
Pattern recognition using latency coding in multilayer
spiking neural networks

Brian Gardner, André Grüning
Department of Computer Science, University of Surrey, UK

2. Background

Few learning rules exist for spiking networks that are as
technically efficient and versatile in their deployment as
backpropagation is for rate-coded networks, and yet take full
advantage of rapid temporal coding.

To address this, we propose a supervised method for training
multilayer spiking networks to identify patterns based on a
time-to-first spike decoding scheme. This generalises our
previous formulation in [1] to real-world data sets.

References
[1] Gardner, B., Sporea, I., & Grüning, A. (2015). Learning spatiotemporally encoded pattern transformations
in structured spiking neural networks. Neural Computation, 27(12), 2548-2586.

[2] Bohte, S. M., Kok, J. N., & La Poutre, H. (2002). Error-backpropagation in temporally encoded networks
of spiking neurons. Neurocomputing, 48(1-4), 17-37.

[3] Zenke, F., & Ganguli, S. (2018). SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.
Neural Computation, 30(6), 1514-1541.

Conclusions

• These results provide a proof-of-concept for a time-to-first-spike decoding
scheme in multilayer networks, as applied to example real-world datasets.

• This approach is capable of processing data on a very fast time scale: typically
within just 10 ms.

• Our method complements previous studies on learning sequences of precisely-
timed output spikes in multilayer spiking neural networks [1, 3].

• As part of the steps involved in deriving this learning algorithm, hidden neurons
were required to spike stochastically; with respect to future work it would be
interesting to explore the impact of variable spiking on network regularisation.

1. Objectives

• To establish an efficient learning algorithm as applied to
multilayer spiking neural networks for pattern recognition.

• To investigate temporal codes as a means to rapidly
identify patterns that are based on spike times.

5. Simulations

Learning task. The performance of the derived learning algorithm was
tested through simulations of multilayer spiking networks trained on
two benchmark classification datasets: Iris and Wisconsin. Iris consists
of 150 samples split between three classes, and Wisconsin 699
samples split between two classes. The latter two classes of Iris are
not linearly separable from each other.

Network setup. Networks contained a single hidden layer of 20
neurons, with the number of output neurons matched to the number of
input classes. Input patterns were encoded as spikes using receptive
fields [2], a method that transforms real-valued features into spike
latencies. The number of input neurons encoding Iris and Wisconsin
were 48 and 63, respectively. The setup is depicted in Fig. 1.

Acknowledgement
This project has received funding from the European Union's Horizon
2020 Framework Programme for Research and Innovation under the
Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

Fig. 1. Architecture of the feed-forward multilayer
spiking neural network, tasked with classifying
data based on output spike latencies.

Input neurons: encode each sample as spike times,
via receptive fields, with latencies of up to 9 ms.

Hidden neurons: work to learn sample features.

Output neurons: classify samples according to which
neuron responds with the first output spike.

4. Learning algorithm

Error signal. Neurons in the network are treated as leaky-
integrate-and-fire (LIF) for analytical tractability. Thus, by
linearising output neuron voltages close to their thresholds [2],
gradient descent yields the following error signal:

Weight update formulae. The above error signal thus defines
weight updates for the last and second-last network layers:

where ε is the shape of an evoked postsynaptic potential, and
tf corresponds to the f th- firing time of a neuron.

3. Method

Approach. We start by considering a winner-take-all
competitive learning scheme for a feed-forward spiking neural
network, such that the output neuron with the earliest spike,
and hence strongest activation, decides the input class.

Cost function. Specifically, each output neuron’s activation is
described by a softmax function of first-spikes, τ{ i}, i.e.:

for the i th- neuron in the last layer, L. Hence, assuming a one-
hot encoded target output vector, y y= { 1 y, 2 y, …, c} for c
different classes, then a suitable choice of cost function for
network optimisation is given by the cross-entropy:

Network loss. The network’s performance
on Iris and Wisconsin was tested using
three-fold cross validation, when trained
for up to 100 epochs using mini-batch
learning (Fig. 2). To maximise the
network’s test accuracy, the following
techniques were used:

• L2 regularisation of weights to
discourage extremal values.

• Synaptic scaling to sustain network
activity in all layers.

• Early-stopping where the test loss has
reached its minima.

Fig. 2. Training and test loss with the number of training epochs, using three-fold
cross-validation on Iris and Wisconsin.

(Left) The Iris dataset, for a 48x20x3 structured network.

(Right) The Wisconsin dataset, for a 63x20x2 structured network.

Results were averaged over 10 independent runs, where shaded regions indicate the
standard deviation.

0 20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Iris Train
Test

0 20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5
Wisconsin Train

Test

0

24

48

In
p
u
t Class id: 0

0

10

20

H
id

d
e
n

0 10 20 30 40
Time (ms)

0

3

O
u
tp

u
t

0

24

48
Class id: 2

0

10

20

0 10 20 30 40
Time (ms)

0

3

0

32

63
Class id: 1

0

10

20

0 10 20 30 40
Time (ms)

0

2

0

32

63

In
p
u
t Class id: 0

0

10

20

H
id

d
e
n

0 10 20 30 40
Time (ms)

0

2

O
u
tp

u
t

Fig. 3. Confusion matrices for the two datasets, as test accuracy.

(Left) The Iris dataset, for a network trained for 30 epochs.

(Right) The Wisconsin dataset, for a network trained for 20 epochs.

The symbol ⌀ indicates no classification made by the network.

Network accuracy. The network’s accuracy on the two
datasets was obtained by applying early-stopping during
training; The test loss was minimised after 30 and 20
epochs on Iris and Wisconsin, respectively. The test
accuracies (%) obtained in this way are shown in Fig. 3.
To summarise:

• The final Iris training and test accuracies were
98 ± 1 % and 95 ± 3 %, respectively.

• The final Wisconsin training and test accuracies
were 98.0 ± 0.5 % and 97 ± 1 %, respectively.

Predictions on Iris and Wisconsin. The activity of the network when forming predictions on test samples
belonging to different classes was visualised as input / hidden spike rasters and output voltage traces, for
up to 40 ms. Figures 4 and 5 depict the network states when processing samples belonging to the Iris and
Wisconsin datasets, respectively. Note that although each output neuron tends to fire more than once it is
only the first output spike which drives weight updates in the network, as well as deciding the input class.

Fig. 4. Spike rasters of network predictions for two arbitrary Iris test
samples, belonging to classes 0 and 2.

Top and middle rows show spike rasters of input and hidden activity,
respectively. The bottom row displays the voltage trace of each output neuron.

Fig. 5. Spike rasters of network predictions for two Wisconsin test
samples, belonging to classes 0 and 1.

Similar figure layout as in Fig. 4. The high firing rate of the neuron responding
to the second sample results from its strong input drive to fire first.

Poster online link:

	Slide 1

