## Clade-specific evolutionary diversification along ontogenetic major axes in avian limb skeleton



Junya Watanabe (Kyoto Univ., Japan)

## Integration and Evolutionary Bias

- Phenotypic integration can bias evolution
(e.g., Cheverud, 1982; Steppan et al., 2002; Armbruster et al., 2014; Goswami et al., 2015)
Ex.:
Genetic covariation of traits as genetic lines of least resistance (Schluter, 1996)
- Different levels of integration:
- Static
- Ontogenetic
- Evolutionary etc. (Klingenberg, 2014)
$>$ How are different levels of integration related?



## Integration and Evolutionary Bias

- Phenotypic integration can bias evolution
(e.g., Cheverud, 1982; Steppan et al., 2002; Armbruster et al., 2014; Goswami et al., 2015)
Ex.:
Genetic covariation of traits as genetic lines of least resistance (Schluter, 1996)
- Different levels of integration:
- Static
- Ontogenetic
- Evolutionary etc. (Klingenberg, 2014)
$>$ How are different levels of integration related?


## Avian Limb Skeleton

- Enables various locomotion, with suitable proportion (e.g., Raikow, 1970, 1985; Storer, 1971; Gatesy \& Middleton, 1997; Middleton \& Gatesy, 2000)
- Functional signals have been well documented
(e.g., Zeffer et al., 2003; Nudds et al., 2007; Hinić-Frlog \& Motani, 2010; Watanabe, 2017)



## Ontogeny of Avian Limbs

- Highly integrated postnatal ontogeny (Cane, 1993)
- Diverse ontogenetic trajectories among clades (Heers \& Dial, 2015)
- Clade-specific ontogeny bias evolutionary variability?



## Study Design

- Compared evolutionary variability and ontogenetic trajectory in 6 avian families
- Ontogenetic trajectory of each family is represented by one selected species
- Included length of 6 limb bones
- Major axes of variation extracted by PCA/pPCA with size-corrected data


Working phylogeny (not drawn to scale; compiled from various sources)

Anatidae

Ardeidae

Phalacrocoracidae

Laridae

Alcidae

## Collection of Ontogenetic Series

- Conducted fieldworks in breeding colonies
- Prepared series of specimens of known ontogenetic stages




## Ontogenetic Series: Humerus, Calonectris leucomelas



- Limb bones reach their adult size before/around fledging


## Data Acquisition

- Ontogenetic dataset:
- Pooled data of chicks + juveniles
- Data for Anas platyrhynchos were taken from the literature (Dial \& Carrier, 2012)
- Evolutionary dataset:

Species means from museum specimens (both modern and fossil, only adults were included):

- Anatidae 109 spp. (1127 ind.)
- Procellariidae 25 spp. (344 ind.)
- Ardeidae 26 spp. (202 ind.)
- Phalacrocoracidae 17 spp. (298 ind.)
- Laridae 17 spp. (148 ind.)
- Alcidae 25 spp. (582 ind.)
- Isometric size was removed before analyses (Burnaby, 1966)



## Results: Shape Variation Patterns

UMT -

Ellipse: Evolutionary variability (pPC1-2) Bold line: Ontogenetic trajectory (PC1)

## Results: Shape Variation Patterns

TMT-

Ellipse: Evolutionary variability (pPC1-2) Bold line: Ontogenetic trajectory (PC1)

## Results: Difference between Ontogenetic PC1s

Upper triangle: $p$-values (Red: significant difference)

| Anatide | 0.00 | 0.00 | 0.00 | 0.01 | 0.07 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.95 | Proceclanidicae | 0.05 | 0.10 | 0.09 | 0.00 |
| 0.48 | 0.71 |  | 0.01 | 0.01 | 0.01 |
| 0.96 | 0.98 | 0.69 | 2 | 0.01 | 0.00 |
| 0.96 | 0.88 | 0.40 | 0.93 | Laridae | 0.00 |
| 0.99 | 0.93 | 0.45 | 0.94 | 0.94 |  |

- Calculated angles between ontogenetic PC1s
- Mean angle: $25.8^{\circ}$ Range: $8.5^{\circ}-66.6^{\circ}$
- Tested differences with permutations (10,000 times each), with correction of False Discovery Rate
- Significant differences in most combinations
$>$ Ontogenetic trajectories are diverse among families

Lower triangle: $\cos \theta$
(Darker blue: more similar)

## rSDE: Strength of Bias

- Regularized standard deviation of eigenvalues (rSDE):
- An index of matrix shape (Palvicev etal., 2009; Haber, 2011)
- Provides a measure of anisotropy of Cov.-matrix
- Takes a value from 0 (no bias) to 1 (absolute bias)
> Observed values were compared with null distributions obtained by simulated BM evolution on working phylos
$\mathrm{rSDE}=\sqrt{\frac{p \sum(\lambda-\bar{\lambda})^{2}}{(p-1) \sum \lambda \sum \lambda}}$
$p$ : Number of eigenvalues
$\lambda$ : Eigenvalues
$\pi$ : Mean of eigenvalues



## Results: rSDE



Pink: parametric bootstrap

## Results: Evolutionary vs. Ontogenetic PC1s




Permutation $p<0.05$


## Discussion

- Evolutionary variation is concentrated in the major axis of ontogeny
> Bias of evolutionary variability by ontogenetic integration (lines of least resistance)
$>$ Bias is clade-specific
- Strong ontogenetic integration of avian skeleton could be a cause
- Main driving forces of divergence (selection/drift) remain elusive at this scale




## Implications for Evolutionary Diversification

- Differences in ontogenetic integration patterns might explain clade-specific patterns of evolutionary diversification


## Ex.:

- Diversity of leg length in Ardeidae

In Ardeidae, leg length corresponds to main foraging habitat Highly variable even among close relatives (Boev, 1988, 1989)
$>$ Characteristic ontogeny of the family may have facilitated the diversification


Foraging in deeper streams


## Implications for Evolutionary Diversification

 Murray \& Vickers-Rich (2004):Clade-specific propensity for flightlessness might result from differences in ontogenetic trajectories?
This study:

- Clade-specific ontogenetic trajectory may bias evolutionary variability
$>$ Ontogenetic basis for flightlessness



## Summary

- Relationship between ontogenetic trajectory and evolutionary variability was examined in 6 families
- Clade-specific ontogenetic trajectories seem to bias evolutionary variability
> Such bias might explain differences in evolutionary diversification patterns in avian clades
Ex:
Long-leggedenss in Ardeidae Flightlessness in Anatidae



## Acknowledgements

- For fieldwork:
Y. Watanuki, K. Hoshina (Hokkaido Univ.)
D. M. Kikuchi, N. Sato (NIPR)
M. Shirai, S. Matsumoto, M. Ogawa (Nagoya Univ.)
M. Yamamoto (Nagaoka Inst. Tech.)
R. Anzai, K. Kazama, Y. Niizuma (Meijo Univ.)
N. Sato (Rishiri Museum), K. Kosugi (Rishiri Town)
- For specimens:
T. Yamasaki, T. Imamura (YIO)
Y. Odaya (AMB)
M. Manabe, I. Nishiumi (NMNS)
F. Takaya (HUMNH)
M. Eda, T. Tanaka (HUM)
J. H. Cooper, J. P. Hume,
S. D. Chapman, E. Bourdon (NHMUK)
D. Litmaer (MACN)
C. Lefèvre (MNHN)
P. A. Holroyd (UCMP)
R. C. Faycett (UWBM)
B. K. Schmidt, M. Florence, C. M. Milensky
J. Dean, H. F. James (USNM)
K. Garrett, K. E. Campbell,
S. A. McLeod, V. R. Rhue (LACM)
K. Randall, T. Deméré (SDMNH)
P. W. Collins (SBMNH)
M. Flannery (CAS)
G. W. Kaiser (RBCM)
C. Cicero, J. A. Atterholt (MVZ)
- Grant:


Kyoto University Foundation Grant

## Size-correction

- Variation patterns in the shape space is examined
- Log-transformed variables were projected onto the shape hyperplane perpendicular to the isometric size axis with Burnaby's (1966) method

$$
\begin{aligned}
& \mathbf{X}^{\prime}=\mathbf{X}\left(\mathbf{I}-\boldsymbol{\mu} \boldsymbol{\mu}^{T}\right) \\
& \boldsymbol{\mu}=p^{-1 / 2} \mathbf{1}
\end{aligned}
$$

X: data matrix
X': shape data matrix
$\mathbf{I}: p \times p$ identical matrix
$\mu$ : size vector
$p$ : number of variables
1: $p \times 1$ vector with 1


