
Pattern recognition using latency coding in multilayer 
spiking neural networks

Brian Gardner, André Grüning
Department of Computer Science, University of Surrey, UK

2. Background

Few learning rules exist for spiking networks that are as 
technically efficient and versatile in their deployment as 
backpropagation is for rate-coded networks, and yet take full 
advantage of rapid temporal coding.

To address this, we propose a supervised method for training 
multilayer spiking networks to identify patterns based on a 
time-to-first spike decoding scheme. This generalises our 
previous formulation in [1] to real-world data sets.
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Conclusions

• These results provide a proof-of-concept for a time-to-first-spike decoding 
scheme in multilayer networks, as applied to example real-world datasets.

• This approach is capable of processing data on a very fast time scale: typically 
within just 10 ms.

• Our method complements previous studies on learning sequences of precisely-
timed output spikes in multilayer spiking neural networks [1, 3].

• As part of the steps involved in deriving this learning algorithm, hidden neurons 
were required to spike stochastically; with respect to future work it would be 
interesting to explore the impact of variable spiking on network regularisation.

1. Objectives

• To establish an efficient learning algorithm as applied to 
multilayer spiking neural networks for pattern recognition.

• To investigate temporal codes as a means to rapidly 
identify patterns that are based on spike times.

5. Simulations

Learning task. The performance of the derived learning algorithm was 
tested through simulations of multilayer spiking networks trained on 
two benchmark classification datasets: Iris and Wisconsin. Iris consists 
of 150 samples split between three classes, and Wisconsin 699 
samples split between two classes. The latter two classes of Iris are 
not linearly separable from each other. 

Network setup. Networks contained a single hidden layer of 20 
neurons, with the number of output neurons matched to the number of 
input classes. Input patterns were encoded as spikes using receptive 
fields [2], a method that transforms real-valued features into spike 
latencies. The number of input neurons encoding Iris and Wisconsin 
were 48 and 63, respectively. The setup is depicted in Fig. 1.
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Fig. 1. Architecture of the feed-forward multilayer 
spiking neural network, tasked with classifying 
data based on output spike latencies. 

Input neurons: encode each sample as spike times, 
via receptive fields, with latencies of up to 9 ms.

Hidden neurons: work to learn sample features.

Output neurons: classify samples according to which 
neuron responds with the first output spike.

4. Learning algorithm

Error signal. Neurons in the network are treated as leaky-
integrate-and-fire (LIF) for analytical tractability. Thus, by 
linearising output neuron voltages close to their thresholds [2], 
gradient descent yields the following error signal:

Weight update formulae. The above error signal thus defines 
weight updates for the last and second-last network layers:

where ε is the shape of an evoked postsynaptic potential, and 
tf corresponds to the f th-  firing time of a neuron.

3. Method

Approach. We start by considering a winner-take-all 
competitive learning scheme for a feed-forward spiking neural 
network, such that the output neuron with the earliest spike, 
and hence strongest activation, decides the input class.

Cost function. Specifically, each output neuron’s activation is 
described by a softmax function of first-spikes, τ{ i}, i.e.:

for the i th-  neuron in the last layer, L. Hence, assuming a one-
hot encoded target output vector, y  y= { 1  y, 2   y, …, c} for c 
different classes, then a suitable choice of cost function for 
network optimisation is given by the cross-entropy:

Network loss. The network’s performance 
on Iris and Wisconsin was tested using 
three-fold cross validation, when trained 
for up to 100 epochs using mini-batch 
learning (Fig. 2). To maximise the 
network’s test accuracy, the following 
techniques were used:

• L2 regularisation of weights to 
discourage extremal values.

• Synaptic scaling to sustain network 
activity in all layers.

• Early-stopping where the test loss has 
reached its minima. 

Fig. 2. Training and test loss with the number of training epochs, using three-fold 
cross-validation on Iris and Wisconsin.

(Left) The Iris dataset, for a 48x20x3 structured network.

(Right) The Wisconsin dataset, for a 63x20x2 structured network.

Results were averaged over 10 independent runs, where shaded regions indicate the 
standard deviation.
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Fig. 3. Confusion matrices for the two datasets, as test accuracy.

(Left) The Iris dataset, for a network trained for 30 epochs.

(Right) The Wisconsin dataset, for a network trained for 20 epochs.

The symbol ⌀ indicates no classification made by the network.

Network accuracy. The network’s accuracy on the two 
datasets was obtained by applying early-stopping during 
training; The test loss was minimised after 30 and 20 
epochs on Iris and Wisconsin, respectively. The test 
accuracies (%) obtained in this way are shown in Fig. 3. 
To summarise: 

• The final Iris training and test accuracies were        
98 ± 1 % and 95 ± 3 %, respectively.

• The final Wisconsin training and test accuracies 
were 98.0 ± 0.5 % and 97 ± 1 %, respectively.

Predictions on Iris and Wisconsin. The activity of the network when forming predictions on test samples 
belonging to different classes was visualised as input / hidden spike rasters and output voltage traces, for 
up to 40 ms. Figures 4 and 5 depict the network states when processing samples belonging to the Iris and 
Wisconsin datasets, respectively. Note that although each output neuron tends to fire more than once it is 
only the first output spike which drives weight updates in the network, as well as deciding the input class.

Fig. 4. Spike rasters of network predictions for two arbitrary Iris test 
samples, belonging to classes 0 and 2.

Top and middle rows show spike rasters of input and hidden activity, 
respectively. The bottom row displays the voltage trace of each output neuron.

Fig. 5. Spike rasters of network predictions for two Wisconsin test 
samples, belonging to classes 0 and 1.

Similar figure layout as in Fig. 4. The high firing rate of the neuron responding 
to the second sample results from its strong input drive to fire first.
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