Cranfield University

Developments in CO₂ **Compression and Purification Unit (CPU)** for Oxy-fuel Combustion Power Plant

Ozone CPU

Introduction

Overview of Current CPU

Key	Find	lings:
-----	------	--------

- The developments of this technology are led by several gas suppliers,
- including: Air Products, Air Liquide, Linde and Praxair.
- The application of a CPU leads to near zero emissions from oxy-fuel power plants in addition to producing high purity CO_2 (>99%).

Table 1 Comp	parison between current and ozone CPU technologies for oxy-fuel power							
generation								
	Advantages	Disadvantages						
Current CPU	 Existing experience. 	 High CAPEX, OPEX and energy nenalty 						

• Different CPU technologies have been investigated in several oxy-fuel demonstration (\leq 30 MW) projects.

Novel Process Concept

technologies • High purity CO_2 (>99%) proven.

- Avoid corrosion of compressor.
- Reduce the size of CPU.
- High SO_x and NO_x removal efficiency.
- Corrosion issues.
- Only proved for simultaneous removing NO_x and SO_x .
- The feasibility and tech-economic analysis haven't been investigated for the CPU.

Figure 2 Modelling schematic of oxy-CFBC power plant with ozone-scrubbing for CPU by Aspen Plus.

Future Work

- The feasibility and tech-economic analysis will be modelled using an established oxy-CFBC power plant with ozone CPU by Aspen Plus.

Figure 3 Schematic of current and ozone CPU technologies for oxy-fuel power generation.

	Mass Flow	Units	Before (FLUEGAS6)	After (FLUEGAS7)	% change
	0 ₂	kg/hr	4391.09	4409.52	
	NO ₂	kg/hr	0.02	1.73	
	NO	kg/hr	1.13	0.01	99%
	SO ₂	kg/hr	690.34	655.82	5%
	SO ₃	kg/hr	43.31	86.44	
	0 ₃	kg/hr	45.36		

Previous literature results:

• 99% NO, 90% NO₂ and ~100% of SO₂ was removed at pH 11 before compression¹.

• Byproduct: Sodium nitrate \rightarrow Fertilizer Sodium sulphate \rightarrow Paper production¹

Conclusions

- A novel process concept of ozone oxidation and alkali scrubbing technology
 - with CPU has been proposed in this work and will be studied in Aspen Plus.
- This has the potential to remove the need for the pre-compressing and flue gas cleaning step within conventional CPU trains.

Experimental investigation of the performance of ozone oxidation and scrubbing • for the oxy-derived CO₂ will be conducted when completing its feasibility and

tech-economic analysis.

Yongliang (Harry) Yan Supervisors: Dr Peter Clough **Prof Ben Anthony** yongliang.yan@cranfield.ac.uk

www.cranfield.ac.uk

The impacts of impurities, gas quality control and cost are the main concern to

develop the oxy-fuel CO₂ purification technology.

References

1. J. Zhang et al., "Simultaneous Removal of NO and SO 2 from Flue Gas by Ozone Oxidation and NaOH Absorption," Ind. Eng. Chem. Res., vol. 53, no. 15, pp. 6450-6456, Apr. 2014..

