move A period is defined in
Methods, and shown within the timeline in Fig. 1b.) Monkeys in that
previous study had a success rate of 80%, whereas our monkey A
successfully completed the Move A period in 98% of attempted trials
(Supplementary Table 3). Distance of the targets in this task

(184 6 31 mm, mean 6 s.d.) was also greater than that in the previous
study. Monkey P performed a version of the continuous self-feeding
task (Supplementary Video 2) with an average success rate of 78%
(1,064 trials over 13 days), typically using just 15–25 cortical units for
control. Monkey P’s success rate was higher than monkey A’s because
the task was easier (see Supplementary Methods).

The fact that the gripper opens and closes fully each time (Fig. 2e)
indicates good performance, because full opening is advantageous on
approach to target and full closing is required for loading. The fact
that the task requirements allow the monkey to drive the gripper
aperture to both limits makes this fourth dimension easier to control
than the x, y and z dimensions. However, the monkey is capable of
partially opening or closing the gripper, as shown by data from an
earlier training session (Supplementary Fig. 12).

Figure 2f reveals a surprising point: after gripping the food and
pulling it off the presentation device, the monkey gradually opened
the gripper on the way back to the mouth (Move B) and the gripper
was typically fully open before it reached the mouth. One might
expect the food to have dropped when the gripper was opened, but
this was not always the case because marshmallows, and even grape
halves to some extent, tended to stick to the gripper fingers. In an
earlier training session, the monkey kept the gripper closed all the
way back to the mouth (Supplementary Fig. 13). Over the course of
training, the monkey must have learned that keeping the gripper
closed was unnecessary, illustrating the importance of working
within a physical environment.

We assume that an arm that moves naturally with a bell-shaped
speed profile29,30 will be easier to control than one that moves in an
unfamiliar way. Monkey A’s individual-trial profiles (Fig. 3a) show a
large bell-shaped peak for retrieval movements. Reaching move-
ments consist of multiple smaller bell-shaped peaks indicative of
corrective movements. The speed profiles shared qualitative charac-
teristics with natural movements, but the duration of prosthetic
movements (3–5 s for monkey A, including reaching, loading
and retrieval) is not yet down to the same level as natural movements
(1–2 s). The corrective movements and long movement duration are
consistent with extensive use of visual feedback in this task.

The animal controlled the exact path of the arm to achieve the
correct approach direction to position the gripper in the precise
location needed to grasp the food. This was demonstrated by the
curved path taken to avoid knocking the food piece off the presenta-
tion device (Fig. 3b and Supplementary Video 3). It is also important
that there be no apparent control delay—that is, lag between the
desire to move and the movement of the prosthetic. The delay
between spike signals and movement of the robotic arm was approxi-
mately 150 ms (Supplementary Methods). This is not very different
from the control delay of a natural arm6. An example of lag-free
control can be seen in Supplementary Video 2, where the food
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endpoint position. Grey background indicates inter-trial intervals. Arrows
indicate gripper closing at target. e, Gripper command aperture (0, closed; 1,
open). f, Spatial trajectories for the same four trials. Colour indicates gripper
aperture (blue, closed; purple, half-closed; red, open). Arrows indicate
movement direction. g, Distribution of the four-dimensional preferred
directions of the 116 units used. Arrow direction indicates x, y, z
components, colour indicates gripper component (blue, negative; purple,
zero; red, positive).
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Figure 1.1: A monkey controlling a robotic arm through the closed loop BCI system to feed
itself. This figure is adapted from [Velliste et al., 2008].

1.1.1 Brief history of BCIs

Depending on different recording devices, BCIs can be divided into two categories: non-invasive
BCIs and invasive BCIs. The earliest non-invasive BCIs was designed by Vidal in the 1970’s
[Vidal, 1973, 1977]. In his experiment, electroencephalography (EEG) signals, which monitor
the electrical activity of the brain, were recorded and used to control a “cursor” on a computer
screen to solve a maze by moving in four directions [Vidal, 1977]. Later, in the 1980’s, Elbert
et al. [1980] showed that people can change their EEG activity to control the vertical movements
of a rocket image traveling across a television screen. Farwell and Donchin [1988] demonstrated
that, by using the P300 event-related potential (a positive voltage deflection of the electrocortical
potential 300-500 ms post a rare event that initiates sensory and mental processing), subjects can
spell words on a computer screen. Experiments in [Wolpaw et al., 1991] showed that the mu-
rhythm recorded from the scalp over the central sulcus of one hemisphere can be translated into
cursor movements in 1 dimension. Early clinical trials with EEG BCIs have provided impres-
sive proof-of-concept demonstrations of their clinical potential. Wolpaw and McFarland [2004]
demonstrated that by using EEG-based signals and an adaptive algorithm, patients with spinal
cord injuries can control the computer cursor to make 2-dimensional point-to-point movements.

One limitation of EEG as a signal source for BCI is the relatively low spatial resolution of
the signal, which makes it impossible to accurately localize the source of the neural activity.
In contrast, functional magnetic resonance imaging (fMRI) measures the blood oxygen level-
dependent (BOLD) signal across the entire brain with relatively high spatial resolution, though
with low temporal resolution (in the range of millimeters and seconds) [Goebel et al., 2010,
Sitaram et al., 2007]. Despite the fact that BOLD is an indirect measure, there is a strong cor-
relation between the BOLD signal and the electric brain activity [Logothetis et al., 2001]. The
first online fMRI-based BCI experiment that allowed for some degree of external control was
conducted by Yoo et al. [2004]. In their experiment, participants were asked to perform four
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different mental tasks that evoked differential brain activation at four distinct brain locations and
those mental tasks were interpreted as four predetermined BCI commands (up, down, left and
right) in order to allow the subject to virtually navigate through a simple 2D maze. Later, they
demonstrated that it is also possible to control 2D movements of a robotic arm by using the same
principles [Lee et al., 2009]. Those studies needed the data to be averaged across many trials
to provide reliable differentiation. In [Goebel et al., 2004], authors demonstrated that partici-
pants could play an analogue of the computer game ‘pong’ simply by adjusting their single-trial
brain activation level. However, due to its high cost and complexity of development and usage,
fMRI-based BCI has limited practicality in clinical trials.

To date, non-invasive recording devices which measure brain activity by detecting changes
associated with blood flow suffer from low information content within the recorded signals.
Thus, without more information-rich signals, most BCI systems based on non-invasive recording
devices can only output categorical commands, such as one digit from 0 to 9, or one movement
direction from four possible directions (up, down, left and right). In order to get more accurate
signals, invasive recoding devices, such as the intracortical microelectrode, can be used. Each
intracortical microelectrode is sensitive enough to pick up the action potentials, commonly re-
ferred as spikes, of a few neurons (typically 1 or 2). Spikes are nearly universally employed by
neurons for communication in the brain. Currently, the highest levels of performance to date
have been achieved using intracortical spiking recorded from penetrating electrodes.

The first invasive BCI was arguably designed by Fetz in 1969 [Fetz, 1969]. It used an im-
planted stainless steel microelectrode to collect neural activity from the primary motor cortex
of a Rhesus macaque (Macaca mulatta). Spikes from a single neuron (called a ‘unit’) were
isolated from extracellular voltage signals recorded by the microelectrode. In his experiment,
Fetz demonstrated that monkeys could volitionally increase the activity of isolated single neu-
rons in order to receive food rewards. In the 2000’s, microelectrode arrays started to be widely
used to collect the firing patterns of many neurons simultaneously. In 2006, a 96-channel intra-
cortical microelectrode array was implanted in the primary motor cortex (M1) of a tetraplegic
human [Hochberg et al., 2006]. Using the recorded neuronal ensemble activity, the patient was
able to control a BCI system to open simulated e-mail, operate devices such as a television,
open and close a prosthetic hand, and perform rudimentary actions with a multijointed robotic
arm. In 2012, they further demonstrated the ability of two people with long-standing tetraple-
gia to use a BCI system to control a robotic arm to perform 3-dimensional reach and grasp
movements [Hochberg et al., 2012]. Collinger et al. [2013] implanted two 96-channel micro-
electrodes in the motor cortex of a 52-year-old individual with tetraplegia and demonstrated a
patient who could use a BCI to control an anthropomorphic prosthetic limb with 7 degrees of
freedom (3-dimensional translation, 3-dimensional orientation, 1-dimensional grasping). Later
work by this group demonstrated simultaneous control of a 10 degree-of-freedom robotic arm,
the highest achieved to date [Wodlinger et al., 2014]. A study published in 2015 [Gilja et al.,
2015] demonstrated that two individuals with amyotrophic lateral sclerosis implanted with intra-
cortical microelectrode arrays could control the cursor finishing center-out-and-back and random
point-to-point target-acquisition tasks. Their experiments achieved the lowest target acquisition
time reported to date.

New BCI capabilities continue to be demonstrated. Researchers have now demonstrated
control of external devices by neurons recorded outside of primary motor cortex, including the
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posterior parietal cortex [Aflalo et al., 2015] and even, in mice, primary visual cortex [Neely
et al., 2018]. Researches and clinicians are also starting to reanimate the user’s own paralyzed
limb. Bouton et al. [2016] showed that intracortically recorded signals can be linked in real-time
to muscle activation to restore movement in a paralyzed human, and Ajiboye et al. [2017] used
functional electrical stimulation to restore reach and grasp ability.

The reports above are only a snapshot of the current capabilities of BCI systems. In the
sections below, I will break down the central components common to BCI systems, and the
assumptions they typically make when mapping recorded neural activity to device activation.

1.2 Components of a BCI system
A typical BCI system consists of four components (Fig. 1.1). The first component is a recording
device that detects neural activity resulting from the user imagining or attempting a movement.
Different recording devices will provide different types of neural signals and thus will affect
how we interpret the user’s intent. The accuracy of the recording device will also determine
whether the system can achieve continuous control or discrete control. In this thesis, I will focus
exclusively on invasive recording technologies (like intracortical microelectrode arrays), since
these have demonstrated the highest fidelity control to date. Thus, the recorded neural signals I
will consider are spikes of a population of neurons from the subject’s primary motor cortex.

The second component of a general BCI system is the decoding algorithm (also called the
decoder, or mapping) which specifies how recorded signals get translated into movement com-
mands. The movement commands could be the external device’s kinematics, such as the posi-
tions, velocities, and accelerations [Hochberg et al., 2012, Velliste et al., 2008] or the kinetics,
such as the forces and torques [Chhatbar and Francis, 2013]. Depending on different assumptions
about how motor intent is encoded in the spiking activity of neurons, various decoding algorithms
have been proposed. Widely used decoding algorithms include linear estimators which assume
linear encoding [Georgopoulos et al., 1986, Salinas and Abbott, 1994], Wiener filters which
enact linear decoding based on firing rate history [Carmena et al., 2003, Ethier et al., 2012, Hat-
sopoulos et al., 2004, Hochberg et al., 2006, Serruya et al., 2002, Wessberg et al., 2000], Kalman
filters which augment linear estimators with a smoothly evolving prior [Koyama et al., 2010a, Li
et al., 2009, Wu et al., 2006], point process methods which model spikes as a binary time series
[Brown et al., 1998, 2002, Truccolo et al., 2005] and other varieties of decoders [Olson et al.,
2005, Sanchez et al., 2004]. The differences in these algorithms will be discussed in detail in
chapters 2 and 3.

The third component is an external device that is in turn actuated or controlled by commands
decoded from neural activity, or displays the categorical decoding outputs. Such a device could
be a cursor on a computer screen [Carmena et al., 2003, Gilja et al., 2012, Serruya et al., 2002,
Taylor et al., 2002], a robotic arm [Chapin et al., 1999, Velliste et al., 2008], an electrical stim-
ulator that can animate paralyzed muscle tissue [Bouton et al., 2016, Ethier et al., 2012, Moritz
et al., 2008], or a spelling device which the user can select from among potentially dozens of
target characters [Chen et al., 2015]. In this thesis, I will consider the case where the decoded
output commands control a computer cursor or a robot arm.

The fourth component is the sensory system where the subject can get feedback about the
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movement of the external device. Although recent research efforts are exploring the benefits
of stimulation in somatosensory cortex to restore ongoing proprioceptive or tactile sensation
[Flesher et al., 2016, Kim et al., 2015, O’Doherty et al., 2011], the most prominent source of
this feedback so far has been visual [Hatsopoulos and Donoghue, 2009, Lebedev and Nicolelis,
2006, Linderman et al., 2008]. Therefore, here I will focus in this work on devices that rely on
visual feedback.

1.3 The decoding problem
The decoding problem focuses on inferring the subject’s intended movement from recorded neu-
ral activity and is a critical roadblock to the clinical deployment of BCI systems. There are
several factors that complicate the decoding problem.

It is unclear how volitional movements are represented in neurons.

Volitional movement is the result of cognitive processes which lead to the exertion of some
action on the world. The goal of decoding is to estimate this volitional movement and use it to
drive an external device. However, the process of movement generation is not clearly defined
or understood. Without concrete, rigorous models to describe how volitional movements are
represented in neurons, it is difficult to develop a robust decoder to infer volitional movements
from neural activity.

There has been a long debate about whether neurons in M1 represent volitional movements
by their kinematics (e.g., the time-evolving position and velocity of the arm end-point) or their
kinetics (e.g., the forces and torques around the individual joints). Since the pioneering exper-
iments of Evarts [1968], many studies have demonstrated correlations between neuronal activ-
ity and the output forces and torques [Georgopoulos et al., 1992, Hepp-Reymond et al., 1978,
Humphrey et al., 1970] and several groups have shown that muscle or force related signals can
be predicted from the activity of simultaneously recorded neurons [Carmena et al., 2003, Ethier
et al., 2012, Fagg et al., 2009, Gupta and Ashe, 2009, Humphrey et al., 1970, Kim et al., 2007].
These results suggest that M1 neurons may represent the movement’s kinetics and encode at the
muscle level which is near the final stage of the motor control. In contrast, other studies have
described relationships between M1 activity and various kinematic parameters of motor output
such as the direction and distance of targets relative to the hand, and the direction, speed, and
spatial path of hand displacement [Ashe and Georgopoulos, 1994, Caminiti et al., 1990, 1991, Fu
et al., 1993, 1995, Georgopoulos et al., 1982, 1988, Kalaska et al., 1989, Moran and Schwartz,
1999a,b, Reina et al., 2001, Schwartz, 1992, 1993, 1994, Schwartz and Moran, 1999, Schwartz
et al., 1988, 2004]. These findings suggest that M1 neurons may represent the movement’s
kinematics and encode motor intent at a earlier stage of the motor control hierarchy. Currently,
most clinical BCIs focus on decoding kinematic control signals from the M1 activity, primar-
ily because these are relatively easy to transform into cursor movements on a computer screen
or endpoint movements of a robotic arm. Notable exceptions include work to decode desired
muscle activity to re-animate a paralyzed limb, as done in [Ethier et al., 2012].

Beside the lack of knowledge about how volitional movements are represented in neurons,
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ground truth knowledge of the volitional movement itself is hard to obtain. For a healthy user
who is capable of making overt movements (as in a laboratory setup with non-human primates
[Carmena et al., 2003, Gilja et al., 2012, Serruya et al., 2002, Taylor et al., 2002]), it is possible
to observe resulting physical movements and use them as an approximation of volitional move-
ments in the calibration session. However, in many cases of interest the user is not able to make
overt movements, and in those cases, volitional movements are usually approximated by move-
ments the user observes or imagines [Hochberg et al., 2006, Kim et al., 2008, Suminski et al.,
2010, Velliste et al., 2008, Wahnoun et al., 2006]. In the absence of well-approximated volitional
movements, it is difficult to calibrate a decoding model to translate neural activities into desired
motor commands.

The representation of intent is task and context specific.

Beside the movement itself, the neural representation can also depend on the task and the context
the movement is associated with. It has been observed that even with the same movement, under
different tasks or different contexts, the neural representation could be different. For example,
researches have demonstrated that motor neuronal activity and static force show a linear relation-
ship over a restricted force range. In an early study conducted by Humphrey et al. [1970], the
coefficient value of the linear regression model varies with the range of forces in the task. Hepp-
Reymond et al. [1999] later explored this phenomenon in greater detail and demonstrated that
motor cortical neurons encoding force during an isometric pinching task undergo dynamic range
adaptation with changes in the task context and cued expectation of the task context. For the
kinematics case, in the classical model, the firing rates linearly modulate between the minimum
and maximum rates with the cosine of the angle between the movement direction and preferred
direction [Georgopoulos et al., 1982, Schwartz et al., 1988]. This tuning model has been demon-
strated for movements in both 2D and 3D arm reaches. Similar to the kinetics case, Rasmussen
et al. [2017] found that this linear model between the neural representation and the movement
direction is also context specific. In their experiment, they trained two rhesus macaque monkeys
to use their brain activity to move a cursor on a virtual reality screen in either 2D or 3D. Studying
this brain activity showed that the modulation depth of the linear model shrinks when the move-
ment context switch from 2D to 3D. That means that neurons are less sensitive to the cursor’s
direction of movement when the movement is in a 3D space than in a 2D space.

Other aspects of motor encoding have been found to be context specific. In a BCI clini-
cal trial, Downey and colleagues noted that the neural representation of a grasping movement
changed depending on whether the subject was attempting to grasp an actual object or empty
space [Downey et al., 2017]. Work from the Francis lab has further demonstrated the existence
of a reward signal within M1 that can distort the neural representation of a movement depend-
ing upon whether that movement is conducted in a rewarding environment or not [Marsh et al.,
2015, McNiel et al., 2016]. If unaccounted for, these contextual factors complicate the decoding
of motor intent signals.
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Learning makes decoding a moving target.

Another aspect which makes the decoding problem difficult is subject learning. Current BCI
systems are far from perfect, and thus learning is quite critical for the subject to control the
closed-loop BCI system effectively [Orsborn and Pesaran, 2017, Shenoy and Carmena, 2014].
Every time the resulting movement of the artificial limbs deviates from the subject’s intended
movement, feedback about the error gives the subject a way to estimate the performance and
update his/her knowledge about the system. This trial-and-error process often enables a subject
to eventually control an imperfect BCI system through learning.

Studies have indicated that the process of learning is associated with changes in the direc-
tional tuning properties of neurons [Carmena et al., 2003, Jarosiewicz et al., 2008, Li et al., 2001,
Mandelblat-Cerf et al., 2009, Paz and Vaadia, 2004, Taylor et al., 2002]. Although these learning-
related changes improve the subject’s performance, they impose challenges for the design of BCI
decoders because the decoding parameters calibrated at the beginning of learning may no longer
be optimal, or even appropriate, after the subject becomes familiar with the system. While some
researchers have modeled the closed-loop BCI learning process [Héliot et al., 2010, Legenstein
et al., 2010, Zhang et al., 2012], the learning process is still probably the least understood aspect
of the sensorimotor control loop.

1.3.1 Optimal BCI decoder design

The goal of this thesis is to study the problem of how to design an optimal BCI decoder. Before
we dive deep into this problem, we first need to define what is the “optimality” of a BCI decoder.
It is intriguing to define the “optimal” BCI system as the one that allows an individual to control
the system as naturally as his or her own arm. Ideally, once this optimal decoder is calibrated,
it will never need to be re-calibrated again, and during the entire lifespan of the device, the
individual would not feel any difference between controlling the BCI system and controlling his
or her own arm. Currently, most BCI decoding algorithms are designed from this biomimetic, or
estimation standpoint, in which neurons are assumed to represent upcoming intended movements
and recorded firing rates are noisy observations of that underlying intent. Under this framework,
BCI design is properly treated as a signal estimation problem, where the goal is to move the
prosthesis to achieve as close a match to the decoded intent as possible. A BCI designed in this
fashion will tend to be biomimetic, since it leverages the endogenous tuning to motor intent.

If tuning to motor intent were static, BCIs designed from an estimation standpoint would be
statistically optimal provided the assumptions made about the form of intention tuning were cor-
rect. In fact, the differences between various decoding algorithms tend to stem from differences
in the assumptions they make about neural tuning [Zhang and Chase, 2015]. However, tuning to
motor intent is not static: it is well known that tuning curves change during learning in a manner
that reflects increased task performance [Chase et al., 2012, Gandolfo et al., 2000, Ganguly et al.,
2011, Jarosiewicz et al., 2008, Mandelblat-Cerf et al., 2011, Paz et al., 2005, Richardson et al.,
2012, Wise et al., 1998]. Given that tuning curves can change, it is no longer guaranteed that
a decoder designed for one set of neural tunings would be better than a decoder designed for a
different set that could be learned.

The second definition of “optimality” is from a control systems perspective. Each prosthetic
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effector, in conjunction with its decoding algorithm, acts as a control system that the subject
needs to learn how to use through trial-and-error. Robotic arms are, by definition, physical
control systems, while brain-controlled computer cursors may or may not be programmed to
follow physical laws. When interpreted this way, the “optimality” is defined as the optimal cost
derived from the subject’s trying to control a BCI system to generate the intended movement.
In this thesis, we take the control systems perspective. Instead of trying to mimic a subject’s
biological decoding process to minimize training time, we assume that the subject will learn to
use whatever mapping we give him, and develop an approach to determine which mapping will
enable the most proficient control after learning has occurred.

Once we have a way to design an endpoint BCI system by optimizing the post-learning per-
formance, the next question is how can this system be learnt by the subject or how can we assist
the subject’s learning. Although subjects have shown the capability of controlling a imperfect
BCI system with computer assistance [Taylor et al., 2002, Velliste et al., 2008], the learning pro-
cess is probably the least understood aspect of the control loop and can take a very long time.
An effective training schedule should manipulate the difficulty of the task to provide enough
information to guide improvement without overwhelming the subject. In this thesis we pursue
a first step towards solving that problem. By introducing a Bayesian framework for modeling a
closed loop BCI learning process, we develop an adaptive algorithm to find the optimal training
schedule for the performance improvement.

1.4 Outline of this thesis
In this thesis, I will first review some BCI fundamentals and cover current approaches to the
decoding problem in chapter 2. Then, in chapter 3, I will motivate a different approach to the
decoding problem from the standpoint of control theory. Under the control system perspective, I
will detail a method for optimal BCI design that takes learning into account, and apply it to the
special case of designing an optimal 2nd order physical control BCI system in chapter 4. Next, in
chapter 5, I will outline one approach to modeling the learning process itself. Finally, in chapter
6, I will conclude with thoughts on what future directions may be taken with this line of work.

The thesis concludes with several addenda. In addendum A, I include some work I did
developing a dual Kalman filter decoder to mitigate decoder instabilities. In addendum B, I
provide detailed derivation of those algorithms proposed in chapter 4.
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Chapter 2

Background

The input signal of a BCI system is the neural activity observed from the recording device. For
intracortical microelectrodes, the collected neural signal is a time series of spikes generated based
on the neuron’s underlying firing rate λ. Different decoding algorithms formulate the spike train
in different ways. The most widely used representation is the recorded firing rates y, which is
computed as the number of spikes within a small bin divided by the bin size (typically of 50-100
ms), and is treated as a noisy observation of the underlying firing rate [Carmena et al., 2003,
Collinger et al., 2013, Ganguly and Carmena, 2009, Gilja et al., 2012, Hochberg et al., 2006,
2012, Kim et al., 2008, Li et al., 2011, Mulliken et al., 2008, Orsborn et al., 2014, Serruya et al.,
2002, Taylor et al., 2002, Velliste et al., 2008, Willett et al., 2013].

In this chapter, I briefly review some common approaches to the BCI decoding problem,
and introduce some mathematical notation that will be used throughout the rest of the thesis.
Notation used in this chapter is listed in Table 2.1.

Table 2.1: Notations.
λi,t the instantaneous firing rate of neuron i at time t
si,t the number of spikes of neuron i within the time interval [t, t+ ∆]
yi,t the observed firing rate of neuron i computed on the time interval [t, t+ ∆]
yt the observed firing rates of a population of n neurons at time t
di the preferred direction of neuron i
mi the modulation depth of neuron i
b0,i the base firing rate of neuron i
x∗(p∗,v∗, . . .) the subject’s intended movement (position, velocity, ...)
x̂ (p̂, v̂, . . .) the estimated movement (position, velocity, ...)
x (p,v, . . .) the implemented movement (position, velocity, ...)

2.1 Population vector algorithm
In a groundbreaking experiment by Georgopoulos et al. [1982], it was found that many neurons in
M1 could be well described as having a “cosine tuning” property to intended movement direction
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Figure 2.1: Neural activity, measured in impulses/s, as a function of the direction of move-
ment and the fitted cosine curve. This figure is adapted from [Georgopoulos et al., 1982].

(Fig. 2.1). Later, Schwartz et al. [1988] found that the cosine tuning could be generalized to
3D movements. The original formulation in [Georgopoulos et al., 1982] had firing rate as a
function of direction, not velocity. It wasn’t until [Moran and Schwartz, 1999a] that they looked
at modulation of the tuning curve as a function of movement speed. Based on this finding, the
i-th neuron’s underlying firing rate at time t, λi,t, is presumed to have a linear relationship with
the subject’s intended movement as

λi,t = b0,i +mid
T
i v
∗
t , (2.1)

where di, mi and b0,i are the neuron’s the preferred direction, modulation depth and the base
firing rate respectively and T denotes the transpose operation. Based on this encoding model,
Georgopoulos and colleagues introduced the population vector algorithm (PVA) in 1986 [Geor-
gopoulos et al., 1986]. The basic idea is that each neuron “pushes” the cursor along its preferred
direction, with the amount of the push being proportional to its firing rate. The final movement
is determined by the aggregation of all the neurons’ contributions and gets implemented in the
BCI system. By using the recorded firing rate yi,t as an estimate of the underly firing rate λi,t,
the PVA decoder is written as

v̂t =
ks
n

∑n

i=1

yi,t − b0,i

mi

di, (2.2)

where n is the number of recorded neurons and ks is a constant that scales the unitless decoded
direction into a velocity [Chase et al., 2012].

Denoting the vector yt = (y1,t, y2,t, . . . , yn,t)
T as the recorded firing rates of a population of

n neurons at time t, we can rewrite Eqn. 2.2 in matrix form by gathering the preferred directions
into a single matrix D of size d× n. Each column of D corresponds to the preferred direction of
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a single neuron. Further gathering the modulation depths mi into a single diagonal matrix Λm,
we have

v̂t = (ks/n)DΛ−1
m yt. (2.3)

where we assume the recorded firing rate yi,t is centralized and thus ignore b0,i from Eqn. 2.2. In
the following parts of this thesis, without further specification, we assume the firing rate is alway
centralized and ignore the base firing rate for simplicity.

2.2 Optimal linear estimator
The PVA is a biologically-inspired algorithm. However, in practice it has been shown to re-
turn biased estimates of motor intent when the preferred directions of the recorded neurons are
not uniformly distributed [Chase et al., 2009, Kass et al., 2005, Salinas and Abbott, 1994]. To
compensate for this bias, the optimal linear estimator (OLE) has been proposed. As the name
implies, the OLE computes the optimal linear estimate according to square errors. Notice that
Eqn. 2.1 can be generalized as

λt = Cv∗t . (2.4)

where C is the coefficient matrix. Compare with Eqn. 2.1, we can see that if denote ci as the
i-th row of C, the neuron’s modulation depth mi = ‖ci‖ and the neuron’s preferred direction
di = cTi /‖ci‖.

In order to get the optimal estimate of intended velocity, we need to make some assumption
about the relationship between the recorded firing rates yt and the underlying firing rates λt. One
widely used assumption is that is that yt is a noisy version of λt and the noise is Gaussian,

yt = λt + εt, (2.5)

where εt ∼ N (0,Σt) is zero mean Gaussian noise. Although the Gaussian distribution has
some good mathematical properties, one major drawback making it not very proper for real
neural applications is that the noise is independent of the signal, i.e, Σt is independent of λt.
Experimental results from real applications show that the larger the signal is, the larger the noise
associated with the signal is [Churchland et al., 2006, Tolhurst et al., 1983]. In order to mimic this
kind of behavior while preserving computational simplicity, signal-dependent Gaussian noise is
usually adopted where the noise’s covariance matrix Σt is a function the signal λt. We will
further discuss the signal-dependent noise and how it affects decoding in chapter 4.

Then, by minimizing the square error, the optimal estimated velocity of OLE decoder is given
as

v̂t = (CTΣ−1
t C)−1CTΣ−1

t yt. (2.6)

We can see that if recorded neurons are uncorrelated with each other and have a constant variance
for all i and t, then Σt ∝ I . If we further assume that the preferred directions of recorded neurons
are uniformly distributed and modulation depths are the same, then CTC ∝ I and the OLE is
equivalent to the PVA. Experimental results from [Chase et al., 2009, Kass et al., 2005, Salinas
and Abbott, 1994] have shown that the OLE overcomes the intrinsic bias in the PVA decoder.
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2.3 Weiner filter
A problem with the state-less estimators like PVA and OLE is smoothing: when implemented on
small time bins ∆ (30ms is typical for real-time decoding), the movement estimates can be quite
noisy unless there are a large number of cells. With limited number of recorded neurons, filtering
is used in various decoding algorithms to handle the smoothing problem [Hochberg et al., 2006,
Koyama et al., 2010b, Serruya et al., 2002, Wessberg et al., 2000]. The basic idea of filtering
is that, instead of just using the instantaneous firing rate, the decoding algorithm also takes a
history of the firing rates into consideration. One of the widely used filtering methods for BCI
decoding is the Wiener filter [Carmena et al., 2003, Hatsopoulos et al., 2004, Hochberg et al.,
2006, Serruya et al., 2002, Wessberg et al., 2000], which directly assumes a linear model of the
decoded movement on the current firing rates and the historical firing rates. Discretizing the time
into a series of time stamps, with ∆ as the interval, the decoded movement is

x̂t =
∑0

u=τ
Muyt−u + c+wt, (2.7)

where x̂t is the estimated kinematics (e.g., position, velocity or gripping force) at time t, yt−u is
the neurons’ recorded firing rates at time t−u, τ is the length of history we look back, Mu is the
weights for the time lag u, c is some constant, and wt is zero mean Gaussian noise.

The Wiener filter essentially assumes a linear mapping from the history of recorded firing
rates to the estimated kinematics. By replacing the linear mapping with more complex non-linear
functions, it is straightforward to extend the Wiener filter to capture the non-linear relationship
between the neural activities and the intended movement for BCI decoding. Then the decoder
design problem becomes a machine learning problem where a prediction model is trained to
predict the kinematics from the recorded neural signals and we can take advantages of those
novel machine learning techniques. For example, in [Wessberg et al., 2000] the Wiener filter is
replaced by an artificial neural network and Sanchez et al. [2002, 2003, 2004] further extended
this work by using a recurrent neural network. Another example is the support vector machine
(SVM) used in [Olson et al., 2005], where neural activity is represented by the recorded firing
rates and the decoding problem was formalized as a binary classification problem and solved by
the SVM.

2.4 Kalman filter
Possibly the most widely used decoding algorithm is the Kalman filter [Black et al., 2003, Li
et al., 2009, Wu and Hatsopoulos, 2008, Wu et al., 2003, 2006]. As opposed to the Wiener
filter, which smooths the estimation by directly building a model on the historical firing rates,
the Kalman filter formulates a state-space model where the information about historical firing
rates is embedded in the state evolution [Brockwell et al., 2004, Brown et al., 1998, Eden et al.,
2004, Koyama et al., 2010b]. State space methods suppose two types of models for use in
decoding. The first is an observation model that dictates how the recorded observations relate to
the underlying latent state to be estimated. This is the same as the neural encoding model. The
second is the state evolution model, which describes how the latent state evolves over time. In
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BCI decoding, the state is the intended kinematics we are trying to estimate, for example, the
intended velocity v∗t at time t. For the purpose of obtaining a smooth velocity trajectory, we
assume a state model that constrains the sequence of states v∗t so that they are likely to evolve
with some degree of smoothness from one time step to the next. The observation model provides
the likelihood of the current observation and the state model serves as the prior probability.
The maximum a posteriori (MAP) estimate of the state is obtained by maximizing the updated
posterior probability.

Here we first consider the linear case. The state evolution, which serves as a smooth prior for
the intended kinematics, is given as

x∗t = Ax∗t−1 + ωt, (2.8)

where ωt ∼ N (0, R) is assumed to be zero mean Gaussian noise. The linear observation equa-
tion, similar to Eqn. 2.4, is written as

yt = Cx∗t + εt, (2.9)

where εt ∼ N (0, Q) is also zero mean Gaussian noise.
The state-space method is essentially a Bayesian inference method where the goal is to esti-

mate the a posteriori probability of the intended kinematics when given the recorded spike counts.
Under the linear and Gaussian assumption, the Kalman filter [Kalman, 1960], first introduced for
BCI in [Wu et al., 2003], provides an efficient recursive algorithm to compute the posterior prob-
ability p(x∗t |y1,...,t). The optimal estimate x̂t of the intended kinematics x∗t is the mean of this
distribution, which can be estimated through the following set of recursive equations:

Kt = (AΣ̂t−1A
T +R)CT (C(AΣ̂t−1A

T +R)CT +Q)−1, (2.10)
x̂t = (A−KtCA)x̂t−1 +Ktyt, (2.11)

Σ̂t = (I −KtC)(AΣ̂t−1A
T +R). (2.12)

HereKt is the Kalman gain which computes the optimal mixing between reliance on information
from the state evolution model and information from the observation model according to the
noise assumed to be in each. Σ̂t is the estimate of the covariance of p(x∗t |y1,...,t). To use the
Kalman filter, an initial covariance matrix Σ̂0 and kinematics x̂0 must be given. In practice, it
is common to center the prosthesis so all terms in x̂0 = 0 with certainty Σ̂0 = 0. The Kalman
gain is time dependent. However, it tends to converge to a stable value within a few timesteps,
independent of the observations y [Chui and Chen, 2009, Malik et al., 2011]. Another common
practice is to initialize the system with x̂0 and Σ̂0 as the matrix that ensures that Kt is stable
[Dethier et al., 2011, Sadtler et al., 2014].

In different implementations of Kalman filter, the kinematics x∗t can be just the velocity,
i.e., x∗t = v∗t , which is called the velocity Kalman filter (VKF) [Hochberg et al., 2012, Kim
et al., 2008] or the kinematics an be the concatenation of the position and the velocity, i.e.,
x∗t = (p∗t ;v

∗
t ), which is called the position-velocity Kalman filter (PVKF) [Gilja et al., 2012,

Gowda et al., 2014, Homer et al., 2013, Wu et al., 2006]. We will discuss the VKF and PVKF in
more detail in chapter 3.
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The Kalman filter is also a linear model, and various non-linear extensions have been pro-
posed. Li et al. [2009] proposed an k-th order unscented Kalman filter (UKF) which uses of
a non-linear (quadratic) model of neural tuning. In addition to allowing a non-linear relation-
ship between neuronal firing rates and the hand’s position and velocity, UKF also augments the
movement state variables with a history of k − 1 recent states, which improves prediction of the
desired command even before incorporating neural activity information and allows the tuning
model to capture relationships between neural activity and movement at multiple time offsets
simultaneously.

2.5 Point process filter
All the decoders reviewed in the previous sections use the recorded firing rate computed on a
small time bin as the estimate of the underlying firing rate. However, selecting the time bin size
∆ can be quite challenging. If ∆ is too small, the computed firing rate can be quite noisy, and if
∆ is too large, the underlying firing rate can change during the time interval and the computed
firing rate may not represent the underlying firing rate very well. Another representation of the
neuron’s spike train does not compute the recorded firing rate explicitly but instead uses a time
series of 0 and 1 to indicate the absence or presence of a spike within a certain time interval
[Brown et al., 1998, 2002, Eden et al., 2004, Kass and Ventura, 2001, Koyama et al., 2010b,
Truccolo et al., 2005]. Similar to the recorded firing rate, continuous time is also divided into
consecutive bins, however, the bin size is much smaller, typically 1-5 ms. Such small bin size
makes each interval contains at most one spike and the resulting time series will be a binary
sequence. This binary time series can then be modeled as a Poisson point process. Denoting the
number of spikes of neuron i within the time interval [t, t+ ∆] by si,t(si,t ∈ {0, 1}), we have the
probability of observing a spike from Poisson distribution is

P (si,t) = (λi,t∆)si,te−λi,t∆. (2.13)

Under this representation, instead of using the linear model in Eqn. 2.1, the log-linear model
[McCullagh and Nelder, 1989] is often used as

λi,t = exp
(
b0,i +mid

T
i v
∗
t

)
. (2.14)

Beside the advantage that the log-linear model guarantes the firing rate to be always positive, it
also agrees with the von Mises tuning function which allows for a narrower tuning curve than the
cosine tuning function, as has been found to hold true for most neurons in M1 [Amirikian and
Georgopulos, 2000].

Given the observation model Eqn. 2.13 and assuming Gaussian state evolution model, we can
also derive the recursion equation to compute the posterior probability p(x∗t |s1,...,t). However,
there is no closed-form solution for the point process decoder. One approach to get the posterior
distribution is the particle filter, which is based on Monte Carlo simulation [Brockwell et al.,
2004, Doucet et al., 2000, Ergün et al., 2007, Kitagawa, 1996]. The particle filter draws “parti-
cles” from the prior distribution and then, by applying the observation model, obtains particles
corresponding to the posterior distribution that can be averaged to approximate the maximum
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likelihood estimate of motor intent. This method turns the recursive equations for the filtering
distribution into a stochastic dynamical system of interacting particles, each representing one
draw from that posterior.

While particle filtering has proven itself to be useful in practice [Brockwell et al., 2004,
Doucet et al., 2000, Ergün et al., 2007], like any Monte Carlo scheme it can be computationally
costly and the number of particles needed for a given accuracy grows rapidly with the dimen-
sionality of the state space. For real-time processing, such as in BCI, the computational cost of
effective particle filtering can quickly become prohibitive. Another approach to get the posterior
distribution is the Laplace Gaussian filter, which uses a Laplace-type approximation and avoids
the computational heavy Monte Carlo simulation [Brown et al., 1998, Eden et al., 2004, Koyama
et al., 2010b, Shanechi et al., 2013, 2016, Truccolo et al., 2005]. This method is a deterministic
approximation based on sequential application of Laplace’s method to obtain estimates of the
mean and variance of the posterior density, and then approximates that density by a Gaussian
with that mean and variance. For real-time neural decoding, the Laplace Gaussian filter is shown
to be more accurate than the particle filter under the same computational cost [Koyama et al.,
2010b].

2.6 Summary
In this chapter, I have briefly reviewed some common approaches to the BCI decoding problem.
Among them, the PVA and OLE assume a linear encoding model and derive the decoding model
from it. The Kalman filter further assumes linear system dynamics which can make the decoded
movement more smooth and accurate. The Wiener filter does not explicitly assume an encoding
model, instead, it assumes a linear decoding model depending on the history of firing rates. The
point process filter assumes a log-linear encoding model with Poisson distribution, which can
mimic the neuron behavior more accurate than linear Gaussian model but also introduce more
computational burden. In the following thesis, I will focus on linear Gaussian encoding models,
since they are the most commonly used.
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Chapter 3

BCI performance from a physical control
systems perspective

In this chapter I review the performance of different BCI decoding algorithms and attempt to
explain differences in performance based on the physical control system that each decoder rep-
resents. This work has been published as [Zhang and Chase, 2015].

3.1 Introduction

As discussed in the previous chapter, a BCI decoding algorithm specifies how recorded signals
(like recordings from intracortical multielectrode arrays) get translated into movement of the
prosthesis. Currently, nearly all BCI decoding algorithms are designed from an estimation stand-
point: it is assumed that neurons are tuned to different intended movements, and recorded firing
rates are treated as noisy observations of that underlying motor intent. Thus, differences in BCI
decoding algorithms are typically interpreted to result from the different assumptions that they
make about how neurons represent motor intent. Algorithms that fall into this class include linear
estimators such as the PVA and the OLE, state-space models such as the Kalman filter, Laplace-
Gaussian filter [Koyama et al., 2010a,b], and the unscented Kalman filter [Li et al., 2009], as well
as a host of related variants (e.g., particle filter [Brockwell et al., 2004], steady-state Kalman fil-
ter [Malik et al., 2011], variational Bayesian regression [Li et al., 2011], recalibrated feedback
intention-trained Kalman filter [Gilja et al., 2012], parameter tracker [Zhang and Chase, 2013],
speed-dampening Kalman filter [Golub et al., 2014], and others). Differences in the performance
of various algorithms are typically assumed to relate to how well the algorithms’ assumptions
about motor intent encoding match the true underlying encoding of the neurons.

However, another way to interpret BCI system design is from a control system perspective.
Each prosthetic effector, in conjunction with its decoding algorithm, acts as a control system
that the subject needs to learn how to use through trial-and-error. Robotic arms are, by def-
inition, physical control systems, while brain-controlled computer cursors may or may not be
programmed to follow physical laws. When interpreted this way, differences in the performance
of two algorithms might instead stem from differences in the control systems themselves: some
control systems may be more usable than others, due to their physical characteristics or ease of
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An optimally controlled system must have three components (Fig. 1). First, there is the

plant: the system being controlled. This system can be quite general. It could be me-

chanical, like a robotic arm or car, or it could be chemical, like a petroleum processing

plant. The plant is driven into different states by control signals: external forces that

can change the state of the plant. If we let xt 2 Rp⇥1 denote the p-dimensional state of

the plant at time t, then we can capture the physics of the plant through the equation

Plant: xt+1 = f(xt, yt), (1)

where yt 2 Rn⇥1 denotes the n-dimensional control input at time t. In a BCI, this plant

would capture the combination of the decoding algorithm that maps neural activity into

device movement and the physics of the device itself.

The second component of an optimally controlled system is the cost function, which

determines the overall utility of different types of movements and control signals. In a

petroleum plant, the cost might incorporate terms relating to the efficiency of a chemical

reaction or the concentration of unwanted byproducts. For a BCI, the cost function

should incorporate the user’s goal (choose this letter or pick up this object) and might

also capture the effort to produce particular control signals. If a movement extends over

some time t = 0 . . . T , the overall trajectory cost would depend on the initial state of

the device, x0, the goal xg (which may itself be a function of time), and the series of

control signals that one uses to pilot the device, y0, . . . , yT�1. We can write the cost J

of this trajectory explicitly as

Cost function: J (x0, x
g, y0,...,T�1), (2)

Control signals which minimize this cost are, by definition, optimal, and denoted y⇤
t ,

6

while the minimal cost that those control signals produce is denoted as J ⇤(x0, x
g) =

J (x0, x
g, y⇤

0,...,T�1).

The third component of an optimally controlled system is the control policy, which

determines the control signals that one should use to perform a particular task when the

plant is in state xt. The control policy can be captured through the general equation

Control policy: yt = ⇡(xt). (3)

An optimally controlled system would use an optimal control policy that chooses con-

trol signals incurring minimal cost through Eqn. 2; we denote such a system as ⇡⇤.

Thus, y⇤
t = ⇡⇤(xt).

A number of studies have found evidence that physiological motor control conforms

to predictions from optimal control theory [Todorov and Jordan, 2002]: task-irrelevant

errors tend to be left uncorrected [Liu and Todorov, 2007, van Beers et al., 2013],

movements have been shown to distribute optimally across effectors [Fagg et al., 2002,

Haruno and Wolpert, 2005, Diedrichsen, 2007], trajectory dynamics during control of

complex effectors can be predicted using optimal feedback control models [Nagengast

et al., 2009], and reflexes are programmed to respond with gains that reflect the task ge-

ometry and goal [Nashed et al., 2012, Pruszynski and Scott, 2012, Omrani et al., 2013].

With this as justification, we take as an assumption that the brain acts as an optimal con-

troller, and that practice with a given BCI device will eventually lead, through learning,

to the subject controlling the device with optimal control signals (i.e., neural activity

patterns) according to an optimal policy. We discuss the validity of these assumptions

in section 5.

To design a BCI that is most usable, we must first rigorously define what we mean
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Figure 3.1: Schematic of a BCI as a feedback control system. The major components of a
feedback control system (namely, the controller, control signals, plant, and feedback) are laid out
on top of a typical BCI cursor control schematic, where the brain is identified as the controller,
the control signals are neural activity (often tapped out of primary motor cortex), the plant is the
combination of the BCI decoder and the cursor, and feedback is accomplished by watching the
cursor movements.

conceptualization. Here we first introduce linear physical systems with control signals and de-
rive the corresponding physical systems for some common BCI cursor decoding algorithms. We
then re-interpret findings from the literature on which decoding algorithms work best in light of
the physical systems that they represent. Intriguingly, when interpreted in this way, the literature
suggests that BCI systems that follow physical laws are more usable than those that do not. Fur-
ther, in on-line control it appears that BCI systems that reduce to equivalent physical forms tend
to be equally-well controlled. These results have implications not only for BCI design, but may
also shed light on the brain’s ability to conceptualize motor effectors of varying forms.

3.2 Linear physical systems with control signals
Before proposing our view of BCI design from a control system perspective, we first look at a
general control system, as shown in Fig. 3.1. In this system, control signals generated by the
controller (the brain) are used to drive the plant (the decoder and cursor). Feedback about the
system is observed by the sensors (the eyes) and used by the controller to generate new control
signals. If it is a physical system, the system dynamics, which dictate the plant’s evolution as
driven by the control signal, should obey physical laws. Formally, the dynamics for a control
system can be represented as

dx/dt = f(x,u, t), (3.1)

where x ∈ Rd is the plant’s state in d dimensional space, u ∈ Rn is the control signal and t is the
current time. To make the control system a legitimate physical system, f should obey physical
laws, i.e., velocity should be the derivative of position, acceleration should be the derivative of
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velocity, etc.
For computational simplicity, a linear discretized approximation of Eqn. 3.1 is typically used

in practice. To do that, continuous time is discretized into a series of steps with the step size as a
small time interval ∆ (∆ = 20ms for example), and the system dynamics at the t-th time step is
expressed as

xt+1 = Htxt +Mtut. (3.2)

Here, Ht ∈ Rd×d is a matrix that dictates the internal physics of the control system, and Mt ∈
Rd×n is a matrix that dictates how the control system responds to its control inputs.

If we are studying a physical system driving a prosthetic effector’s movement, then x is often
the kinematics of the prosthetic effector, which could include the position, p, the velocity, v, and
potentially higher-order terms as well. For example, the 1st order linear discretized approxima-
tion, where the state is the position xt = pt, has the form

pt+1 = Htpt +Mtut. (3.3)

In a 2nd order linear system, the state xt will contain both position and velocity terms. To
ensure that position is the integral of velocity, we need to have the following relationship:

(
pt+1

vt+1

)
=

(
I ∆I
Hp,t Hv,t

)(
pt
vt

)
+

(
0
Mv,t

)
ut. (3.4)

Note that the control signal affects the next velocity, only.
To gain some insight into the meaning of these control system parameters, consider a simple

2nd order physical system where the movement is on 1 dimension (Fig. 3.2). This system consists
of a point mass,mp, attached to a viscous damper and an elastic spring connected in parallel. The
forces operating on the point mass come from external sources, Fex, as well as internal from the
spring and damper. The force from the spring is Fs = −kp (where k is the spring constant and
p is the position of the point mass, measured relative to the equillibrium position of the spring),
and the force from the damper is Fd = −ηv (where η is the damping coefficient and v is the
velocity of the point mass). Because these elements act in parallel, these two forces sum at the
point mass, to create a total internal force Fin, where

Fin = Fd + Fs = −ηv − kp. (3.5)

Together with the external force the acceleration of the point mass may be derived from Newton’s
laws of motion:

a = Ftot/mp = (Fin + Fex)/mp = (−kp− ηv + Fex)/mp. (3.6)

Discretized by a small time duration ∆, the updated velocity is given as

vt+1 = vt + ∆at = vt + ∆(−kpt − ηvt + Fex,t)/mp. (3.7)

and the updated position is given as

pt+1 = pt + ∆vt, (3.8)
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k

η
mFex = u

Figure 3.2: A simple 2nd order physical control system. Here, a point mass m is hooked up to a
parallel combination of a spring (with spring constant k) and a damper (with damping coefficient
η). This configuration corresponds to the well-known Kelvin-Voigt model from material science.

Putting this all together into matrix form, the discretized control system for the Kelvin-Voigt
model in Fig. 3.2 is seen to be:

(
pt+1

vt+1

)
=

(
1 ∆

−∆k/mp 1−∆η/mp

)(
pt
vt

)
+

(
0

∆/mp

)
Fex,t. (3.9)

Comparing Eqn. 3.9 with the general 2nd order physical control system presented in Eqn. 3.4
reveals that the external force Fex,t plays the role of the control signal ut, the spring-like elastic
effects account for Hp,t, and the viscous damping effects account for Hv,t.

3.3 BCI systems from a physical control systems perspective
In this section we re-interpret some fairly common decoding algorithms, including the PVA, OLE
and Kalman filter, in terms of the physical control systems to which they correspond. Fig. 3.1
casts the general BCI system into the control system framework. Here the motor cortex drives
the BCI system by generating a proper set of neural activation patterns, which are the end result
of a sequence of brain computations that take both visual feedback and goal information into ac-
count. Visual feedback of the prosthetic effector’s movement is used to correct future movement.
Therefore, BCI system design is essentially a control system design problem where one attempts
to construct a BCI system that is as usable as possible. Formally, the dynamics of a BCI system
can be represented as

dx/dt = g(x,y, t). (3.10)

where y ∈ Rn is the recorded firing rates from a population of n neurons. The only difference
between Eqn. 3.10 and Eqn. 3.1 is that the control signal u takes the form of neuronal firing rates
y.

When discussing the physical implementation of different BCI decoders, it will be necessary
to distinguish the following three variables: motor intent, estimated motor intent, and imple-
mented movement. Note that here and elsewhere in this document, we use the star notation to
refer to intended movements (e.g., the intended velocity will be denoted as v∗). Estimates of
those intents will be indicated by an overhead carat (e.g., the estimated velocity will be denoted
v̂). Finally, the movement that is implemented by the prosthesis will come without any nota-
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tion (e.g., the implemented velocity will be denoted as v). Please refer to Table 2.1 for all the
notations.

3.3.1 Linear estimators
We start with one of the earliest decoding algorithms, the PVA [Georgopoulos et al., 1986].
The estimated velocity of the PVA is obtained by Eqn. 2.3. To implement the PVA estimate
of velocity into an actual device, the velocity of the prosthesis is set equal to its estimate, i.e.,
vt = v̂t. The implemented position is then set equal to the integral of these velocity commands,
pt+1 = pt + ∆vt. Therefore, to represent the decoding from the physical system perspective, we
have

PVA physical system: pt+1 = pt + ∆(ks/n)DΛ−1
m yt, (3.11)

which is a special case of a 1st order linear physical control model (Eqn. 3.3), where Ht = I and
Bt = ∆(ks/n)DΛ−1

m .
Similar to the PVA, the implemented velocity is also set equal to the estimated velocity in the

decoding model of the OLE and the position of the prosthesis is derived by integrating velocity.
Thus, given the estimated velocity obtained by Eqn. 2.6, the physical system corresponding to
the OLE decoding is

OLE physical system: pt+1 = pt + ∆(CTΣ−1
t C)−1CTΣ−1

t yt. (3.12)

This is again another special case of a 1st order linear physical control system (Table 3.1).
Both the PVA and the OLE correspond to first-order physical control systems, albeit with

slightly different mappings from neural firing to cursor movement. Experimental results from
[Chase et al., 2009, Kass et al., 2005, Salinas and Abbott, 1994] have shown that the OLE over-
comes an intrinsic estimation bias that the PVA decoder has when the preferred directions of
recorded cells are not uniformly distributed. From an estimation standpoint, the OLE should be
a better decoding algorithm than the PVA.

However, Chase and colleagues [2009] also demonstrated that the PVA and the OLE perform
equivalently on-line: subjects were just as adept at controlling the PVA as they were at controlling
the OLE, despite the fact that neural activity was mapped to different cursor movements under the
two algorithms. One possible interpretation of this is that subjects learn the mapping from neural
activity to decoder, be it a biased decoder like the PVA or an unbiased decoder like the OLE.
The difference between the mapping from neural activity to cursor movement produced under
these two decoders is akin to a visuomotor distortion, and visuomotor distortions are learned very
quickly [Krakauer et al., 2000, Paz et al., 2005, Wu and Smith, 2013]. From this standpoint, the
neurons are rapidly changing their activity to provide appropriate control signals to the device.
Once learning is accomplished, both the OLE and the PVA give the subject a 1st order linear
physical control system to control, and there appears to be no significant difference between the
usability of these systems.

3.3.2 Linear state-space decoders
As discussed in chapter 2, a problem with the linear estimators described in the previous section
is smoothing: when implemented on small time bins ∆, the movement estimates can be quite
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noisy. To compensate for this it is common to smooth the firing rate estimates [Koyama et al.,
2010a]. Naturally, any smoothing also affects the physical system.

Linear state space models handle smoothing in a more elegant manner by applying a smooth
prior to the evolution of the intended kinematics. In section 2.4 I have reviewed the well-known
Kalman filter and its recursive equations (Eq .2.10-2.12) to obtain the estimated kinematics x̂t.
The relationship between the kinematics xt that are actually implemented and the estimated
kinematics x̂t depends on exactly how the Kalman filter is implemented. Here we introduce two
popular implementations, the velocity Kalman filter (VKF) [Hochberg et al., 2012, Kim et al.,
2008] and the position-velocity Kalman filter (PVKF) [Gowda et al., 2014, Homer et al., 2013,
Wu et al., 2006].

Velocity Kalman filter

The VKF assumes that neurons are tuned to the intended velocity. Thus, the state evolution
equation is

v∗t = Av∗t−1 + ωt (3.13)

and the observation equation is
yt = Cv∗t + εt. (3.14)

From Eqn. 2.11, we have the estimated intended velocity as

v̂t = (A−KtCA)v̂t−1 +Ktyt. (3.15)

The implemented velocity vt in this case is set equal to v̂t and the position is the integral of the
velocity [Hochberg et al., 2012, Kim et al., 2008]. In matrix form, the implemented movement
can be written as

VKF physical system:
(
pt
vt

)
=

(
I ∆I
0 A−KtCA

)(
pt−1

vt−1

)
+

(
0
Kt

)
yt. (3.16)

Comparing with Eqn. 3.4, we can see that the VKF is a 2nd order linear physical control
system where the system state includes position and velocity, xt = (pt,vt)

T , with an elastic
term, Hp,t, that is equal to zero and a viscous term, Hv,t = A −KtCA. It is interesting to note
the parallel between force and velocity representations that emerge in this implementation of the
Kalman filter. Even though the VKF makes the assumption that neurons are driven by intended
velocities, they play the role in Eqn. 3.16 of providing a force input to the system.

To our knowledge, nobody has directly compared the VKF to either the OLE or the PVA
in on-line control. However, Koyama and colleagues demonstrated that a variant of the VKF
called the Laplace-Gaussian filter (LGF) outperformed the PVA and OLE on-line [Koyama et al.,
2010a]. The LGF and the VKF are both state-space decoders, and differ in only two main
respects: the LGF fits an observation model that assumes Poisson noise statistics and log-linear
tuning to intended velocity, whereas the VKF assumes linear Gaussian tuning of neurons to
intended velocity. Importantly, this implies that the physical control system representing the
VKF and the LGF will be of the same form: second order with no elastic terms.
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Koyama and colleagues performed simulations and off-line trajectory reconstructions to de-
termine that the key factor that allowed the LGF to outperform the PVA and OLE was its state-
space formulation: they found no significant differences in the performance of the LGF relative
to the VKF. We therefore take this as indirect evidence that the VKF would outperform the OLE
and the PVA on-line. Why should this be the case? From an estimation standpoint, the inter-
pretation would be that intended velocities really do evolve smoothly over time as implied by
Eqn. 3.13, and so incorporating the fact enables better estimates of the velocity intent. How-
ever another interpretation is that the VKF and OLE are fundamentally different control systems,
and 2nd order physical control systems may simply be easier to control than 1st order physical
control systems.

Position velocity Kalman filter

Another widely used Kalman filter model is the PVKF. In contrast to the VKF, the PVKF assumes
that neurons are tuned to both the intended position and intended velocity. Thus, the state is
x∗t = (p∗t ,v

∗
t )
T and to encourage the state evolution model to obey physical laws, it is typically

set to be (
p∗t
v∗t

)
=

(
I ∆I
0 Av

)(
p∗t−1

v∗t−1

)
+

(
0
ωv,t

)
. (3.17)

The PVKF observation model is

yt = (Cp, Cv)

(
p∗t
v∗t

)
+ εt. (3.18)

From Eqn. 2.10 we can compute Kt. Dissociating Kt into two parts corresponding to position
and velocity as Kt = (Kp,t, Kv,t)

T , we can write the estimated intended position and velocity as
(
p̂t
v̂t

)
=

(
I −Kp,tCp ∆I −Kp,tO
−Kv,tCp Av −Kv,tO

)(
p̂t−1

v̂t−1

)
+Ktyt, (3.19)

where O = ∆Cp + CvAv
In the PVKF, the estimated position is not, in general, equal to the integral of the estimated

velocity. Even though the state evolution equation (Eqn. 3.17) biases estimates of position and
velocity to obey this rule, it is not a hard constraint: a compromise between position and velocity
will be estimated that best explains the observed spike rates. This then leaves one with a choice
when trying to implement the PVKF, since both the position and velocity estimates cannot be
simultaneously implemented. One common method is to use the estimated position as the im-
plemented position, and to allow the implemented velocity to evolve as vt = (p̂t+1− p̂t)/∆ [Wu
et al., 2006]. Here we denote this method as PVKFposition and its state evolution equation is as

PVKFposition, not a simple physical control system:(
pt
v̂t

)
=

(
I −Kp,tCp ∆I −Kp,tO
−Kv,tCp Av −Kv,tO

)(
pt−1

v̂t−1

)
+Ktyt. (3.20)

With this implementation, the estimated velocity, v̂t, becomes a latent variable that keeps the
system from having a simple physical control system correlate. Experimental results from [Kim
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et al., 2008] show that when the PVKF is implemented in this way, its performance is inferior
to the performance of the velocity-only Kalman filter. This fact is hard to rationalize from the
estimation viewpoint, since the encoding model assumed by the PVKF typically fits the firing
rates better than the encoding model assumed by the VKF. From the control system viewpoint,
however, a possible explanation of this result is that the PVKF with position implementation is
not a simple physical control system, and is therefore difficult to use.

There are other ways to implement the PVKF. One way is to use the estimated velocity as
the implemented velocity and treat the estimated position p̂t as the hidden variable. Another
is to use a linear combination of estimated velocity and estimated position as the implemented
velocity. This latter method was shown in [Homer et al., 2013] to work better than the position-
implementation of the PVKF. However, none of these versions give the subject a simple physical
system without hidden states to learn to control.

There is one implementation of the PVKF, however, that does correspond to a simple physical
control system with no hidden states. To do this, the implemented velocity is made equal to the
estimated velocity, and the estimated position becomes the integral of the estimated velocity.
Here we denote this method as PVKFvelocity and its state evolution equation is as

PVKFvelocity, physical control system:(
pt
vt

)
=

(
I ∆I

−Kv,tCp Av −Kv,tO

)(
pt−1

vt−1

)
+

(
0
Kv,t

)
yt. (3.21)

As it turns out, this implementation of the PVKF has been used by Gilja and colleagues to
achieve the best BCI control demonstrated to date [Gilja et al., 2012]. Their implementation of
this equation was one of two design innovations of their ReFIT-KF algorithm, the other being
a new method for re-calibrating the device from on-line training data. Although they derived
Eqn. 3.21 in a different way, using a causal-intervention step that forces the variance of the
position estimate to go to zero, the net effect is the same, and leads to a second order physical
system with both elastic and damping terms.

The velocity-implementation of the PVKF has been shown to handily outperform the VKF
[Gilja et al., 2012]. One interpretation of why this is true is that the causal intervention step
better captures the fact that subjects know the position of the cursor from sensory feedback, so
there should be no uncertainty about it. While this clearly cannot be exactly true, due to sensory
feedback delays and sensory noise [Golub et al., 2013], it may be true enough to allow for better
control. Another interpretation might be that neurons are driven by a non-volitional, positional
signal representing the real position of the cursor, and this equation allows that “nuisance vari-
able” term to be removed. However, yet another interpretation might be that this implementation
of the PVKF results in a simple, 2nd order physical control system that still allows for neurons
to modulate as a function of position. It may further be the case that 2nd order physical control
systems that include a certain elastic component (a non-zero Hp,t in Eqn. 3.4) are more usable
than those systems, like the VKF, that do not have that component.

3.3.3 Higher order models
Of all the decoding algorithms we reviewed, none went beyond 2nd order. Given that 2nd or-
der systems appear more controllable than 1st order systems, it is interesting to speculate as to
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Table 3.1: BCI decoders under physical system perspective.

1st order physi-
cal system

PVA pt+1 = pt + ∆(ks/n)DM−1yt

OLE pt+1 = pt + ∆(CTC)−1CTyt

2nd order physi-
cal system

VKF
(
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vt

)
=

(
I ∆I
0 A−KtCA

)(
pt−1

vt−1

)
+

(
0
Kt

)
yt

PVKFvelocity

(
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vt

)
=

(
I ∆I

−Kv,tCp Av −Kv,tO
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)
+

(
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)
yt
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physical system PVKFposition

(
pt
v̂t

)
=

(
I −Kp,tCp ∆I −Kp,tO
−Kv,tCp Av −Kv,tO

)(
pt−1

v̂t−1

)
+Ktyt

whether a 3rd or 4th order system would be even easier to control. These higher-order systems
may actually be a closer match to the human arm: in [Liu and Todorov, 2007], Liu and colleagues
model the arm as a 3rd order linear physical system and are able to capture many of the emergent
features of natural reaching movements. There have been instances in the literature that have
included acceleration and higher order terms in their decoding algorithms. For example, Wu and
colleagues compared the performance of a Kalman filter decoder with up to 6th order terms, and
found that the 3rd order model consisting of position, velocity, and acceleration terms provided
the best performance in their off-line trajectory reconstruction [Wu et al., 2006]. However, they
used the position-implementation of their decoder, which we have already demonstrated does
not correspond to a simple physical system beyond 1st order. It would be interesting to test how
physical implementations of higher order control systems might perform on-line.

3.4 Discussion

The optimal way to implement a BCI decoding algorithm is an important question relevant to
clinical deployment of neural prostheses. Here we recast this problem from the perspective of
control system design, and derive the physical control systems corresponding to various types
of decoders commonly used in BCI cursor control. This process enables new insights into BCI
design, and suggests novel explanations about why some decoders have been shown to perform
better than others. In particular, the literature suggests that: 1) 2nd order physical systems tend to
be more usable than 1st order physical systems, 2) decoders that cannot be expressed as simple
physical control systems do not appear to work as well as those that can be expressed this way,
and 3) a 2nd order control system with elastic terms seems to work better than one without.

Recent work has highlighted the utility of approaching BCI design as a separate problem
from inferring natural behavior [Chase and Schwartz, 2011, Tillery and Taylor, 2004]. Marathe
and Taylor [2011] studied the effect of mapping one control parameter (e.g., position, velocity,
or goal) to the control of another. They found that the optimal mapping was not necessarily
one-to-one, but rather changed as a function of different types of decoding noise. Gowda et al.
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Table 3.2: BCI decoders comparison.
decoders scenario (winning decoder) reference
PVA vs. OLE off-line trajectory reconstruction (OLE) [Salinas and Abbott, 1994]

[Kass et al., 2005]
[Chase et al., 2009]

on-line closed loop control (equivalent) [Chase et al., 2009]
[Koyama et al., 2010a]

PVA/OLE vs. VKF off-line trajectory reconstruction (VKF) [Wu et al., 2006]
[Koyama et al., 2010a]

simulation (VKF) [Koyama et al., 2010a]
PVKFposition vs. VKF on-line closed loop control (VKF) [Kim et al., 2008]
PVKFvelocity vs. VKF on-line closed loop control (PVKFvelocity) [Gilja et al., 2012]

[2014] have presented a thorough investigation of the dynamical systems properties of the PVKF.
They found that certain implementations of the decoder could create workspace attractor points
that might be detrimental to BCI control. These studies point out the gains that may be realized
when BCI control is not constrained to reflect the neural encoding of natural arm dynamics,
and emphasize the importance of the physical control system perspective when interpreting BCI
performance.

3.4.1 Alternate views of motor cortical recruitment

Decades of motor control studies have established that neural activity in motor cortex correlates
with various features of movement. In BCI design, it is common to interpret these correlations
by thinking of neurons as being tuned to the desired outcome or intended movement of an ef-
fector. However, neural activity can be flexibly dissociated from the effector [Schieber, 2011]:
using operant conditioning, individual neurons can be trained to correlate and decorrelate from
particular muscles [Fetz, 1969, Fetz and Finocchio, 1971], even when spike triggered averag-
ing of EMG traces provide evidence of monosynaptic connections between the neuron and the
muscle [Davidson et al., 2007]. Evidence of a flexible relationship between neural activity and
behavior also comes from natural movement paradigms. Neural activity in motor cortex readily
changes during motor learning [Gandolfo et al., 2000, Ganguly and Carmena, 2009, Jarosiewicz
et al., 2008, Paz et al., 2003, Sadtler et al., 2014, Wise et al., 1998]. Neural activity has also been
shown to change during associative learning: neurons in M1 will respond to the color of a target
during an associative learning task, and will often maintain that tuning after color is no longer
relevant [Zach et al., 2008]. Even context can modulate neural tuning. Hepp-Reymond and col-
leagues [1999] demonstrated that neurons in primary motor cortex are sensitive to the context of
an isometric force task, and will change their firing to particular force levels according to how
many force targets are presented in the task.

These studies suggest that motor cortical activity is extremely fungible, restructuring itself
in the face of new task demands in a manner that is not at all well understood. It is hard to
reconcile this view with a static view of tuning to intended movements, unless one assumes that
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these motor intent signals can themselves be dissociated from the motor outcome [Chase and
Schwartz, 2011]. If this is the case, there may be only subtle differences among the viewpoints
that neurons tune to flexible motor intent signals, that neurons act as control signals to drive an
effective behavior, or that populations of neurons act as a flexible pattern generator on which
movements can be built [Shenoy et al., 2013]. In this review, we mainly wish to highlight the
importance of these multiple viewpoints when attempting to interpret BCI performance and,
ultimately, design the optimal decoding algorithm.

3.4.2 Relationships to embodiment, internal models, and natural motor
control

Natural motor control is fraught with computational difficulties, not least of which is the neces-
sity to compensate for noisy, delayed sensory feedback. To generate fast, dexterous movements,
it is necessary to compensate for these sensory delays. It is widely believed that we do this
with the aid of internal models that allow us to predict, in real time, the outcomes of our motor
commands before sensory feedback becomes available [Crapse and Sommer, 2008, Shadmehr
et al., 2010]. These internal (forward) models are thought to take as input efference copies of
our motor commands, and use them to predict the sensory consequences, such as the new arm or
eye position, that result from those commands [Sommer and Wurtz, 2002, Wolpert et al., 1995].
Essentially, these models embody our internal conception of the physics of our limbs and how
they respond to our motor commands. These predicted locations can then be used as the basis for
planning the next movement before real sensory feedback becomes available, allowing for faster
motor sequence production.

Internal models may also be used in BCI control. Motor commands of subjects using a BCI
to control a computer cursor in a center-out movement task are more appropriate to the real time
position of the cursor than the last sensory feedback position, indicating that subjects compensate
for sensory feedback delays while using a BCI [Golub et al., 2012]. Further, differences between
a subject’s internal model of the decoder and the actual cursor dynamics may explain errors in
on-line control [Golub et al., 2013, 2015].

It is intriguing to speculate on the utility of internal models in BCI control. Internal models
are thought to be a key component in motor adaptation [Kawato, 1999, Shadmehr et al., 2010],
and thus subjects who build internal models of BCIs may be able to take advantage of all of
the computational motor adaptation machinery that natural motor control relies upon. A reliable
internal model of the BCI device may also be the key to embodiment, when the device feels like
a natural extension of one’s body [Giummarra et al., 2008, Schwartz et al., 2006]. However, can
subjects build internal models of any BCI device? While the answer to this question is well be-
yond the scope of this review, we posit that it might be easier to build internal models of physical
systems than it is to build internal models of non-physical systems, simply because all of the
internal models we build in the context of natural reaching are, by definition, models of physical
systems. It could be that the reason decoding algorithms corresponding to physical systems ap-
pear to be more useable than those that do not is because they are more readily conceptualized
with an internal model.

27



3.5 Conclusion
In this chapter, we have focused primarily on the overall form of the physical control system rep-
resented by different decoders: e.g., whether it is 1st order or 2nd order and whether it contains
both viscous and elastic elements, etc. We have not focused on the particular values of those
parameters as much, except to point out that the PVA and OLE, which have different mappings
between firing rates and cursor movement, perform similarly on-line [Chase et al., 2009]. Under
the estimation-framework, performance will be best with mappings from neural activity to cursor
movement that best capture the natural neural tuning. Under the control framework, performance
will be best with those mappings that most accurately capture the volitionally usable correlation
structures within the neural population. Of course, all of this ignores long-term learning, which
may allow subjects to become proficient even at non-intuitive mappings [Ganguly and Carmena,
2009, 2010]. Further work will need to be done to determine the precise details that determine
which mappings from neural activity to movement perform better than others, and how learning
may ultimately play a role in sculpting their performance [Orsborn et al., 2014]. In chapter 4, we
take a first step on solving the problem about how to design a BCI system which is optimal after
the subject fully learnt how to control it.
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Chapter 4

Design of a provably-optimal BCI system

In the previous chapter we recast the BCI system design problem from the perspective of control
system design, and derived the physical control systems corresponding to various types of de-
coders commonly used in BCI cursor control. This process suggested novel explanations about
why some decoders have been shown to perform better than others. In particular, we found that:
1) 2nd order physical systems tended to be more controllable than 1st order physical systems, 2)
decoders that could not be expressed as simple physical control systems did not appear to work
as well as those that could be expressed this way, and 3) a 2nd order control system with elastic
terms seemed to work better than one without. Exactly why this might be so is not certain. It
could be that certain physical systems are better matched to the signal and noise properties of
the recorded neural populations. Another intriguing possibility is that the brain is able to con-
ceptualize some systems better than others. Natural motor control appears to rely on the use of
internal models that can help compensate for sensory feedback delays and enable the selection
of appropriate motor commands [Golub et al., 2015, Shadmehr et al., 2010]. It could be that the
most controllable system is the one that can best take advantage of the brain’s ability to model it.

We have focused primarily on the overall form of the physical control system represented by
different decoders: e.g., whether it is 1st order or 2nd order, whether it contains both viscous and
elastic elements, and for the 2nd order model, Eqn. 3.4, how to adjust Hp,t, Hv,t and Mv,t. We
have not focused on the particular values of those parameters as much, except to point out that
the PVA and OLE, which have different mappings between firing rates and cursor movement,
perform similarly on-line [Chase et al., 2009]. Do the details of the control system parameters
matter at all?

The answer is certainly yes. Sadtler and colleagues have recently demonstrated that some
mappings between neural activity and cursor movement are easily learned, while others are very
difficult to learn [Sadtler et al., 2014]. In that study they discovered that subjects could easily
learn to map an existing pattern of neural activity to an arbitrary movement; what was difficult
was creating new correlation patterns in the neurons themselves. This suggests that, provided
the mapping from neural activity to cursor movement preserves the natural correlations within
the neural population, two physical systems of the same form may be equivalently-controllable.
However, Gilja and colleagues [Gilja et al., 2012] have noted a significant improvement in con-
trol if tuning curves are re-estimated from on-line training data, which would seem to conflict
with the previous statement. Further, while Sadtler and colleagues noted substantial improve-
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ment in performance with short amounts of practice on novel ‘within-manifold’, i.e., correlation
preserving, mappings, the performance under those mappings was still substantially worse than
performance with the initially-estimated natural tuning curves. Under the estimation-framework,
performance will be best with mappings from neural activity to cursor movement that best cap-
ture the natural neural tuning. Under the control-framework, performance will be best with those
mappings that most accurately capture the volitionally-controllable correlation structures within
the neural population. For example, in the velocity Kalman filter, Ap,t = 0, Av,t and Bv,t are
determined by the recursive relationship from the system evolution equation and observation
equation. Those parameters are optimal under the estimation perspective [Wu et al., 2006], how-
ever, they are not guaranteed to be optimal under the control system perspective.

In this chapter, we will focus on studying the precise details that determine which mappings
from neural activity to movement perform better than others, and how learning may ultimately
play a role in sculpting their performance [Orsborn et al., 2014]. A preliminary version of this
work that introduced the control theoretic approach to BCI was published in [Zhang and Chase,
2016]. A full version of the results in this chapter has been published as [Zhang and Chase,
2018].

4.1 Introduction
Recent clinical successes highlight an important question in BCI design: what mapping between
neural activity and device movement will enable the most proficient long-term control? Cur-
rently, most BCI decoding algorithms are designed from a biomimetic, or estimation standpoint,
in which neurons are assumed to represent upcoming intended movements and recorded firing
rates are noisy observations of that underlying intent. Under this framework, BCI design is prop-
erly treated as a signal estimation problem, where the goal is to move the prosthesis to achieve
as close a match to the decoded intent as possible. A BCI designed in this fashion will tend to be
biomimetic, since it leverages the endogenous tuning to motor intent.

If tuning to motor intent were static, BCIs designed from an estimation standpoint would be
statistically optimal provided the assumptions made about the form of intention tuning were cor-
rect. From the previous chapter, we can see the differences between various decoding algorithms
tend to stem from differences in the assumptions they make about neural tuning. However, tuning
to motor intent is not necessarily static: in arm control learning studies, tuning curves change in
a manner that reflects increased task performance [Gandolfo et al., 2000, Mandelblat-Cerf et al.,
2011, Paz et al., 2005, Richardson et al., 2012, Wise et al., 1998], and non-biomimetic BCI map-
pings induce tuning curve changes that also increase behavioral performance [Chase et al., 2012,
Fan et al., 2014, Ganguly et al., 2011, Jarosiewicz et al., 2008]. Given that tuning curves can
change, it is no longer guaranteed that a decoder designed for one set of neural tunings would be
better than a decoder designed for a different set that could be learned.

Here we present a method to design a BCI mapping that is optimal post-learning. Instead
of trying to mimic a subject’s biological decoding process to minimize training time, we instead
assume that the subject will learn, over weeks of practice, to use whatever mapping we give him,
and we develop an approach to determine which mapping will enable the most proficient control
after learning has occurred. Note that it is not clear the extent to which the assumption that the
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Policy:
Control Signal:
Neural Activity

Plant:
Plant State:
Decoder / Cursor Combination

Controller
Cost Function:

 • max accuracy
 • min effort
 • etc…

BCI Decoder

neuron 1

neuron n

Sensor
Visual Feedback

An optimally controlled system must have three components (Fig. 1). First, there is the

plant: the system being controlled. This system can be quite general. It could be me-

chanical, like a robotic arm or car, or it could be chemical, like a petroleum processing

plant. The plant is driven into different states by control signals: external forces that

can change the state of the plant. If we let xt 2 Rp⇥1 denote the p-dimensional state of

the plant at time t, then we can capture the physics of the plant through the equation

Plant: xt+1 = f(xt, yt), (1)

where yt 2 Rn⇥1 denotes the n-dimensional control input at time t. In a BCI, this plant

would capture the combination of the decoding algorithm that maps neural activity into

device movement and the physics of the device itself.

The second component of an optimally controlled system is the cost function, which

determines the overall utility of different types of movements and control signals. In a

petroleum plant, the cost might incorporate terms relating to the efficiency of a chemical

reaction or the concentration of unwanted byproducts. For a BCI, the cost function

should incorporate the user’s goal (choose this letter or pick up this object) and might

also capture the effort to produce particular control signals. If a movement extends over

some time t = 0 . . . T , the overall trajectory cost would depend on the initial state of

the device, x0, the goal xg (which may itself be a function of time), and the series of

control signals that one uses to pilot the device, y0, . . . , yT�1. We can write the cost J

of this trajectory explicitly as

Cost function: J (x0, x
g, y0,...,T�1), (2)

Control signals which minimize this cost are, by definition, optimal, and denoted y⇤
t ,
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while the minimal cost that those control signals produce is denoted as J ⇤(x0, x
g) =

J (x0, x
g, y⇤

0,...,T�1).

The third component of an optimally controlled system is the control policy, which

determines the control signals that one should use to perform a particular task when the

plant is in state xt. The control policy can be captured through the general equation

Control policy: yt = ⇡(xt). (3)

An optimally controlled system would use an optimal control policy that chooses con-

trol signals incurring minimal cost through Eqn. 2; we denote such a system as ⇡⇤.

Thus, y⇤
t = ⇡⇤(xt).

A number of studies have found evidence that physiological motor control conforms

to predictions from optimal control theory [Todorov and Jordan, 2002]: task-irrelevant

errors tend to be left uncorrected [Liu and Todorov, 2007, van Beers et al., 2013],

movements have been shown to distribute optimally across effectors [Fagg et al., 2002,

Haruno and Wolpert, 2005, Diedrichsen, 2007], trajectory dynamics during control of

complex effectors can be predicted using optimal feedback control models [Nagengast

et al., 2009], and reflexes are programmed to respond with gains that reflect the task ge-

ometry and goal [Nashed et al., 2012, Pruszynski and Scott, 2012, Omrani et al., 2013].

With this as justification, we take as an assumption that the brain acts as an optimal con-

troller, and that practice with a given BCI device will eventually lead, through learning,

to the subject controlling the device with optimal control signals (i.e., neural activity

patterns) according to an optimal policy. We discuss the validity of these assumptions

in section 5.

To design a BCI that is most usable, we must first rigorously define what we mean

7

An optimally controlled system must have three components (Fig. 1). First, there is the

plant: the system being controlled. This system can be quite general. It could be me-

chanical, like a robotic arm or car, or it could be chemical, like a petroleum processing

plant. The plant is driven into different states by control signals: external forces that

can change the state of the plant. If we let xt 2 Rp⇥1 denote the p-dimensional state of

the plant at time t, then we can capture the physics of the plant through the equation

Plant: xt+1 = f(xt, yt), (1)

where yt 2 Rn⇥1 denotes the n-dimensional control input at time t. In a BCI, this plant

would capture the combination of the decoding algorithm that maps neural activity into

device movement and the physics of the device itself.

The second component of an optimally controlled system is the cost function, which

determines the overall utility of different types of movements and control signals. In a

petroleum plant, the cost might incorporate terms relating to the efficiency of a chemical

reaction or the concentration of unwanted byproducts. For a BCI, the cost function

should incorporate the user’s goal (choose this letter or pick up this object) and might

also capture the effort to produce particular control signals. If a movement extends over

some time t = 0 . . . T , the overall trajectory cost would depend on the initial state of

the device, x0, the goal xg (which may itself be a function of time), and the series of

control signals that one uses to pilot the device, y0, . . . , yT�1. We can write the cost J

of this trajectory explicitly as

Cost function: J (x0, x
g, y0,...,T�1), (2)

Control signals which minimize this cost are, by definition, optimal, and denoted y⇤
t ,

6

An optimally controlled system must have three components (Fig. 1). First, there is the

plant: the system being controlled. This system can be quite general. It could be me-

chanical, like a robotic arm or car, or it could be chemical, like a petroleum processing

plant. The plant is driven into different states by control signals: external forces that

can change the state of the plant. If we let xt 2 Rp⇥1 denote the p-dimensional state of

the plant at time t, then we can capture the physics of the plant through the equation

Plant: xt+1 = f(xt, yt), (1)

where yt 2 Rn⇥1 denotes the n-dimensional control input at time t. In a BCI, this plant

would capture the combination of the decoding algorithm that maps neural activity into

device movement and the physics of the device itself.

The second component of an optimally controlled system is the cost function, which

determines the overall utility of different types of movements and control signals. In a

petroleum plant, the cost might incorporate terms relating to the efficiency of a chemical

reaction or the concentration of unwanted byproducts. For a BCI, the cost function

should incorporate the user’s goal (choose this letter or pick up this object) and might

also capture the effort to produce particular control signals. If a movement extends over

some time t = 0 . . . T , the overall trajectory cost would depend on the initial state of

the device, x0, the goal xg (which may itself be a function of time), and the series of

control signals that one uses to pilot the device, y0, . . . , yT�1. We can write the cost J

of this trajectory explicitly as

Cost function: J (x0, x
g, y0,...,T�1), (2)

Control signals which minimize this cost are, by definition, optimal, and denoted y⇤
t ,

6

Figure 4.1: Schematic of a BCI as a feedback control system. The major components of a
feedback control system (namely, the controller, control signals, plant, and feedback) are laid out
on top of a typical BCI cursor control schematic, where the brain is identified as the controller,
the control signals are neural activity (often tapped out of primary motor cortex), the plant is the
combination of the BCI decoder and the cursor, and feedback is accomplished by watching the
cursor movements. This figure is essentially the same as Fig. 3.1 while adds the formulation of
the cost function.

subject will learn whatever mapping we give him is true, a fact that we take up in section 4.5.
Specifically, we take an optimal control theory approach and treat the BCI system as a control
system in which the prosthetic effector, together with the decoding algorithm, act as a motor
plant that the subject must learn to control through trial-and-error (Fig. 4.1). We then make two
assumptions: (1) the brain acts as an optimal controller, and (2) the end result of learning is to
produce optimal control signals, i.e., signals that minimize an internal cost function. If these
two conditions are met, it is possible to formulate a rigorous definition for the usability of a
device, and the provably optimal (i.e., most usable) mapping can be written as the solution of a
constrained optimization problem.

Our approach is similar in spirit to other approaches that take subject learning into account
[Shenoy and Carmena, 2014], such as the closed-loop decoder algorithms employed by Carmena
and colleagues [Dangi et al., 2014, Orsborn et al., 2014, Shanechi et al., 2016]. These co-adaptive
procedures have been rigorously studied by Merel and colleagues [Merel et al., 2015], who have
linked the process of user intention estimation to a novel class of imitation learning problem
[Merel et al., 2016]. Our approach extends this body of work by formally linking it to a particular
class of optimal control problem that we term “optimal plant design”. This enables all neural
prosthetic design problems, be they robotic hands, computer cursors, spelling devices, or other
configurations, to be treated under a common unifying framework.

In section 4.2, we define this problem formally by providing a rigorous definition of device
usability. In section 4.3, we outline a formal algorithm for solving this problem for the specific
case of a fixed linear mapping with a quadratic cost function (under the case of both signal-
dependent and signal-independent noise). In section 4.4 we apply this algorithm to design an
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optimal 2D BCI for point-to-point reaching tasks. Finally, in section 4.5 we conclude with a
discussion.

4.2 Problem statement
How should systems be designed for optimal usability? It is possible to state this question within
a general mathematical framework using ideas from optimal control theory. An optimally con-
trolled system must have three components (Fig. 4.1). First, there is the plant: the system being
controlled. This system can be quite general. It could be mechanical, like a robotic arm or car, or
it could be chemical, like a petroleum processing plant. The plant is driven into different states
by control signals: external forces that can change the state of the plant. If we let xt ∈ Rp×1

denote the p-dimensional state of the plant at time t, then we can capture the physics of the plant
through the equation

Plant: xt+1 = f(xt,yt), (4.1)

where yt ∈ Rn×1 denotes the n-dimensional control input at time t. In a BCI, this plant would
capture the combination of the decoding algorithm that maps neural activity into device move-
ment and the physics of the device itself.

The second component of an optimally controlled system is the cost function, which deter-
mines the overall utility of different types of movements and control signals. In a petroleum plant,
the cost might incorporate terms relating to the efficiency of a chemical reaction or the concen-
tration of unwanted byproducts. For a BCI, the cost function should incorporate the user’s goal
(choose this letter or pick up this object) and might also capture the effort to produce particular
control signals. If a movement extends over some time t = 0 . . . T , the overall trajectory cost
would depend on the initial state of the device, x0, the goal xg (which may itself be a function
of time), and the series of control signals that one uses to pilot the device, y0, . . . ,yT−1. We can
write the cost J of this trajectory explicitly as

Cost function: J (x0,x
g,y0,...,T−1), (4.2)

Control signals which minimize this cost are, by definition, optimal, and denoted y∗t , while the
minimal cost that those control signals produce is denoted as J ∗(x0,x

g) = J (x0,x
g,y∗0,...,T−1).

The third component of an optimally controlled system is the control policy, which deter-
mines the control signals that one should use to perform a particular task when the plant is in
state xt. The control policy can be captured through the general equation

Control policy: yt = π(xt). (4.3)

An optimally controlled system would use an optimal control policy that chooses control signals
incurring minimal cost through Eqn. 4.2; we denote such a system as π∗. Thus, y∗t = π∗(xt).

A number of studies have found evidence that physiological motor control conforms to pre-
dictions from optimal control theory [Todorov and Jordan, 2002]: task-irrelevant errors tend to be
left uncorrected [Liu and Todorov, 2007, van Beers et al., 2013], movements have been shown to
distribute optimally across effectors [Diedrichsen, 2007, Fagg et al., 2002, Haruno and Wolpert,
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2005], trajectory dynamics during control of complex effectors can be predicted using optimal
feedback control models [Nagengast et al., 2009], and reflexes are programmed to respond with
gains that reflect the task geometry and goal [Nashed et al., 2012, Omrani et al., 2013, Pruszyn-
ski and Scott, 2012]. With this as justification, we take as an assumption that the brain acts as
an optimal controller, and that practice with a given BCI device will eventually lead, through
learning, to the subject controlling the device with optimal control signals (i.e., neural activity
patterns) according to an optimal policy. We discuss the validity of these assumptions in section
4.5.

To design a BCI that is most usable, we must first rigorously define what we mean by usabil-
ity. Here, we introduce the mathematical definition of BCI usability in section 4.2.1, and frame
a special case of the problem in section 4.2.2 that we solve in section 4.3.

4.2.1 Optimal plant design

It is important to realize that the cost of a movement depends on the plant. Imagine a situation
in which one is trying to accurately position a block. If the block is light it might be possible to
position it using only a small amount of force to guide it into place. If the block is quite heavy,
however, larger forces will be required during positioning. These larger forces might require
more energy, and therefore might incur larger costs through the cost function, even if the cost
function itself has not changed. We can explicitly represent the plant parameters, φf , in the cost
function to emphasize this point:

J ∗(x0,x
g;φf ) = min

y0,...,T−1

J (x0,x
g,y0,...,T−1;φf ). (4.4)

With this in mind, we can now define the usability of a BCI as the average cost of using the
device in an optimal manner, where the average is taken over all of the movements that one might
want to perform. Formally, we define the usability, U , as

Usability: U(φf ) = −Ex0,xg [J ∗(x0,x
g;φf )] , (4.5)

where the expectation is taken over all initial states and goals. The negative sign ensures that
increases in usability correspond to decreases in expected cost. In words, we can say that a plant
with parameters φ1 is more usable than a plant with parameters φ2 if, for the same set of tasks,
the expected optimal cost under φ1 is less than the expected optimal cost under φ2. The optimal
plant is defined as the plant which globally maximizes this usability:

Optimal plant: φ∗f = arg max
φf
U(φf ). (4.6)

In practice, it is likely that other design factors, such as overall device weight or size, might
constrain the choice of plant parameters. Among the allowable set of parameters, however,
choosing parameters that maximize Eqn. 4.6 are guaranteed to result in the lowest expected cost
once learning has occurred.
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Plant

Cost 
Function Policy

Figure 4.2: Cost function, plant, policy, with arrows connecting them to illustrate the var-
ious types of control theory problems. Green: optimal forward control. Red: inverse control.
Blue: optimal plant design.

Relationship to other problems in control theory

The optimal plant design problem is related to, but distinct from, typical classes of problems in
control theory. In the forward control problem, one is given knowledge of the plant and the cost
function, and the job is to find the control signals that achieve the task goals with minimal cost
[Anderson and Moore, 1989] (Fig. 4.2, green arrow). In the inverse control problem, one is given
knowledge of the plant and a set of observed control signals that were issued for particular plant
states, and the job is to infer the cost function for which those control signals would be optimal
[Abbeel and Ng, 2004, Dvijotham and Todorov, 2010] (Fig. 4.2, red arrow).

In the optimal plant design problem, one is given the cost function, and it is assumed that
the ultimate plant will be operated in an optimal fashion. Thus, while the policy is not directly
specified, it could be derived for any particular plant as a forward control problem. The goal of
optimal plant design is to find the parameters of the plant that result in the least expected cost
(Fig. 4.2, blue arrow).

4.2.2 A special case: optimal design of linear plants under quadratic costs
The optimal plant design problem as stated in section 4.2.1 is too general to permit solution
without additional assumptions. Here we outline the specifics of a special case of this problem
that we will solve in section 4.3.

Linear plant assumption:

We will restrict ourselves to the case of linear BCI mappings that can be parameterized in the
following way as Eq 3.2:

xt+1 = Hxt +Myt, (4.7)

where H captures the system dynamics that describe how the system will evolve without the
control signal input, and M describes how neural activity changes the device state. yt are mean-
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centered neural firing rates. Different from Eq 3.2, here we only consider time invariant systems,
so that H and M do not depend on t. Among those existing widely used decoding algorithms,
the PVA [Georgopoulos et al., 1986, Taylor et al., 2002, Velliste et al., 2008] and the OLE [Chase
et al., 2009, Wang et al., 2007] are both static. The Kalman filter [Hochberg et al., 2012, Sadtler
et al., 2014, Wu et al., 2006] technically has time varying parameters, but in practice the Kalman
gain converges to a constant within a few timesteps, and many researchers even initialize it at the
converged values to keep it time-invariant [Malik et al., 2011, Sadtler et al., 2014].

We further restrict ourselves to consider only physical control systems (e.g., those in which
position is a proper integral of velocity), because we found in chapter 3 that physical systems
appear to be more easily controlled than non-physical systems. A second order physical system
has a dynamics term, H , that can be further parameterized as

H =

(
I ∆I
Hp Hv

)
, (4.8)

where Hp and Hv represent the elastic and viscous components of the prosthesis dynamics, re-
spectively, and ∆ is a small discretized timestep. As reviewed in chapter 3, two physical systems
with the same order but different system parameters, such as the ReFIT-Kalman Filter [Gilja
et al., 2012] and the velocity Kalman filter [Kim et al., 2008], can have very different overall
performances (also, see [Gowda et al., 2014]). In this manuscript, we focus on the 2nd order
system, where the state comprises the implemented position and velocity:

(
pt+1

vt+1

)
=

(
I ∆I
Hp Hv

)(
pt
vt

)
+

(
0
Mv

)
yt, (4.9)

where Mv defines the mapping between recorded neural activity and the control signals driving
state evolution.

To be realistic, we cannot ignore that the neural activity, yt, will be a mixture of both signal
and noise. The noise could be in the Poisson-like firing of the neurons themselves [Churchland
et al., 2006, Tolhurst et al., 1983], or it could be misclassification of recording artifacts as spik-
ing events. We can make this explicit in our formulation, and write yt as the sum of a signal
component, zt, together with both signal-dependent and signal-independent Gaussian noise:

yt = zt +
∑n

i=1

√
κiεi,tIizt + ωt. (4.10)

The summation represents signal-dependent noise, where Ii is an n× n matrix with a 1 at loca-
tion (i, i) and 0 elsewhere, εi,t ∼ N (0, 1) is standard Gaussian noise, and κi > 0 controls the
magnitude of the variance of the noise. This is equivalent to assuming that the ith neuron’s firing
rate is distributed as N (zi,t, κiz

2
i,t), which makes the firing rate approximately Poisson-like. The

remaining term, ωt ∼ N (0,W ) represents the signal-independent noise.

Quadratic cost assumption:

Once the subject is familiar with the BCI system, he will try to generate control signals which
can minimize the cost function. In this manuscript, we consider the finite horizon quadratic cost
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function which has been widely used in motor learning studies [Diedrichsen, 2007, Shadmehr
and Krakauer, 2008, Todorov and Jordan, 2002], written as

J (x0,x
g, z0,...,T−1) =

T∑

t=0

E
(
xTt Qtxt

)
+

T−1∑

t=0

zTt Rtzt, (4.11)

where Qt � 0 and Rt � 0. Generally speaking, the first term measures the movement accuracy
and implicitly takes the goal xg into consideration. The second term measures the total effort
required to finish the task. The magnitude of matrices Qt and Rt provides a weighting between
those two terms. The expectation in Eqn. 4.11 is taken over all of the random variables defining
the noise in the recorded neural activity, {εi,t,ωt}.

4.3 Problem solutions

In this section, we solve for the optimal plant parameters (Hp, Hv, and Mv from Eqn. 4.9)
under the assumption of learned optimal control of a finite horizon quadratic cost function (as
in Eqn. 4.11). To solve the optimal plant design problem, we first solve the forward control
problem for a given instantiation of a plant. The solution to the forward control problem is a
modified version of an LQR controller, adjusted to account for both signal-dependent and signal-
independent noise. This is reviewed in section 4.3.1. We next demonstrate how the optimal
dynamics can be solved for by a gradient descent procedure, and present a modification of the
forward control algorithm that computes the gradient (section 4.3.2). Finally, we derive the
optimal control mapping in section 4.3.3.

4.3.1 Optimal forward control

To find the system with lowest optimal cost, we first compute the optimal cost for a specific
control system. For linear plant dynamics and a quadratic cost function, the solution (without
signal-dependent noise) is the classic linear quadratic regulator (LQR) that can be solved using
a Riccati recursion [Kwakernaak and Sivan, 1972]. This algorithm must be modified slightly
for the signal-dependent noise that neurons tend to exhibit (Eqn. 4.10). Following an approach
similar to [Todorov, 2005], we derive the optimal cost for a given set of plant parameters as

J ∗(x0,x
g;H,M) = tr(P0X0) +

∑T−1

t=0
tr
(
Pt+1MWMT

)
, (4.12)

where X0 = x0x
T
0 and P0 is derived through backwards recursion as the result of a modified

Riccati algorithm outlined in Algorithm 1. A detailed derivation of this algorithm is provided in
Appendix B.1. For problems like target reaching, which we will study in section 4.4, the target
xg is embedded into the state xt while system parameters H , M and cost function parameters R,
Q are independent of xg. In such a case, Pt does not depend on either x0 or xg, and the usability
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Algorithm 1 Modified Riccati Recursion with Signal-Dependent Noise
set PT = QT

for t = T − 1, . . . , 0 do
Dt = Rt +MTPt+1M +

∑n
i=1 κiIiM

TPt+1MIi
Lt = −D−1

t MTPt+1H
Pt = Qt +HTPt+1(H +MLt)
the optimal policy: z∗t (x) = Ltx

end for

of the BCI system becomes

U(H,M) = −Ex0,xg [J ∗(x0,x
g;H,M)]

= −Ex0,xg

[
tr(P0X0) +

∑T−1

t=0
tr
(
Pt+1MWMT

)]

= −tr
(
P0 Ex0,xg(X0)

)
−
∑T−1

t=0
tr
(
Pt+1MWMT

)
. (4.13)

In this case, Pt (and the optimal policy Lt) may be computed as in Algorithm 1. For notational
simplicity, in the following sections, we will also use X0 to denote Ex0,xg(X0).

4.3.2 Optimization of decoder dynamics
Now that we can compute the usability of a particular plant, we derive a method for optimizing
the usability across plants. We start by optimizing the system’s usability over the decoder dy-
namics terms, H from Eqn. 4.7 (parameterized as in Eqn. 4.8), under the assumption that M is
fixed. These parameters are found through gradient descent. Below we outline this solution and
present a modification of Algorithm 1 that computes the gradients on each iteration.

Generally, the usability U can be a complex function of H and there exists no closed-form
solution of this optimization problem. We instead solve forH∗ through gradient descent. Starting
from an initial guessH0, we iteratively update our estimate ofH according to the gradient update
rule

Hτ+1 = Hτ − ητ∂U/∂H (4.14)

where ητ is the learning rate.
To compute the derivative ∂U/∂H , we note that the derivative on a matrix is a matrix of

the derivative on each element of that matrix. So, denoting the element of H as h, ∂U/∂H is a
matrix with the element ∂U/∂h at the position corresponding to h. From Eqn. 4.13, ∂U/∂h can
be computed as

−∂U
∂h

= tr

(
∂P0

∂h
X0

)
+

T−1∑

t=0

tr

(
∂Pt+1

∂h
MWMT

)
. (4.15)

It thus remains to compute ∂Pt/∂h for 0 ≤ t ≤ T . Since Pt is computed backward iteratively,
we also use dynamic programming to compute the partial derivative of Pt. Notice M , Qt, and Rt

do not depend on h, so derivatives of M , Qt and Rt with respect to h will all be 0. Algorithm 2
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Algorithm 2 Dynamic Programming to Compute the Gradient ∂U/∂h
set PT = QT and P ′T = 0
for t = T − 1, . . . , 0 do
D′t = MTP ′t+1M +

∑n
i=1 κiIiM

T
t P

′
t+1MtIi

L′t = −D−1
t

(
D′tLt +MTP ′t+1H +MTPt+1H

′)

P ′t = (H ′TPt+1 +HTP ′t+1)(H +MLt) +HTPt+1(H ′ +ML′t)
end for

outlines a procedure for solving ∂Pt/∂h, where for notational simplicity we denote the derivative
of a matrix F with respect to h as F ′.

Note that Algorithms 1 and 2 can be combined to simultaneously solve for the optimal control
signals (and costs) for a given plant, as well as the gradient of that cost across dynamics parameter
H .

Finally, it should be noted that the gradient descent procedure can get stuck in local minima.
For the particular linear plant with quadratic cost function outlined here, it turns out the costs are
smooth enough that this is not an issue. Examples verifying this will be shown in section 4.4. For
situations in which the cost landscape is more complex, various sampling or annealing techniques
would need to be employed to mitigate the effects of local minima.

4.3.3 Optimization of control signal mappings
Next we derive the best way to map neural activity to the control of cursor velocity, by optimizing
the system’s usability as a function of Mv from Eqn. 4.9. We can interpret each column of Mv,
mv,i, as the “push” contributed by neuron i to the cursor. This push can be further dissected into
its magnitude, ‖mv,i‖, and its directionmv,i/‖mv,i‖ . We first study the effect of changes in the
pushing magnitudes on the system’s usability. We will then study how changes in the direction
vectors of the mapping matrix affect BCI usability.

We can study general changes in pushing magnitude by defining a scaling factor for the
pushing magnitude of the ith neuron as γi > 0. Applying these changes to every neuron leads
to a new mapping matrix MvΓ, where Γ is a diagonal matrix with elements γi. We prove in
Appendix B.2 that this change in the mapping matrix leaves Pt unchanged, and results in a new
usability of

U∗ = −tr(P0X0)−
∑T−1

t=0
tr
(
Pt+1MΓWΓMT

)
, (4.16)

with optimal policy

z∗t (x) = Γ−1Ltx. (4.17)

We can see that the first term of the usability,−tr(P0X0), does not depend on our gain change
Γ. In fact, Γ only affects the usability through the signal-independent noise (with covariance W
from Eqn. 4.10). Therefore, if W is fixed, to minimize the optimal cost, we want γi as small
as possible. From Eqn. 4.17 we can see that reducing γi will require the firing rates to increase.
This makes intuitive sense: large firing rates lead to larger signal-to-noise ratios (SNRs), because
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the signal moves farther from the signal-independent noise floor (while maintaining a constant
ratio to the signal-dependent noise).

However, neurons cannot fire at arbitrarily large rates; rather firing rates should be con-
strained to lie within some physiological range, yi,min ≤ yi ≤ yi,max. Thus, γi cannot be arbi-
trarily small. The optimal γ∗i should take the smallest value consistent with keeping the optimal
firing rates computed by Eqn. 4.17 within their physiological range.

Next we fix the modulation depth mv,i and study the neuron’s pushing direction. For sim-
plicity, here we assume the modulation depth for each neuron is 1, i.e., mv,i is a unit vector
as ‖mv,i‖ = 1. Directly optimizing the usability on mv,i is very challenging. We tackle the
problem indirectly in the following way. Notice that by taking Eqn. 4.10 back into Eqn. 4.9 and
introducing the intended push, defined as

ut = Mvzt, (4.18)

we have
(
pt+1

vt+1

)
=

(
I ∆I
Hp Hv

)(
pt
vt

)
+

(
0
ut

)
+

(
0
ξt

)
, (4.19)

where ξt = Mv

(∑n
i=1

√
κiεi,tIizt + ωt

)
is the noise term.

Now solving the forward control problem can be divided into two steps. First, find the optimal
solution, u∗, for the system with dynamics given in Eqn. 4.19. Then, find the corresponding
optimal z∗ where u∗ = Mvz

∗. Notice when we have more neurons than the movement degrees
of freedom, i.e., n > d, the equation u∗ = Mvz is under-determined. To find the optimal z∗

given u∗, we maximize the SNR. For system dynamics as given in Eqn. 4.19, when the signal u∗

is given, to increase the SNR we must reduce the noise ξ. Therefore, we want the magnitude of
each neuron’s firing rate z, ‖z∗‖2, to be as small as possible to keep the variance of the signal-
dependent noise low. To compute the usability we need to take the expectation of the starting
points and targets, which we will assume are symmetrically distributed, and we can assume the
optimal intended pushes u∗ are uniformly distributed on a unit circle (or, in 3D, a unit sphere).
Taking the expectation on u∗, we have the new optimization problems on Mv and z as

min
Mv ,z

Eu∗‖z‖2 (4.20)

s.t. u∗ = Mvz

‖mv,i‖ = 1 (1 ≤ i ≤ n)

The solution of z with minimal norm is given as z∗ = MT
v (MvM

T
v )−1u∗ and the magnitude of

z∗ is ‖z∗‖2 = u∗T (MvM
T
v )−1u∗. Thus, we have

min
Mv

Eu∗u∗T (MvM
T
v )−1u∗ (4.21)

s.t. ‖mv,i‖ = 1 (1 ≤ i ≤ n)

A full derivation of the solution of this optimization problem is given in Appendix B.3. For
n = 2, the only solution is that mv,1 and mv,2 are orthogonal. Denoting the angle of the i-th
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neuron’s pushing direction as θi, it means the angle between θ1 and θ2 is±90◦. For n > 2, one set
of solutions to the above optimization problem is for θi to be uniformly (circularly) distributed
on [0, k × 360◦), where k is any positive integer.

Those solutions are not the only solutions to Eqn. 4.21. However, since we only care about
finding pushing directions that maximize the BCI system’s usability, we are not interested in
finding all the solutions. Therefore, for the general case in which there are more than 2 recorded
neurons, to get the optimal BCI system we can set Mv to have uniformly distributed pushing
directions for each neuron and the largest possible modulation depths consistent with the physi-
ological range of the neurons.

4.4 Results

4.4.1 Simulation task
In this section we derive the optimal mapping for a 2D linear BCI used to perform point-to-
point reaches and compare its expected performance relative to other 2D linear BCI mappings in
simulation. For the movements we simulate an 8 target 2D center-out and back cursor movement
task, similar to those performed in many BCI laboratories, e.g., [Fraser et al., 2009, Ganguly and
Carmena, 2010, Hochberg et al., 2006]. Specifically, the subject is required to move a cursor
in a 2D plane from origin p0 to target position p∗ within Tr time steps, and hold the cursor
at the target for another Th time steps. Then the subject needs to move the cursor back to the
origin within another Tr time steps and hold at the origin for another Th time steps. There are 8
targets uniformly distributed on a circle with radius equal to 10cm. The reaching time Tr is set
to 20 time steps (of 100ms) and the holding time is set to either 1 time step (no hold) or 20 time
steps. For the signal-dependent noise, κ (from Eqn. 4.10) is set to 1 to mimic the Poisson-like
distribution. For the signal-independent noise, the variance-covariance matrix is set as diagonal,
i.e., W = σ2

ωI and σω = 0.1(s−1).
We use the 2nd order linear physical system (Eqn. 4.9) as our decoder. The state xt comprises

the position pt and the velocity vt. Also, to make this task solvable under the linear-quadratic
framework, the state is augmented with the target position p∗ as

xt = (pt,vt,p
∗)T . (4.22)

The system dynamics are written as


pt+1

vt+1

p∗


 =



I ∆I 0
Hp Hv 0
0 0 I





pt
vt
p∗


+




0
Mv

0



(
zt +

∑n

i=1

√
κiεi,tIizt + ωt

)
, (4.23)

and the cost function is

J =
∑Tr+Th

t=Tr
E‖pt − p∗‖2 + λu

∑Tr+Th−1

t=0
E‖ut‖2

=
∑Tr+Th

t=Tr
E‖pt − p∗‖2 + λu

∑Tr+Th−1

t=0
EzTt MT

v Mvzt. (4.24)
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The first term measures the movement accuracy during the holding period (between Tr and Tr +
Th), and the expectation is taken over the noise εi,t and ωt. The second term measures the
total effort required to finish the task (in this case, measured as the expected deviation in firing
rate from the mean, or baseline, values). λu controls the balance between those two terms. In
some approaches, a term measuring the accuracy of the velocity during the holding period, i.e.,∑Tr+Th

t=Tr
E‖vt‖2, is also considered [Liu and Todorov, 2007, Todorov and Jordan, 2002]. This

term requires the velocity during the holding period to be as close to zero as possible. While
those terms are ignored here for simplicity, it is straightforward to extend our approach and
include them.

To write the cost function in the quadratic form as Eqn. 4.11, we have

Qt =







I 0 −I
0 0 0

−I 0 I


 for Tr ≤ t ≤ Tr + Th

0 otherwise,

(4.25)

and
Rt = λuM

T
v Mv for 0 ≤ t ≤ Tr + Th − 1. (4.26)

4.4.2 Solution for H
We first look at BCI system usability as a function of different types of dynamics H (from
Eqn. 4.7). Here we leave Mv fixed, and simulate 10 neurons with unit modulation depths and
pushing directions uniformly distributed on the unit circle. To simplify parameters even further,
we assume the Hp and Hv in Eqn. 4.23 are each proportional to the identity matrix, i.e., Hp =
hpI(s−1) and Hv = hvI . Physically, we know hp represents the spring-like elastic effect and is 0
if there are no such effects. For example, the velocity Kalman filter [Hochberg et al., 2012, Kim
et al., 2008] has hp = 0. Viscous damping effects are captured by hv, which takes on a value of 1
if there are no such effects. Common parameters for a Kalman filter often are often close to 0.6
- 0.8 (e.g., these were the parameters used in [Sadtler et al., 2014]). Since our goal is to improve
on standard decoders, we search for optimal parameter values near those that are typically used.
To do this, we initialize our gradient descent at a random guess between [−0.5, 0.5] for hp and
[0.5, 1.5] for hv. In many of the analyses below, we conduct a brute force search over those values
to characterize the cost landscape and assess the accuracy of our gradient descent procedure.

Fig. 4.3 summarizes BCI usability as a function of hp and hv when the subject is asked to
perform the center-out out-center task with long target holds (Th = 20). This plot shows the
usability for the case when λu (the trade-off between accuracy in effort from Eqn. 4.24) is equal
to 1. The colormap denotes the usability of the BCI system in question, with values ranging
from red (least usable) to blue (most usable). For these settings, there is a clear, well defined
maximum in the usability for a relatively simple system in which hp = 0 and hv = 1, denoted by
a dot. Optimal trajectories for this system are shown in Fig. 4.4. For simplicity, only results for
the movement towards the upper target are shown here; results for other movements are similar
by symmetry. Several views of the cursor trajectories are provided, including cursor distance
from the starting position, cursor velocity projected on the target direction, and the push effort
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Figure 4.3: BCI usability depends strongly on system dynamics parameters. Usability is
plotted as a function of hp and hv, with red values denoting the least usable systems and blue
values denoting the most usable. The optimal BCI dynamics parameters are denoted by the dot,
and the path for a single gradient ascent run of the algorithm is shown as the white line. Typical
parameters of a velocity Kalman filter (hp = 0 and hv = 0.75) are denoted by the ‘×’, for
reference. λu = 1 for this simulation.

projected on the target direction. The noise on repeated identical trials to one target results
from different instantiations of the signal-dependent and signal-independent noise terms from
Eqn. 4.23.

For comparison, we can investigate the trajectories for a non-optimal system denoted by the
‘×’, in which hp = 0 and hv = 0.75 (Fig. 4.5). This is in the range of the typical parameters used
for a velocity Kalman filter, one of the most ubiquitous BCI decoding algorithms in use today
[Wu et al., 2006]. Comparing Figs. 4.4 and 4.5, we see that this non-optimal system requires a
more sustained neural push to counteract the viscous damping terms, which typically results in
noisier trajectories, as seen in the increased variance of the projected velocity traces. The average
cost of this system is more than three times the cost of the optimal system.

We next explored the usability of BCI systems under other task conditions and effort/accuracy
trade-offs (Fig. 4.6). The left column of Fig. 4.6 shows BCI usability for a short hold-time
center-out/out-center task in which Th was set to 1. The right column has the same results for
the long hold-time task in which Th = 20. This figure is organized just like Fig. 4.3, with red
values denoting the least usable systems and blue values denoting the most usable systems. The
colorbar to the right of each plot shows the range of usabilities for each condition. Note that a
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Figure 4.4: Optimal movements of the most useable system. Movement trajectories under
optimal use of the most usable BCI system from Fig. 4.3 (hp = 0 and hv = 1). Left: Center-out
movement to the upper target. Right: Out-center movement back from the upper target. Top:
Position of the cursor along the y-axis. Middle: Velocity of the cursor along the y-axis. Bottom:
Push effort u from Eqn. 4.18 along the y-axis

different range applies to each plot. Three plots are shown for each task, differing in the effort vs
accuracy tradeoff. In the top row, λu takes on a relatively small value (0.01), favoring accuracy.
In the bottom row, λu takes on a relatively large value (100), favoring effort. In the middle, row,
λu takes on the intermediate value of 1. Note that the left middle plot is identical to Fig. 3, for
reference. The usability maps are relatively smooth over this range of parameters, and the path
for a single gradient ascent run of the algorithm is shown as the white line, which terminates
at the optimal BCI dynamics values for that task (denoted by the dot). Surprisingly, we find
that the typical values for velocity Kalman filter do not result in the most usable BCI under
these simulation conditions. Here we use hp = 0 and hv = 0.75 to approximate the parameters
of velocity Kalman filter and the locations in the figures are denoted by the ‘×’. Across both
long and short hold time tasks and a range of effort/accuracy trade-offs, the cost of the velocity
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Figure 4.5: Optimal movements of a system with typical parameters used for a velocity
Kalman filter. Movement trajectories under typical parameters used for a velocity Kalman filter
(hp = 0 and hv = 0.75). Left: Center-out movement to the upper target. Right: Out-center
movement back from the upper target. Top: Position of the cursor along the y-axis. Middle:
Velocity of the cursor along the y-axis. Bottom: Push effort u from Eqn. 4.18 along the y-axis

Kalman filter is often an order of magnitude or more greater than the cost of the optimal plant.
Another notable feature of these plots is the consistency in the optimal BCI parameters across
tasks, for a large range of λu values. To further summarize these results, the optimal parameters
for the short and long hold time task is shown as a function of λu in left and right columns of
Fig. 4.7, respectively. For the long hold time task, the optimal h∗p is slightly less than 0 and the
optimal h∗v is close to 1 for all λu. For the short hold time task, the optimal h∗p increases from
0 to around 0.2 as λu increases and the optimal h∗v increases from around 0.9 to around 1.15. It
may at first seem rather surprising for the optimal h∗v to be greater than 1, which would lead to an
unstable equilibrium when holding the BCI cursor stationary. However, any extra effort exerted
during the hold phase is made up for by the decrease in effort required when moving the cursor.
In fact, as the ratio of time spent holding the cursor to the time spent moving the cursor increases,
h∗v decreases (compare the red lines in Fig. 4.7A and 4.7B).
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Figure 4.6: BCI usability varies with task and energetics constraints. The usability of a
second order linear BCI is plotted as a function of dynamics parameters hp and hv under 6
conditions. The two columns are for two different center-out-back tasks, one with a short target
hold requirement (Th = 1; Left), and one with a long hold requirement (Th = 20; Right). The
three rows are for three different energetics constraints, where λu varies from 0.01 (Top) to 1
(Middle) to 100 (Bottom). The format of each colormap is the same as Fig. 4.3: the dot denotes
the most usable parameter settings and the cross denotes the parameters of a typical velocity
Kalman filter. For clarity, the horizontal line where hp = 0 and the vertical line where hv = 1
are also plotted. κ = 1 in all conditions.

4.4.3 Solution for H under a random target pursuit task
In the center-out/out-center task studied above in section 4.4.2, the total length of each trial is
relatively short. The most usable BCI can exploit these short trial times. For example, when
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A. Th = 1 B. Th = 20

Figure 4.7: The post-learning optimal dynamics parameters are robust to energy/accuracy
tradeoffs. Optimal dynamics parameters h∗p (blue) and h∗v (red) are plotted as a function of
λu, for both the short hold period task (A) and the long hold period task (B). These dynamics
parameters show little change over several orders of magnitude of λu (note the logarithmic scale
of the x-axis). κ = 1.0 for all simulations.

energetic costs are high and target hold times are small, the optimal dynamics parameter hv is
greater than 1, which could lead to unstable control for longer trial times. To explore these
effects more thoroughly, we simulated a random target pursuit task [Flint et al., 2013, Hochberg
et al., 2006, Kim et al., 2008]. In this task, the subject is required to move the cursor from the
origin toward a target that is randomly placed on a 20cm×20cm screen within Tr time steps
and hold there for another Th time steps. After the holding period, the current target disappears
and the next target immediately appears at another random location, keeping only one target at
a time on the screen. The subject is then required to reach and hold at the new target. The
central difference between the center-out task and the random target pursuit task is that, instead
of resetting the position and the velocity at the beginning of each reach, the starting position and
velocity is the ending position and velocity of the previous reach. The whole process repeats K
times and the total cost is the sum of the cost of each reach.

For the k-th reach of the random target pursuit task, the cost Jk is similar to the center-
out/out-center task, with an extra term of the penalty on the norm of the velocity during the
holding time. Thus, if p∗k denotes the location of the k-th target, the cost is

Jk =
∑Tr+Th

t=Tr
E‖pt − p∗k‖2 + λv

∑Tr+Th

t=Tr
E‖vt‖2 + λu

∑Tr+Th−1

t=0
E‖ut‖2. (4.27)

In the simulations described below, we set the reaching time Tr to 20 time steps (the same as
for the center-out task), we set the holding time Th to 1 time step for each reach, and we set the
number of repeats K to 10. We analyzed various combinations of λv and λu, ranging from 10−4

to 1. For each set of parameters, we repeated the simulation 1000 times. The average cost of
each set of simulations is plotted as a heat map in Fig. 4.8.

The cost heat maps reveal that the optimal hp and hv in the random target pursuit task are
indeed smaller than those in the center-out task, as expected. The optimal hp is always strictly
negative (around−0.1) and the optimal hv is always strictly less than 1 (around 0.8-0.9). Further,
increasing hv leads to a dramatic increase of the cost, indicating that large hv will cause the
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Figure 4.8: BCI usability for the random target pursuit task. The usability of a second order
linear BCI is plotted as a function of dynamics parameters hp and hv under 3 × 3 combinations
of λv and λu for the random target pursuit task. The format of each colormap is the same as
Fig. 4.3: the dot denotes the most usable parameter settings and the cross denotes the parameters
of a typical velocity Kalman filter. For clarity, the horizontal line where hp = 0 and the vertical
line where hv = 1 are also plotted. κ = 1 in all conditions.

system to become unstable. Overall, these results indicate that the trial length (or the expected
‘on’ time of the BCI) should be taken into account when designing usable BCIs.

4.4.4 Comparison between the usability of the 1st order system and the
2nd order system

How does the usability of an optimally controlled 2nd order system compare to that of a 1st order
system? In chapter 3, we argued that one explanation for why the VKF might outperform the
OLE is that a 2nd order physical control system might simply be easier to control than 1st order
physical control systems. In this section, we test this argument by computing the usability of an
optimally controlled 1st order system and comparing it to the usability of an optimally controlled
2nd order system. We find that 2nd order systems are more usable than 1st order systems.
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Figure 4.9: The usability of the 1st order system and the 2nd order system under different
λu. Usability of the 1st order system (blue) and the 2nd order system (red) are plotted as a
function of λu, for the center-out out-center task with the long hold period. The 2nd order
system is always more usable than the 1st order system. κ = 1.0 for all simulations.

In the simulation, the subject performs a center-out / out-center task with long target holds
(Th = 20), just as in section 4.4.2. For the 1st order linear physical system, the state xt comprises
only the position pt. As for the 2nd order system, to make this task solvable under the linear-
quadratic framework the state is augmented with the target position p∗ as

xt = (pt,p
∗)T . (4.28)

The system dynamics are written as
(
pt+1

p∗

)
=

(
Hp 0
0 I

)(
pt
p∗

)
+

(
Mv

0

)(
zt +

∑n

i=1

√
κiεi,tIizt + ωt

)
. (4.29)

To compare the usability across systems with different orders, the cost function is the same for
both systems, and is given as Eq. 4.24. We sampled a range of energy / accuracy trade-offs in the
cost function by by changing λu from 10−2 to 102. κ is set to be 1 for all cases. Under all values
of λu, the 2nd order system was more usable than the 1st order system (Fig. 4.9).

4.4.5 Solution for M
We now switch our attention to optimizing the matrix mapping neural activity to cursor move-
ment, M . To verify our conclusion that the optimal pushing directions are uniformly distributed
on a circle, we compare the optimal costs under different pushing direction distributions. In the
following center-out / out-center simulations, H is fixed with hp = 0 and hv = 1, λu is set to be
1, and κ is also set to be 1. We also set ‖mv,i‖ to be 0.01, which has the effect of restricting the
mean-centered firing rates to range roughly between −40 and 40 spikes/s.

First we consider a special distribution where angles between two consecutive pushing di-
rections are constant. Denoting the constant angle as δ, we know from our theoretical result

48



10 50 90
δ

u
sa

b
il

it
y

10 50 90
δ

10 50 90
δ

A. 10 neurons B. 20 neurons C. 50 neurons

Figure 4.10: Usability depends on the uniformity of pushing directions. Usability is plotted
as a function of the angle between two consecutive pushing directions, delta, for BCIs controlled
by 10 (A), 20 (B), or 50 (C) neurons.

that the optimal δ should be 360◦/n. The optimal cost as a function of δ is shown in Fig. 4.10.
For 10 neurons, minimum cost values are found at δ = 36◦ and 72◦, which both correspond to
cases where the pushing directions are uniformly distributed on the unit circle (Fig. 4.10A). For
20 neurons, cost minima occur at δ = 18◦, 36◦, 54◦, 72◦, 90◦, again corresponding to cases in
which the pushing directions are uniformly distributed (Fig. 4.10B). This answer also holds for
50 neurons (Fig. 4.10C).

To evaluate more random distributions, we randomly generated n pushing directions within
[0◦, 360◦) and use the vector norm as a measure of their uniformity. The vector norm, denoted as
r, is defined as the normalized norm of the sum of the pushing directions in vector form, i.e,

r =
1

n

√(∑n

i=1
cos(θi)

)2

+
(∑n

i=1
sin(θi)

)2

. (4.30)

The vector norm r ranges from 0 to 1. When the pushing directions are uniformly (circularly)
distributed on [0◦, k × 360◦), r equals 0, and when the pushing directions are all the same, r
equals 1. We computed the cost of these random distributions and compared to the uniform
distribution, and repeated with 500 different random draws for neuron counts n = 10, 20, and
50, and plotted the cost of each random distribution as a function of r (Fig. 4.11). The uniform
distribution corresponds to the lowest optimal cost.

Finally, to gain an intuition for how neurons behave when driving the optimal plant, we show
an example of how firing rates evolve during optimal control of an optimal plant. The optimal
plant we simulate has 10 neurons with uniformly distributed pushing directions, assumes λu = 1,
and has dynamics terms hp = 0 and hv = 1, performing the center out task with hold time
Th = 20 (2s). We assumed the minimum firing rate was 0 and the maximum firing rate was
around 80 spikes/s. In Fig. 4.12A, we plot the tuning curve of the neuron (its average firing rate
over the first 1s of the reach as a function of target direction), for the neuron whose pushing
direction is at 0◦. Note the emergence of cosine tuning, a ubiquitous feature of motor encoding
[Georgopoulos et al., 1982]. In Fig. 4.12B, we plot the peristimulus time histogram (PSTH) for
repeated reaches to the target at 0◦ (top) and 180◦ (bottom). The temporal profile of the PSTH is a
scaled version of the projected push shown in Fig. 4.4A (bottom). For parameters corresponding
to the velocity Kalman filter, these neurons will show a more extended period of firing over the
duration of the reach. Beyond the cosine tuning property, it is difficult to compare the simulated
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Figure 4.11: Usability increases for more uniform distributions. Usability is plotted as a
function of the uniformity measure, r, from Eqn. 4.30. The red dot indicates the case where
neurons’ pushing directions uniformly distributed on a circle and the blue dot indicates the case
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Figure 4.12: Tuning curve and PSTH. The tuning curve is plotted of the neuron’s average firing
rate over the first half of the reach as a function of the target direction (A). The neuron’s pushing
direction is at 0◦. The peristimulus time histogram (PSTH) for repeated reaches to the target at
0◦ (top) and 180◦ (bottom) is plotted as a function of time (B).

firing rates with the firing rates from real experiments. The reason is that here we assume the
subject has fully leant how to used the system which is hard to verify in the real experiments.

4.5 Discussion
We have developed an approach to BCI design that attempts to take user learning into account to
create an optimal BCI, post-learning. Using ideas from optimal control theory, we have presented
a rigorous definition for the usability of a BCI, and showed that this usability can be optimized
as a function of plant parameters. We have applied this system to the design of a second order
linear BCI control system, as is often used for controlling cursors on computer screens. The post-
learning optimal BCI is surprisingly simple: it has little to no elastic or viscous components, and
requires that the recorded neurons have uniformly distributed pushing directions that utilize their
full dynamic firing rate range. Surprisingly, we find under these quadratic cost assumptions that
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typical implementations of second order linear BCIs, like the velocity Kalman filter, are not
expected to provide the greatest usability after learning has occurred. Of course, we made a
number of assumptions in developing our BCI optimization approach, which we discuss below
in turn. Until these assumptions are proven true, or the optimization framework amended to take
deviations of these assumptions into account, closed-loop experiments should always be the final
arbiter of which control system might work best [Chase et al., 2009].

4.5.1 Can the optimal BCI be learned?

To solve for the optimal BCI post-learning, we made the strong assumption that the subject could
learn to produce the optimal control signals for any given BCI mapping. It is unknown to what
extent this might be true. Several groups have demonstrated the impressive ability of subjects to
learn non-intuitive mappings between motor control signals and cursor movements. For example,
subjects can learn a host of mappings between joint angles recorded with a cyber glove and cursor
movements [Liu and Scheidt, 2008, Liu et al., 2011, Mosier et al., 2005]. They can also learn
to control a muscle computer interface, where recorded EMG activity is used to directly drive
a cursor, with arbitrary mappings between muscle activity and movement [Arduin et al., 2013,
Radhakrishnan et al., 2008]. Further, experiments by Eb Fetz and others have demonstrated that
subjects can easily learn through operant conditioning to volitionally modulate most arbitrarily
chosen single neurons [Arduin et al., 2013, Chase and Schwartz, 2011, Fetz, 1969, Moritz and
Fetz, 2011, Wetzel, 1986]. However, on short time-scales it has been found that BCI mappings
that are consistent with the existing correlation structure of neural population activity are easier to
learn than those that are not [Sadtler et al., 2014], and it has been suggested that learnable patterns
may be limited to the natural motor repertoire [Hwang and Andersen, 2013]. Further, when
learning does occur it is not known whether it proceeds to the optimal end point or asymptotes
at some less behaviorally optimal point. Finally, it is worth noting that, to date, non-biomimetic
BCI decoders have not been shown to outperform their biomimetic counterparts [Shenoy and
Carmena, 2014]. How, then, might an optimal BCI be learned?

Learning the optimal BCI would likely be a long-term process, occurring over days or weeks.
Long-term learning does not appear to be subject to the same correlational constraints as short-
term learning. Ganguly and Carmena have shown that subjects could vastly improve their per-
formance when using a decoder with arbitrarily scrambled parameters, provided they had several
days to practice [Ganguly and Carmena, 2009]. This long-term learning may rely on a form
of “credit-assignment” learning that proceeds independently across neurons [Jarosiewicz et al.,
2008] but explains only a small amount of the overall learning that occurs on short time-scales
[Chase et al., 2012]. There are hints that this type of learning may continue to grow with long-
term practice, enabling long-term neural reorganization that is unconstrained by the correlation
structure measured on day 1 [Oby et al., 2015, Zhou et al., 2015]. Still, it remains to be seen
whether these mechanisms could truly result in optimal control signals as defined in this work.
If learning is constrained, the optimization problem outlined in Eqn. 4.6 would have to be re-
formulated as a constrained optimization problem that ensures the obligatory correlations across
neurons are maintained. Further work investigating the optimality and limitations on learning
will need to be done to determine the extent to which any arbitrary mapping might be learned.
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4.5.2 Can the motor system be treated as an optimal control system?

Our approach to optimizing BCI usability relies on the assumption that the brain acts as an
optimal controller, i.e., that it produces control signals that are “optimal” in a statistical sense
in that they minimize some cost function [Scott, 2012, Todorov, 2004]. It is not yet known
whether or not this is the case. While many studies make assumptions that the cost function is
linear and quadratic, as we have done, the precise nature of the cost function is not known, and
certain adaptive responses have been found that deviate from expected predictions of optimal
control theory. For example, de Rugy and colleagues demonstrated that although subjects were
capable of adapting to the various perturbations they applied, the resulting patterns of muscle
activation were not structured to yield the lowest overall force activations still consistent with task
success [de Rugy et al., 2012]. In fact, it is entirely possible that the brain settles on a strategy
that is instead “good enough”, i.e., that achieves performance that is useful on average but not
necessarily optimal [Loeb, 2012]. The extent to which the brain may deviate from optimality, or
how the brain might determine when behavior is “good enough”, is an active area of research.

We chose a specific form of the cost function for our simulations, which we implemented
as a finite horizon cost function with quadratic penalty terms on positional accuracy and overall
energy (as measured by the magnitude of the control signal). We chose this form of the cost func-
tion for two reasons: it is a commonly assumed cost function in motor control (e.g., [Diedrichsen,
2007, Shadmehr and Krakauer, 2008, Todorov and Jordan, 2002]), and the forward control prob-
lem can be solved as a relatively straightforward extension of the well-known LQR problem
[Kwakernaak and Sivan, 1972]. There are three aspects of this cost function worth discussing:
the finite horizon, the accuracy constraint, and the energy constraint. The finite horizon refers
to our task implementation, which required the subject to arrive on target at a specific time and
hold for another specific period of time. Self-paced movements do not reveal such a sharp cutoff:
movement speed is typically a complex function of effort and reward [Shadmehr et al., 2016].
We found that typical values of hv became smaller when hold times became longer (Fig. 4.7), as
well as when trial times became longer (as in the random target pursuit simulation of Fig. 4.8).
However, all of the optimal hv values found across our simulations were larger than the typical
Kalman filter implementation used in practice. To perform a more complete optimization that
takes a distribution of trial times and hold times into account, one would need to reformulate the
simulations. This could be done, for example, by randomly sampling from a distribution of trial
and hold times and taking the average cost across runs. The quadratic accuracy constraint we
assumed is a reflection of our BCI task design, but to be more realistic the constraint ought to be
binary: one either hits the target or one does not. In natural motor control, movements typically
respect discontinuous boundaries by building a “buffer region” into the motor endpoint that can
vary with the configuration of the failure costs [Trommershäuser et al., 2003]. It remains to be
seen whether a discontinuous implementation of the accuracy cost would substantially affect our
derivation. The quadratic energy constraint is commonly used in optimal control models of arm
movements for minimizing endpoint variance and effort [Diedrichsen et al., 2010, Fagg et al.,
2002]. Very recent results hint that this constraint may not apply to neural firing, at least for
short term exposure to a particular mapping [Hennig et al., 2017]. We attempted to mitigate
this choice by exploring a range of trade-offs between accuracy and energy (the λu parameter in
Eqn. 4.24). Ultimately, future work will be required to detail the appropriate cost functions for
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particular motor control problems.

4.5.3 Is the optimal linear decoder biological plausible?

In solving for the post-learning optimal linear decoder, we made a number of simplifying as-
sumptions about the structure of motor cortical activity to balance mathematical tractability with
biological plausibility. Below, we briefly discuss these assumptions and their potential impact on
our conclusions. One assumption we made was that neural activity could be independent from
time-point to time-point. This may not be realistic, as it has been shown that there is substantial
structure in the time course of motor cortical activity [Churchland et al., 2012, Kao et al., 2015].
That said, with the exception of the onset transient, we don’t find many temporal discontinuities
in our simulated firing rates (Fig. 4.12B). Further, it is worth noting that onset rates of motor
cortical neurons can also be quite rapid (see, e.g., Fig. 1D of [Churchland and Shenoy, 2007]).
Our temporal independence assumption is also unlikely to reproduce the rotational dynamics that
have been measured in populations of motor cortical neurons [Churchland et al., 2012]. However,
it is currently unknown whether these dynamics are an obligatory feature of motor cortical firing
or whether they can be unlearned. The neural activity will also not express the same underlying
co-fluctuation structure that can be captured using dimensionality reduction techniques such as
factor analysis [Sadtler et al., 2014, Yu et al., 2009]. One way to reproduce these sorts of con-
straints would be to add correlated noise to the neural firing rates, as opposed to the independent
noise we added through Eqn. 4.23. This would not impact the derivation of the optimal dynamics
terms h∗v and h∗p, but would likely change the optimal control terms M . However, this assumes
that correlated noise is obligatory within the nervous system that cannot be changed even with
extended practice. Further work will be required to determine how realistic these constraints are
and to determine whether they would limit BCI usability.

Finally, other than using signal-dependent noise and restricting the firing rates to a physio-
logically reasonable range, we made little effort to build in well-known features of motor tuning
into our neural simulations. Some of these features, like cosine tuning to direction [Georgopou-
los et al., 1982], emerge from our implementation (Fig. 4.12). Other features may deviate from
measured properties of neurons. As one example, we did not build any control delays into our
system. We feel this is unlikely to have much impact on the results, as in a well-learned sys-
tem there is evidence that subjects compensate for latencies in ongoing control [Golub et al.,
2015]. As another example, we assumed each neuron contributed linearly to the control input u
used to drive the BCI, even though it is not unreasonable to suppose that a biomimetic control
signal would be represented by a non-linear transform of neural activity. However, building in
this non-linear relationship is akin to assuming that it is an obligatory feature of neural encoding
that cannot be unlearned, which may not be correct (see, e.g., [Taylor et al., 2002]). We also
did not implement any influence of sensory-driven responses that might be unrelated to the voli-
tional movement, even though accounting for these has been shown to improve BCI performance
[Gilja et al., 2012]. Again, further work will be required to determine which features of neural
encoding are obligatory, so that BCI usability may be optimized in light of these constraints.
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4.6 Conclusion
Typical BCI systems attempt to maximize the biomimetic properties of the device, to limit the
need for extensive training. However, it is unclear if this approach would ultimately be superior
to performance that might be achieved with a non-biomimetic device, once the subject has en-
gaged in extended practice and learned how to use it. In this chapter, we approach this problem
using ideas from optimal control theory. Under the assumption that the brain acts as an optimal
controller, we present a formal definition of the usability of a device, and show that the optimal,
post-learning mapping can be written as the solution of a constrained optimization problem. We
then derive the optimal mappings for particular cases common to most brain-computer inter-
faces. Our results suggest that the common approach of creating biomimetic interfaces may not
be optimal when learning is taken into account. More broadly, our method provides a blueprint
for optimal device design in general control-theoretic contexts.
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Chapter 5

Modeling the BCI learning process

In the previous chapter, I proposed a way to design a BCI decoder which provides the optimal
usability when subjects get familiar with the system and learn to control it in an optimal way.
The derived BCI system is no longer optimal if the subject has not fully learned to control it. Ac-
tually, learning is necessary not only for decoders designed from the control system perspective
but also for those decoders which aim to provide bio-mimic control. For those decoders, due to
limitations in the number of neurons recorded and our understanding of the neural encoding pro-
cess, subjects still likely could not control those BCI systems smoothly without some amount of
learning. Therefore, successful control of the BCI system will depend critically on the subject’s
ability to learn how to produce the appropriate neural activity patterns [Orsborn and Pesaran,
2017, Shenoy and Carmena, 2014]. Learning is possible in closed-loop control due to the feed-
back about the discrepancy between the subject’s intended movement and the actual movement
the BCI system generates. Feedback about these errors can potentially help the subject correct
poor estimates of intention on-line [Chase et al., 2009, Golub et al., 2015, Koyama et al., 2010a]
and can be used to update the subject’s knowledge of the BCI system. In this chapter, I take a
first step towards studying how a BCI system might be learned by the subject. This work has
been published as [Zhang et al., 2012].

5.1 Introduction

Successful implementation of a brain-computer interface depends critically on the subject’s abil-
ity to learn how to modulate the neurons controlling the device. However, the subject’s learning
process is probably the least understood aspect of the control loop. How should training be
adjusted to facilitate dexterous control of a prosthetic device? An effective training schedule
should manipulate the difficulty of the task to provide enough information to guide the improve-
ment without overwhelming the subject. In this chapter, we introduce a Bayesian framework
for modeling the closed-loop BCI learning process that treats the subject as a bandwidth-limited
communication channel. We then develop an adaptive algorithm to find the optimal difficulty-
schedule for performance improvement. Simulation results demonstrate that our algorithm yields
faster learning rates than several other heuristic training schedules, and provides insight into the
factors that might affect the learning process.
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In closed-loop control, poor estimates of intention can potentially be corrected on-line by
the subject. However, to know the appropriate corrective action, the subject has to already have
some facility at control. If the subject has no understanding of the mapping between neural
activity and effector movement, even the corrective movement will likely be wrong. In practice,
computer assistance is often used at the beginning stages of training to facilitate this learning
process. Without any assistance, the errors that the subject makes may be too big for the subject
to figure out how to compensate, which may not only make the task too difficult to learn, but
may also frustrate the subject. Using a proper amount of computer assistance, the errors can
be reduced to a certain degree which will not be too difficult for the subject to learn, but which
also allow the subject to gain enough information about the task. In this chapter, I will take
one specific type of computer assistance, shared-mode control (SMC), which was developed by
Andrew Schwartz’s lab [Taylor et al., 2002, Velliste et al., 2008], as an example to study how we
should assist the subject so that it can learn as fast as possible. The basic idea of SMC is that,
instead of moving the effector in the direction decoded from the subject’s neural activity, the
actual movement is the decoded movement corrected by some factor. By limiting the errors that
the subject produces, SMC increases motivation and keeps the subject engaged in the learning
process. Intuitively, at the beginning of training, more computer intervention is needed since the
decoded movement will be quite different from the intended movement. As learning takes place,
the amount of computer intervention will be less and less and at the end, SMC will be completely
removed and the subject will fully control the BCI system.

Since SMC provides a means of directly manipulating the difficulty of the task, how should
this assistance be scheduled to maximize learning rate? If the difficulty is too low, the errors
will be artificially small and the subject will have no pressure to learn. If the difficulty is too
high, the errors may be too large to be meaningfully interpreted, and the learning rate may be
small as a consequence. The task difficulty must be carefully titrated to the subject’s ability to
promote rapid learning. Here we introduce a Bayesian framework for modeling a closed-loop
BCI learning process that incorporates SMC. By treating the subject as a bandwidth-limited
communication channel, we demonstrate an explicit link between the difficulty-schedule and the
learning rate. We then develop an adaptive algorithm to find the optimal difficulty schedule for
performance improvement. In simulation, our adaptive difficulty-control strategy promotes a
marked improvement in learning rate.

In the following chapter, I will first introduce mathematically formalize the idea of SMC (sec-
tion 5.2). Then in section 5.3 I will present a Bayes learning framework to capture the subject’s
learning process, and also an adaptive difficulty control algorithm to maximize learning rate.
Then, in section 5.4, the proposed difficulty schedule is evaluated by running some simulations.
Finally, I conclude this chapter in section 5.5.

5.2 Computer assistance: shared-mode control (SMC)
Shared-mode control (SMC) provides the subject assistance by mixing the subject’s volitional
signal with a computer-generated “correct” signal to generate the final output. Therefore, the
error the subject makes is alleviated by a certain degree which is controlled by a single parameter
λ. In this section, I will introduce the formal definition of SMC in the context of the center-out
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Table 5.1: Notations.
θ∗ the system’s parameter the subject need to learn
θt−1 the subject’s guess about the system parameter at the beginning of the t-th step
ψ∗t the cursor’s desired movement direction at the t-th step
ϕt the system’s input, i.e., the subject’s aiming direction at the t-th step
ψt the system’s output, i.e., the cursor’s actual movement direction at the t-th step
ψ̃t the subject’s perception about ψt at the t-th step
λt the weight of the linear combination in SMC at the t-th step

reaching task and take a look at how SMC assists the subject’s learning. In this chapter, since
we are studying the center-out reaching task with 1D kinematics, the notation is a little different
from other parts of this thesis. All the variables used in this chapter are listed in Table 5.1 for
reference.

In the center-out reaching task, the subject will control the BCI system to move a cursor from
the centered home position to a predefined target. For simplicity, in this chapter, the cursor’s
movement is quantified by its direction, a 1D angle ψ, and the BCI system’s mapping function f
is assumed to directly decode from the subject’s aiming direction, ϕ. Notice, in practice we can
only decode from the subject’s neural activity, which is generated from the intended movement
by the encoding process. However, in this chapter, instead of studying the decoding process, I
am focusing on studying the subject’s learning process and how to design an optimal difficulty
schedule. To create some learning pressure, we here assume that the decoder is wrong and biased.
This is modeled as a control system mapping function f that outputs a movement direction that
is rotated from the aiming direction ϕ by θ∗, i.e.,

ψ̂ = f(ϕ; θ∗) = ϕ+ θ∗ (5.1)

where ψ̂ is the decoded movement direction and θ∗ is the system’s parameter. The ideal system
which requires no subject learning is the one which can perfectly recover the subject’s aiming
direction, i.e., θ∗ = 0. When θ∗ 6= 0, the subject’s learning process is to find a “re-aiming”
direction that compensates for this bias.

At the beginning when the subject is just starting to use the BCI system, the subject will not
be familiar with the system bias. Therefore, it would be difficult for the subject to control the
BCI system smoothly without any learning. To assist the subject’s learning, under SMC, the
external device’s actual movement direction is the decoded output corrected by a factor λ. To do
that, notice in the center-out reach task, the subject is required to do some predefined movement.
Therefore, at any time we know that the ideal movement direction ψ∗ points from the device’s
current position to the target, and we assume this is the movement the subject wants to exert. We
can decompose the subject’s decoded movement direction into two parts: the part that is correct,
and points at the target, and the error component,

ψ̂ = ψ∗ + (ψ̂ − ψ∗). (5.2)

The first term is the ideal movement direction the subject intends to make while the second term
is the error the subject made. SMC attenuates the error term by a scalar factor λ that is less than
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or equal to 1. Concretely, the real movement direction after SMC is

ψ = ψ∗ + λ(ψ̂ − ψ∗)
= λψ̂ + (1− λ)ψ∗ (5.3)
= λf(ϕ; θ∗) + (1− λ)ψ∗.

From the above equation we can see the real movement direction under SMC is actually a linear
combination of the decoded output ψ̂ and the correct movement direction ψ∗. When λ = 1, we
have ψ = ψ̂ = f(ϕ; θ∗) which means there is no assistance at all and the subject fully controls
the device’s movement. When λ = 0, we have ψ = ψ∗ which means the subject has no control
on the system and the device will always move in the ideal direction. Therefore, λ reflects the
difficulty of the task and our purpose is to adjust λ adaptively to facilitate the subject’s learning.1

5.3 The Bayes learning framework
To model the subject’s learning process about the system parameter θ∗, here we propose a Bayes
learning framework. Under this framework, the model subject’s knowledge of the system pa-
rameter θ∗ as a random variable θ with probability density function p(θ). At the beginning of the
learning task, p(θ) should be fairly flat because the subject is quite uncertain about the system.
The goal of training is for the subject to gain veridical knowledge of the system, i.e., to build a
distribution that is shapely peaked around the ground truth system parameter θ∗.

If the subject aims straight at the target (i.e., ϕ = ψ∗) and SMC is off, the device movement
direction will be ψ∗ + θ∗ from Eqn. 5.1. Therefore, the error the subject makes by controlling
the BCI system is θ∗. In order to compensate for this error, the subject may adjust the aiming
direction ϕ from ψ∗ to ψ∗ − θ. As a result, the decoded movement direction becomes

ψ̂ = f(ϕ; θ∗)

= f(ψ∗ − θ; θ∗) (5.4)
= ψ∗ − θ + θ∗.

When the re-aiming direction balances the system bias θ∗, the decoded movement direction be-
comes the correct direction. According to the experiments conducted by Jarosiewicz et al. [2008],
not just the intended movement, but also the encoding function can also be modified to compen-
sate the system bias. Here, for the demonstration simplicity, we assume all the compensation
comes from the subject’s adjustment of the intended movement. This has been found to be the
dominant form of learning over short timescales of an hour or so [Chase et al., 2012, Golub et al.,
2018].

The decoder bias θ∗ is hidden from the subject. Therefore, the subject’s leaning process is
essentially a system identification process where the subject needs to find θ∗ through a series of
observations about the system’s inputs and outputs. Notice that because of SMC, the system’s
output is the actual movement direction ψ and the decoded movement direction ψ̂ is hidden from

1Actually λ is the percentage of task difficulty, not the absolute amount. The absolute task difficulty is determined
by the experimental design.
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the subject. From the subject’s viewpoint, the actual movement direction ψ is the decoded result,
even when SMC is applied for assistance and the actual movement direction is different from the
decoded one.

5.3.1 One step updating
To model the subject’s learning process, we will first divide the task into consecutive steps. At
each step, the subject will try to gain some knowledge from the error he/she made and update
his/her knowledge about the system’s parameter. Formally, at time t, to produce a desired move-
ment direction ψ∗t , the subject needs to modulate the aiming direction ϕt so that the decoded
direction ψ̂t = f(ϕt; θ

∗) should be as close to the desired direction ψ∗t as possible.
Our model of the learning process proceeds as follows. At the beginning of the t-th step, the

subject first generates a guess θt−1 about the system parameter θ∗ from his current knowledge
pt−1(θ) = N (µt−1, σ

2
t−1) by randomly sampling from his/her knowledge distribution θt−1 ∼

pt−1(θ). Then the subject adjusts the aiming direction to make the device move along ψ∗t under
the assumption that the system’s parameter is this random guess θt−1, as

ϕt = ψ∗t − θt−1. (5.5)

From Eqn. 5.4, the decoded movement direction ψ̂t will then be

ψ̂t = f (ϕt; θ
∗) = ψ∗t − θt−1 + θ∗. (5.6)

Under SMC, the external device’s actual movement direction is the linear combination of the
decoded direction ψ̂t and the correct direction ψ∗t , i.e.,

ψt = λtψ̂t + (1− λt)ψ∗t
= λtf(ϕt; θ

∗) + (1− λt)ψ∗t (5.7)
= ψ∗t + λt(θ

∗ − θt−1).

At the end of the t-th step, the external device moves to a new position determined by ψt.
The subject’s perception about the external device’s movement direction will deviate from

the real direction due to noise, and here we treat the perception, ψ̃t, as a noisy version of ψt, i.e.,

ψ̃t = ψt + εψt (5.8)

where εψt ∼ N (0, σ2
ψt

) models this perceptual noise. This noise will turn out to be critical
to understanding why SMC might actually hasten learning. This is discussed in more detail in
Sec. 5.3.2. The input-output pair {ϕt, ψ̃t} that is, the movement the subject expected the device
to make, versus the movement the device actually made, provides new information about the
system so that the subject can update his/her knowledge.

We assume the subject updates his/her knowledge using a Bayesian procedure. We first no-
tice the subject’s knowledge about θ∗ at the beginning of the t-th step, pt−1(θ), is the posterior
probability after observing the ideal movement direction and the device’s actual movement di-
rection sequence in the first (t − 1) steps, pt−1(θ) = p(θ|{ψ∗τ , ψ̃τ}t−1

τ=1). At the beginning of the
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decoded movement  ̂t = f('t; ✓
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Our model of the learning process proceeds as follows. At the beginning of the t-th step, the
subject first generates a guess ✓t�1 about the system parameter ✓⇤ from his current knowledge
pt�1(✓) = N (µt�1, �

2
t�1) by randomly sampling as ✓t�1 ⇠ pt�1(✓). Then the subject adjusts the

intended movement to make the device move along  ⇤
t under the assumption that the system’s

parameter is ✓t�1, as
't =  ⇤

t � ✓t�1. (5.5)

From Eq. 5.4, the decoded movement  ̂t is

 ̂t = f ('t; ✓
⇤) =  ⇤

t � ✓t�1 + ✓⇤. (5.6)

Under SMC, the external device’s actual movement is the linear combination of the decoded
movement  ̂t and the correct movement  ⇤

t , i.e.,

 t = �t ̂t + (1 � �t) 
⇤
t = �tf('t; ✓

⇤) + (1 � �t) 
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t =  ⇤

t + �t(✓
⇤ � ✓t�1). (5.7)

At the end of the t-th step, the external device moves to a new position determined by  t.
The subject’s perception about the external device’s movement usually deviates from the real

movement and here we treat the perception,  ̃t, as a noisy version of  t, i.e.,

 ̃t =  t + " t (5.8)

where " t ⇠ N (0, �2
 t

) is the sensory noise. This noise will turn out to be critical to understand-
ing why providing any assistance might actually hasten learning. This is discussed in more detail
in Sec. 5.3.2. The subject’s perception about the system’s input-output pair {'t,  ̃t} provides
some new information about the system so that the subject can update the knowledge based on
the new perception.

To study how the subject updates his knowledge, we first notice the subject’s knowledge
about ✓⇤ at the beginning of the t-th step, pt�1(✓), is the posterior probability after observing the
ideal movement and the device’s actual movement sequence in the first (t � 1) steps, pt�1(✓) =
p(✓|{ ⇤

⌧ ,  ̃⌧}t�1
⌧=1). At the beginning of the t-th step, pt�1(✓) can be treated as the prior probability
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where  ̃t is the subject’s perceived output at the t-th step. Notice, since the subject is unaware
about the existence of SMC, from the subject’s view, the perceived device’s movement  ̃t is
solely determined by the decoding process, as

 ̃t = f('; ✓⇤) = '+ ✓⇤. (5.10)

Further, since  ⇤
t is independent of ✓, we can treat p

�
 ⇤

t

�� ✓
�

as constant. Therefore, we have the
likelihood as
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'+ ✓⇤, �2

 t

�
. (5.11)

With the expression of likelihood, we can update the posterior probability, which is the sub-
ject’s knowledge about ✓⇤ after perceiving data {'t,  ̃t} by Bayes rule,

pt(✓) / pt�1(✓) p
�
 ⇤

t ,  ̃t

�� ✓
�
. (5.12)

The subject’s initial knowledge p0(✓), which is the prior probability before any observations,
is assumed as Gaussian distribution as p0(✓) = N (µ0, �

2
0), where µ0 is an arbitrary guess and

�0 is fairly large. Notice the likelihood at each step is also Gaussian, if the decoding function
f is linear, which is true in our case, we have pt(✓) is Gaussian too. Assuming pt�1(✓) =
N
�
µt�1, �

2
t�1

�
, we have the updated posterior as pt(✓) = N (µt, �

2
t ), where

µt =
⇣
µt�1�

�2
t�1 +

�
 ̃t � 't

�
��2
 t

⌘
�2

t , (5.13)

�2
t =

�
��2

t�1 + ��2
 t

��1
. (5.14)

The routine of the subject’s knowledge updating at t-th step is shown in Fig. 5.1.

5.3.2 Why might shared mode control assist learning?

Empirically it has been found that SMC hastens learning, however, it is not immediately clear
why this should be so. First, we notice that the error subject observed is the difference between
the perceived movement  ̃t and the intended movement  ⇤

t , i.e.,

err( ̃t) = ( ̃t �  ⇤
t )

2 (5.15)
= ( t + " t �  ⇤

t )
2

From Eq. 5.7 we can see with SMC, the observed error can be written as

err( ̃t) = ( t �  ⇤
t + " t)

2 (5.16)

= (�t(✓
⇤ � ✓) + " t)

2

60

July 14, 2018
DRAFT

desired movement  ⇤
t , which is determined by the device’s current kinematics and the position

of the target it aims for, the subject needs to modulate the intended movement 't so that the
decoded movement  ̂t = f('t; ✓

⇤) should be as close to the desired movement  ⇤
t as possible.

Our model of the learning process proceeds as follows. At the beginning of the t-th step, the
subject first generates a guess ✓t�1 about the system parameter ✓⇤ from his current knowledge
pt�1(✓) = N (µt�1, �

2
t�1) by randomly sampling as ✓t�1 ⇠ pt�1(✓). Then the subject adjusts the

intended movement to make the device move along  ⇤
t under the assumption that the system’s

parameter is ✓t�1, as
't =  ⇤

t � ✓t�1. (5.5)

From Eq. 5.4, the decoded movement  ̂t is

 ̂t = f ('t; ✓
⇤) =  ⇤

t � ✓t�1 + ✓⇤. (5.6)

Under SMC, the external device’s actual movement is the linear combination of the decoded
movement  ̂t and the correct movement  ⇤

t , i.e.,

 t = �t ̂t + (1 � �t) 
⇤
t

= �tf('t; ✓
⇤) + (1 � �t) 

⇤
t (5.7)

=  ⇤
t + �t(✓

⇤ � ✓t�1).

 t = �tf('t; ✓
⇤) + (1 � �t) 

⇤
t (5.8)

At the end of the t-th step, the external device moves to a new position determined by  t.
The subject’s perception about the external device’s movement usually deviates from the real

movement and here we treat the perception,  ̃t, as a noisy version of  t, i.e.,

 ̃t =  t + " t (5.9)

where " t ⇠ N (0, �2
 t

) is the sensory noise. This noise will turn out to be critical to understand-
ing why providing any assistance might actually hasten learning. This is discussed in more detail
in Sec. 5.3.2. The subject’s perception about the system’s input-output pair {'t,  ̃t} provides
some new information about the system so that the subject can update the knowledge based on
the new perception.

To study how the subject updates his knowledge, we first notice the subject’s knowledge
about ✓⇤ at the beginning of the t-th step, pt�1(✓), is the posterior probability after observing the
ideal movement and the device’s actual movement sequence in the first (t � 1) steps, pt�1(✓) =
p(✓|{ ⇤

⌧ ,  ̃⌧}t�1
⌧=1). At the beginning of the t-th step, pt�1(✓) can be treated as the prior probability

before the new observation at t. The likelihood of the observation can be decomposed into two
parts

p
�
 ⇤

t ,  ̃t

�� ✓
�

= p
�
 ̃t

��  ⇤
t , ✓

�
p
�
 ⇤

t

�� ✓
�
, (5.10)

where  ̃t is the subject’s perceived output at the t-th step. Notice, since the subject is unaware
about the existence of SMC, from the subject’s view, the perceived device’s movement  ̃t is
solely determined by the decoding process, as

 ̃t = f('; ✓⇤) = '+ ✓⇤. (5.11)

59

July 14, 2018
DRAFT

desired movement  ⇤
t , which is determined by the device’s current kinematics and the position

of the target it aims for, the subject needs to modulate the intended movement 't so that the
decoded movement  ̂t = f('t; ✓

⇤) should be as close to the desired movement  ⇤
t as possible.

Our model of the learning process proceeds as follows. At the beginning of the t-th step, the
subject first generates a guess ✓t�1 about the system parameter ✓⇤ from his current knowledge
pt�1(✓) = N (µt�1, �

2
t�1) by randomly sampling as ✓t�1 ⇠ pt�1(✓). Then the subject adjusts the

intended movement to make the device move along  ⇤
t under the assumption that the system’s

parameter is ✓t�1, as
't =  ⇤

t � ✓t�1. (5.5)

From Eq. 5.4, the decoded movement  ̂t is

 ̂t = f ('t; ✓
⇤) =  ⇤

t � ✓t�1 + ✓⇤. (5.6)

Under SMC, the external device’s actual movement is the linear combination of the decoded
movement  ̂t and the correct movement  ⇤

t , i.e.,

 t = �t ̂t + (1 � �t) 
⇤
t

= �tf('t; ✓
⇤) + (1 � �t) 

⇤
t (5.7)

=  ⇤
t + �t(✓

⇤ � ✓t�1).

 t = �tf('t; ✓
⇤) + (1 � �t) 

⇤
t (5.8)

At the end of the t-th step, the external device moves to a new position determined by  t.
The subject’s perception about the external device’s movement usually deviates from the real

movement and here we treat the perception,  ̃t, as a noisy version of  t, i.e.,

 ̃t =  t + " t (5.9)

where " t ⇠ N (0, �2
 t

) is the sensory noise. This noise will turn out to be critical to understand-
ing why providing any assistance might actually hasten learning. This is discussed in more detail
in Sec. 5.3.2. The subject’s perception about the system’s input-output pair {'t,  ̃t} provides
some new information about the system so that the subject can update the knowledge based on
the new perception.

To study how the subject updates his knowledge, we first notice the subject’s knowledge
about ✓⇤ at the beginning of the t-th step, pt�1(✓), is the posterior probability after observing the
ideal movement and the device’s actual movement sequence in the first (t � 1) steps, pt�1(✓) =
p(✓|{ ⇤

⌧ ,  ̃⌧}t�1
⌧=1). At the beginning of the t-th step, pt�1(✓) can be treated as the prior probability

before the new observation at t. The likelihood of the observation can be decomposed into two
parts

p
�
 ⇤

t ,  ̃t

�� ✓
�

= p
�
 ̃t

��  ⇤
t , ✓

�
p
�
 ⇤

t

�� ✓
�
, (5.10)

where  ̃t is the subject’s perceived output at the t-th step. Notice, since the subject is unaware
about the existence of SMC, from the subject’s view, the perceived device’s movement  ̃t is
solely determined by the decoding process, as

 ̃t = f('; ✓⇤) = '+ ✓⇤. (5.11)

59

July 14, 2018
DRAFT

desired movement  ⇤
t , which is determined by the device’s current kinematics and the position

of the target it aims for, the subject needs to modulate the intended movement 't so that the
decoded movement  ̂t = f('t; ✓

⇤) should be as close to the desired movement  ⇤
t as possible.

Our model of the learning process proceeds as follows. At the beginning of the t-th step, the
subject first generates a guess ✓t�1 about the system parameter ✓⇤ from his current knowledge
pt�1(✓) = N (µt�1, �

2
t�1) by randomly sampling as ✓t�1 ⇠ pt�1(✓). Then the subject adjusts the

intended movement to make the device move along  ⇤
t under the assumption that the system’s

parameter is ✓t�1, as
't =  ⇤

t � ✓t�1. (5.5)

From Eq. 5.4, the decoded movement  ̂t is

 ̂t = f ('t; ✓
⇤) =  ⇤

t � ✓t�1 + ✓⇤. (5.6)

Under SMC, the external device’s actual movement is the linear combination of the decoded
movement  ̂t and the correct movement  ⇤

t , i.e.,

 t = �t ̂t + (1 � �t) 
⇤
t

= �tf('t; ✓
⇤) + (1 � �t) 

⇤
t (5.7)

=  ⇤
t + �t(✓

⇤ � ✓t�1).

 t = �tf('t; ✓
⇤) + (1 � �t) 

⇤
t (5.8)

At the end of the t-th step, the external device moves to a new position determined by  t.
The subject’s perception about the external device’s movement usually deviates from the real

movement and here we treat the perception,  ̃t, as a noisy version of  t, i.e.,

 ̃t =  t + " t (5.9)

where " t ⇠ N (0, �2
 t

) is the sensory noise. This noise will turn out to be critical to understand-
ing why providing any assistance might actually hasten learning. This is discussed in more detail
in Sec. 5.3.2. The subject’s perception about the system’s input-output pair {'t,  ̃t} provides
some new information about the system so that the subject can update the knowledge based on
the new perception.

To study how the subject updates his knowledge, we first notice the subject’s knowledge
about ✓⇤ at the beginning of the t-th step, pt�1(✓), is the posterior probability after observing the
ideal movement and the device’s actual movement sequence in the first (t � 1) steps, pt�1(✓) =
p(✓|{ ⇤

⌧ ,  ̃⌧}t�1
⌧=1). At the beginning of the t-th step, pt�1(✓) can be treated as the prior probability

before the new observation at t. The likelihood of the observation can be decomposed into two
parts

p
�
 ⇤

t ,  ̃t

�� ✓
�

= p
�
 ̃t

��  ⇤
t , ✓

�
p
�
 ⇤

t

�� ✓
�
, (5.10)

where  ̃t is the subject’s perceived output at the t-th step. Notice, since the subject is unaware
about the existence of SMC, from the subject’s view, the perceived device’s movement  ̃t is
solely determined by the decoding process, as

 ̃t = f('; ✓⇤) = '+ ✓⇤. (5.11)

59

July 14, 2018
DRAFT

desired movement  ⇤
t , which is determined by the device’s current kinematics and the position

of the target it aims for, the subject needs to modulate the intended movement 't so that the
decoded movement  ̂t = f('t; ✓

⇤) should be as close to the desired movement  ⇤
t as possible.

Our model of the learning process proceeds as follows. At the beginning of the t-th step, the
subject first generates a guess ✓t�1 about the system parameter ✓⇤ from his current knowledge
pt�1(✓) = N (µt�1, �

2
t�1) by randomly sampling as ✓t�1 ⇠ pt�1(✓). Then the subject adjusts the

intended movement to make the device move along  ⇤
t under the assumption that the system’s

parameter is ✓t�1, as
't =  ⇤

t � ✓t�1. (5.5)

From Eq. 5.4, the decoded movement  ̂t is

 ̂t = f ('t; ✓
⇤) =  ⇤

t � ✓t�1 + ✓⇤. (5.6)

Under SMC, the external device’s actual movement is the linear combination of the decoded
movement  ̂t and the correct movement  ⇤

t , i.e.,

 t = �t ̂t + (1 � �t) 
⇤
t

= �tf('t; ✓
⇤) + (1 � �t) 

⇤
t (5.7)

=  ⇤
t + �t(✓

⇤ � ✓t�1).

 t = �tf('t; ✓
⇤) + (1 � �t) 

⇤
t (5.8)

At the end of the t-th step, the external device moves to a new position determined by  t.
The subject’s perception about the external device’s movement usually deviates from the real

movement and here we treat the perception,  ̃t, as a noisy version of  t, i.e.,

 ̃t =  t + " t (5.9)

where " t ⇠ N (0, �2
 t

) is the sensory noise. This noise will turn out to be critical to understand-
ing why providing any assistance might actually hasten learning. This is discussed in more detail
in Sec. 5.3.2. The subject’s perception about the system’s input-output pair {'t,  ̃t} provides
some new information about the system so that the subject can update the knowledge based on
the new perception.

To study how the subject updates his knowledge, we first notice the subject’s knowledge
about ✓⇤ at the beginning of the t-th step, pt�1(✓), is the posterior probability after observing the
ideal movement and the device’s actual movement sequence in the first (t � 1) steps, pt�1(✓) =
p(✓|{ ⇤

⌧ ,  ̃⌧}t�1
⌧=1). At the beginning of the t-th step, pt�1(✓) can be treated as the prior probability

before the new observation at t. The likelihood of the observation can be decomposed into two
parts

p
�
 ⇤

t ,  ̃t

�� ✓
�

= p
�
 ̃t

��  ⇤
t , ✓

�
p
�
 ⇤

t

�� ✓
�
, (5.10)

where  ̃t is the subject’s perceived output at the t-th step. Notice, since the subject is unaware
about the existence of SMC, from the subject’s view, the perceived device’s movement  ̃t is
solely determined by the decoding process, as

 ̃t = f('; ✓⇤) = '+ ✓⇤. (5.11)

59

July 14, 2018
DRAFT

desired movement  ⇤
t , which is determined by the device’s current kinematics and the position

of the target it aims for, the subject needs to modulate the intended movement 't so that the
decoded movement  ̂t = f('t; ✓

⇤) should be as close to the desired movement  ⇤
t as possible.

Our model of the learning process proceeds as follows. At the beginning of the t-th step, the
subject first generates a guess ✓t�1 about the system parameter ✓⇤ from his current knowledge
pt�1(✓) = N (µt�1, �

2
t�1) by randomly sampling as ✓t�1 ⇠ pt�1(✓). Then the subject adjusts the

intended movement to make the device move along  ⇤
t under the assumption that the system’s

parameter is ✓t�1, as
't =  ⇤

t � ✓t�1. (5.5)

From Eq. 5.4, the decoded movement  ̂t is

 ̂t = f ('t; ✓
⇤) =  ⇤

t � ✓t�1 + ✓⇤. (5.6)

Under SMC, the external device’s actual movement is the linear combination of the decoded
movement  ̂t and the correct movement  ⇤

t , i.e.,

 t = �t ̂t + (1 � �t) 
⇤
t

= �tf('t; ✓
⇤) + (1 � �t) 

⇤
t (5.7)

=  ⇤
t + �t(✓

⇤ � ✓t�1).

 t = �tf('t; ✓
⇤) + (1 � �t) 

⇤
t (5.8)

At the end of the t-th step, the external device moves to a new position determined by  t.
The subject’s perception about the external device’s movement usually deviates from the real

movement and here we treat the perception,  ̃t, as a noisy version of  t, i.e.,

 ̃t =  t + " t (5.9)

where " t ⇠ N (0, �2
 t

) is the sensory noise. This noise will turn out to be critical to understand-
ing why providing any assistance might actually hasten learning. This is discussed in more detail
in Sec. 5.3.2. The subject’s perception about the system’s input-output pair {'t,  ̃t} provides
some new information about the system so that the subject can update the knowledge based on
the new perception.

To study how the subject updates his knowledge, we first notice the subject’s knowledge
about ✓⇤ at the beginning of the t-th step, pt�1(✓), is the posterior probability after observing the
ideal movement and the device’s actual movement sequence in the first (t � 1) steps, pt�1(✓) =
p(✓|{ ⇤

⌧ ,  ̃⌧}t�1
⌧=1). At the beginning of the t-th step, pt�1(✓) can be treated as the prior probability

before the new observation at t. The likelihood of the observation can be decomposed into two
parts

p
�
 ⇤

t ,  ̃t

�� ✓
�

= p
�
 ̃t

��  ⇤
t , ✓

�
p
�
 ⇤

t

�� ✓
�
, (5.10)

where  ̃t is the subject’s perceived output at the t-th step. Notice, since the subject is unaware
about the existence of SMC, from the subject’s view, the perceived device’s movement  ̃t is
solely determined by the decoding process, as

 ̃t = f('; ✓⇤) = '+ ✓⇤. (5.11)

59

Figure 5.1: One step updating.

t-th step, pt−1(θ) can be treated as the prior probability before the new observation at t. The
likelihood of the observation can be decomposed into two parts

p
(
ψ∗t , ψ̃t

∣∣ θ
)

= p
(
ψ̃t
∣∣ ψ∗t , θ

)
p
(
ψ∗t
∣∣ θ
)
, (5.9)

where ψ̃t is the subject’s perceived output at the t-th step. Notice, since the subject is unaware of
the existence of SMC, from the subject’s view the perceived device’s movement direction ψ̃t is
solely determined by the decoding process, as

ψ̃t = f(ϕ; θ∗) = ϕ+ θ∗. (5.10)

Further, since ψ∗t is independent of θ, we can treat p
(
ψ∗t
∣∣ θ
)

as constant. Therefore, we have the
likelihood as

p
(
ψ∗t , ψ̃t

∣∣ θ
)
∝ p
(
ψ̃t
∣∣ ψ∗t , θ

)
∝ N

(
ϕ+ θ∗, σ2

ψt

)
. (5.11)

With this expression of likelihood, we can update the posterior probability, which is the
subject’s knowledge about θ∗ after perceiving data {ϕt, ψ̃t} by Bayes rule,

pt(θ) ∝ pt−1(θ) p
(
ψ∗t , ψ̃t

∣∣ θ
)
. (5.12)

The subject’s initial knowledge p0(θ), which is the prior probability before any observations,
is assumed to be a Gaussian distribution as p0(θ) = N (µ0, σ

2
0), where µ0 is an arbitrary guess and

σ0 is fairly large. Notice the likelihood at each step is also Gaussian, if the decoding function f is
linear (as is true in our case), then pt(θ) is also Gaussian. Assuming pt−1(θ) = N

(
µt−1, σ

2
t−1

)
,

we can update the posterior as pt(θ) = N (µt, σ
2
t ), where

µt =
(
µt−1σ

−2
t−1 +

(
ψ̃t − ϕt

)
σ−2
ψt

)
σ2
t , (5.13)

σ2
t =

(
σ−2
t−1 + σ−2

ψt

)−1
. (5.14)

A schematic of the subject’s knowledge updating at the t-th step is shown in Fig. 5.1.

5.3.2 Why might shared mode control assist learning?
Empirically it has been found that SMC hastens learning, however, it is not immediately clear
why this should be so. In this section, we derive a rationale for this empirical finding under the
assumption that the subject’s sensory feedback error travels along a bandwidth limited channel.
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First, we notice that the subject’s observed error is the difference between the perceived
movement direction ψ̃t and the ideal direction ψ∗t , i.e.,

errorobserved = (ψ̃t − ψ∗t )2 (5.15)
= (ψt + εψt − ψ∗t )2

From Eqn. 5.7 we can see with SMC, the observed error can be written as

errorobserved = (ψt − ψ∗t + εψt)
2 (5.16)

= (λt(θ
∗ − θ) + εψt)

2

On the other side, the decoding error, which is the error the subject actually makes (before
SMC corrects it), is the difference between the actual decoded direction and the ideal direction,
i.e.,

errordecoding = (ψ̂t − ψ∗t )2

= (ψ∗t − θ + θ∗ − ψ∗t )2 (5.17)
= (θ − θ∗)2

Although decreasing λt can improve performance, it also makes the observed error deviate
from the decoding error the subject actually made. Under SMC, some information about the
system is hidden and the subject cannot get veridical feedback. For the subject to get the most
veridical feedback of aiming error SMC must be off. This seems inconsistent with the observa-
tion that SMC hastens learning.

The key to this problem is the perceptual noise. If the variance of the perceptual noise is
constant all the time, the above conclusion that SMC is of no help is correct. However, if the
variance of the perceptual noise is not constant but depends on the subject’s performance, then
SMC can actually aid learning. Since the movement direction the subject expects to see is the
ideal direction, ψ∗t , intuitively, when the system’s output is close to what the subject expects, it
may be easier for the subject to accept the feedback so the perceptual noise is relatively small.
On the other hand, when the system’s output is far away from what the subject expects, it may
be harder for the subject to accept the feedback, so the perceptual noise is relatively large. In
the next paragraph, we will formulate the relationship between the subject’s performance and the
perceptual noise in a mathematical way.

Suppose we treat the subject as a communication channel with a limited bandwidth. From
the Shannon-Hartley theorem we know that the channel capacity Cmax, or, in our case, the upper
bound on the information rate the subject can acquire each step, is

Cmax ≥ Ct = B log (1 + St/Nt) , (5.18)

where Ct is the information rate at the t-th step, B is a constant related to the bandwidth of the
channel, and St and Nt are the powers of the signal and the noise at the t-th step, respectively.

As we have discussed before, when the system’s input is ϕt, the subject’s expected system
output is ψ∗t . Thus, the difference between the subject’s expected output and the actual output
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can be considered as the new information from this step. Here we use mean squared error (MSE)
to measure such difference, therefore, the signal power can be obtained as

St = (ψt − ψ∗t )2. (5.19)

The noise power comes from the noise term εψt . Since the noise is Gaussian, the noise power
equals its variance, i.e.,

Nt = σ2
ψt . (5.20)

Thus, we get the information rate at the t-th step as

Ct = B log
(
1 + (ψt − ψ∗t )2/σ2

ψt

)
. (5.21)

Assuming the information rate reaches its upper bound, i.e., Ct = Cmax, we have the expression
of the noise’s variance as

σ2
ψt = κ(ψt − ψ∗t )2, (5.22)

where κ =
(
eCmax/B − 1

)−1 is a constant determined by the subject’s channel capacity. From
Eqn. 5.22, we can see the variance of the subject’s perception is proportional to the error. Large
κ indicates that the subject is less capable of acquiring new information since the same error will
lead to larger perceptual noise.

This result reveals that when SMC is minimal, i.e., λt = 1, the subject receives veridical
feedback about its movement, i.e., ψt = f(ϕt; θ

∗), with the error that provides the most useful
information for updating its internal conception of the motor transform. However, large error
also leads to increased perceptual noise, εψt , limiting the subject’s ability to utilize the feedback.
This conclusion is similar to the statement in [Guadagnoli and Lee, 2004], where authors argued
that there is a maximum volume of new information that subjects can acquire each step. If the
information provided by the task exceeds this threshold, more information will harm the subject’s
perception. [Ahissar and Hochstein, 1997] also demonstrated the dependence of the degree of
specificity on the task difficulty. This tension suggests that optimal learning may be driven by
intermediate levels of assistance that decrease as the subject gains proficiency at the task. Finding
the proper schedule of λt to optimize the rate of learning is the goal of this chapter.

Some Observations: From Eqn. 5.13, we can see the updated posterior mean is the linear
combination of µt−1, which comes from prior knowledge, and (ψ̃t − ϕt), which comes from the
new perceived feedback. (ψ̃t − ϕt) can be expanded into two parts as

ψ̃t − ϕt =
(
λtθ
∗ + (1− λt)θt−1

)
+ εψt . (5.23)

The first part
(
λtθ
∗ + (1 − λt)θt−1

)
reflects how much information about θ∗ the current step

provides. When λt is close to 1, this part is close to θ∗ which means that much information about
the ground-truth parameter θ∗ is provided. On the other side, when λt is close to 0, this part is
close to θt−1, which means the subject’s observation is quite similar to what it has already learnt
and little information about θ∗ is provided. So, from this point of view, to make the subject learn
as much as possible, λt should be set as large as possible.

The second part εψt is a random variable with variance σ2
ψt

. From the above discussion, this
variance may be proportional to λt. Thus, from this point of view we want to keep λt small.
Our goal is to find an optimal λt that provides the most veridical feedback while limiting the
perceptual noise.
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5.3.3 Adaptive difficulty control
In the above section, we argued that optimal learning may be driven by intermediate levels of
assistance that decrease as the subject gains proficiency at the task. In this section, we design a
strategy which can automatically adjust the task’s difficulty at each step so that the subject can
learn as fast as possible. Specifically, when the system obtains the decoded movement direction
ψ̂t, we wish to implement SMC such that the corrected real movement direction ψt can help the
subject improve its knowledge as much as possible.

To do this, we first need to define the risk of the subject’s current knowledge, which should
measure the distance of the current knowledge from the ground-truth. One intuitive way to do
that is using the expected mean squared error between pt(θ) and θ∗, i.e.,

R(pt) = Ept(θ)(θ − θ∗)2 = (µt − θ∗)2 + σ2
t , (5.24)

where (θ−θ∗)2 is the bias, which measures the distance between the mean of the subject’s current
knowledge and the ground-truth, and σ2

t is the variance, which measures the subject’s confidence
about his knowledge. At the beginning, the subject has no knowledge about the BCI system’s
bias, so the mean is random guess and σ2

t is very large. As learning takes place, the mean of
the subject’s knowledge will be closer to the ground-truth and the subject will become more and
more confident about his knowledge.

To make the risk converge to 0 as fast as possible, the most intuitive heuristic is to minimize
the expected risk of the next step, i.e.,

λt = arg minλ∈[0,1]Eεψt [R(pt)] . (5.25)

However, in the simulation results that we will present in section 5.4, we find that this intuitive
method doesn’t work very well. This is because in the first few steps, the λt that minimizes
Eqn. 5.25 tends to focus on decreasing the variance of the risk at the expense of keeping the bias
high. In this case, the subject will be quite confident about some wrong knowledge after a few
initial steps. Thus, more steps are needed to correct it. To prevent this case, instead of minimizing
the expected risk, we try to minimize the expected bias while keeping the variance untouched.
ReplacingR(pt) in Eqn. 5.25 by the bias term (µt−θ∗)2, we have the new optimization problem,

λt = arg minλ∈[0,1]Eεψt (µt(λ)− θ∗)2 . (5.26)

This process successfully leads to improved learning rates.

5.4 Simulation results: optimizing assistance in shared mode
control

In our simulation, all angles are confined to (−π, π]. Thus, the distribution of the subject’s
knowledge pt(θ) is the wrapped Gaussian distribution, i.e., pt(θ) =

∑
j∈Z qt(θ + 2πj), where

qt(·) = N (µt, σ
2
t ) and Z is the set of integers. The distance between two angles θ and θ∗ is

defined as minj∈Z(θ − θ∗ + 2πj)2.
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At the beginning, the subject’s knowledge p0 is a uniform distribution on (−π, π]. It is
equivalent to the wrapped Gaussian distribution with infinite variance. The home position is
(0, 0) on the 2D surface and the target is randomly placed on a circle of radius 50. The cursor’s
step length is 1. We repeat our simulation of the learning process 100 times, where each time the
system parameter θ∗ is uniformly sampled from (−π, π]. The results shown are averaged over
those 100 trials.

The learning curves of risk defined in Eqn. 5.24 corresponding to different difficulty control
strategies are compared.

5.4.1 Results
In the first simulation, we fix the task difficulty λ throughout the whole learning process to study
the properties of the proposed learning framework when SMC is constant. The results are shown
in Fig. 5.2. Here we consider three values of signal dependent noise κ (from Eqn. 5.22), a small
one (κ = e0), a median one (κ = e2), and a large one (κ = e4) and three values of task difficulty
λ, also ranging from easy (λ = 0.2) through medium (λ = 0.6) to hard (λ = 1). As we have seen
in Sec. 5.3.2, when κ increases, the ability of the subject to acquire new information decreases.
Thus κ = e0 corresponds to the case where the subject can acquire the most information. In this
case, simply setting λ = 1 allows the subject to learn fastest, as shown in Fig. 5.2. As κ increases,
the subject’s ability to acquire new information decreases and λ = 1 becomes too difficult for
the subject. Thus, at the beginning of the learning process, the convergence rate is quite slow. In
this case, making the task easy when the subject knows little about the system is more helpful.
Another interesting observation is that as κ increases, the convergence rate corresponding to the
easy task also increases. This is because small λt will make the subject’s apparent performance
very good, while small κ corresponds to small perceptual noise variance. That means the subject
can become quite confident about its knowledge, even though that knowledge is likely wrong. In
this case, it will take more steps to correct the subject’s wrong knowledge. These observations
argue in favor of an adaptive difficulty control schedule.

To demonstrate the effectiveness of our proposed difficulty control strategy (denoted as ADP-
B), we first compare it with the strategy of fixed difficulty (denoted as FIX). The results are
shown in Fig. 5.3. The blue curves correspond to the learning curves under fixed difficulty and
the red one corresponds to our adaptive strategy. The averaged λ trajectory under our strategy
is also shown in figures as the red dash curves. From the results we can see that our strategy
is almost always better than any fixed difficulty scheduling. That demonstrates the adaptive
difficulty control is necessary for fast learning and our strategy provides a good choice.

Finally, we compare ADP-B with two other control strategies. The first alternate schedule
(denoted as AVGTRJ) is to use the averaged λ trajectory obtained from ADP-B universally. In
other words, this schedule blindly implements the averaged λ obtained from multiple runs of
the ADP-B simulation without regard to the details of the errors the subject actually makes.
The second alternate schedule (denoted as ADP-R) is to choose λ to minimize the subject’s
expected risk at each time point, as opposed to just the bias (as discussed section 5.3.3). The
results are shown in Fig. 5.4. The blue dashed curve corresponds to the averaged λ trajectory
under ADP-R and the red dash curve corresponds to the averaged λ trajectory under ADP-B and
AVGTRJ (which are equivalent by construction). The deficiency of AVGTRJ compared to ADP-B
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Figure 5.2: Comparison between learning curves under fixed difficulty scheduling.
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Figure 5.3: Comparison between learning curves under adaptive difficulty scheduling and
fixed difficulty scheduling. λ trajectories are shown as dash curves.

demonstrates there exists no universal difficulty scheduling that can work well on all trials and
the optimal control strategy should be adaptive on different trials.

Just as the discussion in Section 5.3.3, ADP-R performs much worse than ADP-B from the
results. We find that ADP-R initially decreases quickly, but converges relatively slowly. From
Section 5.3.3 we know this is because ADP-R focuses on reducing the variance of the first several
steps. ADP-B, as a greedy heuristic to avoid this problem, results in fairly fast reductions in
overall risk, while still allowing rapid convergence of risk to optimal levels.

5.5 Conclusions
We argued in chapter 4 that the optimal BCI should be achieved as the end result of a learning
process. Here we provided a first attempt at modeling this BCI learning process. The Bayesian
learning framework developed here has two novel features that capture the specifics of learning
in a BCI context. First, we explicitly incorporate the shared-mode control process used by many
BCI labs to assist in subject training [Sadtler et al., 2014, Taylor et al., 2002, Velliste et al.,
2008]. Second, we treat the subject as a band-limited communication process. The resulting
training schedule adjusts task difficulty to improve the subject’s learning rate. Our simulation
results demonstrate the effectiveness of the adaptive training strategy.
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Figure 5.4: Comparison between learning curves under adaptive difficulty scheduling and
universal difficulty scheduling. λ trajectories are shown as dash curves.

We developed our framework by analogy of the subject as a limited-bandwidth communi-
cation channel, which links the perceptual noise in the system to the overall success rate: the
greater the error in the subject’s output, the larger the noise in the observed movement. An iden-
tical framework results if one instead assumes that the subject’s motivation depends on overall
success rate. Because motivation affects attention, and attention impacts perceptual noise Lu
and Dosher [1998], increased computer assistance leads to decreased perceptual noise. From
this perspective our simulations show that learning rate improves when task difficulty is manip-
ulated adaptively while explicitly accounting for subject motivation. These promising results
suggest that Bayesian learning can offer useful insights and methods for teaching subjects to use
a brain-computer interface device.
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Chapter 6

Conclusions and future work

In this chapter I summarize the contributions of the thesis, discuss some possible avenues for
future work, and conclude with a brief summary of the thesis.

6.1 Contributions of this thesis

The key contributions of this thesis are as follows.
Design adaptive difficulty-scheduling to hasten subject’s learning BCI control. We intro-

duce a Bayesian framework for modeling the closed-loop BCI learning process and develop an
adaptive algorithm to find the optimal difficulty-schedule for performance improvement. Simula-
tion results demonstrate that our algorithm yields faster learning rates than several other heuristic
training schedules.
• Y. Zhang, A. B. Schwartz, S. M. Chase, and R. E. Kass. Bayesian learning in assisted

brain- computer interface tasks. In Proceedings of the 35th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society, pages 2740-2743, 2012.

Recast the BCI decoder design problem from a physical control system perspective and
develop a post-learning optimal BCI decoder from optimal control theory. Different from
most approaches that design BCI decoders from an estimation standpoint, we recast the decoder
design problem from a physical control system perspective, present a formal definition of the
usability of a device, and show that the optimal, post-learning mapping can be written as the so-
lution of a constrained optimization problem. We then derive the optimal mappings for particular
cases common to most brain-computer interfaces.
• Y. Zhang and S. M. Chase. Recasting brain-machine interface design from a physical

control system perspective. Journal of Computational Neuroscience, 39(2):107-118, 2015.
• Y. Zhang and S. M. Chase. A control-theoretic approach to brain-computer interface de-

sign. In American Control Conference, pages 5765-5771, 2016.
• Y. Zhang and S. M. Chase. Optimizing the usability of brain computer interfaces. Neural

Computation, 30(5):1323-1358, 2018.
Apply a dual estimation procedure to adaptively capture changes in BCI decoding pa-

rameters. We develop a parameter tracking algorithm based on the dual Kalman filter to adap-
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tively capture changes in decoding parameters in order to solve the instability problem preva-
lent in BCI systems. In simulation, we find that our stabilized dual Kalman filter can run
autonomously for hundreds of thousands of trials with little change in performance and in an
off-line task to estimate arm trajectories from neural data recorded over five consecutive days,
it outperforms the daily calibrated Kalman filter. The details of this algorithm are presented in
Appendix A.
• Y. Zhang and S. M. Chase. A stabilized dual Kalman filter for adaptive tracking of brain-

computer interface decoding parameters. In Proceedings of the 35th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pages 7100-7103,
2013.

6.2 Conclusions
The optimal way to implement a BCI decoding algorithm is an important question relevant to
clinical deployment of neural prostheses. Different from typical BCI decoding algorithms to
maximize the biomimetic properties of the system, in chapter 3, we recast this problem from the
perspective of control system design and try to interpret differences in the performance of two
decoding algorithms from differences in the control systems themselves: some control systems
may be more usable than others, due to their physical characteristics or ease of conceptualization.
We found that 1) 2nd order physical systems tend to be more usable than 1st order physical
systems, 2) decoders that cannot be expressed as simple physical control systems do not appear
to work as well as those that can be expressed this way, and 3) a 2nd order control system with
elastic terms seems to work better than one without.

We next introduced a formal definition of the usability of a BCI, and formulated the optimal,
post-learning decoder design problem as a constrained optimization problem. In the forward
optimal control problem, one knows the plant and the cost function, and the problem is to com-
pute the control signals that drive the plant to the desired states with minimal cost. The linear
quadratic regulator (LQR) is a special case of the general forward control problem in which the
plant is linear and the cost function is quadratic. In the inverse control problem, one is given
instances of plant states and control signals that were generated in an optimal fashion (i.e., by
minimizing the cost function), and the goal is to infer the cost function. An example of this is
path planning [Abbeel and Ng, 2004, Ng and Russell, 2000, Ratliff et al., 2006, Ziebart et al.,
2008]. In chapter 4, we introduced a third class of problem, which we term optimal plant design.
In the optimal plant design problem, one is given the cost function, and the goal is to design a
plant that can perform that task with minimal overall cost. We used this approach to design an
optimal linear, second order BCI system that might be used clinically to aid patients with motor
control disorders. We found that the common approach of creating biomimetic interfaces may
not be optimal when learning is taken into account. Going beyond BCI design, we believe the
ideas could be applied to any system that can be defined in optimal control theoretic terms. If
so, the applications of optimal plant design could potentially be wide-ranging, from the design
of robotic systems, to chemical processing plants, to medical devices or beyond.

Once we obtain the optimal BCI decoding algorithm, we want the subject to learn how to
control it as fast as possible. In chapter 5, we proposed a Bayesian learning framework which
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treats the subject as a band-limited communication channel. Based on this learning framework,
we first presented a formal mathematical explanation for the observation that shared mode con-
trol hastens learning, even though it actually masks subject error. By treating perception as an
information-limited band-limited communication process, we demonstrated an explicit link be-
tween the difficulty-schedule and the learning rate. We next developed an adaptive algorithm to
find the optimal difficulty schedule for performance improvement. In simulation, our adaptive
difficulty-control strategy promotes a marked improvement in learning rate.

6.3 Future work
Our analyses suggest a number of new approaches to BCI decoding algorithm design that might
prove fruitful. Of all the decoding algorithms we reviewed in chapter 3, none went beyond 2nd
order. Given that 2nd order systems appear more usable than 1st order systems, it is interesting to
speculate as to whether a 3rd or 4th order system would be even easier to control. These higher-
order systems may actually be a closer match to the human arm: in [Liu and Todorov, 2007],
Liu and colleagues model the arm as a 3rd order linear physical system and are able to capture
many of the emergent features of natural reaching movements. There have been instances in the
literature that have included acceleration and higher order terms in their decoding algorithms.
For example, Wu and colleagues compared the performance of a Kalman filter decoder with
up to 6th order terms, and found that the 3rd order model consisting of position, velocity, and
acceleration terms provided the best performance in their off-line trajectory reconstruction [Wu
et al., 2006]. However, they used the position-implementation of their decoder, which we have
already demonstrated does not correspond to a simple physical system beyond 1st order. It
would be interesting to test how physical implementations of higher order control systems might
perform on-line.

Another fruitful approach might be the design of state-dependent control systems. The PVA
and the OLE are both static systems, i.e., the physical control parameters do not vary with
time. The Kalman filter technically has time varying parameters, but in practice the Kalman
gain converges to a constant within a few timesteps, and some researchers even initialize it at
the converged-values to keep it time-invariant [Malik et al., 2011, Sadtler et al., 2014]. State-
dependent control has been used in situations where static systems are no longer appropriate.
One such situation is the instability of tuning curves between sessions [Chestek et al., 2009,
Rokni et al., 2007]. To compensate for such instability, different adaptive decoding algorithms
are proposed where decoding parameters are updated iteratively over time [Kowalski et al., 2013,
Li et al., 2011, Orsborn et al., 2014, Shpigelman et al., 2009, Suminski et al., 2013, Zhang and
Chase, 2013]. Another kind of state-dependent control is used to assist the subject during train-
ing with the BCI system, where the assistance is adjusted according to the subject’s performance
[Velliste et al., 2008]. Other state-dependent control algorithms include [Shanechi et al., 2013],
where in order to simultaneously estimate movement trajectory or target intent, the decoding
parameters are adjusted as targets are approached. Such state-dependent control was the goal
behind the recently-developed speed dampening Kalman filter [Golub et al., 2014], which ef-
fectively manipulated the viscous damping forces as a function of trajectory curvature to allow
for more stable transitions from moving to stopping. The physical control system viewpoint we
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espouse here may be a way of integrating these approaches into a simple, unified framework for
robust prosthetic applications.

Finally, we should note that we have focused exclusively in this thesis on kinematic BCI de-
coders of the type that are commonly used to drive cursors on computer screens. As discussed in
section 1.3, another class of decoders attempts to extract kinetic information (forces and torques)
from recorded neural activity for direct control of force output [Chhatbar and Francis, 2013,
Fagg et al., 2009, Nazarpour et al., 2012, Nishimura et al., 2013, Oby et al., 2013]. It is un-
clear at present how to best integrate these two approaches to BCI design. One intriguing idea
is that the brain represents impedances (relationships between kinetics and kinematics) rather
than desired forces or kinematics per se [Hogan, 1985, Hogan and Sternad, 2012, Tin and Poon,
2005]. An interesting, active direction of research is to design decoders that seemlessly transition
between free movement and object interaction. It is possible that decoding impedance control
signals directly from the brain would enable this transition.
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Appendix A

A stabilized dual Kalman filter for adaptive
decoding

While my thesis work focused on the notion of optimal BCI design, during my PhD studies I also
worked on a method for developing a BCI that would be stable to electrode recording instability
and thus require fewer re-calibration sessions. Those results are detailed in this appendix and
have been published in [Zhang and Chase, 2013].

A.1 Introduction

Most BCIs require a calibration session to compute decoding parameters that define how recorded
neural activity will translate into movement of the device. Calibration is necessary to build mod-
els of how neural firing rates are modulated by desired movement. However, these calibrations
are not particularly stable: decoding parameters estimated in one session will often not apply
even on the next day [Chestek et al., 2009]. This instability could be due to electrode drift,
changes in background noise, or changes in the neural tuning curves themselves [Rokni et al.,
2007]. Regardless of its source, the daily re-training of the decoding algorithm necessary to
achieve optimal performance is a major factor limiting the clinical utility of this technology.

Some approaches have previously been proposed to combat BCI decoder instability. In [Li
et al., 2011], Bayesian regression self-training methods were used to update parameters based
on estimates from an unscented Kalman filter. In [Shpigelman et al., 2009], a kernelized auto-
regressive moving average was employed to change the decoder over time. Here we introduce
an alternative method, based on a dual-Kalman filter, as a simple extension to commonly used
BCI decoders. Dual-estimation can be sensitive to self-training, which appears to also be a
problem in our simulations. However, we find that two simple heuristics can be implemented to
substantially improve the estimation stability. We find in both simulation and off-line analysis
that our stabilized dual Kalman filter remains robust to parameter drift over long time scales.
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A.2 Stabilized dual Kalman filter
Typical BCI decoders are based on the Kalman filter, due to its rigorous theoretical framework
and easy implementation [Wu et al., 2003]. In section 2.4, I have reviewed the Kalman filter
in detail. While the Kalman filter has successfully been used to achieve proficient closed-loop
BCI control [Gilja et al., 2012, Wu et al., 2003], the implicit assumption that the linear model
parameters are fixed over time may limit its performance. A common problem in BCI decoding
is that neurons are unstable. Micro-movements of the electrode array relative to the brain can
cause the amplitude of recorded neurons to change dramatically [Downey et al., 2018, Gilja
et al., 2011]. Furthermore, there is evidence that neural tuning curves themselves may change
over time, slowly altering the relationship between firing rate and intended movement [Chase
et al., 2012, Ganguly and Carmena, 2009, Rokni et al., 2007]. Traditional Kalman filters will not
compensate for this variation.

Parameter Tracking Algorithm

To compensate for neural tuning changes, we propose an adaptive decoding model with param-
eter tracking. In this model, C from Eq. 2.9 are no longer constant over time. To emphasize the
time-varying property, here we useCτ to denote the linear encoding model parameters, where the
subscript τ indicates the time scales for the tuning parameter change. Under the new framework,
the state evolution model remains the same as Eq. 2.8:

x∗t = Ax∗t−1 + ωt, (A.1)

while the linear observation model Eq. 2.9 is replaced by

yt = Cτx
∗
t + εt. (A.2)

Notice time scales for the limb state change, indicated by t and time scales for the tuning param-
eter change, indicated by τ , are usually different and the later is much slower. If we also apply
a linear smooth prior on Cτ , it becomes another linear dynamical system. For this system, the
history of neurons’ firing rates and estimated limb states can be used to track the evolution of Cτ .
Denoting the vector ci,τ as the transpose of the i-th row of Cτ , then, for the encoding parameters
evolution we have

ci,τ = ci,τ−1 + ζi,τ , (A.3)

yi,t|Π = X̂T
t|Πci,τ + εi,t|Π, (A.4)

where ζi,τ ∼ N (0, Zi) is the noise on the encoding parameter’s dynamics, yi,t|Π, X̂t|Π and εi,τ |Π
represent the recorded firing rates, the decoded velocity and the noise during the previous Π steps
respectively, i.e.,

yi,t|Π =
(
yi,t−Π+1, . . . , yi,t

)T (A.5)

X̂t|Π =
(
x̂t−Π+1, . . . , x̂t

)
(A.6)

εi,τ |Π =
(
εi,τ−Π+1, . . . , εi,τ

)T
. (A.7)

72



We assume that parameter change is quite slow compared to the state change, so parameters are
updated only every Π steps, and are fixed between updates. To track both the limb state evolution
and the encoding parameters evolution, we can apply dual Kalman filter [Nelson, 1976], where
two Kalman filters are running in parallel. The Kalman filter tracking the limb state will be
updated every step while the Kalman filter tracking the encoding parameters will be updated
every Π steps.

In simulation, we have observed that tracking parameters and limb state without any regular-
ization tends to lead to long-term parameter drift. To further constrain the tuning parameters, we
propose two heuristics for regularization:

Baseline firing rate estimation

For a sufficiently long window of time, the average firing rate of each neuron will converge to
its baseline firing rate rτ 1. This is because the long-term average velocity of the prosthetic
limb must be zero. Define ȳt|Π = 1/Π

(∑Π−1
π=0 yt−π

)
, x̄∗t|Π = 1/Π

(∑Π−1
π=0 x

∗
t−π
)

and ε̄t|Π =

1/Π
(∑Π−1

π=0 εt−π
)

as the average firing rate, the average estimated velocity and the average noise
between time t− Π + 1 and t respectively. From the encoding model Eq. A.2, we require that

ȳt|Π = Cτ x̄
∗
t|Π + ε̄t|Π ≈ rτ . (A.8)

To implement this in our parameter tracking algorithm, when the decoding parameters are up-
dated we take the average firing rate over the previous Π timesteps as the new baseline firing
rate.

Velocity Normalization

The second heuristic we implement to stabilize and improve the parameter tracking algorithm
is to normalize the estimated velocity before the parameter update. Essentially, we assume that
the subject’s velocity over a sufficiently long time window will follow a stable distribution. To
implement the velocity normalization, the median of the absolute value of the estimated velocity
on each dimension during Π steps,median

( ∣∣v̂i,t|Π
∣∣ ), is required to be the median of the absolute

value of the velocity on the corresponding dimension recorded from training data, denoted as
median

(∣∣v̂i,train
∣∣). Therefore, instead of using V̂t|Π in Eq. A.4, we use ΛV̂t|Π where Λ is a

diagonal matrix with median
(∣∣v̂i,train

∣∣)/median
(∣∣v̂i,t|Π

∣∣) on the i-th position of the diagonal.

A.3 Results

A.3.1 Simulation

To test the efficacy of our parameter tracking algorithm, we designed the following 100,000 trial
simulation.

1Notice here in order to take the drift of baseline firing rate into consideration, the firing rate yt is non-centralized.
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Kinematics

Our simulated subject repeatedly draws a Lissajous curve in 2D. The velocity of the trajectory is
given by vt =

(
s1f1 sin(f1t), s2f2 cos(f2t)

)T , where t is the time (in seconds), and s1 = 0.2m,
s2 = 0.1m, f1 = 2/3π Hz, f2 = 2π Hz. Here to take the baseline firing rates into consideration,
we concatenate the velocity with 1 to get the state vector, i.e., xt = (vt; 1).

Each trial is one complete cycle of the curve. We set the time step ∆ = 3ms, so each trial
consists of 100 steps. Parameters are updated every 20 trials (described below), comprising one
session. We run 5,000 sessions in total.

Encoding model

100 neurons are simulated. The initial parameters for neuron i include:
• the preferred direction, θi,0, randomly sampled from [0, 2π);
• the baseline firing rate, ri,0, randomly sampled from [5, 10]Hz;
• the modular depth, mi,0, randomly sampled from [4, 8]m/s−1.

We use a vector βi,0 to represent the initial parameters associated with neuron i:

βi,0 =



mi,0 cos

(
θi,0
)

mi,0 sin
(
θi,0
)

ri,0


 . (A.9)

The encoding model is assumed to be linear-Gaussian in our simulation. That is, the firing
rate of neuron i at time t is a linear function of the state xt,

yi,t = βTi,τxt + εi,t, (A.10)

where εi,t ∼ N (0, σ2
ε ) represents the spiking noise.

Unstable neurons

To model instability in the neural tuning curves, the parameter vector’s dynamics are simulated
as

βi,τ+1 = βi,τ + γi,τ , (A.11)

where γi,τ ∼ N
(
0, σ2

γI
)
. As stated before, the parameter change is quite slow compared to the

velocity change. So in our simulation, the parameter changes every session (20 trials or 2,000
timesteps).

Decoding Algorithms

We compare the following decoding algorithms
• Static Kalman Filter (KF): The traditional Kalman filter with the assumption that the linear

model parameters are fixed over time.
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• Ground-truth Kalman Filter (KFGT ): In simulation we always know the exact values of the
parameters. Therefore, we also run the ideal Kalman filter where at each step the tuning
parameters ci,τ are set to be the ground truth βi,τ . This method has the best decoding
performance that can be achieved in the presence of unknown observation noise. We use
this as a benchmark on which to test the performance of our parameter tracking algorithm.

• Parameter Tracker without stabilization (PTNS): The parameter tracking algorithm without
either stabilization heuristics.

• Parameter Tracker with baseline stabilization (PTc0): The parameter tracking algorithm
using only the baseline firing rate estimation as the stabilization heuristic.

• Parameter Tracker with velocity normalization (PTV N ): The parameter tracking algorithm
using only the velocity normalization as the stabilization heuristic.

• Stabilized Parameter Tracker (PT): The parameter tracking algorithm using both heuristics
for stabilization.

Parameter setting

All algorithms are initialized at time zero with the ground truth parameters, ci = βi,0 for the
Kalman filter and ci,0 = βi,0 for the parameter tracker. The state-evolution covariance matrix
R is estimated from the actual kinematics. We take T to be 2000 time steps. We quantify
performance with the mean integrated squared error (MISE) between the decoded velocity and
the actual velocity.

We ran several simulations with varying amounts of noise. The standard deviation of the
observation noise, σε, took on values of e−1 and e−3 Hz. The standard deviation of the evolution
noise, σγ , took on values of e−1 and e−3 (units of Hz(m/s)−1 for the first two dimensions and Hz
for the last dimension).

Simulation Results

The MISE results are shown in Fig. A.1. KFGT always has the lowest MISE and the performance
does not change much as the experiment runs. KF has very low MISE at the beginning, but
diverges very fast since it assumes the parameters are fixed. The performance of PT is close to
KFGT and demonstrates that PT can track the parameter evolution quite well. From the results
we can see the parameter tracker without stabilization doesn’t perform very well due to the
over-fitting problem. However, the performance improves substantially with either heuristic.
An interesting phenomenon is that the MISE of KFGT decays over time under the noise setting
σε = e−1, σγ = e−1. This is because under the random-walk model, the magnitude of the
tuning parameters can grow over time, effectively increasing the signal to noise ratio. We did not
attempt to constrain this parameter in our simulations.

The reconstructed velocity of different methods of the 100,000th trial is shown in Fig. A.2.
KFGT represents the best decoding performance we can get with this level of observation noise.
The performance of PT at the 100,000th trial is similar to KFGT , while the performance of KF is
quite biased.
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Figure A.1: Simulation results: MISE (in log scale) of each of the different methods under
various observation noise levels, σε, and parameter noise levels, σγ .

A.3.2 Offline trajectory reconstruction

We also demonstrate the efficacy of our approach by reconstructing off-line the trajectories of
actual arm reaches over 5 consecutive days using simultaneously recorded neural data.

Experimental Details

Briefly, a Rhesus macaque was trained to sit in a primate chair and make center-out and out-
center reaches to 26 targets presented in 3D space. Hand position samples were tracked at 30Hz
in 3D space using an Optotrak recording system. Spike trains from 53 neurons were recorded
with a Utah microelectrode array and tracked over the 5 days of the experiment. Firing rates were
computed in 100ms sliding windows sampled at 30Hz. Full experimental details can be found in
[Fraser and Schwartz, 2012]. We used a fixed lag of three timesteps between neural activity and
predicted kinematics for all neurons.
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Figure A.2: Simulation results: Reconstructed velocity of the 100,000th trial of the simulation
resulting from three of the algorithms under various amounts of observation and parameter noise.
Note the static KF (middle panels) tends to show an offset, indicative of strongly biased decoding.
In contrast, the stabilized dual Kalman filter (right-hand panels) performs nearly as well as the
ground-truth Kalman filter (left-hand panels) under most noise contexts.

Reconstruction Methods

We compare the ability of each of the algorithms described above to reconstruct the actual tra-
jectories made by the subject over the 5 consecutive days. However, instead of using a ground
truth Kalman filter, as done in simulation, we compare the decoding results to a static Kalman
filter calibrated only on day 1 (KF), as well as to a static Kalman filter recalibrated using the first
session at the beginning of each day (KFSD).

Parameter Estimation

Data recorded from day 1, session 1 are used for training to learn the parameters, including ci for
the Kalman filter, ci,0 for the parameter tracker, R and Q. To learn the covariance matrix Zi for
parameter evolution we first notice that there are two kinds of parameter evolutions, one between
sessions, denoted as Zi,session, and one between days, denoted as Zi,day. We use the data from
day 1 to learn Zi,session and the data from all 5 days to learn Zi,day. We assume the covariance
matrixes of parameter evolution are the same for each neuron.

Results

The results are shown in Fig. A.3. On day 1, each of the algorithms performs similarly, as
expected. However, on subsequent days the static Kalman filter returns progressively worse
trajectory reconstructions. In contrast, the parameter-tracking algorithms perform well on all
days, and even outperform a static Kalman filter calibrated on the trials at the beginning of each
day.
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Figure A.3: Off-line trajectory reconstruction results: MISE of different methods on the of-
fline data.

A.4 Conclusions
Current BCI systems require daily re-calibration of decoding parameters to optimize perfor-
mance. These re-calibration sessions can be lengthy, and may limit the clinical utility of neural
prosthetic systems. In order to eliminate the need of calibration, we implement a dual Kalman
filter to track both the limb states and the parameters, augmented with two stabilizing heuris-
tics: baseline firing rate estimating and velocity normalization. Our stabilized dual Kalman filter
performs well in both simulation and in estimating arm movement trajectories off-line.

Here we focused on the instability of the neural tuning parameters while assuming fixed
variance. Testing how much improvement may be gained by also tracking the variance remains
the subject of future work. We also assumed that the number of neurons we tracked remained
fixed. In practice, neurons may drop out or come in to the recording over time. This complicates
the implementation of parameter tracking, because the dimensionality of the tuning matrix will
change over time [Li et al., 2011]. One way to simply capture this behavior would be to always
track a stable “maximum” number of neurons. Those that correspond to blank signals would
return tuning coefficients of zero. If the residual variance assigned to those units is constrained
to be non-zero, they should not affect the decoding solution. As neurons come in to the recording,
the algorithm would start to measure their tuning. Implementation of this extension remains a
subject of future work.
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Appendix B

Proof for the design of a provably-optimal
BCI system

B.1 Derivation of modified Riccati recursion for signal-dependent
noise

In order to extend LQR for the signal-dependent noise case, we consider the cost-to-go function
at time t, J (xt,x

g, zt,...,T−1), which is defined as the expected future cost if the system is at state
xt and following control signals are zt, . . . ,zT−1, i.e.,

J (xt,x
g, zt,...,T−1) =

∑T

τ=t
E
(
xTτ Qτxτ

)
+
∑T−1

τ=t
zTτ Rτzτ

= xTt Qtxt + zTt Rtzt +
∑T

τ=t+1
E
(
xTτ Qτxτ

)
+
∑T−1

τ=t+1
zTτ Rτzτ

= xTt Qtxt + zTt Rtzt + Ext+1J (xt+1,x
g, zt+1,...,T−1).

The first part of the cost-to-go function, xTt Qtxt + zTt Rtzt is the system’s current cost at time t
and the second part is the expected cost-to-go function cost at time t+ 1.

Similarly, we have the optimal cost-to-go function as the cost-to-go function under optimal
control signals, i.e., J ∗(xt,xg) = minzt,...,T−1

J (xt,x
g, zt,...,T−1). By mathematical induction,

we will now show that the J ∗(xt,xg) is a quadratic function on xt without a linear term, i.e.,

J ∗(xt,xg) = xTt Ptxt + rt.

For t = T , the result is trivial as the control signals at t = T just need to be set to zero.
In this case, the optimal cost to go is the current cost, J ∗(xT ,xg) = xTTQTxT . Assuming
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J ∗(xt+1,x
g) = xTt+1Pt+1xt+1 + rt+1, we have

J ∗(xt,xg) = min
zt,...,T−1

J (xt,x
g, zt,...,T−1)

= min
zt,...,T−1

(
xTt Qtxt + zTt Rtzt + Ext+1J (xt+1,x

g, zt+1,...,T−1)
)

= min
zt

(
xTt Qtxt + zTt Rtzt + Ext+1 min

zt+1,...,T−1

J (xt+1,x
g, zt+1,...,T−1)

)

= min
zt

(
xTt Qtxt + zTt Rtzt + Ext+1J ∗(xt+1,x

g)
)

= min
zt

(
xTt Qtxt + zTt Rtzt + Ext+1

(
xTt+1Pt+1xt+1 + rt+1

))

= min
zt

(
xTt Qtxt + zTt Rtzt + (Hxt +Mzt)

TPt+1(Hxt +Mzt)

+ zTt

(∑n

i=1
κiIiM

TPt+1MIi

)
zt + tr(Pt+1MWMT ) + rt+1

)

= min
zt

(
zTt Dtzt + 2xTt (HTPt+1M)zt + xTt (Qt +HTPt+1H)xt

+ tr(Pt+1MWtM
T ) + rt+1

)
. (B.1)

where Dt = Rt + MTPt+1M +
∑n

i=1 κiIiM
TPt+1MIi. By minimizing Eqn. B.1, we have the

optimal control signal as

z∗t = −D−1
t MTPt+1Hxt = Ltxt,

where Lt = −D−1
t MTPt+1H . Therefore, take z∗t back into Eqn. B.1, the optimal cost-to-go

function becomes

J ∗(xt,xg) = xTt
(
Qt +HTPt+1(H +MLt)

)
xt + tr(Pt+1MWMT ) + rt+1

= xTt Ptxt + rt,

where Pt = Qt + HTPt+1(H + MLt) and rt = tr(Pt+1MWMT ) + rt+1. So we proved the
optimal cost-to-go function J ∗(xt,xg) is a quadratic function on xt. By keeping track of Dt, Lt
and Pt, we can compute the optimal control signal for each state and the minimum cost under
optimal policy as

J ∗(x0,x
g) = xT0 P0x0 +

∑T−1

t=0
tr
(
Pt+1MWMT

)
.

B.2 Changes in modulation depth do not affect the Pt term in
Algorithm 1

In this appendix we prove that the quadratic cost-to-go variable, Pt, introduced in Algorithm 1 is
unchanged by a change in neural modulation depth. Recall that we capture changes in modulation
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depth through the diagonal matrix Γ, which scales the mapping between control signal and cursor
velocity (i.e., Mv → ΓMv). To study the change of Pt after scaling Mv, we treat Pt as a function
of Γ, denoting as Pt(Γ). By using mathematical induction, we prove that the magnitude change
of Mv will not affect Pt, i.e., Pt(Γ) = Pt(I). For notation simplicity, we still use Pt, Dt and Lt
to represent Pt(I), Dt(I) and Lt(I) respectively.

At time T , the solution is trivial since PT (Γ) = QT and QT doesn’t depend on Γ. By
our induction assumption, Pt+1(Γ) = Pt+1. Also, note that since both Γ and Ii are diagonal,
ΓIi = IiΓ. Therefore, at time t we have,

Dt(Γ) = Rt(Γ) + ΓMTPt+1(Γ)MΓ +
∑n

i=1
κiIiΓM

TPt+1(Γ)MΓIi

= λuΓM
TMΓ + ΓMTPt+1MΓ +

∑n

i=1
κiIiΓM

TPt+1MΓIi

= Γ
(
λuM

TM +MTPt+1M +
∑n

i=1
κiIiM

TPt+1MIi

)
Γ

= ΓDtΓ,

Lt(Γ) = −Dt(Γ)−1ΓMTPt+1(Γ)H = −Γ−1D−1
t MTPt+1H = Γ−1Lt,

and

Pt(Γ) = Qt +HTPt+1(Γ)
(
H +MΓLt(Γ)

)
= Qt +HTPt+1(H +MLt) = Pt

Thus, we have proved Pt(Γ) = Pt for 0 ≤ t ≤ T . Meanwhile, the optimal policy becomes
Lt(Γ) = Γ−1Lt and the optimal cost becomes

J ∗(Γ) = tr
(
P0(Γ)X0

)
+
∑T−1

t=0
tr
(
Pt+1(Γ)MΓWΓMT

)

= tr(P0X0) +
∑T−1

t=0
tr
(
Pt+1MΓWΓMT

)
.

B.3 Solving for the optimal distribution of pushing directions
Recall in Eqn. 4.21 we showed that the optimal solution for the distribution of pushing directions
could be written as minMv Eu∗u∗T (MvM

T
v )−1u∗. Here we derive the solution to this problem.

First, realize we can rewrite the objective function as:

Eu∗u∗T (MvM
T
v )−1u∗ =Eu∗tr

(
u∗u∗T (MvM

T
v )−1

)

=tr
(
(Eu∗u∗u∗T )(MvM

T
v )−1

)

=1/d tr
(
(MvM

T
v )−1

)
.

The last equation is due to the fact that when u∗ satisfies uniform spherical distribution, the mean
of u∗ is 0 and the covariance matrix Eu∗u∗u∗T is 1/dI [Marsaglia, 1972].

Notice that MvM
T
v is a positive-definite matrix, thus all its eigenvalues are positive. Denote

the eigenvalues of MvM
T
v as λ1, . . . , λd, then the eigenvalues of (MvM

T
v )−1 are λ−1

1 , . . . , λ−1
d
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and tr
(
(MvM

T
v )−1

)
=
∑d

j=1 λ
−1
j . Thus the objective function is

min
Mv

∑d

j=1
λ−1
j

s.t. ‖mv,i‖ = 1.

Since λi > 0, from the relationship between the harmonic mean and the arithmetic mean we
have

∑d
j=1 λ

−1
j ≥ d2/

∑d
j=1 λj . Further, since

∑d

j=1
λj = tr(MvM

T
v )

= tr
(∑n

i=1
mv,im

T
v,i

)

=
∑n

i=1
tr
(
mv,im

T
v,i

)

=
∑n

i=1
tr
(
mT

v,imv,i

)

= n,

we get the lower bound for
∑d

j=1 λ
−1
j as d2/n. It reach the lower bound if and only if λ1 = λ2 =

. . . = λd = n/d. It is not difficult to prove that when n = 2, the only solution is that mv,1

and mv,2 are orthogonal, so λ1 = λ2 = 1. For n > 2, one solution is that mv,i is uniformly
distributed on the circle. Therefore, MvM

T
v = n/dI and λ1 = λ2 = . . . = λd = n/d.
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